SINGULAR MEASURES AND THE KEY OF G

STEPHEN M. BUCKLEY AND PAUL MACMANUS

Abstract _

We construct a sequence of doubling measures, whose doubling constants tend to 1, all for which kill a G_{δ} set of full Lebesgue measure.

0. Introduction

A non-zero Borel measure ν is said to be doubling if there is a constant $C \geq 1$ such that

$$(1) C^{-1} \le \frac{\nu(I)}{\nu(J)} \le C,$$

whenever I, J are adjacent intervals of the same length. We call the smallest $C = C_{\nu}$ for which this condition holds, the *doubling constant* of ν . A measure is a multiple of Lebesgue measure if and only if its doubling constant is 1.

It was shown in [**BHM**] that if $U \subset [0,1]^n$ is open and $|\partial U| = 0$, then $\nu_n(U) \to |U|$ whenever ν_n is a sequence of probability measures on $[0,1]^n$ whose doubling constants tend to 1. In particular, if U is an open subset of [0,1] of full measure, then $\nu_n(U) \to 1$. We will show, amongst other things, that there exists a G_δ set G in [0,1] of full measure, and a sequence ν_n of measures whose doubling constants tend to 1, yet $\nu_n(G) = 0$ for all n. We can even choose the measures to be "renormalizations" of a single measure ν which "fit the gaps in G" as a key fits a lock.

We wish to thank the referee for drawing our attention to the paper of Kakutani.

1. Definitions and basic results

There is an easy way, essentially due to Kahane [Kh], to generate doubling measures. Let $\mathcal Q$ consist of all intervals on [0,1) of the

 $^{2000\} Mathematics\ Subject\ Classification.\ 60{\rm G}30.$

The first author was partially supported by Enterprise Ireland.

form $[m4^{-k}, (m+1)4^{-k})$, where m, k are non-negative integers, and set Q(j) to be the subset of Q consisting of those intervals of length 4^{-j} .

For any $I \in Q$ the four children are labeled I_0, I_1, I_2, I_3 , moving from left to right. Now consider

$$H_I(x) = \begin{cases} 1, & x \in I_1 \\ -1, & x \in I_2 \\ 0, & \text{otherwise.} \end{cases}$$

The product $\prod_{I\in\mathcal{Q}}(1+a_IH_I)$ converges weak-* to a doubling, probability measure μ , provided that $\sup_{I\in\mathcal{Q}}|a_I|<1$. We call any such measure μ a Kahane measure and write $\|\mu\|_K=\sup_{I\in\mathcal{Q}}|a_I|$. Furthermore, the doubling constant C_μ tends to 1 as $\|\mu\|_K$ tends to 0; in fact, if $\|\mu\|_K \le 1-\epsilon$, then there is a constant c_ϵ , dependent only on ϵ , such that $C_\mu \le 1+c_\epsilon\|\mu\|_K$ whenever for some $\epsilon>0$.

For our purposes it will be sufficient to consider Kahane measures for which all of the coefficients a_I at any given scale are equal and $\|\mu\|_K \leq 1 - \epsilon$ for some $\epsilon > 0$, which we assume to be fixed from now on. We denote this class of measures by \mathcal{M}_{ϵ} , or simply \mathcal{M} . Then every measure in \mathcal{M} is of the form $\prod_{j=1}^{\infty} (1 + a_j R_j)$ where $R_j = \sum_{I \in Q(j)} H_I$; it is convenient to introduce the notation $c_j(\mu) \equiv a_j$. We will focus on those measures $\mu \in \mathcal{M}$ for which $c_j(\mu) \to 0$ as $j \to \infty$, and we label these \mathcal{M}_0 . For $\mu \in \mathcal{M}$ and $n = 0, 1, 2, \ldots$ the measure $\mu_n \in \mathcal{M}$ henceforth denotes the element of \mathcal{M} with $c_j(\mu_n) = c_{j+n}(\mu)$, $j \in \mathbb{N}$. The measures μ_n are "renormalized" versions of μ ; in fact, if $S \subset [0,1)$ is a measurable set and f_S is the periodic function with period 1 whose restriction to [0,1) is the characteristic function of S, then $\mu_n(S) = \int_0^1 f_S(4^n t) \, d\mu(t)$. Given $\mu \in \mathcal{M}_0$, it follows from the estimate in the last paragraph that the sequence of doubling constants (C_{μ_n}) has limit 1. Thus every $\mu \in \mathcal{M}_0$ is optimally doubling at small scales in the sense that $\nu = \mu$ satisfies (1) with $C = C_{\mu_n}$ whenever I, J are adjacent intervals with $|I| = |J| \leq 4^{-n}$.

The following result is a special case of a result of Kakutani [Kk, Corollary 1].

Theorem A. Let $\mu, \nu \in \mathcal{M}$, with $a_j = c_j(\mu)$, $b_j = c_j(\nu)$, for all $j \in \mathbb{N}$. If $(a_j - b_j)_{j=1}^{\infty}$ lies in l^2 , the class of square summable sequences, then $\mu \ll \nu \ll \mu$, otherwise $\mu \perp \nu$.

In fact, when ν is Lebesgue measure and $(a_n) \in l^2$ above, more is true: μ lies in the Muckenhoupt class A_{∞} , and in particular μ has density lying in $L^p([0,1])$ for some p > 1; see [**Bu**] and [**FKP**].¹

Kakutani proves this result by careful analysis, but let us pause to prove the singularity part of this result using the Lyapunov version of the Central Limit Theorem [Bi, Theorem 27.3] which we now state.

Theorem B. Suppose that $\{X_n\}_{n=1}^{\infty}$ is a sequence of independent random variables, and that the moments $E(X_n) = e_n$, $E(X_n - e_n)^2 = \sigma_n^2 \neq 0$, and $E|X_n - e_n|^3 = \tau_n^3$ are finite for each n. Let

$$s_n = \left(\sum_{i=1}^n \sigma_i^2\right)^{1/2}, \quad t_n = \left(\sum_{i=1}^n \tau_i^3\right)^{1/3}.$$

If $\lim_{n\to\infty} t_n/s_n = 0$, then $Y_n \equiv \sum_{i=1}^n (X_i - e_i)/s_n$ converges in distribution to the standard normal distribution.

In this paragraph we employ the notation of Theorem A. The functions R_n are independent as random variables on [0,1] with respect to ν , and so the functions $f_n = \log[(1+a_nR_n)/(1+b_nR_n)]$ are also independent. A little calculation with the power series expansion for $\log(1+t)$ gives

$$E_{\nu}(f_n) \equiv e_n = -\frac{(a_n - b_n)^2}{4(1 - b_n^2)} + O(|a_n - b_n|^3),$$

$$E_{\nu}(f_n - e_n)^2 \equiv \sigma_n^2 = \frac{(a_n - b_n)^2}{2(1 - b_n^2)} + O(|a_n - b_n|^3),$$

$$E_{\nu}|f_n - e_n|^3 \equiv \tau_n^3 = \frac{|a_n - b_n|^3}{2} \frac{1 + b_n^2}{(1 - b_n^2)^2} + O(|a_n - b_n|^4).$$

Thus if s_n, t_n are as in Theorem B, $\lim_{n\to\infty} |a_n-b_n|=0$, and $(a_n-b_n)_{n=1}^{\infty}\notin l^2$, then $t_n^3/\sum_{i=1}^n |a_i-b_i|^3$ and $s_n^2/\sum_{i=1}^n (a_i-b_i)^2$ are bounded above and below by positive, finite constants that are independent of n. It is then routine to deduce that $\lim_{n\to\infty} t_n/s_n=0$; one simply splits the sum at a point beyond which $|a_n-b_n|$ is very small and uses the estimate $\|\cdot\|_{l^3} \leq \|\cdot\|_{l^2}^{2/3}\|\cdot\|_{l^\infty}^{1/3}$. Thus Theorem B is applicable in the case $X_n=f_n$. Since $\sum_{i=1}^n e_i$ is much larger than s_n for large n, it follows that Y_n tends to $-\infty$ in ν -measure and thus $\prod_{n=1}^{\infty} (1+a_nR_n)/(1+b_nR_n)$ converges in ν -measure to the zero function. Set $\{P_N\}$ to be the partial products of this infinite product. We have

¹These references only say that μ lies in dyadic A_{∞} but, since μ is a doubling measure, this implies that $\mu \in A_{\infty}$.

just seen that this sequence of functions converges to zero in ν -measure. However, $P_N(x) = \mu(I_N(x))/\nu(I_N(x))$, where $I_N(x)$ is the unique element of $\mathcal{Q}(N)$ containing x and so, by the Radon-Nikodym theorem, $\{P_N\}$ converges ν -a.e. to the Radon-Nikodym derivative of μ with respect to ν . Consequently, the Radon-Nikodym derivative is zero ν -a.e., and so $\mu \perp \nu$ whenever $(a_j - b_j) \notin l^2$.

We are mainly interested in Theorem A when ν is Lebesgue measure. In this case if the sequence $(c_j(\mu))$ has limit zero but does not lie in l^2 , then μ is a singular measure which is optimal doubling at small scales. The mere existence of such a measure may seem a little surprising and was only recently established (using different techniques) by Cantón [C] and Smith [S].

There is an obvious bijection, A, between \mathcal{Q} and the set of finite sequences whose terms lie in $\{0,1,2,3\}$. We will refer to A(I) as the address of I. The jth term in the address is $A_j(I)$. For $I \in \mathcal{Q}$, we let E(I) consist of the union of the intervals $J \in \mathcal{Q}$ for which $A_{2j}(J) = A_j(I)$ for all j. So the odd terms in A(J) are arbitrary and the even terms are specified. If $I \in \mathcal{Q}(j)$, E(I) consists of 4^j elements of $\mathcal{Q}(2j)$. For $n = 0, 1, 2, \ldots$ and $I \in \mathcal{Q}$, $T_n(I)$ consists of those intervals $J \in \mathcal{Q}$ for which $A_{n+j}(J) = A_j(I)$ for all j. So the first n terms of J are arbitrary and the remainder are specified. When $I \in \mathcal{Q}(j)$, $T_n(I)$ consists of 4^n elements of $\mathcal{Q}(j+n)$. Note that if I and J are disjoint, then E(I) and E(J) are disjoint, as are $T_n(I)$ and $T_n(J)$. For any set B that is a union of disjoint elements I of \mathcal{Q} , we define E(B) to be the union of the E(I), and we define $T_n(B)$ similarly. It is easy to check that |E(B)| = |B| and that $|T_n(B)| = |B|$.

Let Σ_j be the collection of subsets of [0,1) that are unions of elements of Q(j). Any set $B \in \Sigma_m$ is said to be j-indifferent if whenever $B \supset I \in Q(m)$ and J is one of the three elements of Q(m) for which A(J) and A(I) differ only in the jth place, then $J \subset B$. Equivalently if S(B) is the set of sequences of length m given by A(I) for each $I \in Q(m)$, $I \subset B$, then B is j-indifferent precisely if S(B) is measurable with respect to the σ -algebra generated by the sets

$$S_{k,l} = \{(a_i)_{i=1}^m : a_k = l\}, \quad 1 \le k \le m, \ k \ne j, \ l \in \{0, 1, 2, 3\}.$$

The point of this definition is that if B is j-indifferent, then $\mu(B)$ does not depend on the $c_j(\mu)$. In particular, if $B \in \Sigma_m$, then E(B) is j-indifferent for all odd numbers j and all even j > 2m, and $T_n(B)$ is j-indifferent for all $j \leq n$ and all j > n + m.

2. Construction of μ and G

Our main result is as follows.

Theorem 1. There exists a measure $\mu \in \mathcal{M}_0$ on the interval [0,1) and a G_δ set G contained in [0,1) which have the following properties:

- (a) $\mu([0,1)) = 1$, |G| = 1 and $\mu(G) = 0$.
- (b) $\mu_n(G) = 1$ for all odd $n \in \mathbb{N}$ and $\mu_n(G) = 0$ for all even $n \in \mathbb{N}$.

Taking $\nu_n = \mu_{2n}$, we immediately get

Corollary 2. There exists a G_{δ} set G in [0,1] of full measure and a sequence ν_n of probability measures on [0,1] whose doubling constants tend to 1 and for which $\nu_n(G) = 0$ for all n.

The oscillatory behaviour of $\mu_n(G)$ described in Theorem 1(b) is all the more remarkable since the measures μ_n are renormalized versions of a single measure μ whose doubling constants are tending to one. The idea is to construct G from sets that are indifferent at odd levels n (and thus treat such μ_n like Lebesgue measure), but which are concentrated in areas where μ_n is small whenever n is even.

Proof of Theorem 1: Let b be any number strictly between 0 and 1. Define ν_k to be the element of \mathcal{M} whose coefficients are all 2^{-k} . This measure is singular with respect to Lebesgue measure. It follows that for sufficiently large n_k , there exists $A_k \in \Sigma_{n_k}$ for which $|A_k| \geq 1 - b^k$ and $\nu_k(A_k) \leq b^k$. We can assume that the n_k are increasing to ∞ .

Divide the natural numbers into consecutive blocks B_1, B_2, \ldots of length $2n_1, 2n_2, \ldots$. Set $a_j = 2^{-k}$ whenever j is an even number in block B_k , and 0 otherwise. Define $\mu \in \mathcal{M}_0$ by the equations $c_j(\mu) = a_j$.

Now let $m_k = 2n_1 + \cdots + 2n_{k-1}$ for k > 1 and $m_1 = 0$. Thus m_k is the total length of the blocks B_1, \ldots, B_{k-1} . Define H_k to be $T_{m_k}(E(A_k))$. Then $H_k \in \Sigma_{m_k+2n_k}$ and is j-indifferent for all j except even numbers larger than m_k and no larger than $m_k + 2n_k$, i.e., all even numbers in B_k . Remove the endpoints of the intervals that make up H_k to get an open set U_k . The sets U_k and H_k differ only by a countable number of points. Thus any doubling measure gives them the same measure (doubling measures on the line are non-atomic). Set $G_m = \bigcup_{k=m}^{\infty} U_k$ and $G = \bigcap_{m=1}^{\infty} G_m$. This set G is a G_{δ} set.

We have $|H_k| = |A_k| \ge 1 - b^k$ for all k, hence $|G_m| = 1$ for all m, and |G| = 1. If n is odd and j is even, then $c_j(\mu_n) = 0$. But H_k is j-indifferent for all odd j, so it follows that $\mu_n(H_k) = |H_k|$. As a result, $\mu_n(G) = 1$ whenever n is odd.

The set H_k is j-indifferent for all j except even j in B_k and $c_j(\mu) = 2^{-k}$ for these exceptional integers. Thus $\mu(H_k) = \nu_k(A_k) \leq b^k$. Consequently, $\mu(G_m) \leq b^m (1-b)^{-1}$ for all m, and so $\mu(G) = 0$.

Suppose n-m is even. Then $c_j(\mu_n)=c_j(\mu_m)$ for "most" values of j in the sense that for each k the number of places where the coefficients of size 2^{-k} do not match up is bounded independently of k, indeed by n-m. It follows readily from Theorem A that $\mu_n \ll \mu_m \ll \mu_n$. In particular, $\mu_n(G)=0$ for all even n.

Finally, we note two facts about the relationship between μ_n and μ_m . First, if n-m is odd, then one of n, m is odd and the other is even. Thus one of the measures gives full measure to G, while the other gives G zero measure. In particular, $\mu_n \perp \mu_m$. Secondly, when n-m is even, the absolute continuity mentioned in the last paragraph of the proof can be strengthened: there exists a constant C, dependent only on n-m, such that $C^{-1}\mu_m(E) \leq \mu_n(E) \leq C\mu_m(E)$. It suffices to prove this last estimate for $E \in \mathcal{Q}$, in which case the estimate follows from the fact, that $c_j(\mu_n) = c_j(\mu_m)$ for "most" values of j. We leave the details to the reader.

References

- [Bi] P. BILLINGSLEY, "Probability and measure", third ed., Wiley-Series in Probability and Mathematical Statistics. A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1995.
- [Bu] S. M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, *Trans. Amer. Math. Soc.* **340(1)** (1993), 253–272.
- [BHM] S. M. BUCKLEY, B. HANSON AND P. MACMANUS, Doubling for general sets, *Math. Scand.* (to appear).
- [C] A. CANTÓN, Singular measures and the little Bloch space, *Publ. Mat.* **42(1)** (1998), 211–222.
- [FKP] R. A. FEFFERMAN, C. E. KENIG AND J. PIPHER, The theory of weights and the Dirichlet problem for elliptic equations, *Ann. Math.* (2) **134(1)** (1991), 65–124.
- [Kh] J.-P. Kahane, Trois notes sur le ensembles parfaits linéaires, Enseignement Math. (2) 15 (1969), 185–192.
- [Kk] S. Kakutani, On equivalence of infinite product measures, *Ann. of Math.* (2) **49** (1948), 214–224.

[S] W. SMITH, Inner functions in the hyperbolic little Bloch class, *Michigan Math. J.* **45(1)** (1998), 103–114.

Department of Mathematics National University of Ireland Maynooth, Co. Kildare Ireland

 $E\text{-}mail\ address: \verb|sbuckley@maths.may.ie| \\ E\text{-}mail\ address: \verb|pmm@maths.may.ie| \\$

Primera versió rebuda el 26 d'octubre de 1999, darrera versió rebuda el 19 de juny de 2000.