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THE DIRICHLET PROBLEM FOR ELLIPTIC
EQUATIONS WITH DRIFT TERMS

CarLos E. KENIG AND JiLL PIPHER

Abstract

‘We establish absolute continuity of the elliptic measure associated
to certain second order elliptic equations in either divergence or
nondivergence form, with drift terms, under minimal smoothness
assumptions on the coefficients.

1. Introduction

In this paper we prove some results on absolute continuity of the
elliptic measure associated to a second order elliptic operator under cer-
tain natural, minimal conditions on the coeflicients of these operators.
Primarily, our operators L are of divergence form; that is, L = divaV
where a(X) = (a;;(X)) is strongly elliptic in the sense that there exists
a positive constant A\ such that

NEP <Y ai(@)&g; < AHeP,
i

for all X and all 5 € R™. However, thanks to some recent work of
S. Hoffman and J. Lewis [HL], we can extend our results to operators
with a drift term, i.e., L+ bV, under certain conditions on b. These con-
ditions on b will, in turn, yield information for non-divergence operators
as well. One feature of these theorems is that we need not assume that
the matrix (a;;) is symmetric.

Let us motivate the condition we shall place on the matrix a of L =
divaV by the following example.

Consider the Laplacian A = Y. D,.,,, in a domain €2 above the graph
of a Lipschitz function ¢, and let dw denote the harmonic measure on
the boundary of , with respect to some fixed interior point. In [D1],
Dahlberg proved the mutual absolute continuity of dw with respect to
do, the surface measure on 910, and showed that the density k = dw/do
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satisfies a reverse Holder condition of order 2. One approach to studying
this harmonic measure in domains with Lipschitz boundary is to map 2
to the upper half space RQL_H, and look at the resulting pull-back of A
under this transformation. If one simply “flattens” the domain

Q= {(2,t) €R" xR | £ > §(x)}

by the map (x,t) — (z,t—¢(x)), then the Laplacian is mapped to a sym-
metric divergence form operator L = divaV whose coefficients a = (a;;)
are merely bounded and measurable, since they depend on the deriva-
tives of the Lipschitz function ¢. In general, the elliptic measures asso-
ciated to the entire class of divergence structure elliptic operators, with
bounded, measurable coefficients, may be singular with respect to the
surface measure on the boundary. (See [CFK] for details.) But the
operator L arising from the transformation above possesses additional
structure —the coefficients a;; are independent of the ¢ variable. It
seemed reasonable to conjecture that this independence in the ¢ vari-
able would imply that the general class of such operators would satisfy
the same reverse Holder estimates that the density for A satisfies on
0f). This was shown in [JK] and led to a series of works on exactly
how to relax the requirement of independence in the ¢t variable. The
paper [FKP] contains some sharp results in this direction, as well as
many of the references to previous work.

On the other hand, there is a more useful transformation discovered
by B. Dahlberg, C. Kenig and E. Stein ([D2]) mapping R’} to  of the
form

p(z,t) = (x,ct + 0 x ¢(z)),

where ¢ is a constant that depends on ||V¢||o and can be chosen large
enough to insure that p is one-one. The function § € C§°(R™) is even,
and 0,(-) = ¢t~"0(-/t). The pullback of A from Q to R is also a sym-
metric elliptic operator, L = divaV, where a possesses the properties:

() [Va(.t)| < O/t
(i) t|Va(x,t)|*dzdt is a Carleson measure.

(For the definition of Carleson measure, see (2.3).)

In 1984, Dahlberg posed two conjectures. The first conjecture con-
cerned perturbation of operators. Suppose that, in the upper half spa-
ce Rfﬁ“, one has an elliptic operator Ly = div AgV for which the Dirich-
let problem D,, with data in LP(R"™,dx) is solvable. Now suppose L; =
div A,V is a perturbation of L in the sense that |4, (z, t)— Ao (z, t)|*dz %
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is a Carleson measure. Then, is the Dirichlet problem D, for L, also
solvable, where ¢ may be larger than p? (The conjecture can be stated
equivalently in terms of the weight condition dwy, € Aco(dwr,) —see
Definition (2.5).) This conjecture was solved affirmatively in [FKP],
where references to earlier work (such as [D2]) may also be found. It
is, however, the second conjecture that is the subject of this paper, and
which concerns, not perturbations of operators, but classes of operators
whose coefficients satisfy conditions (i) and (ii) above. Here the question
is whether or not the Dirichlet problem D, for some p is solvable for such
an L —equivalently, whether the A,, condition holds.

Until recently, most positive results proving A, estimates for a class
of elliptic operators relied on L? identities, in the spirit of [JK], which
in turn relied on symmetry assumptions. ([FJK] is one interesting ex-
ception to this.) But there are a variety of reasons for studying the
non-symmetric situation. These include the connections with nondiver-
gence form equations and the broader issue of obtaining estimates on
elliptic measure in the absence of L? identities which relate tangential
and normal derivatives.

In [KKPT], the study of nonsymmetric divergence form operators
with bounded measurable coefficients was initiated. In particular, some
sharp A, estimates were proven for certain operators in the class asso-
ciated with the first transformation (flattening) mentioned above —that
is, the operators on R? whose coefficients are independent of one of the
variables. This result was an application of a new method of establishing
mutual absolute continuity, and A, ([KKPT, Theorem 2.3]).

In this paper, we show that this same technique can be used to prove
A results for elliptic measures of operators satisfying the bounds and
the Carleson measure conditions (i) and (ii) above. In the next section,
we make some definitions and state our main results. We thank Steve
Hofmann for helpful discussions on these topics and on his work [HL].

2. Some definitions - Statements of the main theorems

Definition 2.1. Z C R" is an M-cylinder of diameter d if there exists
a coordinate system (x,t) such that

Z=A{(z,t):|z|] <d, —2Md <t <2Md}
and for s > 0,

sZ = {(z,t) : |z| < sd, —2Md <t < 2Md}.
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Definition 2.2. Q C R” is a Lipschitz domain with Lipschitz ‘charac-
ter’ (M, N, Cy) if there exists a positive scale 7y and at most N cylin-
ders {Zj}é-vzl of diameter d, with £ < d < coro such that

(1) 8Z; NN is the graph of a Lipschitz function ¢;,
[¢5lloe < M, ¢;(0) = 0.
(i)
0 =Jz; no9).

J

(iii)

N

Z;N2D {(x,t) x| < d, dist ((x,t),00) < }
If @ € 992 and
Br(Q) ={z:|r-Q[<r}

then A,.(Q) denotes the surface ball B.(Q)NoN and T(A,) = QN B, (Q)
is the Cartesian region above A.(Q).

Definition 2.3. A measure dy defined in 2 C R” is a Carleson measure
(denoted du € C) if there exists a constant C' > 0 such that for all r < rg,

wWT(Ar)) < Co(Ar),
where do is the surface measure of 9€).

Let L = divaV + b -V, where a = (a;;) and b = (b;) are matrices
with bounded measurable coefficients and (a;;) satisfies the elliptic con-
dition (1.1). We may assume that a is symmetric without any loss of
generality for operators satisfying the hypothesis of Theorem 2.8 (see
Remark 2.12). A function u in the Sobolev space Wﬁloc(Q) is said to be
a weak solution to L in  if

(2.4) / aVu-V¢o— (b-Vu)pdX =0
Q

for all ¢ € C§°(Q2).

When b € L, weak solutions are in fact Holder continuous, and sat-
isfy an interior Harnack inequality, by the DiGiorgi-Nash-Moser theory
(see [GT], for example). Our assumptions on b will be weaker, but will
imply that b € L* in the interior.
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Associated to L = divaV +b-V, and a domain 2 C R", is a family of
elliptic measures dwy for X € . These are the representing measures
of solutions to L in €2 which arise from the solvability of the continuous
Dirichlet problem: Lu = 0 in ©Q, upp = g € C(952). The unique
solvability of this continuous Dirichlet problem was one of the results
of [HL] for operators like L which have drift terms b - V, under certain
conditions on b. We shall be more specific about this following the
statements of Theorems 2.6 and 2.8 below.

Fixing some X € Q we set dwy, = dwy, and refer to dwy as the
elliptic measure for L in 2. The solvability of the Dirichlet problems for
L, when the boundary data belongs to L?(9€, do), for some p and for do
denoting surface measure on 02, depends upon the precise relationship
between dw;y, and do. To help quantify this, we recall some definitions.

Definition 2.5. If du and dv are doubling measures on 0f2, then du €
Ao (dv) if there exists a constant ¢ > 0 and ¢ such that, for any A C 9Q
and any set £ C A,

WE) _ ., (u(E))‘f
n(A) = \v(4)

As the constant in Definition 2.5 is independent of the sets F and A,
the A,.-condition is in fact a quantitative, or uniform, version of mutual
absolute continuity. If dwy, € A (do) then it will follow from the general
theory of weights ([CF], [M]) that there exists p < 400 for which the
Dirichlet problem D, for L on ! with data in LP(9%,do) is uniquely
solvable. (See [FKP] and the references therein for details.)

The main results of this paper are the following.

Theorem 2.6. Let L = divaV be an elliptic operator and let Q C R™
be a bounded Lipschitz domain. Let 6(X) = dist(X,99Q), and suppose
that a = (ai;) has distributional derivatives satisfying

(2.7) sup{6(X)|Vay;(X)|* : X € Bs(z)2(2)}

is a Carleson measure in 2. Then, the elliptic measure dwy, associated
to L belongs to A (do).

Theorem 2.8. Iff/ =L+0b-V, where L is as in Theorem 2.6, and

(2.9)  sup{(X)[B(X)|* : X € Bsz)2(2)}

is a Carleson measure in ).

Then dwj € As(do).
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Remark 2.10. We do not assume, in Theorem 2.6, that the matrix (a;;)
is symmetric. It was observed in [KKPT], that the results of [CFMS]
for operators L = div AV with merely bounded measurable coefficients
were valid even when A was not symmetric. Thus, for operators of The-
orem 2.6, the existence of elliptic measure, its relationship to the Green’s
functions and various classical important properties of solutions (Har-
nack property, Holder continuity of weak solutions, comparison princi-
ples) are all valid (see (1.3)—(1.14) of [KKPT]).

Remark 2.11. The Carleson measure conditions 2.7 and 2.9 of the theo-
rems are stated in terms of supremums so that they imply certain essen-
tial pointwise estimates on a,;; and b;. For example, (2.9) implies that
I6(X)| < CO(X)~! for z € Q, and (2.10) implies an analogous estimate
on |Vayjl.

Remark 2.12. In the statement of Theorem 2.8, the symmetry of the
matrix a = (a;;) is no longer a factor. That is, it suffices to assume
that (a;;) is symmetric, and the general case will follow. To see this, let
L = D;(a;;)D; +b-V, and let us assume (2.8) holds for a = (a;;) sym-
metric, satisfying (2.7). Consider a non-divergence form operator Ly =
ai; D;D;j +b-V where b satisfies (2.9), and where (ai;) need not be sym-
metric. Let A;; = %, so that Lo = A;;D;D; + B-V. Then Ly may
also be written as

Lo = Di(Aij)Dj + (B — (DiAij);),
and we see that the resulting lower order term B — (D, A;;); also satisfies

(2.9). Thus Ly satisfies the hypotheses of Theorem 2.8. Now observe
that

L= D,;(a,;ij) +b-Vu= aijD,;Dj + (b + Diaij)j -V,

i.e., L is an operator whose structure is the same as Lg, to which the
theorem applies.

The above observations give rise to an interesting corollary of Theo-
rem 2.8, namely that the same conclusion applies to operators in non-
divergence form. Moreover, we also see that it now suffices to prove
(2.6) assuming (a;;) is symmetric, although the method of proof does
not distinguish between the two cases.

In light of the fact that the matrices (a;;) for L in the statement
of Theorem 2.8 may be assumed symmetric, Theorem 2.8 follows from
Theorem 2.6 by applying the perturbation Theorem 2.17 of [HL]. From
A for the operator L it will follow that A, holds for L=L+b-V
under conditions (2.9) on the drift terms. In [HL], the authors prove
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A estimates for parabolic operators as well as elliptic ones, and must
therefore deal with the non-trivial issues of the lack of a doubling con-
dition on parabolic measures. But in the elliptic case, their conditions
on the coefficients of the matrix (a;;) are more restrictive than ours, so
Theorem 2.6 is not contained in their work. However, the perturbation
methods they develop are powerful, and we did not find a simpler means
of obtaining (2.8) from (2.6) without invoking their Theorem 2.17.

Theorem 2.6 will follow from establishing the hypotheses of Theo-
rem 2.9 of [KKPT], which gives a Littlewood-Paley criterion for A
estimates. To state the theorem, we recall the classical operators associ-
ated with the concepts of mathematical convergence of solutions at the
boundary, and of uniqueness in the Dirichlet problem. Our domains will
be assumed to be Lipschitz, and hence we may define the non-tangential
approach regions, for each @ € 010, by

T (Q)={X €Q:|X - Q| < (1+a)dist(X,90)},

which are compactly contained in 2 when « is sufficiently large. The
parameter « is the aperture of the cone. Sometimes, we shall need to
truncate the cones at height d and we denote by I', 4(Q) this truncated
cone ', (Q) N By(Q). The square function of u, defined in 2 C R™, at a
point Q € 99 relative to a family of cones {I'y 4} is defined by:

1

2

Suqu(Q) = { /F o IVau(X)|? dist (X, am?ndx}

The non-tangential maximal function of v is defined by

No,qu(Q) = sup{[u(X)[ : X € Ta,a(Q)}.

Definition 2.13. The Dirichlet problem (D,) with data in LP(0, do)
is solvable for L if whenever f € C(92), the solution u to the continuous
Dirichlet problem with data f satisfies the estimate:

For fixed «, d, there exists C > 0, depending on a and on
ellipticity, such that

(2.14) [ Nov,a(w)l| e a0y < Cllf || Lr(do)-



206 C. E. KiENiG, J. PIPHER

The nontangential maximal function N(u), when ujpq = f is compa-
rable to a maximal function of Hardy-Littlewood type relative to the
measure dwrp,:

— su de(P)
M 1(Q) = swp [ ()T

Thus, by the theory of weights, D, is solvable for L if and only if dwy =
kdo and k satisfies a reverse Holder inequality of order p’, % + 1% = 1.
Again, dwy, € Ax(do) if and only if a reverse Holder inequality for the
density is valid for some (possibly large) choice of exponent, and hence
dwr, belongs to Ay (do) if and only if (D)) is solvable for some p. One
of the main results of [KKPT] is the following criterion for establishing
A for operators L in divergence form.

Theorem 2.15 (2.9 of [KKPT]). Let L = div AV be elliptic and A =
(ai;) be a matriz of bounded measurable functions. Let Q@ be a bounded
Lipschitz domain. Suppose that for all Lipschitz subdomains D C €2 one
has the LP norm equivalence, for some p > 0,

IV (u)]| e 997 ,a0) < C1lS (W)l Lr 007, do)

< Co||N ()| e 007 ,do)

for constants C1, Co depending only on the Lipschitz character of €.
Then dwy, € Aso(do) on .

We note that Theorem 2.15 was stated for p = 2, but once (2.16)
holds for some choice of p, it holds for all, by a purely real variable argu-
ment. And finally, we showed that in [KKPT] that Theorem 2.15 was
sharp in the sense that no conclusion stronger than A, could be drawn.
Theorems 2.6 and 2.8 are sharp as well, in the same sense. In [FKP], a
class of divergence form operators (of Beurling-Ahlfors type) was shown
to be sharp for the A,, condition. A routine computation verifies that
their coefficients always satisfy the condition (2.7) of Theorem 2.6, and
hence the conclusion cannot be improved.

(2.16)

3. Proof of Theorem 2.6

The main results of the paper are proven by establishing the hy-
pothesis of Theorem 2.15 above. That is, on every sub-domain )’ of
we will prove the LP norm equivalence of the square function and the
non-tangential maximal function with respect to surface measures on the
boundary. The first lemma permits us to assume that the Carleson mea-
sure condition (2.7) holds on every Lipschitz subdomain of our original
domain.
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For ) ¢ R™*! a Lipschitz domain, let
eq(X) =sup{|Va(2)|: Z € B(X,da(X)/2}

where 6o (X) = dist(X,00). If Q = R}, we omit the subscript and
simply write €(x,t) where X = (z,t) € R” x R,..

Lemma 3.1. Suppose that Q@ C R 4s o Lipschitz domain and that
5o (X)ed(X)dX is a Carleson measure with norm C. Then, on every
bounded Lipschitz subdomain Q' of Q, dq/(X)ed,dX is a Carleson mea-
sure with norm depending only on Cy and on the Lipschitz character of
.

Proof: It suffices to prove the lemma in the case where ) = Ri“. Let
 denote the Lipschitz subdomain of R*! and fix a Carleson box T(A)
associated to a surface ball A C 9. Let Xy = (xg,tp) be the center of
T(A). We consider two cases.

In case 1, we assume that the diameter of T'(A) is smaller than 1—10t0.
Then if (z,t) € R} belongs to T(A), to < 22¢, since tg = (tg —t) +t <
diam T'(A) +t. Because te?(x, t)dzdt is a Carleson measure, |Va(z,t)| <
€ and hence eq(z,t) < %, by our assumption on diam T'(A). This gives

2
/ Jo(X)eg(X)dX < (tg) [diam T'(A)]"+2
T(A) 0

< C(diam T(A))"™
< Co(A),

which is the Carleson condition on €.

In case 2, when diam T'(A) > ;5to, we let Q be the cube in R™ whose
center (z,0) is the projection of Xy and whose diameter is (M + 1)tg,
where M depends only on the Lipschitz character of Q2 and is chosen
so that diamT'(A) < Mty. With this choice, it is easy to verify that
T(A) C T(Q). Thus, since 0o (X) < ¢ and eq(x,t) < e(z,1),

/ So(X) (X)X <C [ te(z, t)dudt
T(A) T7(Q)

<ClQ|
< Co(A). O

Let now L = divaV be an elliptic operator satisfying condition (2.7)
of Theorem 2.6 defined in 2. We wish to establish the equivalence on
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subdomains D of Q, of |N(u)||Lr(op,ds) and [|S(u)||Lrop,d0) for solu-
tions Lu = 0 in Q. Of the two inequalities, the domination of ||N(u)||L»
by ||S(u)]|» is the more difficult to establish, and we deal with this first.
We begin with a lemma which shows that the L? norm of a solution is
bounded by L? norms of quantities involving N and S. The idea (see
3.8.1 of [KKPT]) is to combine such inequalities on varying Lipschitz
domains with a stopping time argument. We shall henceforth assume
that u is a solution to an operator L = divaV whose coeflicients satisfy
conditions (2.7), and are also C*, and we shall obtain estimates which
do not depend on the order of smoothness.

Lemma 3.2. Let A be the graph of a Lipschitz function ¢(x) and let
Oy = {(m1) : Ja] <1, 6(x) <t < p(x) +1}.

Suppose that Lu = divaVu = 0 in Oy, where a satisfies conditions 2.7.
Then there exists a constant C > 0 and a compact set K C Oy, at
distance C' from 004, C depending only on the Lipschitz constant of ¢
such that

(3.3) /A

+C S2(u)do | - N (u)do —|—C’// u?dX.

udo < C / S%(u)do
A

1 3
2 1

N

Remark. Recall that Ny and S} denote nontangential maximal func-
tions and square functions defined with respect to cones truncated at
height h < 1, with aperture chosen so that they are compactly con-
tained in O4. We will combine (3.3) with a stopping time argument, to
obtain upper bounds for N(u), as well as for u.

Proof: Set O = O,. First, let ¢(z,t) = 0(z)u(t) be a product of C*>
cut-off functions 6 and p, supported in {|z| < 3} x {0 <t < 3}, Our
strategy is to use a special change of variables to map O onto a region
in R?*! and prove (3.3) by integration by parts. We will use v(z,t)
to localize our integrands. Thus we set n(x) = ¢t "n(x/t), where 7(-)
is an even C° approximate identity supported in {|z| < %}, and set
p(z,t) = (z,ct+ F(x,t)) with F(x,t) = n, *¢(x). For appropriate choice
of ¢, depending on || V||, p is a 1-1 map of R onto {(z,t) : t > ¢(z)}
and this transformation gives rise to the Dahlberg-Kenig-Stein adapted
distance function.
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Set v(x,t) = uo p(x,t), where u is a solution to Lu = 0. Then, in
p~H(0) C R, v is a solution to L = divbV where b = (b;;) satisfies
the condition:

(3.4) t3%(x,t)dxdt is a Carleson measure
where
B(z,t) = sup{|Vbi(z,s)| :4,j =1,... ,n and (2, s) € Be(z,1)}.
Because the matrix b is related to the original matrix by the formula
b= |det Dp|(D(p~"))'a o p(Dp)~",

property 3.4 follows from the fact that ¢|VVp(z,t)|?dzdt is a Carleson
measure.
Thus the quantity | AL u%do is bounded from above by
2

/1)2(:3, 0)80(z)pu(0)dx = —/Dt(’l)Q(CC,t)1/J($,t))dxdt

= _/21}('1:’t)bnn(x’t)Dtv(x,t)bl)ﬂ

nn -Tvt)

U(x, t)dxdt

—/vz (z,t) Dy (z, t)dxdt.

The second summand above is bounded by the factor [, u?(X)dX where
K is compactly contained in O (K € O), and in the first summand we
have introduced the (n,n) coefficient of the matrix b. This term is, after
integration by parts, equal to

/ 2v(x,t)Dt(b,m(x,t)Dt(v(x,t))ﬁw(:c,t)dxdt

nn(xv )

+/2(Dtv(x,t))2w(x,t)td:vdt

+/2v(x7t)DtU(%t)th(%t)tdxdt

Dtbnn(x7 t)

b (2,1)° tdxdt

_/zv(xvt)bnn(xat)DtU(xat)w(xat)
=1+IT+I1IT+1V.
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Term I7 is bounded by

C §(X)|Vu(X)|?dX < C S%(u)do
(z,t)eON{|t|< 3, p(z)<t<p(z)+1} A%

where the subscripted S; denotes the square function with respect to
cones truncated at height 1. The constant C depends on several para-
meters —the Lipschitz constant, the ellipticity constant of the matrix a,
and the truncations of the cones— but not on the solution.

Term I11 is, by the Cauchy-Schwarz inequality, dominated by

2

c (/|Dt¢(x,t)v2<x,t)dxdt> - (/tDt:c(x,t)|2|th(x,t)|dxdt>

<C (/ u2dX> . S%(u)do
K A%

For term IV, we will need the Carleson measure properties of t|Vb,,,|? as
well as the upper and lower bounds on b, (z, t) guaranteed by ellipticity:

2

IV <cC (/ v2(x,t)¢(x,t)t|Vbnn(m,t)Qd:vdt) ’

( /tw(x,t)|Dtv(x,t)|2dxdt>%S /A 3N§(u)do : 7 (u)do

Ag
4

W=
[N

Only in the estimate on term I do we use the equation that v satisfies,
obtaining

to(x, t)(x,t)

b (@, 1) dxdt

I=-2 Z Di(bij(.’lﬁ,t)DjU<$,t))
(8,3)#(n,n)

zjl +127

where I is the sum over (¢,5) = (n,j) with j < n and I3 is the sum over
(i,) with i < n.
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In term I, we may integrate by parts with respect to Dx; to obtain

I=2 / 3" b;DjuD; {th } dadt

i<n

t
= 2/biijvDivb—wd:vdt

+ 2 / ZbiijU Ut{ 1;[} — w b2 }dl‘dt

b

<C / |Vo|2thdxdt

e (/ |Vv2t|Vw|dxdt> ’ (// v2t|Vz/)|dxdt)

1

+C </|Vv2t1/)da:dt> i (/v2mbnn|2dxdt> i

2

<C S%(u)do + S2(u)do | - (/ u2d0>
A% A% K

1
2

1

2 2

+ S%(u)do | - N (u)do

Ag Ag
4 4

We rewrite term I as,

j<n j<n
When the derivatives fall on b, ;, we use the Carleson measure property of
|Vb;;|*t and for the summands D;(b,,;D;v), with j < n, the situation is
exactly that involved in the estimate of I5. This completes the proof. [

The fact that an inequality of the form (3.3) is valid above any Lip-
schitz graph can be used to generate a similar inequality with ||Nul|
replacing ||ul|, via a stopping time argument. To see this let us fix
a Lipschitz function ¢ (z) and a solution w defined in the region Oy
of Lemma 3.2. Let A denote the graph of ¥(z), and fix an aper-
ture a for the cones used to define the nontangential maximal func-
tion Nu(z,1(x)). The cones of aperture 8a will be required to be com-
pactly contained in Oy. Then, the square function will be defined us-
ing cones of larger aperture than a, say 4a, for technical measures con-
nected with proving good-\ inequalities. All the cones at (x,¥(x)), for
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lx| < i, will be at a height sufficient to insure that they are contained
in {|z| < 2, ¥(z) < P(z)+ 3}. We define the function v(z,t) in all of
{(z,t) 1 t > p(x)} by

v(x, 1) = u(z, 1)0(x) ot — ¥ (z))
where § € C>=,0< 0 <1, 6(z) = 1 when |z| < 3, supp(d) C {|z| < I}
and ji, is also a C'*° cut-off function equal to 1 in (0, §) and supported
in (0, «). Here « is a truncation parameter which may be taken to equal
half the height of the truncated cones above. Define

hj(xz) = sup{t > ¥(z) : sup  |v(z,s)| > 27}
(z,8)€lq (x,t)

where

ry,= {( y

is a cone with vertex at (z,t).

The functions h;(z) were defined in [KKPT] and are inspired by a

stopping time argument of [Fe-St]. We now prove that for any v(x,t)
such that h;(-) < 400, these h; are uniformly Lipschitz.

s)ilz—z| <a(s—1)}

Lemma 3.5. The functions h;(x) are Lipschitz with constant %

Proof: Fix 1 and x5 and suppose h;(z1) = t1. If £ = t1 + %|x2 — 1],
then Ty(w2,1) C Ty(x1,t1) and so £ > (). Also, hj(z2) < t, for if
not, there would exist a cone I, (z2, t2), properly contained in Lo(x1,t1),
containing a point (z,s) for which |v(z,s)| > 27. But this would imply
that hj(z1) > ti, a contradiction. Now let P = t, — %|x2 — x| I
i > 1p(x2), then a similar argument as above gives h;(x2) > i Therefore,
|hj(21) = hj(z2)| < oy — x|, If i< ¥(z2), then in any case

|hj(w2) — hj(21)] < max{[ty — ], [ts — P(a2)l}
1
S —|{E2 — IL’1|. O
a
Lemma 3.6. Let I'?(2,4(z)) denote a cone with vertex (z,¢(x)), aper-
ture a, truncated at height 3. Choose (3 so that T (z,¢(z)) C {|z| <
3.¢(x) <t <(z)+ 2} when |z| < L. Let N, g/ou and Siq gu denote,

respectively, the nontangential mazimal function and the square function
defined using the cones F’g/Q and Ffa. Let

E;,= {|x| < i} N{z : Nogjou(z,v(z)) > 27 Saa,pu(z,P(x)) < p2j}.
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Then, there exists a choice of p so that for all x € Ej ,, there is a cube J
with x € J and J C {|z| < 3} and for which |u(z, h;(2))| > 2771 for all
zedJ.

Proof: The proof of this fact is given in (3.14) of [KKPT].

We shall also require a rescaled version of Lemmas 3.2 and 3.6, which
we record as follows.

Let O, = {(z,t) : |z] < 2r, (x) < t < 9(x) + 2r} and suppose
Lu =0 in O,. Then, if A, is any point of O, whose distance to 00, is
approximately r, there exists a C' = C(]|1)||) such that

(3.7 /AH

u?do < C’/ S2(u)do

% A%’l‘

+C ( Sf(u)do) : < Nf(u)da) + Cru?(A,).
A%r A%r

The inequality above is exactly a rescaled version of (3.3) with the
term [[, u?dX replaced by ru®(A,) + [y, SE(u)do.
r 4

To rescale Lemma 3.6, observe that ifl"f;(x,w(ac) CA{lz| < 3r, (z) <
t < (z) + 3r} when |z| < 14, and ' = Br, then the choice of p is
independent of r. O

Theorem 3.8. Let 2 C R™ be a bounded Lipschitz domain, with Lip-
schitz character (M, N, Cy), and let u be a solution to divaVu = 0 in €,
as in (2.6). Suppose u(P*) =0 for some P* € Q). Let do denote surface
measure on 0. Assume, for p > 2, that A = ||Ssa ()| Lr(90,d0) < +00.
Then, given y < 1, there exists a constant C (), tending to zero asy — 0
such that for all A > CA,

where

mr@ =suw{ [ 120

Corollary 3.9. ||[No(u)|rr(do) < Cl|Ssa(w)|Lr(dey, for a, Q, o, and u
as in Theorem 3.8, for all p > 2.

:Ac@Q,AaQ}.

The proof of the corollary is standard from the good-A inequality.
The proof of Theorem 3.8 differs from the proof of application (3.1)



214 C. E. KiENiG, J. PIPHER

in [KKPT]. There, it was necessary to prove the LP-inequalities on
graphs, so as to use the G. David arguments building on the case of small
Lipschitz constant. The need to ‘build up’ from the small constant case
makes the arguments much more technical, requiring a more elaborate
localization scheme.

Proof of Theorem 3.8: (We omit those details which are standard, and
can be found in many references.) Let {A;(Q;,7;)} be a Whitney de-
composition of {Ng(u) > %} That is, {Ng(u) > %} C U, A =
Bi(Qq, ) NoQ with >, xp, (X) < C(M), and each 8"A; = B;(Q,8r) N
0L is contained in the graph of a Lipschitz function. Moreover, there ex-
ists a parameter ro=71¢(M, N, Cp) such that if r; < rq, then B(Qy, 2"r;)N
00 contains a point Q; where N, (u)(Q;) < 3%

Since we make the a priori assumption that |[Ssq(u)| s < -+o00, inte-
rior estimates together with the normalization on v handles the estimates
on the ‘large’ Whitney balls —those with radius larger that the parame-
ter ro (see [D3]). Thus we fix a A = A; with 7, < rg in the Whitney
decomposition and let

F =AN{Ny(u) >2X, M(Ssa(w)) < Ay,

M(S3,(w)7 - M(NZ(u)F < 7A}.

By choosing «y sufficiently small, we can ensure that N, g, (u) > % in
F where (3; is a truncation of the cones which equals ¢;7;, where r; is the
radius of A;, and which satisfies the conditions of Lemma 3.6, rescaled
to 7.

Now set A = 27, and define the Lipschitz function h;(x) as in Lem-
ma 3.5 relative to the Lipschitz function ¢, where 84\; is contained in the
graph of ¢. The function v(z,t) in the definition of h; will be supported
in T'(2A;) since the cut-off functions are tailored to scale r;. Let Af =
{(z, hj(z)) : (x,¢(z)) € 4A;}. Then by 3.6, for v < p, for all (z, ¢(z)) €
F, we have M;(uxar)(z,h;(z)) > %7 where M; denotes the Hardy-
Littlewood maximal function on the graph h;:

M;F(z,hj(x)) = sup {/IF(Z7 hj(z))doj(z) 1z € I} .

Let A,, be a point in O; satisfying inequality 3.7. Since A, is one of the

‘small” Whitney balls, the existence of the point Q; where N, (u)(Q;) <

J
2> means that

M;j(uXar)(z, hy(x)) > ;—; if 4(X) =u(X) —u(A).
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Thus, by replacing u by %, we may assume that « vanishes at A;. (This
means that the constant v in the definition of F' should be replaced by
V/7-) Therefore, by the weak type inequality for the maximal function,

o(F) < C27™% / u?(x, h;(x))do.
Af
We now apply inequality (3.7) to bound the above expression by two
terms, one of which is

(3.10) Cx% [ Sz, (w)do.

The indices on the square function show that this is defined with respect
to the graph h;(x) using truncated cones (20;) of aperture a.

The cones T'yq 24,1, (z,hj(x)) are always contained in the cones
Tya(z, ¢(x)) so, in dimension n = 2, the square functions
Sia,2p,,n;u(x, hj(x)) are dominated pointwise by the square functions
Sia(u)(z,Pp(x)).  Then the quantity (3.10) would be bounded by
M (S4q(u)(z, ¢(x))-0(8A;), for (z,¢(x)) € F, which is, in turn, bounded
by (v27)%0(84;). In dimension n > 2, the desired upper bound can be
obtained by carrying out the integration:

(3.11) / 2o udoy < / / 5, (X)|Vu(X)2dX
277 ’ T(3A;)

where §;(X) = dist(X, graph of h;). Then, since §;(X) < §(X), we
recover f4Az S2.(1)(Q)do(Q), and the upper bound (v27)%0(4A).

The other term arising from 3.7 in the bound for 3.10 is handled
similarly. Summing our estimates on [ proves 3.8.

The arguments for the converse inequality to that of 3.8,

1Sa (W)l e (do) < C[[Naa()]lr(ac),

are similar, but simpler. Here we do not need the stopping time argu-
ment, nor the introduction of the h;’s. We omit the details.

We also note that parabolic analogs of Theorem 2.6 hold, with similar
proofs. The same applies to Theorem 2.8 if the Carleson measure norm
in (2.9) is sufficiently small, for then the parabolic measure is a doubling
measure ([HL]). Whether or not doubling is true for parabolic measures
when the norm in (2.9) is large remains an interesting open problem. [
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