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PROPER HOLOMORPHIC MAPPINGS BETWEEN
RIGID POLYNOMIAL DOMAINS IN C"+!

BERNARD COUPET AND NABIL OURIMI

Abstract

We describe the branch locus of proper holomorphic mappings
between rigid polynomial domains in C**1!. It appears, in partic-
ular, that it is controlled only by the first domain. As an appli-
cation, we prove that proper holomorphic self-mappings between
such domains are biholomorphic.

1. Introduction

A domain D C C™*! is called rigid polynomial if
D = {(z0,2) € C""" : r(20,2) = 2Re(20) + P(z, 2) < 0}

for some real polynomial P(z) = P(z,z). We say that D is nondegen-
erate if its boundary {(z9,2) € C"*! : 2Re(z0) + P(z) = 0} contains
no nontrivial complex variety. When P is homogeneous these domains
naturally appear as approximation of domains of finite type and may be
considered as their homogeneous models. These ones are useful in stud-
ies of many problems for more general domains (see for instance [7]).

The main result of this paper describes the branch locus of proper
holomorphic mappings between rigid polynomial domains in C"*!. Let
f: D — Q be a holomorphic mapping between domains in C**!. We
will denote by Jy(z0,2) the Jacobian determinant of f and by V; =
{(20,2) € D : Js(20,2) = 0} its branch locus. Our principal result is the
following.
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Theorem 1. Let D and Q2 be rigid polynomial nondegenerate pseudo-
conver domains in C*1. Then there exists a finite number of complex
algebraic varieties El, ...,By inCn (irreducible) depending only on D
such that the branch locus of any proper holomorphic mapping f: D —
satisfies:

Vi C Ur<k<n{(20,2) € D: z € By}.

Note that the integer N is bounded by the degree of the polynomial P.

In the bounded strongly pseudoconvex case, the branch locus is
empty [17], and in the real analytic case, one gives a nice descrip-
tion using semi-analytic stratification of the boundary (as it was ob-
served in [9], this argument works in the smooth case as well if the set
of weakly pseudoconvex boundary point admits a nice stratification).
On the other hand, Rudin [18], Bedford [5], Forstneri¢ [15], Barletta-
Bedford [4], proved that the structure of the branch locus of a proper
holomorphic mapping relies on properties of its automorphism group via
factorization type theorems.

As an immediate application of Theorem 1, one has the following
corollary.

Corollary 1. Let D be a rigid polynomial nondegenerate pseudoconvex
domain in C"*1. Then every proper holomorphic self-mapping f: D —
D is a biholomorphism.

For the case n = 1, this result was proved in [13] and [11].

Now, we recall some definitions and results that we will need for the
proof of Theorem 1. A mapping in C™*! is algebraic if there exists an ir-
reducible algebraic set of dimension n + 1 in C"*! x C**! which contains
the graph of the map. Thus, this map may be extended to a possibly
multiple valued map defined on the complement of an algebraic set in
Cnt1. Webster [19] proved that a locally biholomorphic mapping taking
an algebraic nondegenerate hypersurface into another one is algebraic.

Let f: D — Q be a proper holomorphic mapping satisfying the as-
sumption of Theorem 1. According to Coupet-Pinchuk [14], f is al-
gebraic. Furthermore, if the cluster set of a boundary point a € dD
contains a point b € 99, then f extends holomorphically to a neighbor-
hood of a. Therefore, there exists an algebraic set S C &D such that
f extends holomorphically to a neighborhood of any point from GD\S
and for all p € S, lim, ., |f(2)] = +o00. Then we get the following
stratification of the boundary:

oD = S, U S
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where S}, is the set of points p in D such that f extends holomorphically
in a neighborhood of p. Note that this result of Coupet-Pinchuk does
not assume the pseudoconvexity of the domains.

2. Behavior of the mapping and its branch locus on the
boundary

For an irreducible component W of V¢, we define
Ew = W noD.

Lemma 1. (1) W extends across the boundary of D as a pure n-di-
mensional polynomial variety in C™+1,
(2) There exists an open dense subset Ow C Ew such that for each
p € Ow:
(i) Ew is a polynomial submanifold in a neighborhood of p of
dimension 2n — 1.
(ii) f is holomorphic in a neighborhood p.

Proof: (1) Since W is an irreducible algebraic set in D of dimension 7,
there exists an irreducible polynomial A in C**! such that W = {Z =
(20,2) € D : h(Z) = 0}. If W does not extend across 0D, the defining
function r will be negative on W = {Z € C"*! : h(Z) = 0}. According
to [12] (see Proposition 2, p. 76), there exists an analytic cover m: W —
C". Let g1,..., g be the branches of 7! which are locally defined and
holomorphic on C™\o, with ¢ C C™ an analytic set of dimension at
most n — 1. Consider the function #(w) = sup{r o g1(w),...,r o gp(w)}.
Since 7 is an analytic cover, 7 extends as a plurisubharmonic on C™.
Then it is constant; since it is negative. This contradicts the fact that
the domain D is nondegenerate.

(2-1) We may assume that Vh is not identically zero on W. Thus, h is
a defining function of W. Let for example g—zhl(p) # 0 for some point p €
W. Applying the maximum principle to W, then there exists an open
dense subset Oy of Eyy such that for any ¢ € Ow, g—:l(q) # 0. For a
fixed ¢ € Oy, there exists a neighborhood U in C"*! of ¢ such that g—zhl

vanishes nowhere on U. Then W = {z € U : h(z) = 0} is a polynomial
submanifold of U. Since W extends across the boundary of D as a
variety, a useful consequence of this fact is that W has dimension 2n— 1.
Otherwise, the Hausdorff dimension of W will be less or equal to 2n — 2.
Then W\W N&D will be connected (see [12, p. 347]). This implies that

W cannot be separated by D and contradicts (i).
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(2-ii) Since f is algebraic, all its components f; are also algebraic.
Then there exist n + 1 polynomial equations P;j(z,w) = 0 satisfied by
w; = f;(2). Let be

Pi(z, fi(2)) = aj (2) f;(2)™ + - + aj(2) f(2) + a (2),

where m; € N and a? are holomorphic polynomials for all k€ {0,...,m;}
and for all j € {1,...,n+ 1}. We may assume that for all j, a;-nj %0 on
w.

Since D = S, U S, for all p € S there exists j € {1,...,n+ 1}
such that a;nj (p) = 0. Then the polynomial function a = [, ,,, 1, a;nj
vanishes identically on S. Now, we prove that S” MOy is a dense subset
in Ow. Suppose by contradiction that S N Oy has an interior point.
The uniqueness theorem implies that @ = 0 on C**!. This implies that

a;nj = 0 for a certain j € {1,...,n+1}: a contradiction. This completes
the proof of the lemma. O

The Levi determinant of D is defined by: A,.: C**! — R via

—det 0 .
TZ]‘ TZij

The set of weakly pseudoconvex points in 9D is
w(0D) = {(z0,2) € C"™ : 2Re(20) = —P(2) and A, (29, 2) = 0}.

Since D is a rigid polynomial domain, A,(zg, z) depends only on z. We
write A, (20, 2) as Ay (20,2) = L(z) = LT" ... L$*(z), where the L; denote
the irreducible components of the polynomial L and o; € N for j =
1,...,s.

If p is a boundary point of D, we define the member 7(p), the vanishing
order of A,, to be the smallest nonnegative integer m such that there is a
tangential differential operator T" of order m on D such that TA,(p) #
0. It can easily be checked that 7(p) is independent of the choice of
the defining function r. Note that the set {p € 9D : 7(p) = 0} is
the set of strongly pseudoconvex boundary points. The function 7 is
uppersemicontinuous. In our case, it is bounded by the degree of the
polynomial P.

We need the following important statement.

Lemma 2. Let f: D — Q be a proper holomorphic mapping as in The-
orem 1. Then for all p € Sy, 7(p) > 7(f(p)) and the inequality holds if
and only if f is branched at p.
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Proof: Let p € S,. Then f extends holomorphically to a neighborhood
of p. By the Hopf lemma, V(po f)(p) # 0. Then po f is a local defining
function of D in a neighborhood of p, and by the chain rule we have:
Apor(p) = |J¢(p)|*A,(f(p)). Hence, we are able to deduce the lemma
(see [10]). O

Remark 1. Note that the lemma above still remains true, if the domains
are not pseudoconvex. The proof is as in [16]. It uses some results
of Baouendi-Rothschild [1] and Baouendi-Jacobwitz-Treves [3] to show
that the transversal component fj of f satisfies g—ig(p) #0forallp € Sp,.

Proposition 1. The closure V; does not intersect the set OD\w(OD)
of strongly pseudoconvez points in 0D.

Proof: As in the proof of Lemma 2, we have:
Apos(2) = [J5(2)PA,(f(2)), ¥z €8y
so Ow C w(dD), which implies that Ey C w(9D). O

3. Stratification of the weakly pseudoconvex set

Here, we give a real analytic stratification of the weakly pseudoconvex
set. For bounded pseudoconvex domains with real analytic boundary,
Bedford [6] obtained a similar stratification.

Lemma 3. There exists an algebraic stratification of w(0OD) as follows:
w(aD) = {(Z(),Z) €0D:ze€ A1 U A, UA3 UA4}
with the following properties.

(a) Ay is an algebraic set of dimension < 2n — 3.

(b) A1, Ay and As are either empty or algebraic manifolds; A and As
have dimension 2n — 2 and A; has dimension 2n — 1.

(¢) As and Az are CR manifolds with

dimc HAy =n—1
and
dimc HAs =n — 2.
(d) 7 is constant on every component of {(z0,z) € 0D : z € A1 }.

Proof: Let A = {z € C" : L(z) = 0} and let A; be the union of all
components of A with dimension 2n — 1 (if there are any). We consider

A = Reg(fll) = Up{Lr =0 and L; # 0 for j # k}.
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Next we let Ay be the union of all 2n — 2-dimensional components of
A\A;. We see that we may write

Reg(As) = Ay U A3 U As
where Ay and As are an open subsets of Ay with
dimc HAy =n—1
dimc HA3 =n — 2
and dimp A3 < 2n — 3. Now, let
Ay = A\(41 U Ay U A3)

then, we have the desired stratification.

To show (d), we consider the complex tangential derivative along the
boundary of D, i.e.,

0 10P 0 )
i =5 —5s57 1<j<n
82j 282’j 82:0
For example, we prove that 7 = a3 on Cy = dD N {L; = 0 and Ly #
0, k # 1}. Let (z0,2) € C1, we have

- - o™L
T Ar(20,2) = T]"L(z) = 57 (2)
j
OL\™
(o —m+1) <—) Lo o2 [0(2),
aZj

Since L is irreducible, D(L1)(z) # 0. Then there exists j such that
T7"L(z) = 0 for all m < ay and T;" L(z) # 0. This finishes the proof of
the lemma. O

Proof of Theorem 1: The analytic set Ay contains finitely many com-
ponents which we will denote by Bi, Bs,...,By. Since dimg B, =
dimg H Bj, then for each j, B; is an n—1-dimensional complex manifold.

We denote by I'; = {(20,2) € 0D : z € A;} for j = 1,...,4. By
considering dimension and CR dimension, we see that I's N Oy and
I'y N Ow are nowhere dense in Oyy.

Next, we prove that I'y N Oy cannot contain an open subset of Oy .
By contradiction, let suppose p € Ow C I'y. We may choose a se-
quence {gx}r C I't N {Jy # 0} such that ¢, — p. The mapping f is a
local diffeomorphism in a neighborhood of all points g and the func-
tion 7 is constant on I';. Then, we have for all k&

(1) 7(p) = 7(ak) = 7(f(qx))-
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On the other hand, by Lemma 2,
(2) m(p) > 7(f(p))-

Since 7 is uppersemicontinuous, then (1) and (2) together give a contra-
diction. We mention that the same argument has appeared in [6]. We
conclude that I's N Oy, contains an open subset of I'y. Thus it contains
an open subset of {(z9,2) € D : z € B;} for some j. For k=1,...,N,
let éj be the complex variety in C™ such that Reg By, = By. Applying
the maximum principle, we conclude that W C {(z9,2) € D : z € Bj},
and by irreducibility, W = {(20,2) € D : z € B,}. This completes the
proof of Theorem 1. O

Remark 2. (i) Using the same argument of Bedford [6] (appeared also
in [16]), we can prove that the branching multiplicity of the map-
ping f is bounded by a constant independent of f.

(ii) For a holomorphic function H between algebraic hypersurface M
and M’ (M is essentially finite at pg), Baouendi-Rothschlid [2]
showed that the multiplicity of its components is bounded by a
constant depending only on M and M’ and the points py and

H(po).

4. Proper self-mappings

Here, we give the proof of Corollary 1. Since D is simply connected, it
suffices to prove that V; is empty. The variety V; has a finite number of
connected components independent of the mapping f, then there exists
an integer k such that Vi = Vi, We may assume k = 1, that is
Vi = V7. Since Vyz = Vy U f71(Vy), it follows that V; C f(V}), where
f(Vy) is a complex analytic variety of D by a theorem of Remmert.
Hence, we have V; = f(Vy) because V; has finitely many components.
Assume that V; is not empty. According to Lemma 1, there exists a
boundary point p € Vf N 0D, such that f extends holomorphically in a
neighborhood of p. Note that for all & f*(p) € V¢, since Vy = f(V}) as
shown above. The sequence of numbers 7(f*(p)) is strictly decreasing
and 7(p) is a finite integer, then there exists an integer ko such that
7(f*(p)) = 0, which implies that f*o(p) is a strongly pseudoconvex
boundary point, contradicting the fact that f*(p) € V; N dD. This
proves that V; = () and completes the proof of Corollary 1 .

We would like to thank the referee for his useful remarks on this
material.
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