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THE DIRICHLET PROBLEM FOR ELLIPTIC
EQUATIONS WITH DRIFT TERMS

Carlos E. Kenig and Jill Pipher

Abstract
We establish absolute continuity of the elliptic measure associated
to certain second order elliptic equations in either divergence or
nondivergence form, with drift terms, under minimal smoothness
assumptions on the coefficients.

1. Introduction

In this paper we prove some results on absolute continuity of the
elliptic measure associated to a second order elliptic operator under cer-
tain natural, minimal conditions on the coefficients of these operators.
Primarily, our operators L are of divergence form; that is, L = div a∇
where a(X) = (aij(X)) is strongly elliptic in the sense that there exists
a positive constant λ such that

λ|ξ|2 ≤
∑
i,j

aij(x)ξiξj < λ−1|ξ|2,

for all X and all 	ξ ∈ R
n. However, thanks to some recent work of

S. Hoffman and J. Lewis [HL], we can extend our results to operators
with a drift term, i.e., L+ b∇, under certain conditions on b. These con-
ditions on b will, in turn, yield information for non-divergence operators
as well. One feature of these theorems is that we need not assume that
the matrix (aij) is symmetric.

Let us motivate the condition we shall place on the matrix a of L =
div a∇ by the following example.

Consider the Laplacian ∆ =
∑

i Dxixi
, in a domain Ω above the graph

of a Lipschitz function φ, and let dω denote the harmonic measure on
the boundary of Ω, with respect to some fixed interior point. In [D1],
Dahlberg proved the mutual absolute continuity of dω with respect to
dσ, the surface measure on ∂Ω, and showed that the density k = dω/dσ
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satisfies a reverse Hölder condition of order 2. One approach to studying
this harmonic measure in domains with Lipschitz boundary is to map Ω
to the upper half space R

n+1
+ , and look at the resulting pull-back of ∆

under this transformation. If one simply “flattens” the domain

Ω = {(x, t) ∈ R
n × R | t ≥ φ(x)}

by the map (x, t) 	→ (x, t−φ(x)), then the Laplacian is mapped to a sym-
metric divergence form operator L = div a∇ whose coefficients a = (aij)
are merely bounded and measurable, since they depend on the deriva-
tives of the Lipschitz function φ. In general, the elliptic measures asso-
ciated to the entire class of divergence structure elliptic operators, with
bounded, measurable coefficients, may be singular with respect to the
surface measure on the boundary. (See [CFK] for details.) But the
operator L arising from the transformation above possesses additional
structure —the coefficients aij are independent of the t variable. It
seemed reasonable to conjecture that this independence in the t vari-
able would imply that the general class of such operators would satisfy
the same reverse Hölder estimates that the density for ∆ satisfies on
∂Ω. This was shown in [JK] and led to a series of works on exactly
how to relax the requirement of independence in the t variable. The
paper [FKP] contains some sharp results in this direction, as well as
many of the references to previous work.

On the other hand, there is a more useful transformation discovered
by B. Dahlberg, C. Kenig and E. Stein ([D2]) mapping R

n
+ to Ω of the

form

ρ(x, t) = (x, ct + θt ∗ φ(x)),

where c is a constant that depends on ‖∇φ‖∞ and can be chosen large
enough to insure that ρ is one-one. The function θ ∈ C∞

0 (Rn) is even,
and θt(·) = t−nθ(·/t). The pullback of ∆ from Ω to R

n+1
+ is also a sym-

metric elliptic operator, L = div a∇, where a possesses the properties:
(i) |∇a(x, t)| ≤ C/t.

(ii) t|∇a(x, t)|2dxdt is a Carleson measure.

(For the definition of Carleson measure, see (2.3).)

In 1984, Dahlberg posed two conjectures. The first conjecture con-
cerned perturbation of operators. Suppose that, in the upper half spa-
ce R

n+1
+ , one has an elliptic operator L0 = divA0∇ for which the Dirich-

let problem Dp with data in Lp(Rn, dx) is solvable. Now suppose L1 =
divA1∇ is a perturbation of L0 in the sense that |A1(x, t)−A0(x, t)|2dxdt

t
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is a Carleson measure. Then, is the Dirichlet problem Dq for Lq also
solvable, where q may be larger than p? (The conjecture can be stated
equivalently in terms of the weight condition dωL1 ∈ A∞(dωL0) —see
Definition (2.5).) This conjecture was solved affirmatively in [FKP],
where references to earlier work (such as [D2]) may also be found. It
is, however, the second conjecture that is the subject of this paper, and
which concerns, not perturbations of operators, but classes of operators
whose coefficients satisfy conditions (i) and (ii) above. Here the question
is whether or not the Dirichlet problem Dp for some p is solvable for such
an L —equivalently, whether the A∞ condition holds.

Until recently, most positive results proving A∞ estimates for a class
of elliptic operators relied on L2 identities, in the spirit of [JK], which
in turn relied on symmetry assumptions. ([FJK] is one interesting ex-
ception to this.) But there are a variety of reasons for studying the
non-symmetric situation. These include the connections with nondiver-
gence form equations and the broader issue of obtaining estimates on
elliptic measure in the absence of L2 identities which relate tangential
and normal derivatives.

In [KKPT], the study of nonsymmetric divergence form operators
with bounded measurable coefficients was initiated. In particular, some
sharp A∞ estimates were proven for certain operators in the class asso-
ciated with the first transformation (flattening) mentioned above —that
is, the operators on R

2 whose coefficients are independent of one of the
variables. This result was an application of a new method of establishing
mutual absolute continuity, and A∞ ([KKPT, Theorem 2.3]).

In this paper, we show that this same technique can be used to prove
A∞ results for elliptic measures of operators satisfying the bounds and
the Carleson measure conditions (i) and (ii) above. In the next section,
we make some definitions and state our main results. We thank Steve
Hofmann for helpful discussions on these topics and on his work [HL].

2. Some definitions - Statements of the main theorems

Definition 2.1. Z ⊂ R
n is an M -cylinder of diameter d if there exists

a coordinate system (x, t) such that

Z = {(x, t) : |x| ≤ d, −2Md ≤ t ≤ 2Md}

and for s > 0,

sZ = {(x, t) : |x| < sd, −2Md ≤ t ≤ 2Md}.
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Definition 2.2. Ω ⊂ R
n is a Lipschitz domain with Lipschitz ‘charac-

ter’ (M,N,C0) if there exists a positive scale r0 and at most N cylin-
ders {Zj}Nj=1 of diameter d, with r0

c0
≤ d ≤ c0r0 such that

(i) 8Zj ∩ ∂Ω is the graph of a Lipschitz function φj ,

‖φj‖∞ ≤ M, φj(0) = 0.

(ii)

∂Ω =
⋃
j

(Zj ∩ ∂Ω).

(iii)

Zj ∩ Ω ⊃
{

(x, t) : |x| < d, dist ((x, t), ∂Ω) ≤ d

2

}
.

If Q ∈ ∂Ω and

Br(Q) = {x : |x−Q| ≤ r}

then ∆r(Q) denotes the surface ball Br(Q)∩∂Ω and T (∆r) = Ω∩Br(Q)
is the Cartesian region above ∆r(Q).

Definition 2.3. A measure dµ defined in Ω ⊂ R
n is a Carleson measure

(denoted dµ ∈ C) if there exists a constant C > 0 such that for all r ≤ r0,

µ(T (∆r)) ≤ Cσ(∆r),

where dσ is the surface measure of ∂Ω.

Let L̃ = div a∇ + b · ∇, where a = (aij) and b = (bj) are matrices
with bounded measurable coefficients and (aij) satisfies the elliptic con-
dition (1.1). We may assume that a is symmetric without any loss of
generality for operators satisfying the hypothesis of Theorem 2.8 (see
Remark 2.12). A function u in the Sobolev space W 2

1,loc(Ω) is said to be
a weak solution to L in Ω if∫

Ω

a∇u · ∇φ− (b · ∇u)φdX = 0(2.4)

for all φ ∈ C∞
0 (Ω).

When b ∈ L∞, weak solutions are in fact Hölder continuous, and sat-
isfy an interior Harnack inequality, by the DiGiorgi-Nash-Moser theory
(see [GT], for example). Our assumptions on b will be weaker, but will
imply that b ∈ L∞ in the interior.
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Associated to L = div a∇+b ·∇, and a domain Ω ⊂ R
n, is a family of

elliptic measures dωX
L for X ∈ Ω. These are the representing measures

of solutions to L in Ω which arise from the solvability of the continuous
Dirichlet problem: Lu = 0 in Ω, u|∂D = g ∈ C(∂Ω). The unique
solvability of this continuous Dirichlet problem was one of the results
of [HL] for operators like L which have drift terms b · ∇, under certain
conditions on b. We shall be more specific about this following the
statements of Theorems 2.6 and 2.8 below.

Fixing some X ∈ Ω we set dωL = dωX
L , and refer to dωL as the

elliptic measure for L in Ω. The solvability of the Dirichlet problems for
L, when the boundary data belongs to Lp(∂Ω, dσ), for some p and for dσ
denoting surface measure on ∂Ω, depends upon the precise relationship
between dωL and dσ. To help quantify this, we recall some definitions.

Definition 2.5. If dµ and dν are doubling measures on ∂Ω, then dµ ∈
A∞(dν) if there exists a constant c > 0 and δ such that, for any ∆ ⊂ ∂Ω
and any set E ⊂ ∆,

µ(E)
µ(∆)

≤ C

(
ν(E)
ν(∆)

)δ

.

As the constant in Definition 2.5 is independent of the sets E and ∆,
the A∞-condition is in fact a quantitative, or uniform, version of mutual
absolute continuity. If dωL ∈ A∞(dσ) then it will follow from the general
theory of weights ([CF], [M]) that there exists p < +∞ for which the
Dirichlet problem Dp for L on Ω with data in Lp(∂Ω, dσ) is uniquely
solvable. (See [FKP] and the references therein for details.)

The main results of this paper are the following.

Theorem 2.6. Let L = div a∇ be an elliptic operator and let Ω ⊂ R
n

be a bounded Lipschitz domain. Let δ(X) = dist(X, ∂Ω), and suppose
that a = (aij) has distributional derivatives satisfying

sup{δ(X)|∇aij(X)|2 : X ∈ Bδ(Z)/2(Z)}(2.7)

is a Carleson measure in Ω. Then, the elliptic measure dωL associated
to L belongs to A∞(dσ).

Theorem 2.8. If L̃ = L + b · ∇, where L is as in Theorem 2.6, and

(2.9) sup{δ(X)|	b(X)|2 : X ∈ Bδ(Z)/2(Z)}
is a Carleson measure in Ω.

Then dωL̃ ∈ A∞(dσ).
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Remark 2.10. We do not assume, in Theorem 2.6, that the matrix (aij)
is symmetric. It was observed in [KKPT], that the results of [CFMS]
for operators L = divA∇ with merely bounded measurable coefficients
were valid even when A was not symmetric. Thus, for operators of The-
orem 2.6, the existence of elliptic measure, its relationship to the Green’s
functions and various classical important properties of solutions (Har-
nack property, Hölder continuity of weak solutions, comparison princi-
ples) are all valid (see (1.3)–(1.14) of [KKPT]).

Remark 2.11. The Carleson measure conditions 2.7 and 2.9 of the theo-
rems are stated in terms of supremums so that they imply certain essen-
tial pointwise estimates on aij and bj . For example, (2.9) implies that
|	b(X)| ≤ Cδ(X)−1 for x ∈ Ω, and (2.10) implies an analogous estimate
on |∇aij |.
Remark 2.12. In the statement of Theorem 2.8, the symmetry of the
matrix a = (aij) is no longer a factor. That is, it suffices to assume
that (aij) is symmetric, and the general case will follow. To see this, let
L = Di(aij)Dj + b · ∇, and let us assume (2.8) holds for a = (aij) sym-
metric, satisfying (2.7). Consider a non-divergence form operator L0 =
aijDiDj + b ·∇ where 	b satisfies (2.9), and where (aij) need not be sym-
metric. Let Aij = aij+aji

2 , so that L0 = AijDiDj +B · ∇. Then L0 may
also be written as

L0 = Di(Aij)Dj + (B − (DiAij)j),

and we see that the resulting lower order term B−(DiAij)j also satisfies
(2.9). Thus L0 satisfies the hypotheses of Theorem 2.8. Now observe
that

L = Di(aijDj) + b · ∇u = aijDiDj + (b + Diaij)j · ∇,

i.e., L is an operator whose structure is the same as L0, to which the
theorem applies.

The above observations give rise to an interesting corollary of Theo-
rem 2.8, namely that the same conclusion applies to operators in non-
divergence form. Moreover, we also see that it now suffices to prove
(2.6) assuming (aij) is symmetric, although the method of proof does
not distinguish between the two cases.

In light of the fact that the matrices (aij) for L in the statement
of Theorem 2.8 may be assumed symmetric, Theorem 2.8 follows from
Theorem 2.6 by applying the perturbation Theorem 2.17 of [HL]. From
A∞ for the operator L it will follow that A∞ holds for L̃ = L + b · ∇
under conditions (2.9) on the drift terms. In [HL], the authors prove



Dirichlet Problem for Elliptic Equations 205

A∞ estimates for parabolic operators as well as elliptic ones, and must
therefore deal with the non-trivial issues of the lack of a doubling con-
dition on parabolic measures. But in the elliptic case, their conditions
on the coefficients of the matrix (aij) are more restrictive than ours, so
Theorem 2.6 is not contained in their work. However, the perturbation
methods they develop are powerful, and we did not find a simpler means
of obtaining (2.8) from (2.6) without invoking their Theorem 2.17.

Theorem 2.6 will follow from establishing the hypotheses of Theo-
rem 2.9 of [KKPT], which gives a Littlewood-Paley criterion for A∞
estimates. To state the theorem, we recall the classical operators associ-
ated with the concepts of mathematical convergence of solutions at the
boundary, and of uniqueness in the Dirichlet problem. Our domains will
be assumed to be Lipschitz, and hence we may define the non-tangential
approach regions, for each Q ∈ ∂Ω, by

Γα(Q) = {X ∈ Ω : |X −Q| ≤ (1 + α) dist(X, ∂Ω)},

which are compactly contained in Ω when α is sufficiently large. The
parameter α is the aperture of the cone. Sometimes, we shall need to
truncate the cones at height d and we denote by Γα,d(Q) this truncated
cone Γα(Q) ∩Bd(Q). The square function of u, defined in Ω ⊂ R

n, at a
point Q ∈ ∂Ω relative to a family of cones {Γα,d} is defined by:

Sα,du(Q) =

{∫
Γα,d(Q)

|∇u(X)|2 dist(X, ∂Ω)2−ndX

} 1
2

.

The non-tangential maximal function of u is defined by

Nα,du(Q) = sup{|u(X)| : X ∈ Γα,d(Q)}.

Definition 2.13. The Dirichlet problem (Dp) with data in Lp(∂Ω, dσ)
is solvable for L if whenever f ∈ C(∂Ω), the solution u to the continuous
Dirichlet problem with data f satisfies the estimate:

For fixed α, d, there exists C > 0, depending on α and on
ellipticity, such that

‖Nα,d(u)‖Lp(dσ) ≤ C‖f‖Lp(dσ).(2.14)



206 C. E. Kenig, J. Pipher

The nontangential maximal function N(u), when u|∂Ω = f is compa-
rable to a maximal function of Hardy-Littlewood type relative to the
measure dωL:

MωL
f(Q) = sup

∆�Q

∫
∆

f(P )
dωL(P )
ωL(∆)

.

Thus, by the theory of weights, Dp is solvable for L if and only if dωL =
kdσ and k satisfies a reverse Hölder inequality of order p′, 1

p + 1
p′ = 1.

Again, dωL ∈ A∞(dσ) if and only if a reverse Hölder inequality for the
density is valid for some (possibly large) choice of exponent, and hence
dωL belongs to A∞(dσ) if and only if (Dp) is solvable for some p. One
of the main results of [KKPT] is the following criterion for establishing
A∞ for operators L in divergence form.

Theorem 2.15 (2.9 of [KKPT]). Let L = divA∇ be elliptic and A =
(aij) be a matrix of bounded measurable functions. Let Ω be a bounded
Lipschitz domain. Suppose that for all Lipschitz subdomains D ⊂ Ω one
has the Lp norm equivalence, for some p > 0,

‖N(u)‖Lp(∂Ω′,dσ) ≤ C1‖S(u)‖Lp(∂Ω′,dσ)

≤ C2‖N(u)‖Lp(∂Ω′,dσ)

(2.16)

for constants C1, C2 depending only on the Lipschitz character of Ω.
Then dωL ∈ A∞(dσ) on Ω.

We note that Theorem 2.15 was stated for p = 2, but once (2.16)
holds for some choice of p, it holds for all, by a purely real variable argu-
ment. And finally, we showed that in [KKPT] that Theorem 2.15 was
sharp in the sense that no conclusion stronger than A∞ could be drawn.
Theorems 2.6 and 2.8 are sharp as well, in the same sense. In [FKP], a
class of divergence form operators (of Beurling-Ahlfors type) was shown
to be sharp for the A∞ condition. A routine computation verifies that
their coefficients always satisfy the condition (2.7) of Theorem 2.6, and
hence the conclusion cannot be improved.

3. Proof of Theorem 2.6

The main results of the paper are proven by establishing the hy-
pothesis of Theorem 2.15 above. That is, on every sub-domain Ω′ of Ω
we will prove the Lp norm equivalence of the square function and the
non-tangential maximal function with respect to surface measures on the
boundary. The first lemma permits us to assume that the Carleson mea-
sure condition (2.7) holds on every Lipschitz subdomain of our original
domain.
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For Ω ⊂ R
n+1, a Lipschitz domain, let

εΩ(X) = sup{|∇a(Z)| : Z ∈ B(X, δΩ(X)/2}
where δΩ(X) = dist(X, ∂Ω). If Ω = R

n+1
+ , we omit the subscript and

simply write ε(x, t) where X = (x, t) ∈ R
n × R+.

Lemma 3.1. Suppose that Ω ⊂ R
n+1 is a Lipschitz domain and that

δΩ(X)ε2Ω(X)dX is a Carleson measure with norm C. Then, on every
bounded Lipschitz subdomain Ω′ of Ω, δΩ′(X)ε2Ω′dX is a Carleson mea-
sure with norm depending only on C0 and on the Lipschitz character of
Ω′.

Proof: It suffices to prove the lemma in the case where Ω = R
n+1
+ . Let

Ω denote the Lipschitz subdomain of R
n+1
+ and fix a Carleson box T (∆)

associated to a surface ball ∆ ⊂ ∂Ω. Let X0 = (x0, t0) be the center of
T (∆). We consider two cases.

In case 1, we assume that the diameter of T (∆) is smaller than 1
10 t0.

Then if (x, t) ∈ R
n+1
+ belongs to T (∆), t0 ≤ 10

9 t, since t0 = (t0 − t)+ t ≤
diamT (∆)+ t. Because tε2(x, t)dxdt is a Carleson measure, |∇a(x, t)| ≤
C
t , and hence εΩ(x, t) ≤ C

t0
, by our assumption on diamT (∆). This gives∫

T (∆)

δΩ(X)ε2Ω(X)dX ≤
(
C

t0

)2

[diamT (∆)]n+2

≤ C(diamT (∆))n

≤ Cσ(∆),

which is the Carleson condition on Ω.
In case 2, when diamT (∆) > 1

10 t0, we let Q be the cube in R
n whose

center (x0, 0) is the projection of X0 and whose diameter is (M + 1)t0,
where M depends only on the Lipschitz character of Ω and is chosen
so that diamT (∆) ≤ Mt0. With this choice, it is easy to verify that
T (∆) ⊂ T (Q). Thus, since δΩ(X) ≤ t and εΩ(x, t) ≤ ε(x, t),

∫
T (∆)

δΩ(X)ε2Ω(X)dX ≤ C

∫
T (Q)

tε2(x, t)dxdt

≤ C|Q|
≤ Cσ(∆).

Let now L = div a∇ be an elliptic operator satisfying condition (2.7)
of Theorem 2.6 defined in Ω. We wish to establish the equivalence on



208 C. E. Kenig, J. Pipher

subdomains D of Ω, of ‖N(u)‖Lp(∂D,dσ) and ‖S(u)‖Lp(∂D,dσ) for solu-
tions Lu = 0 in Ω. Of the two inequalities, the domination of ‖N(u)‖Lp

by ‖S(u)‖Lp is the more difficult to establish, and we deal with this first.
We begin with a lemma which shows that the L2 norm of a solution is
bounded by L2 norms of quantities involving N and S. The idea (see
3.8.1 of [KKPT]) is to combine such inequalities on varying Lipschitz
domains with a stopping time argument. We shall henceforth assume
that u is a solution to an operator L = div a∇ whose coefficients satisfy
conditions (2.7), and are also C∞, and we shall obtain estimates which
do not depend on the order of smoothness.

Lemma 3.2. Let ∆ be the graph of a Lipschitz function φ(x) and let

Oφ = {(x, t) : |x| ≤ 1, φ(x) < t < φ(x) + 1}.

Suppose that Lu = div a∇u = 0 in Oφ, where a satisfies conditions 2.7.
Then there exists a constant C > 0 and a compact set K ⊂ Oφ, at
distance C from ∂Oφ, C depending only on the Lipschitz constant of φ
such that

(3.3)
∫

∆ 1
2

u2dσ ≤ C

∫
∆ 3

4

S2
1(u)dσ

+ C


∫

∆ 3
4

S2
1(u)dσ




1
2

·


∫

∆ 3
4

N2
1 (u)dσ




1
2

+ C

∫∫
K

u2dX.

Remark. Recall that Nh and Sh denote nontangential maximal func-
tions and square functions defined with respect to cones truncated at
height h ≤ 1, with aperture chosen so that they are compactly con-
tained in Oφ. We will combine (3.3) with a stopping time argument, to
obtain upper bounds for N(u), as well as for u.

Proof: Set O = Oφ. First, let ψ(x, t) = θ(x)µ(t) be a product of C∞

cut-off functions θ and µ, supported in {|x| ≤ 3
4} × {0 ≤ t ≤ 3

4}. Our
strategy is to use a special change of variables to map O onto a region
in R

n+1
+ and prove (3.3) by integration by parts. We will use ψ(x, t)

to localize our integrands. Thus we set ηt(x) = t−nη(x/t), where η(·)
is an even C∞ approximate identity supported in {|x| ≤ 1

2}, and set
ρ(x, t) = (x, ct+F (x, t)) with F (x, t) = ηt ∗φ(x). For appropriate choice
of c, depending on ‖∇φ‖∞, ρ is a 1-1 map of R

n+1
+ onto {(x, t) : t > φ(x)}

and this transformation gives rise to the Dahlberg-Kenig-Stein adapted
distance function.
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Set v(x, t) = u ◦ ρ(x, t), where u is a solution to Lu = 0. Then, in
ρ−1(O) ⊂ R

n+1
+ , v is a solution to L̃ = div b∇ where b = (bij) satisfies

the condition:

tβ2(x, t)dxdt is a Carleson measure(3.4)

where

β(x, t) = sup{|∇bi(z, s)| : i, j = 1, . . . , n and (z, s) ∈ B t
2
(x, t)}.

Because the matrix b is related to the original matrix by the formula

b = |detDρ|(D(ρ−1))ta ◦ ρ(Dρ)−1,

property 3.4 follows from the fact that t|∇∇ρ(x, t)|2dxdt is a Carleson
measure.

Thus the quantity
∫
∆ 1

2

u2dσ is bounded from above by

∫
v2(x, 0)θ(x)µ(0)dx= −

∫
Dt(v2(x, t)ψ(x, t))dxdt

= −
∫

2v(x, t)bnn(x, t)Dtv(x, t)
Dt(t)

bnn(x, t)
ψ(x, t)dxdt

−
∫

v2(x, t)Dtψ(x, t)dxdt.

The second summand above is bounded by the factor
∫
K

u2(X)dX where
K is compactly contained in O (K � O), and in the first summand we
have introduced the (n, n) coefficient of the matrix b. This term is, after
integration by parts, equal to∫

2v(x, t)Dt(bnn(x, t)Dt(v(x, t))
t

bnn(x, t)
ψ(x, t)dxdt

+
∫

2(Dtv(x, t))2ψ(x, t)tdxdt

+
∫

2v(x, t)Dtv(x, t)Dtψ(x, t)tdxdt

−
∫

2v(x, t)bnn(x, t)Dtv(x, t)ψ(x, t)
Dtbnn(x, t)
bnn(x, t)2

tdxdt

= I + II + III + IV.
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Term II is bounded by

C

∫
(x,t)∈O∩{|t|≤ 3

4 ,φ(x)<t<φ(x)+1}
δ(X)|∇u(X)|2dX ≤ C

∫
∆ 3

4

S2
1(u)dσ

where the subscripted S1 denotes the square function with respect to
cones truncated at height 1. The constant C depends on several para-
meters —the Lipschitz constant, the ellipticity constant of the matrix a,
and the truncations of the cones— but not on the solution.

Term III is, by the Cauchy-Schwarz inequality, dominated by

C

(∫
|Dtψ(x, t)|v2(x, t)dxdt

) 1
2

·
(∫

t|Dtx(x, t)|2|Dtψ(x, t)|dxdt
) 1

2

≤ C

(∫
K

u2dX

) 1
2

·


∫

∆ 3
4

S2
1(u)dσ




1
2

.

For term IV , we will need the Carleson measure properties of t|∇bnn|2 as
well as the upper and lower bounds on bnn(x, t) guaranteed by ellipticity:

IV ≤ C

(∫
v2(x, t)ψ(x, t)t|∇bnn(x, t)|2dxdt

) 1
2

·
(∫

tψ(x, t)|Dtv(x, t)|2dxdt
)1

2

≤


∫

∆ 3
4

N2
1 (u)dσ




1
2

·


∫

∆ 3
4

S2
i (u)dσ




1
2

.

Only in the estimate on term I do we use the equation that v satisfies,
obtaining

I = −2
∫ ∑

(i,j) 
=(n,n)

Di(bij(x, t)Djv(x, t))
tv(x, t)ψ(x, t)

bnn(x, t)
dxdt

= I1 + I2,

where I1 is the sum over (i, j) = (n, j) with j < n and I2 is the sum over
(i, j) with i < n.
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In term I2, we may integrate by parts with respect to Dxi to obtain

I2 = 2
∫ ∑

i<n

bijDjvDi

{
vtψ

bnn

}
dxdt

= 2
∫

bijDjvDiv
tψ

bnn
dxdt

+ 2
∫ ∑

i<n

bijDjv vt

{
Diψ

bnn
− ψDibnn

b2nn

}
dxdt

≤ C

∫
|∇v|2tψdxdt

+ C

(∫
|∇v|2t|∇ψ|dxdt

) 1
2

(∫∫
v2t|∇ψ|dxdt

) 1
2

+ C

(∫
|∇v|2tψdxdt

) 1
2

(∫
v2tψ|bnn|2dxdt

) 1
2

≤ C

∫
∆ 3

4

S2
1(u)dσ +


∫

∆ 3
4

S2
1(u)dσ




1
2

·
(∫

K

u2dσ

) 1
2

+


∫

∆ 3
4

S2
1(u)dσ




1
2

·


∫

∆ 3
4

N2
1 (u)dσ




1
2

.

We rewrite term I1 as,∑
j<n

Dn(bnjDjv) =
∑
j<n

(Dnbnj ·Djv + Dj(bnjDnv) −Djbnj ·Dnv).

When the derivatives fall on bnj , we use the Carleson measure property of
|∇bij |2t and for the summands Dj(bnjDjv), with j < n, the situation is
exactly that involved in the estimate of I2. This completes the proof.

The fact that an inequality of the form (3.3) is valid above any Lip-
schitz graph can be used to generate a similar inequality with ‖Nu‖
replacing ‖u‖, via a stopping time argument. To see this let us fix
a Lipschitz function ψ(x) and a solution u defined in the region Oψ

of Lemma 3.2. Let Λ denote the graph of ψ(x), and fix an aper-
ture a for the cones used to define the nontangential maximal func-
tion Nu(x, ψ(x)). The cones of aperture 8a will be required to be com-
pactly contained in Oψ. Then, the square function will be defined us-
ing cones of larger aperture than a, say 4a, for technical measures con-
nected with proving good-λ inequalities. All the cones at (x, ψ(x)), for
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|x| < 1
4 , will be at a height sufficient to insure that they are contained

in {|x| ≤ 3
4 , ψ(x) ≤ ψ(x) + 3

4}. We define the function v(x, t) in all of
{(x, t) : t ≥ ψ(x)} by

v(x, t) = u(x, t)θ(x)µα(t− ψ(x))

where θ ∈ C∞, 0 ≤ θ ≤ 1, θ(x) = 1 when |x| ≤ 3
4 , supp(θ) ⊂ {|x| < 7

8}
and µα is also a C∞ cut-off function equal to 1 in (0, α2 ) and supported
in (0, α). Here α is a truncation parameter which may be taken to equal
half the height of the truncated cones above. Define

hj(x) = sup{t ≥ ψ(x) : sup
(z,s)∈Γa(x,t)

|v(z, s)| > 2j}

where

Γa = {(z, s) : |z − x| ≤ a(s− t)}
is a cone with vertex at (x, t).

The functions hj(x) were defined in [KKPT] and are inspired by a
stopping time argument of [Fe-St]. We now prove that for any v(x, t)
such that hj(·) < +∞, these hj are uniformly Lipschitz.

Lemma 3.5. The functions hj(x) are Lipschitz with constant 1
a .

Proof: Fix x1 and x2 and suppose hj(x1) = t1. If t̃ = t1 + 1
a |x2 − x1|,

then Γa(x2, t̃) ⊂ Γa(x1, t1) and so t̃ ≥ ψ(x2). Also, hj(x2) ≤ t̃, for if
not, there would exist a cone Γa(x2, t2), properly contained in Γa(x1, t1),
containing a point (z, s) for which |v(z, s)| > 2j . But this would imply
that hj(x1) > t1, a contradiction. Now let ˜̃t = t1 − 1

a |x2 − x1|. If
˜̃t ≥ ψ(x2), then a similar argument as above gives hj(x2) ≥ ˜̃t. Therefore,
|hj(x1) − hj(x2)| ≤ 1

a |x2 − x1|. If ˜̃t < ψ(x2), then in any case

|hj(x2) − hj(x1)| ≤ max{|t1 − t̃|, |t1 − ψ(x2)|}

≤ 1
a
|x2 − x1|.

Lemma 3.6. Let Γβ
a(x, ψ(x)) denote a cone with vertex (x, ψ(x)), aper-

ture a, truncated at height β. Choose β so that Γβ
4a(x, ψ(x)) ⊂ {|x| ≤

3
4 , ψ(x) ≤ t ≤ ψ(x) + 3

4} when |x| ≤ 1
4 . Let Na,β/2u and S4a,βu denote,

respectively, the nontangential maximal function and the square function
defined using the cones Γβ/2

a and Γβ
4a. Let

Ej,ρ =
{
|x| ≤ 1

4

}
∩ {x : Na,β/2u(x, ψ(x)) > 2j , S4a,βu(x, ψ(x)) ≤ ρ2j}.
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Then, there exists a choice of ρ so that for all x ∈ Ej,ρ, there is a cube J
with x ∈ J and J ⊂ {|x| ≤ 3

4} and for which |u(z, hj(z))| > 2j−1 for all
z ∈ J .

Proof: The proof of this fact is given in (3.14) of [KKPT].
We shall also require a rescaled version of Lemmas 3.2 and 3.6, which

we record as follows.
Let Or = {(x, t) : |x| ≤ 2r, ψ(x) < t < ψ(x) + 2r} and suppose

Lu = 0 in Or. Then, if Ar is any point of Or whose distance to ∂Or is
approximately r, there exists a C = C(‖ψ′‖∞) such that

(3.7)
∫

∆ r
2

u2dσ ≤ C

∫
∆ 3

4 r

S2
r (u)dσ

+ C

(∫
∆ 3

4 r

S2
r (u)dσ

) 1
2

·
(∫

∆ 3
4 r

N2
r (u)dσ

) 1
2

+ Cru2(Ar).

The inequality above is exactly a rescaled version of (3.3) with the
term

∫∫
Kr

u2dX replaced by ru2(Ar) +
∫
∆ 3

4 r
S2
r (u)dσ.

To rescale Lemma 3.6, observe that if Γβ′

4a(x, ψ(x) ⊂ {|x| ≤ 3
4r, ψ(x) ≤

t ≤ ψ(x) + 3
4r} when |x| ≤ 1

44, and β′ = βr, then the choice of ρ is
independent of r.

Theorem 3.8. Let Ω ⊂ R
n be a bounded Lipschitz domain, with Lip-

schitz character (M,N,C0), and let u be a solution to div a∇u = 0 in Ω,
as in (2.6). Suppose u(P ∗) = 0 for some P ∗ ∈ Ω. Let dσ denote surface
measure on ∂Ω. Assume, for p > 2, that A = ‖S4a(u)‖Lp(∂Ω,dσ) < +∞.
Then, given γ < 1, there exists a constant C(γ), tending to zero as γ → 0
such that for all λ > CA,

σ{Nα(u) > 2λ, M(S4a(u) ≤ γλ), M(S2
4a(u))

1
4 ·M(N2

a (u))
1
4 ≤ γλ}

≤ C(γ)σ
{
Na(u) >

λ

32

}
,

where

Mf(Q) = sup
{∫

∆

f(P )
dσ(P )
σ(∆)

: ∆ ⊂ ∂Ω, ∆ � Q

}
.

Corollary 3.9. ‖Na(u)‖Lp(dσ) ≤ C‖S4a(u)‖Lp(dσ), for a, Ω, σ, and u
as in Theorem 3.8, for all p > 2.

The proof of the corollary is standard from the good-λ inequality.
The proof of Theorem 3.8 differs from the proof of application (3.1)
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in [KKPT]. There, it was necessary to prove the Lp-inequalities on
graphs, so as to use the G. David arguments building on the case of small
Lipschitz constant. The need to ‘build up’ from the small constant case
makes the arguments much more technical, requiring a more elaborate
localization scheme.

Proof of Theorem 3.8: (We omit those details which are standard, and
can be found in many references.) Let {∆l(Ql, rl)} be a Whitney de-
composition of {Na(u) > λ

32}. That is, {Na(u) > λ
32} ⊂ ∪l∆l, ∆l =

Bl(Ql, rl)∩∂Ω with
∑

l χBl
(X) ≤ C(M), and each 8n∆l = Bl(Ql, 8rl)∩

∂Ω is contained in the graph of a Lipschitz function. Moreover, there ex-
ists a parameter r0 =r0(M,N,C0) such that if rl ≤ r0, then B(Ql, 2nrl)∩
∂Ω contains a point Q∗

l where Na(u)(Q∗
l ) ≤ λ

32 .
Since we make the a priori assumption that ‖S4a(u)‖Lp < +∞, inte-

rior estimates together with the normalization on u handles the estimates
on the ‘large’ Whitney balls —those with radius larger that the parame-
ter r0 (see [D3]). Thus we fix a ∆ = ∆l with rl ≤ r0 in the Whitney
decomposition and let

F = ∆ ∩ {Na(u) > 2λ, M(S4a(u)) ≤ λγ,

M(S2
4a(u))

1
4 ·M(N2

a (u))
1
4 ≤ γλ}.

By choosing γ sufficiently small, we can ensure that Na,βl
(u) > λ

2 in
F where βl is a truncation of the cones which equals c1rl, where rl is the
radius of ∆l, and which satisfies the conditions of Lemma 3.6, rescaled
to rl.

Now set λ = 2j , and define the Lipschitz function hj(x) as in Lem-
ma 3.5 relative to the Lipschitz function φ, where 8∆l is contained in the
graph of φ. The function v(x, t) in the definition of hj will be supported
in T (2∆l) since the cut-off functions are tailored to scale rl. Let ∆∗

l =
{(x, hj(x)) : (x, φ(x)) ∈ 4∆l}. Then by 3.6, for γ < ρ, for all (x, φ(x)) ∈
F , we have Mj(uχ∆∗

l
)(x, hj(x)) > 2j

16 , where Mj denotes the Hardy-
Littlewood maximal function on the graph hj :

MjF (x, hj(x)) = sup
{∫

I

F (z, hj(z))dσj(z) : x ∈ I

}
.

Let Arl
be a point in Ol satisfying inequality 3.7. Since ∆l is one of the

‘small’ Whitney balls, the existence of the point Q∗
l where Na(u)(Q∗

l ) ≤
2j

32 means that

Mj(ũX∆∗
l
)(x, hj(x)) >

2j

32
if ũ(X) = u(X) − u(Al).
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Thus, by replacing u by ũ, we may assume that u vanishes at Al. (This
means that the constant γ in the definition of F should be replaced by√
γ.) Therefore, by the weak type inequality for the maximal function,

σ(F ) ≤ C2−2j

∫
∆∗

l

u2(x, hj(x))dσ.

We now apply inequality (3.7) to bound the above expression by two
terms, one of which is

C2−2j

∫
2∆∗

l

S2
4a,2βl,hj

(u)dσj .(3.10)

The indices on the square function show that this is defined with respect
to the graph hj(x) using truncated cones (2βl) of aperture a.

The cones Γ4a,2βl,hj
(x, hj(x)) are always contained in the cones

Γ4a(x, φ(x)) so, in dimension n = 2, the square functions
S4a,2βl,hju(x, hj(x)) are dominated pointwise by the square functions
S4a(u)(x, φ(x)). Then the quantity (3.10) would be bounded by
M(S4a(u)(x, φ(x)) ·σ(8∆l), for (x, φ(x)) ∈ F , which is, in turn, bounded
by (γ2j)2σ(8∆l). In dimension n > 2, the desired upper bound can be
obtained by carrying out the integration:∫

2∆∗
l

S2
4a,2βl,hj

udσj �
∫∫

T (3∆l)

δj(X)|∇u(X)|2dX(3.11)

where δj(X) = dist(X, graph of hj). Then, since δj(X) ≤ δ(X), we
recover

∫
4∆l

S2
4a(u)(Q)dσ(Q), and the upper bound (γ2j)2σ(∆l).

The other term arising from 3.7 in the bound for 3.10 is handled
similarly. Summing our estimates on l proves 3.8.

The arguments for the converse inequality to that of 3.8,

‖Sa(u)‖Lp(dσ) ≤ C‖N4a(u)‖p(dσ),

are similar, but simpler. Here we do not need the stopping time argu-
ment, nor the introduction of the hj ’s. We omit the details.

We also note that parabolic analogs of Theorem 2.6 hold, with similar
proofs. The same applies to Theorem 2.8 if the Carleson measure norm
in (2.9) is sufficiently small, for then the parabolic measure is a doubling
measure ([HL]). Whether or not doubling is true for parabolic measures
when the norm in (2.9) is large remains an interesting open problem.
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