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PROPER HOLOMORPHIC MAPPINGS BETWEEN
RIGID POLYNOMIAL DOMAINS IN C

n+1

Bernard Coupet and Nabil Ourimi

Abstract
We describe the branch locus of proper holomorphic mappings
between rigid polynomial domains in Cn+1. It appears, in partic-
ular, that it is controlled only by the first domain. As an appli-
cation, we prove that proper holomorphic self-mappings between
such domains are biholomorphic.

1. Introduction

A domain D ⊂ C
n+1 is called rigid polynomial if

D = {(z0, z) ∈ C
n+1 : r(z0, z) = 2 Re(z0) + P (z, z̄) < 0}

for some real polynomial P (z) = P (z, z̄). We say that D is nondegen-
erate if its boundary {(z0, z) ∈ C

n+1 : 2 Re(z0) + P (z) = 0} contains
no nontrivial complex variety. When P is homogeneous these domains
naturally appear as approximation of domains of finite type and may be
considered as their homogeneous models. These ones are useful in stud-
ies of many problems for more general domains (see for instance [7]).

The main result of this paper describes the branch locus of proper
holomorphic mappings between rigid polynomial domains in C

n+1. Let
f : D → Ω be a holomorphic mapping between domains in C

n+1. We
will denote by Jf (z0, z) the Jacobian determinant of f and by Vf =
{(z0, z) ∈ D : Jf (z0, z) = 0} its branch locus. Our principal result is the
following.
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Theorem 1. Let D and Ω be rigid polynomial nondegenerate pseudo-
convex domains in C

n+1. Then there exists a finite number of complex
algebraic varieties B̂1, . . . , B̂N in C

n (irreducible) depending only on D
such that the branch locus of any proper holomorphic mapping f : D → Ω
satisfies:

Vf ⊂ ∪1≤k≤N{(z0, z) ∈ D : z ∈ B̂k}.

Note that the integer N is bounded by the degree of the polynomial P .
In the bounded strongly pseudoconvex case, the branch locus is

empty [17], and in the real analytic case, one gives a nice descrip-
tion using semi-analytic stratification of the boundary (as it was ob-
served in [9], this argument works in the smooth case as well if the set
of weakly pseudoconvex boundary point admits a nice stratification).
On the other hand, Rudin [18], Bedford [5], Forstnerič [15], Barletta-
Bedford [4], proved that the structure of the branch locus of a proper
holomorphic mapping relies on properties of its automorphism group via
factorization type theorems.

As an immediate application of Theorem 1, one has the following
corollary.

Corollary 1. Let D be a rigid polynomial nondegenerate pseudoconvex
domain in C

n+1. Then every proper holomorphic self-mapping f : D →
D is a biholomorphism.

For the case n = 1, this result was proved in [13] and [11].
Now, we recall some definitions and results that we will need for the

proof of Theorem 1. A mapping in C
n+1 is algebraic if there exists an ir-

reducible algebraic set of dimension n + 1 in C
n+1×C

n+1 which contains
the graph of the map. Thus, this map may be extended to a possibly
multiple valued map defined on the complement of an algebraic set in
C

n+1. Webster [19] proved that a locally biholomorphic mapping taking
an algebraic nondegenerate hypersurface into another one is algebraic.

Let f : D → Ω be a proper holomorphic mapping satisfying the as-
sumption of Theorem 1. According to Coupet-Pinchuk [14], f is al-
gebraic. Furthermore, if the cluster set of a boundary point a ∈ ∂D
contains a point b ∈ ∂Ω, then f extends holomorphically to a neighbor-
hood of a. Therefore, there exists an algebraic set Ŝ ⊂ ∂D such that
f extends holomorphically to a neighborhood of any point from ∂D\Ŝ
and for all p ∈ Ŝ, limz→p |f(z)| = +∞. Then we get the following
stratification of the boundary:

∂D = Sh ∪ Ŝ
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where Sh is the set of points p in ∂D such that f extends holomorphically
in a neighborhood of p. Note that this result of Coupet-Pinchuk does
not assume the pseudoconvexity of the domains.

2. Behavior of the mapping and its branch locus on the
boundary

For an irreducible component W of Vf , we define

EW := W ∩ ∂D.

Lemma 1. (1) W extends across the boundary of D as a pure n-di-
mensional polynomial variety in C

n+1.
(2) There exists an open dense subset OW ⊂ EW such that for each

p ∈ OW :
(i) EW is a polynomial submanifold in a neighborhood of p of

dimension 2n− 1.
(ii) f is holomorphic in a neighborhood p.

Proof: (1) Since W is an irreducible algebraic set in D of dimension n,
there exists an irreducible polynomial h in C

n+1 such that W = {Z =
(z0, z) ∈ D : h(Z) = 0}. If W does not extend across ∂D, the defining
function r will be negative on Ŵ = {Z ∈ C

n+1 : h(Z) = 0}. According
to [12] (see Proposition 2, p. 76), there exists an analytic cover π : Ŵ →
C

n. Let g1, . . . , gk be the branches of π−1 which are locally defined and
holomorphic on C

n\σ, with σ ⊂ C
n an analytic set of dimension at

most n− 1. Consider the function r̂(w) = sup{r ◦ g1(w), . . . , r ◦ gk(w)}.
Since π is an analytic cover, r̂ extends as a plurisubharmonic on C

n.
Then it is constant; since it is negative. This contradicts the fact that
the domain D is nondegenerate.

(2-i) We may assume that ∇h is not identically zero on W . Thus, h is
a defining function of W . Let for example ∂h

∂z1
(p) �= 0 for some point p ∈

W . Applying the maximum principle to W , then there exists an open
dense subset OW of EW such that for any q ∈ OW , ∂h

∂z1
(q) �= 0. For a

fixed q ∈ OW , there exists a neighborhood U in C
n+1 of q such that ∂h

∂z1

vanishes nowhere on U . Then W̃ = {z ∈ U : h(z) = 0} is a polynomial
submanifold of U . Since W extends across the boundary of D as a
variety, a useful consequence of this fact is that W̃ has dimension 2n−1.
Otherwise, the Hausdorff dimension of W̃ will be less or equal to 2n− 2.
Then W̃\W̃ ∩ ∂D will be connected (see [12, p. 347]). This implies that
W̃ cannot be separated by ∂D and contradicts (i).
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(2-ii) Since f is algebraic, all its components fj are also algebraic.
Then there exist n + 1 polynomial equations Pj(z, w) = 0 satisfied by
wj = fj(z). Let be

Pj(z, fj(z)) = a
mj

j (z)fj(z)mj + · · · + a1
j (z)fj(z) + a0

j (z),

where mj ∈ N and ak
j are holomorphic polynomials for all k∈{0, . . . ,mj}

and for all j ∈ {1, . . . , n+ 1}. We may assume that for all j, amj

j �≡ 0 on
W .

Since ∂D = Sh ∪ Ŝ, for all p ∈ Ŝ there exists j ∈ {1, . . . , n + 1}
such that a

mj

j (p) = 0. Then the polynomial function a =
∏

1≤j≤n+1 a
mj

j

vanishes identically on Ŝ. Now, we prove that Sh∩OW is a dense subset
in OW . Suppose by contradiction that Ŝ ∩ OW has an interior point.
The uniqueness theorem implies that a ≡ 0 on C

n+1. This implies that
a

mj

j ≡ 0 for a certain j ∈ {1, . . . , n+1}: a contradiction. This completes
the proof of the lemma.

The Levi determinant of D is defined by: Λr : C
n+1 → R via

−det
[

0 rzj

rzj
rzjzj

]
.

The set of weakly pseudoconvex points in ∂D is

ω(∂D) = {(z0, z) ∈ C
n+1 : 2 Re(z0) = −P (z) and Λr(z0, z) = 0}.

Since D is a rigid polynomial domain, Λr(z0, z) depends only on z. We
write Λr(z0, z) as Λr(z0, z) = L(z) = Lα1

1 . . . Lαs
s (z), where the Lj denote

the irreducible components of the polynomial L and αj ∈ N for j =
1, . . . , s.

If p is a boundary point of D, we define the member τ(p), the vanishing
order of Λr, to be the smallest nonnegative integer m such that there is a
tangential differential operator T of order m on ∂D such that TΛr(p) �=
0. It can easily be checked that τ(p) is independent of the choice of
the defining function r. Note that the set {p ∈ ∂D : τ(p) = 0} is
the set of strongly pseudoconvex boundary points. The function τ is
uppersemicontinuous. In our case, it is bounded by the degree of the
polynomial P .

We need the following important statement.

Lemma 2. Let f : D → Ω be a proper holomorphic mapping as in The-
orem 1. Then for all p ∈ Sh, τ(p) ≥ τ(f(p)) and the inequality holds if
and only if f is branched at p.
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Proof: Let p ∈ Sh. Then f extends holomorphically to a neighborhood
of p. By the Hopf lemma, ∇(ρ ◦ f)(p) �= 0. Then ρ ◦ f is a local defining
function of D in a neighborhood of p, and by the chain rule we have:
Λρ◦f (p) = |Jf (p)|2Λρ(f(p)). Hence, we are able to deduce the lemma
(see [10]).

Remark 1. Note that the lemma above still remains true, if the domains
are not pseudoconvex. The proof is as in [16]. It uses some results
of Baouendi-Rothschild [1] and Baouendi-Jacobwitz-Treves [3] to show
that the transversal component f0 of f satisfies ∂f0

∂z0
(p) �= 0 for all p ∈ Sh.

Proposition 1. The closure V f does not intersect the set ∂D\ω(∂D)
of strongly pseudoconvex points in ∂D.

Proof: As in the proof of Lemma 2, we have:

Λρ◦f (z) = |Jf (z)|2Λρ(f(z)), ∀ z ∈ Sh

so OW ⊂ ω(∂D), which implies that EW ⊂ ω(∂D).

3. Stratification of the weakly pseudoconvex set

Here, we give a real analytic stratification of the weakly pseudoconvex
set. For bounded pseudoconvex domains with real analytic boundary,
Bedford [6] obtained a similar stratification.

Lemma 3. There exists an algebraic stratification of ω(∂D) as follows:

ω(∂D) = {(z0, z) ∈ ∂D : z ∈ A1 ∪A2 ∪A3 ∪A4}
with the following properties.

(a) A4 is an algebraic set of dimension ≤ 2n− 3.
(b) A1, A2 and A3 are either empty or algebraic manifolds; A2 and A3

have dimension 2n− 2 and A1 has dimension 2n− 1.
(c) A2 and A3 are CR manifolds with

dimC HA2 = n− 1

and
dimC HA3 = n− 2.

(d) τ is constant on every component of {(z0, z) ∈ ∂D : z ∈ A1}.

Proof: Let A = {z ∈ C
n : L(z) = 0} and let Â1 be the union of all

components of A with dimension 2n− 1 (if there are any). We consider
A1 = Reg(Â1) = ∪k{Lk = 0 and Lj �= 0 for j �= k}.
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Next we let Â2 be the union of all 2n− 2-dimensional components of
A\A1. We see that we may write

Reg(Â2) = A2 ∪A3 ∪ Â3

where A2 and A3 are an open subsets of Â2 with

dimC HA2 = n− 1
dimC HA3 = n− 2

and dimR Â3 ≤ 2n− 3. Now, let

A4 = A\(A1 ∪A2 ∪A3)

then, we have the desired stratification.
To show (d), we consider the complex tangential derivative along the

boundary of D, i.e.,

Tj =
∂

∂zj
− 1

2
∂P

∂zj

∂

∂z0
, 1 ≤ j ≤ n.

For example, we prove that τ ≡ α1 on C1 = ∂D ∩ {L1 = 0 and Lk �=
0, k �= 1}. Let (z0, z) ∈ C1, we have

Tm
j Λr(z0, z) = Tm

j L(z) =
∂mL

∂zm
j

(z)

= α1 . . . (α1 −m + 1)
(

∂L

∂zj

)m

Lα1−m
1 .Lα2

2 . . . Lαs
s (z).

Since L1 is irreducible, D(L1)(z) �= 0. Then there exists j such that
Tm

j L(z) = 0 for all m < α1 and Tα1
j L(z) �= 0. This finishes the proof of

the lemma.

Proof of Theorem 1: The analytic set A2 contains finitely many com-
ponents which we will denote by B1, B2, . . . , BN . Since dimR Bj =
dimR HBj , then for each j, Bj is an n−1-dimensional complex manifold.

We denote by Γj = {(z0, z) ∈ ∂D : z ∈ Aj} for j = 1, . . . , 4. By
considering dimension and CR dimension, we see that Γ3 ∩ OW and
Γ4 ∩OW are nowhere dense in OW .

Next, we prove that Γ1 ∩OW cannot contain an open subset of OW .
By contradiction, let suppose p ∈ OW ⊂ Γ1. We may choose a se-
quence {qk}k ⊂ Γ1 ∩ {Jf �= 0} such that qk → p. The mapping f is a
local diffeomorphism in a neighborhood of all points qk and the func-
tion τ is constant on Γ1. Then, we have for all k

τ(p) = τ(qk) = τ(f(qk)).(1)
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On the other hand, by Lemma 2,

τ(p) > τ(f(p)).(2)

Since τ is uppersemicontinuous, then (1) and (2) together give a contra-
diction. We mention that the same argument has appeared in [6]. We
conclude that Γ2 ∩OW contains an open subset of Γ2. Thus it contains
an open subset of {(z0, z) ∈ ∂D : z ∈ Bj} for some j. For k = 1, . . . , N ,
let B̂j be the complex variety in C

n such that Reg B̂k = Bk. Applying
the maximum principle, we conclude that W ⊂ {(z0, z) ∈ D : z ∈ B̂j},
and by irreducibility, W = {(z0, z) ∈ D : z ∈ B̂j}. This completes the
proof of Theorem 1.

Remark 2. (i) Using the same argument of Bedford [6] (appeared also
in [16]), we can prove that the branching multiplicity of the map-
ping f is bounded by a constant independent of f .

(ii) For a holomorphic function H between algebraic hypersurface M
and M ′ (M is essentially finite at p0), Baouendi-Rothschlid [2]
showed that the multiplicity of its components is bounded by a
constant depending only on M and M ′ and the points p0 and
H(p0).

4. Proper self-mappings

Here, we give the proof of Corollary 1. Since D is simply connected, it
suffices to prove that Vf is empty. The variety Vf has a finite number of
connected components independent of the mapping f , then there exists
an integer k such that Vfk = Vfk+1 . We may assume k = 1, that is
Vf = V 2

f . Since Vf2 = Vf ∪ f−1(Vf ), it follows that Vf ⊆ f(Vf ), where
f(Vf ) is a complex analytic variety of D by a theorem of Remmert.
Hence, we have Vf = f(Vf ) because Vf has finitely many components.
Assume that Vf is not empty. According to Lemma 1, there exists a
boundary point p ∈ V f ∩ ∂D, such that f extends holomorphically in a
neighborhood of p. Note that for all k fk(p) ∈ V f , since Vf = f(Vf ) as
shown above. The sequence of numbers τ(fk(p)) is strictly decreasing
and τ(p) is a finite integer, then there exists an integer k0 such that
τ(fk0(p)) = 0, which implies that fk0(p) is a strongly pseudoconvex
boundary point, contradicting the fact that fk0(p) ∈ V f ∩ ∂D. This
proves that Vf = ∅ and completes the proof of Corollary 1 .

We would like to thank the referee for his useful remarks on this
material.
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