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SEMILINEAR POISSON PROBLEMS IN
SOBOLEV-BESOV SPACES ON LIPSCHITZ DOMAINS

Martin Dindoš∗ and Marius Mitrea†

Abstract
Extending recent work for the linear Poisson problem for the
Laplacian in the framework of Sobolev-Besov spaces on Lipschitz
domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9],
and Mitrea and Taylor [30], here we take up the task of de-
veloping a similar sharp theory for semilinear problems of the
type ∆u−N(x, u) = F (x), equipped with Dirichlet and Neumann
boundary conditions.

1. Introduction

As evidenced by the large body of works (cf., e.g., the mono-
graphs [23], [13], [10], [11], [4], [12], [36], [1], [14] and the references
therein) nonlinear elliptic boundary value problems have become lately
the center of considerable attention, especially due to their pivotal role
in such diverse disciplines as spectral and scattering theory, differential
geometry, mathematical physics, etc. Meanwhile, and particularly more
so in the last decade, this field of research has substantially profited from
basic progress in many of the related areas in which some of its methods
and techniques are rooted.

In [28], [29], [30], [31], [27], the authors have initiated a program
aimed at extending the Euclidean, constant coefficient theory from [39],
[6], [16], [9] to the case of Lipschitz domains in Riemannian manifolds.
One notable achievement in [30] is developing a sharp linear theory for
the Poisson problem with Dirichlet and Neumann boundary conditions
in Lipschitz domains for the Laplace-Beltrami operator, thus extending
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the main results in [16], [9]. The aim of the present paper is to continue
this line of work and produce a semilinear version of the aforementioned
results, which is in the nature of best possible. A task similar in spirit
but in a different functional analytic setting has been accomplished in [7],
[8].

In order to be more specific, we momentarily digress for the pur-
pose of introducing some notation and making some definitions. Let M
be a smooth, connected, compact, boundaryless manifold, of real di-
mension dimM = n (unless explicitly mentioned otherwise, we shall
assume that n ≥ 3), equipped with a Riemannian metric tensor g =∑
j,k gjk dxj ⊗ dxk whose coefficients satisfy

gjk ∈ C1+γ , some γ > 0.(1.1)

The Laplace-Beltrami operator on M is then given in local coordinates
by

∆u := div(gradu) = g−1/2∂j(gjkg1/2∂ku),(1.2)

where we use the summation convention, take (gjk) to be the matrix
inverse to (gjk), and set g := det(gjk). Recall that Ω ⊂ M is called
a Lipschitz domain provided ∂Ω can be described in appropriate local
coordinates by means of graphs of Lipschitz functions. Also, the Sobolev
scale Lps(M), 1 < p < ∞, s ≥ 0, is obtained by lifting Lps(R

n) :=
{(I − ∆)s/2f ; f ∈ Lp(Rn)} to M . We denote by Lps(Ω) the restriction
of elements in Lps(M) to the Lipschitz domain Ω. As is customary, we
set Lps,0(Ω) for the subspace consisting of restrictions to Ω of elements
from Lps(M) with support contained in Ω̄. For s > 0 and 1 < p, q < ∞
with 1/p + 1/q = 1, we set Lp−s(Ω) := (Lqs,0(Ω))∗. As is well-known, if
Bp,qs (∂Ω), 1 ≤ p, q ≤ ∞, 0 < |s| < 1, stands for the usual class of Besov
spaces on ∂Ω, then the trace operator Tr is well-defined from Lps(Ω) onto
Bp,ps−1/p(∂Ω) for each 1 < p < ∞ and 1/p < s < 1 + 1/p. For a more
detailed exposition, the interested reader is referred to [32], [37], [3], [2],
and especially [16] for the context of Lipschitz domains.

Returning to the mainstream discussion, here we shall be concerned
with the semilinear elliptic PDE

∆u−N(x, u) = F (x) in Ω ⊂M(1.3)

equipped with either Dirichlet or Neumann boundary conditions. Let
us point out that when the nonlinearity N(x, u) is of class C1 in u then
(1.3) can be rephrased as

∆u− a(x, u)u = f in Ω,(1.4)
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where

a(x, u) :=
∫ 1

0

∂N

∂u
(x, tu) dt, and f(x) := F (x) + N(x, 0).(1.5)

Under various growth and smoothness assumptions on Ω, N , F and u,
the PDE (1.3) has received a lot of attention in the literature lately.
Extending some earlier work in [38], T. Runst and W. Sickel have con-
sidered in [32, Chapter 6] the case of (1.3) when Ω is smooth, the non-
linearities are of power type, and u, F belong to Sobolev-Besov-Triebel-
Lizorkin spaces. In [15], V. Isakov and A. I. Nachman have treated (1.3)
equipped with a Dirichlet boundary condition in the case of a two di-
mensional Euclidean Lipschitz domain Ω and when u ∈ L2

1(Ω) ∩ C0(Ω̄).
In [20], J. Johnsen and T. Runst have addressed (1.3) in the framework
of Sobolev-Besov-Triebel-Lizorkin spaces in the case of smooth domains
and nonlinearities of composition type (i.e., when N(x, u) = N(u)). Re-
lated work can also be found in [18], [13], [5], [22].

In the case of Dirichlet boundary conditions, our main results (cf. The-
orem 3.1 and Theorem 3.2) deal with the following situation: Ω is an ar-
bitrary Lipschitz domain, u ∈ Lps+1/p(Ω), F ∈ Lps+1/p−2(Ω), 0 < s < 1,
1 < p < ∞, and either N(x, u) has sublinear growth in u or a(x, u)
(from (1.5)) has an admissible polynomial growth (including a limiting
case of exponential behavior). Similar (albeit technically somewhat less
refined) results hold in the case of Neumann boundary conditions, even
in the presence of (sublinear, power type) nonlinearities in the boundary
conditions; cf. Theorem 4.1 for a precise statement.

We are interested in the maximal range of indices s, p, for which (1.3)
is solvable in the context of Lipschitz domains on the Sobolev-Besov
scales. In this respect, we would like to stress that our results are sharp
in the sense that they reduce to an optimal linear theory in the absence
of nonlinearities. That is, we solve

∆u− a(x, u)u = f ∈ Lps+1/p−2(Ω),

Tru = g ∈ Bp,ps (∂Ω), u ∈ Lps+1/p(Ω)
(1.6)

under admissible growth conditions on a(x, u) (of polynomial and expo-
nential nature) and for the same range of indices s, p as in [30].

The emphasis in the approach we develop is on understanding how
the solution of the linear Poisson problem depends on lower order per-
turbations of the Laplace-Beltrami operator. The main achievement in
this regard is to prove that the nonlinear mapping V �→ (∆− V )−1 has
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sublinear growth in V . That is, in a suitable functional analytic context,

(1.7) ‖(∆− V )−1‖ ≤ C(1 + ‖V ‖)θ,
where θ ∈ [0, 1) and C is independent of V ≥ 0.

See (2.6)–(2.7) for an exact formulation. In turn, this key estimate allows
for a convenient implementation of the Schauder fixed-point theorem
in the framework of Lebesgue spaces. The proof of (1.7) is a delicate
argument which relies on the maximum principle, estimates for fractional
powers of the Dirichlet Laplacian and interpolation. In the process, we
also show that if V ∈ Ln/2 is nonnegative, then the Schrödinger operator

∆− V : Lps+1/p,0(Ω) −→ Lps+1/p−2(Ω)(1.8)

has the same optimal invertibility range as the unperturbed Laplacian ∆.
The integrability exponent n/2 is natural, given the sharp unique con-
tinuation results from [17].

The layout of the paper is as follows. In Section 2 we refine the treat-
ment of the linear Dirichlet Poisson problem from [30] by allowing less
regular lower order terms and by deriving more precise estimates. This
is then used in Section 3 to prove, among other things, the solvability
of (1.6). Neumann boundary conditions are considered in Section 4. The
case of of nonlinearities N(x, u) with sublinear growth in u is treated in
Section 5. This section also contains a more detailed analysis of several
relevant examples. Finally, in Section 6, sufficient conditions on the data
are produced so that a solution of (1.6) obeying nontangential maximal
function estimates can be found. Here we also analyze the case when
boundary nonlinearities are allowed.

Acknowledgements. It is a pleasure to thank Michael Taylor for bring-
ing us together and for his constant support and interest in our work.
The second named author would also like to thank Winfried Sickel and
Jon Johnsen for some helpful conversations.

2. The linear theory revisited

We shall retain as much as possible the notation introduced in Sec-
tion 1. The aim of this section is to prove a refined version of the
well-posedness result for the Dirichlet Poisson problem for ∆ on Sobolev-
Besov spaces from [30].
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Theorem 2.1. Let Ω ⊂ M be an arbitrary Lipschitz domain and for a
function V satisfying

V ≥ 0 and V ∈ Lr(M) for some r ≥ n/2,(2.1)

set L := ∆ − V . Then there exists ε = ε(Ω) > 0 with the following
significance. Let 0 < s < 1 and 1 < p < ∞ satisfy at least one of the
following conditions:

2
1 + ε

< p <
2

1− ε
and 0 < s < 1;

1 ≤ p <
2

1 + ε
and

2
p
− 1− ε < s < 1;

2
1− ε

< p ≤ ∞ and 0 < s <
2
p

+ ε,

(2.2)

and, in addition,

1
r
− 2

n
<

n− 1
np

− s

n
< 1− 1

r
.(2.3)

Then the Dirichlet Poisson problem

(DP )


Lu = f ∈ Lp

s+ 1
p−2

(Ω),

Tru = g ∈ Bp,ps (∂Ω),

u ∈ Lp
s+ 1

p

(Ω),

(2.4)

has a unique solution, which also satisfies

‖u‖Lp

s+ 1
p

(Ω) ≤ C
(
‖f‖Lp

s+ 1
p
−2

(Ω) + ‖g‖Bp,p
s (∂Ω)

)
(2.5)

for some C = C(Ω, V, p, s) > 0.
Introduce τ := np/(n−1−sp) if sp < n−1 and τ :=∞ if sp > n−1.

Then, if 1/p ≤ s and sp �= n−1, there exists a constant C = C(Ω, p, s) >
0, independent of V , such that

‖u‖Lτ (Ω) ≤ C(‖f‖Lp

s+ 1
p
−2

(Ω) + ‖g‖Bp,p
s (∂Ω)).(2.6)
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If sp = n−1 then for some C > 0 independent of V and any τ ∈ [2,∞),

‖u‖Lτ (Ω) ≤ Cτ1−1/p(‖f‖Lp

s+ 1
p
−2

(Ω) + ‖g‖Bp,p
s (∂Ω)).(2.7)

On the other hand, if s < 1/p, then the estimate

‖u‖Lτ (Ω) ≤ C(1 + ‖V ‖Lr(Ω))θ(‖f‖Lp

s+ 1
p
−2

(Ω) + ‖g‖Bp,p
s (∂Ω)),(2.8)

holds with

θ :=

ε+ r
2(r−1) (

1
p − s), if r≥1+(1−sp)/(2p−2),

ε+ 1
2−n/r ((n−1)/p−s−n+2), if r<1+(1−sp)/(2p−2),

(2.9)

where ε > 0 is arbitrarily small and C = C(Ω, s, p, ε) > 0 is independent
of V .

In dimension n = 2, results similar in spirit hold provided (2.2) is
replaced by

1
2
− ε <

1
p

< 1
2 + ε and 0 < s < 1;

1
2

+ ε ≤ 1
p

< 1 and
1
p
− 1

2
− ε < s < 1;

0 <
1
p
≤ 1

2
− ε and 0 < s <

1
p

+
1
2

+ ε,

(2.10)

where ε = ε(∂Ω) ∈ (0, 1
2 ]. More specifically, the estimates (2.5)–(2.7)

hold unchanged, whereas (2.8) holds if also r > 4/3.
Finally, when ∂Ω ∈ C1, instead of (2.2) when n ≥ 3, or (2.10) when

n = 2, we may simply allow s ∈ (0, 1), p ∈ (1,∞).

Parenthetically, we note that when r > n then (2.3) is satisfied for
any s ∈ (0, 1), p ∈ (1,∞). Another simple yet useful remark is that, if
ε > 0 is small enough, then

n ≥ 3, r >
n

2
, s, p as in (2.2) with ε > 0 small =⇒ (2.3) holds.(2.11)

Furthermore, in the two dimensional context,

(2.12) r >
4
3
, s, p as in (2.10)

with ε > 0 small =⇒ (2.3) holds automatically.
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Figure 1. The hexagon describing the well posedness
region (2.2).

Before presenting the proof of the Theorem 2.1, we need to discuss
several auxiliary results.

Lemma 2.2. Let Ω be a Lipschitz domain (of dimension ≥ 2) and fix
1 < p < ∞, 0 < s < 1, n/2 ≤ r ≤ ∞, so that (2.3) holds. Then the
inclusion

Lr(Ω) · Lps+1/p(Ω) ↪→ Lps+1/p−2(Ω)(2.13)

is compact.

Proof: Consider first the case when sp < n − 1 and r > n/2. In this
scenario, we shall show that there exists ε = ε(n, p, s, r) > 0 such that

Lr(Ω) · Lps+1/p(Ω) ↪→ Lps+ε+1/p−2(Ω).(2.14)

In concert with Rellich’s selection lemma, this proves that, under the
current assumptions, multiplication by an element from Lr(Ω) is a com-
pact operator from Lps+1/p(Ω) into Lps+1/p−2(Ω).

To see (2.14), if 1/p0 := 1/p− (s+ 1/p)/n it follows that 1 < p0 <∞
and Lps+1/p(Ω) ↪→ Lp0(Ω). Going further, if 1/p1 := 1/r + 1/p0 then
1 < p1 < ∞, thanks to (2.3), and we have Lr(Ω) · Lp0(Ω) ↪→ Lp1(Ω).
Now, since Lps+ε+1/p−2(Ω) = (Lp

′

2−s−ε−1/p,0(Ω))∗ with 1/p + 1/p′ = 1, it
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suffices to prove that Lp
′

2−s−ε−1/p(Ω) ↪→ Lp2(Ω), where 1/p2 + 1/p1 = 1.
This, however, is guaranteed by the estimate 1/p2 > 1/p′−(2−s−1/p)/n.
Some simple algebra now shows that this is always the case provided
r > n/2. When sp ≥ n− 1, r > n/2, one proceeds analogously, choosing
p0 ↗∞.

Finally, when r = n/2, the well-definiteness of the inclusion (2.13)
is proved similarly. Then, based on this, (2.14) and an approximation
argument, it follows that (2.13) is compact as well.

Lemma 2.3. Let Ω be a Lipschitz domain and assume that s, p satisfy
at least one of the conditions in (2.2). Also, fix a nonnegative func-
tion V ∈ Lr(M), with r ≥ n/2, and suppose that (2.3) holds. Then

u ∈ Lps+1/p(Ω), (∆− V )u ≤ 0, Tru ≥ 0 =⇒ u ≥ 0.(2.15)

In particular, if Vj ∈ Lr(M), r ≥ n/2, are such that 0 ≤ V1 ≤ V2, then

(2.16) uj ∈ Lps+1/p(Ω), Tru1 ≥ Tru2 ≥ 0,

(∆− V1)u1 ≤ (∆− V2)u2 ≤ 0 =⇒ u1 ≥ u2.

Analogous results are valid for n = 2, provided that s, p satisfy at least
one of the conditions in (2.10). Finally, when ∂Ω ∈ C1, any s ∈ (0, 1),
p ∈ (1,∞) will do (in all dimensions) as long as (2.3) is satisfied.

Proof: For an arbitrary, fixed u ∈ Lps+1/p(Ω), let us set f := (∆−V )u ∈
Lps+1/p−2(Ω) and g := Tru ∈ Bp,ps (∂Ω). Thus, by assumption, f ≤ 0
and g ≥ 0.

For starters, we make the claim that there exist fj ∈ C∞
comp(Ω), gj ∈

Lip(∂Ω), such that fj ≤ 0, gj ≥ 0, and fj → f in Lps+1/p−2(Ω), gj → g in
Bp,ps (∂Ω). Indeed, the approximating sequence {gj}j can be produced
via a standard localization and mollifying procedure. There remains
to prove that f belongs to the closure of the convex set C := {ψ ∈
C∞

comp(Ω); ψ ≤ 0} in Lps+1/p−2(Ω). Assuming the opposite (and seeking
a contradiction), the Hahn-Banach theorem ensures the existence of some

Φ ∈
(
Lps+1/p−2(Ω)

)∗
= Lp

′

2−s−1/p,0(Ω), 1/p+1/p′ = 1, such that 〈Φ, φ〉 ≤
0 < 〈Φ, f〉 for each φ ∈ C. (Strictly speaking, what the Hahn-Banach
theorem originally gives is the previous double inequality with ‘zero’
replaced by some real number λ. However, given that C is in fact a cone,
it is easy to see that we can always assume that λ = 0.) Now, the first
inequality implies Φ ≥ 0 which, in turn, contradicts the second, given
that f ≤ 0. This finishes the proof of the claim made at the beginning
of the paragraph.
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Next, granted the current assumptions, we will show in the course of
the proof of Theorem 2.1 that u (is uniquely determined by, and) de-
pends continuously on f , g. Consequently, thanks to a limiting argument
(whose implementation is routine, given the claim above), it suffices to
prove (2.15) in the case when f ∈ L∞(Ω) and g ∈ C0(∂Ω), which we will
assume hereafter. It is not difficult to see that these extra assumptions
entail u ∈ C0(Ω̄) ∩ C1

loc(Ω).
With an eye on (2.15) and seeking a contradiction, assume next that

there exists x0 ∈ Ω such that u(x0) < 0. If we let O be the connected
component of the set {x ∈ Ω; u(x) < 0} which contains x0 and recall
that u|∂Ω > 0, it follows that O ⊂⊂ Ω.

Let ψ ∈ C∞(R) be a Lipschitz, non-decreasing, odd function such that
ψ(t) = 0 for |t| ≤ 1 and ψ(t) = t for |t| ≥ 2. Set ui(x) := i−1ψ(iu(x)),
x ∈ Ō, i = 1, 2, . . . . Then, so we claim,

(2.17) ui ∈ C1
comp(O), ui ≤ 0,

and ‖u− ui‖L∞(O), ‖∇u−∇ui‖L2(O) −→ 0.

Indeed, that ui is compactly supported in O and ‖∇u−∇ui‖L2(O) → 0
are consequences of u|∂O = 0 and definitions. As for ‖∇u−∇ui‖L2(O) →
0, note that ∇ui(x) = ψ′(iu(x))∇u(x) → ∇u(x) as i → ∞, for each
x ∈ O. Since ψ is Lipschitz and u ∈ C1(Ō), Lebesgue’s dominated
convergence theorem then yields the desired conclusion. Going further,∫∫

O
|∇u|2 + V |u|2 = lim

∫∫
O
〈∇u,∇ui〉+ V uui

= − lim
∫∫

O
ui(∆− V )u ≤ 0,

(2.18)

which contradicts the fact that u is not identically zero in O. This
finishes the proof of the implication (2.15).

Finally, to justify (2.16), it suffices to apply (2.15) to the differ-
ence u := u1 − u2 (with the choice V := V1).

Lemma 2.4. For each Lipschitz domain Ω ⊂ M and 1 < p < ∞ there
exists a constant C = C(M,Ω, p) > 0 such that for any u ∈ Lpn/p(Ω) and
τ ∈ [2,∞)

‖u‖Lτ (Ω) ≤ Cτ1−1/p‖u‖Lp

n/p
(Ω).(2.19)

Furthermore, if n ≥ 3 and n− 1 < p <∞, then

‖f‖Lτ
2/τ,0(Ω) ≤ Cτ1−1/p‖f‖Lp

n/p,0(Ω), for all τ ∈ [p,∞),(2.20)

where C = C(M,Ω, n, p) > 0 is independent of τ .
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Proof: Clearly, it suffices to deal with the Euclidean version of (2.19).
For p = 2 the statement can be found in [36, Chapter 13] and is a key
ingredient in the proof of Trudinger’s inequality. The argument used
there readily extends, so we only outline the main steps. If u ∈ Lpn/p(R

n),
then for some v ∈ Lp(Rn) we have u = Λ−n/pv, where

(̂Λsv)(ξ) := 〈ξ〉sv̂(ξ), s ∈ R, 〈ξ〉 := (1 + |ξ|2)1/2,(2.21)

and hat stands for the Fourier transform. Hence,

u = Gn/p ∗ v,(2.22)

where Gs is the usual Bessel kernel, i.e.

Ĝs(ξ) := 〈ξ〉−s, ξ ∈ Rn.(2.23)

The behavior of Gs follows from results in [34, p. 132]. In particular Gs
is C∞ on Rn \ {0} and vanishes rapidly as |x| → ∞. For |x| ≤ 1 and
0 < s < n, we also have

|Gs(x)| ≤ C|x|s−n.(2.24)

This is a key ingredient. Consequently, Gn/p just misses being in
Lp/(p−1)(Rn). With this at hand, the estimate (2.19) follows much as
in [35]; we omit the details.

As for (2.20), we shall use a standard interpolation inequality (cf. [32,
Remark 2, p. 87]), to the effect that for each fixed 1 < p < τ <∞, and
u ∈ C∞

comp(Ω),

(2.25) ‖u‖Lqτ
2/qτ

(Ω) ≤ ‖u‖1−θτLp

n/p
(Ω)
‖u‖θτLτ (Ω),

where θτ :=
n− 2

n− 2 + 2p/τ
and

1
qτ

:=
θτ
τ

+
1− θτ

p
.

Notice that, as τ →∞, we have θτ → 1, qτ →∞ and τ/qτ → n/(n−2).
Also, θτ → 0 and qτ → p as τ → 0.

Using (2.19) in order to estimate the last factor in (2.25) produces

‖u‖Lqτ
2/qτ

(Ω) ≤ Cτθτ (1−1/p)‖u‖Lp

n/p
(Ω) ≤ Cq1−1/p

τ ‖u‖Lp

n/p
(Ω),(2.26)

where the last inequality is a simple consequence of τθτ ≤ Cqτ . Formally
replacing qτ by τ in (2.26) (recall that qτ covers the interval (p,∞) as τ
ranges from p to ∞), we arrive at

‖u‖Lτ
2/τ

(Ω) ≤ Cτ1−1/p‖u‖Lp

n/p
(Ω), τ > p, ∀u ∈ C∞

comp(Ω).(2.27)
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In turn, this readily implies (2.20) given that Lτ2/τ,0(Ω) and Lpn/p,0(Ω)
are, respectively, the closure of C∞

comp(Ω) in Lτ2/τ (Ω) and Lpn/p(Ω) (here
we need the condition that n− 1 < p <∞). This concludes the proof of
the lemma.

Next we initiate the

Proof of Theorem 2.1: Part I: In this first segment, we deal with the
well posedness aspect of (2.4), including the accompanying esti-
mate (2.5), in the case when r > n/2.

To this end, assume first that n ≥ 3 and consider the mappings

Dir, R : Lp
s+ 1

p

(Ω) −→ Lp
s+ 1

p−2
(Ω)×Bp,ps (∂Ω),

Diru := (∆u,Tru), Ru := (−V u, 0).
(2.28)

Granted the current assumptions, from [30] we know that the Dirichlet
Laplacian Dir is an isomorphism while, from Lemma 2.2, R is compact.
It follows that Dir +R is Fredholm with index zero and we claim that
this operator is, in fact, an isomorphism.

Clearly, to see this, it suffices to prove that Dir +R is one-to-one, a
task which we now consider. To see this, assume that u ∈ Lp

s+ 1
p

(Ω) is

such that (Dir +R)u = 0. Since u = pr1[Dir−1(V u)] (here and elsewhere,
pr1 denotes the natural projection onto the first factor of a Cartesian
product), repeated applications of (2.14) eventually show that

u ∈
⋂

(s,1/p)∈H
Lps+1/p,0(Ω),(2.29)

where H is the (hexagonal) region described by (2.2); cf. Figure 1. Next,
(2.29) can be used to justify the integration by parts formula∫∫

Ω

|∇u|2 + V |u|2 = 0(2.30)

which, in turn, readily entails u = 0 in Ω. This takes care of the claim
made in the previous paragraph and, hence, finishes the proof of the well
posedness of (2.4).

At this stage we turn our attention to (2.6). The proof of this estimate
is involved and requires a number of auxiliary tools which we now begin
to develop in a sequence of lemmas. Final arguments are presented in
the last part of this section.
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To get started, if X, Y are two Banach spaces we denote by L(X,Y )
the collection of all linear, bounded operators mapping X into Y , and
equip it with the usual (strong) operator norm. This space will be further
abbreviated as L(X) when X = Y .

We debut with an interpolation result. In view of the fact that{
Lps,0(Ω)

}
1<p<∞
s≥0

is a complex interpolation scale, it is natural to ask

if for 1 < p <∞ and 1/p < s < 1 + 1/p, 0 < θ < 1 one has

(2.31)
[
Lps,0(Ω), L∞(Ω)

]
θ

= Lp
∗

s∗,0(Ω),

where
1
p∗

=
1− θ

p
, s∗ = (1− θ)s.

Since it is unclear whether the current literature on interpolation cov-
ers (2.31), in the lemma below we devise a convenient substitute, equally
effective for the applications we have in mind.

Lemma 2.5. Assume that for some 1 ≤ q0 < ∞, we have that T ∈
L(Lq(Ω)) for each q0 ≤ q ≤ ∞ and, in addition, that T ∈ L(Lps,0(Ω))
for some 1 < p < ∞, 1/p < s < 1 + 1/p. Then, for each θ ∈ (0, 1),
T ∈ L(Lp

∗

s∗,0(Ω)) where 1/p∗ = (1− θ)/p, s∗ = (1− θ)s, and

‖T‖L(Lp∗
s∗,0(Ω))

≤ ‖T‖θL(L∞(Ω))‖T‖1−θL(Lp
s,0(Ω))

.(2.32)

Proof: For each t <∞ large, T belongs to L(Lt(Ω)) and there exist two
finite constants K,κ > 0 so that

‖T‖L(Lt(Ω)) ≤ K1/t‖T‖1−κ/tL(L∞(Ω)).(2.33)

Set pt := ((1 − θ)/p + θ/t)−1. Since [Lps,0(Ω), Lt(Ω)]θ = Lpt

s∗,0(Ω), it
follows that

‖T‖L(L
pt
s∗,0(Ω)) ≤ ‖T‖1−θL(Lp

s,0(Ω))
Kθ/t‖T‖θ(1−κ/t)L(L∞(Ω)).(2.34)

Thus, for each f ∈ C∞
comp(Ω), we may write

‖Tf‖
Lp∗

s∗,0(Ω)
≤ lim
t→∞

sup ‖Tf‖Lpt
s∗,0(Ω)

≤ lim
t→∞

sup ‖f‖Lpt
s∗,0(Ω)‖T‖L(L

pt
s∗,0(Ω))

≤‖f‖
Lp∗

s∗,0(Ω)
‖T‖1−θL(Lp

s,0(Ω))
lim
t→∞

supKθ/t‖T‖θ(1−κ/t)L(L∞(Ω))

=‖f‖
Lp∗

s∗,0(Ω)
‖T‖1−θL(Lp

s,0(Ω))
‖T‖θL(L∞(Ω)).

(2.35)

This, in turn, readily yields the desired conclusion.
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Hereafter, we shall denote by (∆ − V )−1
D the solution operator for

the Poisson problem with homogeneous Dirichlet boundary conditions.
In other words, u := (∆ − V )−1

D f is the solution of the Poisson prob-
lem (∆− V )u = f in Ω, Tru = 0 on ∂Ω.

In order to continue, we recall some useful facts about fractional pow-
ers of the Dirichlet Laplacian in Lipschitz domains. These have been
proved in [24], [30] (cf. also [26] for n = 2), following earlier work
in [16].

Proposition 2.6. Let Ω ⊂ M be an arbitrary Lipschitz domain and
denote by A := (−∆)−1/2

D , the inverse of the square-root of the (negative
of the) Dirichlet Laplacian in Ω. Then

Aµ : Lp(Ω) ∼−→ Lpµ,0(Ω)(2.36)

is an isomorphism provided

max
{µ

3
− ε, µ− 1

}
≤ 1

p
< 1, 0 ≤ µ ≤ 2, if n ≥ 3,(2.37)

or

max
{
µ

2
− 1

2
− ε, µ− 1

}
≤ 1

p
< 1, 0 ≤ µ ≤ 2, if n = 2,(2.38)

for some ε = ε(∂Ω) > 0. When ∂Ω ∈ C1, one can simply require that
µ ≥ 0 together with max{0, µ− 1} ≤ 1/p < 1.

Next, if Ω is a Lipschitz domain and V ≥ 0, V ∈ Lr(Ω), we consider
the operator

TV := (∆− V )−1
D ∆.(2.39)

From what we have proved so far, for each V ∈ Lr(M), r > n/2, V ≥ 0,
TV is a well defined, bounded mapping of Lps+1/p(Ω) into itself for each
(s, 1/p) as in (2.2) if n ≥ 3, or as in (2.10) if n = 2, as long as (2.3) is
satisfied. Our immediate goal is to establish estimates on the norm of the
operator TV uniformly in V . As we shall see momentarily, Lemma 2.5
and Proposition 2.6 are two key ingredients in this regard.

Lemma 2.7. Let Ω be an n-dimensional Lipschitz domain, n ≥ 2,
1 < p < ∞, and assume that the function V is as above. Then TV :
Lp2/p,0(Ω) → Lp2/p,0(Ω) satisfies

‖TV ‖L(Lp

2/p,0(Ω)) ≤ C(2.40)

where C = C(Ω, p) > 0 is a finite constant independent of V .



366 M. Dindoš, M. Mitrea

Proof: In broad outline, the plan is to prove first that the estimates

‖TV ‖L(L2
1,0(Ω)) ≤ C, ‖TV ‖L(L∞(Ω)) ≤ C(2.41)

hold uniformly with respect to the function V , and then to use (2.41) in
conjunction with Lemma 2.5 in order to obtain (2.40) when 2 ≤ p <∞.
The situation when 1 < p < 2 is then handled via a duality argument
which makes use of Proposition 2.6.

Turning to specifics, the first estimate in (2.41) is seen as follows. If
f ∈ L2

1,0(Ω) and we set u := TV f = (∆−V )−1
D (∆f), then u is a solution

of

(∆− V )u = ∆f in Ω, Tru = 0 on ∂Ω.(2.42)

Now, a simple argument which involves pairing both sides of (2.42)
with u and integrating by parts gives

‖u‖2L2
1,0(Ω) ≤ C

∫∫
Ω

|∇u|2≤C

∫∫
Ω

|∇u|2 + V |u|2 =C〈−∆f, u〉

≤ C‖∆f‖L2
−1,0(Ω)‖u‖L2

1,0(Ω) ≤ C‖f‖L2
1,0(Ω)‖u‖L2

1,0(Ω),

(2.43)

where all the constants above depend only on the domain Ω. Clearly,
(2.43) yields the desired estimate.

The proof of the second estimate in (2.41) is more challenging. Denote
by ṪV the restriction of the operator (2.39) to Lps+1/p,0(Ω), which maps
this space isomorphically onto itself (granted the well-posedness of the
Poisson problem (2.4)). Thus,

ṪV f = (I + (∆− V )−1
D V )f = f + (∆− V )−1

D (V f).(2.44)

We also find it useful working with the operator Ṫ−1
V which, in the same

context, can be written as

Ṫ−1
V f = (I −∆−1

D V )f = f −∆−1
D (V f).(2.45)

Consider the class C0(Ω) := {f ∈ C(Ω̄); f |∂Ω = 0}, equipped with
the usual supremum norm. A standard mollifier argument shows that
C∞

comp(Ω) ↪→ C0(Ω) densely. Our first claim is that ṪV , Ṫ−1
V , defined in

(2.44)–(2.45), extend as isomorphisms of C0(Ω).
To this end, observe that f ∈ C0(Ω) entails V f ∈ Lr(Ω) and, further,

V f ∈ Lps+1/p−2(Ω) if

2
n
− 1

r
≥ −1

p
+

s + 1/p
n

.(2.46)
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Assuming that this is the case and granted that s, p are such that the
Poisson problem (2.4) is well-posed, we get (∆−V )−1

D (V f), ∆−1
D (V f) ∈

Lps+1/p(Ω) ↪→ Cε(Ω̄), provided

−1
p

+
s + 1/p

n
> 0, and ε > 0 is small.(2.47)

Since both (2.46) and (2.47) can be satisfied for some pair s, p within
the well-posedness range for the Poisson problem (2.4), we may conclude
that both ṪV and Ṫ−1

V are well defined mappings of C0(Ω) into itself.
Since ṪV ◦ Ṫ−1

V = Ṫ−1
V ◦ ṪV = I on C∞

comp(Ω), the desired conclusion
follows.

In a similar fashion, one can check that

(2.48) ‖ṪV f‖Lp(Ω), ‖Ṫ−1
V f‖Lp(Ω) ≤ C(V )‖f‖Lp(Ω),

∀ f ∈ C0(Ω), if
r

r − 1
≤ p ≤ ∞.

Thus, ṪV , Ṫ−1
V from (2.44), (2.45) can also be extend as isomorphisms

of Lp(Ω), for r
r−1 ≤ p <∞.

Next, we aim at showing that for any V ∈ Lr(Ω), V ≥ 0, with r > n/2
(n ≥ 2) there holds

‖ṪV f‖L∞(Ω) ≤ 2‖f‖L∞(Ω), uniformly for f ∈ L∞(Ω).(2.49)

With an eye on (2.49), we shall now argue to the effect that for each V
as above,

1
2
‖f‖L∞(Ω) ≤ ‖Ṫ−1

V f‖L∞(Ω), uniformly for f ∈ C0(Ω).(2.50)

Seeking a contradiction, assume the contrary, i.e., that (2.50) is false.
Then we can find a nonnegative function V ∈ Lr(Ω) and f ∈ C0(Ω)
such that

1
2
‖f‖L∞(Ω) > ‖Ṫ−1

V f‖L∞(Ω).(2.51)

Without loss of generality we can assume that supx∈Ω f(x) = ‖f‖L∞(Ω),
otherwise work with the function −f instead. Since f is continuous and
zero at the boundary, it attains its maximum at some point x∗ ∈ Ω,
i.e. f(x∗) = ‖f‖L∞(Ω). Denote by O the connected component of the
open set {x ∈ Ω; f(x) > 0} which contains the point x∗, and let u :=
∆−1
D (V f) ∈ C0(Ω). By (2.51) we get

1
2
f(x∗) > |f(x∗)− u(x∗)|,(2.52)
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hence u(x∗) > 1
2f(x∗) > 0. Observe that the function u is a supersolu-

tion for the Laplace-Beltrami operator on Ω (since ∆u = V f ≥ 0 in Ω) so
that, when considered on O, it must attain its maximum at a boundary
point. Thus, there exists z ∈ ∂O ⊂ Ω at which u(z) = maxx∈O u(z) ≥
u(x∗) > 1

2f(x∗). On the other hand, the definition of O ensures that
f ≡ 0 on ∂O. Consequently, Ṫ−1

V f(z) = f(z) − u(z) < − 1
2f(x∗) < 0,

so that |Ṫ−1
V f(z)| > 1

2‖f‖L∞(Ω). This contradicts (2.51), and concludes
the proof of (2.50).

Turning now to the task of proving (2.49), recall that for each
r/(r − 1) ≤ p ≤ ∞, there exists a constant κ(V ) > 0, independent
of p, such that

‖ṪV f‖Lp(Ω) ≤ κ(V )‖f‖Lp(Ω) and ‖ṪV f‖L∞(Ω) ≤ 2‖f‖L∞(Ω),(2.53)

uniformly for f ∈ C0(Ω). A standard interpolation inequality (cf., e.g.,
[13, p. 41]) then yields, for f ∈ C0(Ω) and p ∈ [r/(r − 1),∞],

‖ṪV f‖Lp(Ω) ≤ ‖ṪV f‖θLr/(r−1)(Ω)‖ṪV f‖
1−θ
L∞(Ω)

≤ κ(V )θ21−θ‖f‖θLr/(r−1)(Ω)‖f‖
1−θ
L∞(Ω),

(2.54)

where θ := r/(p(r − 1)) ∈ (0, 1). In particular, θ ↘ 0 as p↗∞.
Now, given any f ∈ L∞(Ω), we can find a sequence of functions (fj)j

in C0(Ω) such that ‖fj‖L∞(Ω) ≤ ‖f‖L∞(Ω) and fj → f in Lq(Ω) for any
q <∞. Then, by virtue of (2.54), we get

‖TV f‖L∞(Ω) = lim
p→∞

‖TV f‖Lp(Ω) = lim
p→∞

lim
j→∞

‖ṪV fj‖Lp(Ω)

≤ lim
p→∞

lim
j→∞

κ(V )θ21−θ‖fj‖θLr/(r−1)(Ω)‖fj‖
1−θ
L∞(Ω)

≤ 2‖f‖L∞(Ω).

(2.55)

This justifies (2.49) and shows that ‖TV ‖L(L∞(Ω)) ≤ 2, independently
of V , thus proving (2.41).

With (2.41) in hand and relying on Lemma 2.5, we see that (2.40)
holds for each 2 ≤ p <∞, uniformly in V .

There remains the case 1 < p < 2 which we treat next. Our strategy
is based on duality and requires analyzing the action of the operator

KV,p :=(−∆)1/pD TV (−∆)−1/p
D = −(−∆)1/pD (∆− V )−1

D (−∆)1−1/p
D(2.56)

on Lp spaces. Concretely, from Proposition 2.6 (with µ = 2/p) it suffices
to show that ‖KV,p‖L(Lp(Ω)) is bounded uniformly in V or, equivalently,
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that ‖K∗
V,p‖L(Lp′ (Ω)) ≤ C(p) uniformly in V , where 1/p+1/p′ = 1. Since

K∗
V,p = −(−∆)1−1/p

D (∆− V )−1
D (−∆)1/pD

= (−∆)1/p
′

D TV (−∆)−1/p′

D = KV,p′
(2.57)

by relying once again on Proposition 2.6, we see that matters are further
reduced to proving that ‖TV ‖L(Lp′

2/p′,0(Ω))
≤ C uniformly in V . However,

having p ∈ (1, 2) entails p′ ∈ (2,∞) and this is precisely the case already
addressed. The proof of the lemma is therefore finished.

In our next lemma we consider the action of the operator TV on
Lp spaces.

Lemma 2.8. Assume that n ≥ 3. Then, if V ∈ Lr(Ω), r > n/2, is
nonnegative, there holds

‖TV ‖L(Lp(Ω)) ≤ C(1 + ‖V ‖Lr(Ω)) for each p > r/(r − 1),(2.58)

where C = C(Ω, r, p) > 0 is independent of V . The estimate (2.58) also
holds when n = 2 provided r > 4/3.

Proof: Assume first that n ≥ 3. To prove (2.58), we rely on the fact that
TV f = f +(∆−V )−1

D (V f) for f ∈ C∞
comp(Ω), and analyze the actions of

the multiplicative operator MV , defined by MV f := V ·f , and (∆−V )−1
D

separately. In this scenario, the crux of the matter is establishing the
estimate

‖(∆− V )−1
D ‖L(Lq(Ω), Lqn/(n−2q)(Ω)) ≤ C, q ∈ (1, n/2),(2.59)

for some C = C(q) > 0 independent of V . Indeed, (2.59) in concert with
the elementary estimate ‖MV ‖L(Lp(Ω),Lpr/(p+r)(Ω)) ≤ ‖V ‖Lr(Ω), readily
yields (2.58) provided that one can choose q ∈ (1, n/2) so that 1/r+1/p ≤
1/q ≤ 1/p + 2/n. As this latter condition is easily checked, (2.58) will
follow as soon as we justify (2.59).

In this regard, a simple yet useful observation (whose proof amounts
to an algebra exercise) is that

(2.60) ∀ q ∈ (1, n/2),

∃ (s, 1/p) as in (2.2) such that Lq(Ω) ↪→ Lps+1/p−2(Ω).

Consequently, one can always employ a factorization of the type

(2.61) (∆− V )−1
D : Lq(Ω) ι−→ Lps+1/p−2(Ω)

(∆−V )−1
D−→ Lps+1/p,0(Ω)

ι−→ Lqn/(n−2q)(Ω)
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in order to justify that (∆ − V )−1
D ∈ L(Lq(Ω), Lqn/(n−2q)(Ω)) for each

q ∈ (1, n/2).
Turning now to the actual task of proving (2.59), fix an arbitrary

f ∈ Lq(Ω) which we write as f = f+ − f−, where 0 ≤ f+, f− ≤ |f |.
Positivity of (−∆)−1

D gives

0 ≤ f± ≤ V (−∆)−1
D f± + f±.(2.62)

Applying (V −∆)−1
D to the above inequalities and invoking Lemma 2.3

yields

0 ≤ (V −∆)−1
D f± ≤ (−∆)−1

D f±.(2.63)

Together with the decomposition f = f+ − f− and (2.61) with V = 0,
this allows us to write

‖(V −∆)−1
D f‖Lqn/(n−2q)(Ω) ≤ ‖(−∆)−1

D f+‖Lqn/(n−2q)(Ω)

+ ‖(−∆)−1
D f−‖Lqn/(n−2q)(Ω)

≤ 2C‖f‖Lq(Ω),

(2.64)

as desired. This establishes (2.59) and finishes the proof of (2.58) when
n ≥ 3.

When n = 2 one can proceed in a similar fashion, the most notable
difference being that (2.59) now becomes ‖(∆− V )−1

D ‖L(Lq(Ω), L∞(Ω)) ≤
C, for q > 1.

Armed with Lemma 2.7 and Lemma 2.8 we now turn to the task of
establishing the following important estimates.

Lemma 2.9. Assume that V ∈ Lr(Ω), r > n/2, is an arbitrary non-
negative function, and that 0 < s < 1, 1 < p <∞.

(i) If s/(n− 1) < 1/p ≤ s, then

‖TV ‖L(Lp

s+1/p,0(Ω),Lnp/(n−1−sp)(Ω)) ≤ C,(2.65)

where C = C(Ω, s, p) > 0 is a finite constant independent of V .
(ii) If sp > n − 1 then, for some constant C = C(Ω, r, p, s) > 0 inde-

pendent of the function V ,

‖TV ‖L(Lp

s+1/p,0(Ω),L∞(Ω)) ≤ C.(2.66)

(iii) If sp = n − 1, there exists C = C(Ω, r, p) > 0 independent of V
such that

‖TV ‖L(Lp

s+1/p,0(Ω),Lτ (Ω)) ≤ Cτ1−1/p for any τ ∈ [2,∞).(2.67)
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(iv) If s < 1
p < s

n−1 + n(r−1)
r(n−1) , n ≥ 3, then

(2.68) ‖TV ‖L(Lp

s+1/p,0(Ω),Lnp/(n−1−sp)(Ω))

≤

C(1+‖V ‖Lr(Ω))
ε+ r

2(r−1) (
1
p−s), if r≤1+(1−sp)/(2p−2),

C(1+‖V ‖Lr(Ω))
ε+ 1

2−n/r
((n−1)/p−s−n+2), if r<1+(1−sp)/(2p−2),

for each ε > 0, where C = C(Ω, s, p, ε) > 0 is independent of V .
When n = 2, the same holds provided r > 4/3.

Proof: Consider first the situation when 0 < s/(n − 1) < 1/p ≤ s < 1
(which automatically entails n ≥ 3). The case sp = 1, 1 < p < ∞ has
been dealt with in Lemma 2.7. The larger range we intend to addressed
here is then a simple consequence of this and the factorization

TV : Lps+1/p,0(Ω) ↪→Lp
∗

2/p∗,0(Ω) TV−→Lp
∗

2/p∗,0(Ω) ↪→Lnp/(n−1−sp)(Ω),(2.69)

where 1/p∗ := (n−1)(1/p−s/(n−1))/(n−2), and both inclusions above
are classical embedding results. As for (ii), i.e. the case sp > n−1, n ≥ 2,
we use (2.41) and the factorization

TV : Lps+1/p,0(Ω) ↪→ L∞(Ω) TV−→ L∞(Ω).(2.70)

Next we address the case sp = n − 1 (which forces p > n − 1).
When n = 2, the conclusion we seek is an immediate consequence of
Lemma 2.7 and Lemma 2.4. Similar ingredients can be used to handle
the case n ≥ 3 as well. The idea is to use the factorization

TV : Lpn/p,0(Ω)
ι1
↪→ Lτ2/τ,0(Ω) TV−→ Lτ2/τ,0(Ω)

ι2
↪→ Lτ (Ω),(2.71)

in concert with ‖ι1‖ ≤ Cτ1−1/p, (2.40), and the fact that ‖ι2‖ ≤ C,
uniformly in τ ∈ [p,∞). This finishes the analysis of the point (iii) in
our lemma.

At this stage, it remains to deal with the situation described in the
point (iv) of the lemma, and our intention is to eventually interpolate
between (2.40) and (2.58). To this end, recall first that the two classes,
Lps+1/p,0(Ω) and Lnp/(n−1−sp)(Ω), with 1 < p < ∞ and −1/p ≤ s, are
complex interpolation scales, in the sense that for each 1 < pj < ∞,
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sj ≥ −1/pj , j = 0, 1,

[
Lp0s0+1/p0,0

(Ω), Lp1s1+1/p1,0
(Ω)

]
θ

= Lp
∗

s∗+1/p∗,0(Ω),[
Lnp0/(n−1−s0p0)(Ω), Lnp1/(n−1−s1p1)(Ω)

]
θ

= Lnp
∗/(n−1−s∗p∗)(Ω),

if 1/p∗ := (1− θ)/p0 + θ/p1, s
∗ := (1− θ)s0 + θs1, 0 < θ < 1.

(2.72)

This observation and convexity arguments readily entail the following
principle: if 1 < pi < ∞, −1/pi ≤ si, τi := npi/(n − 1 − sipi) > 1, and
‖TV ‖L(L

pi
si+1/pi

(Ω),Lτi (Ω)) ≤Mi, i = 1, 2, 3, then

‖TV ‖L(Lp

s+1/p,0(Ω),Lnp/(n−1−sp)(Ω)) ≤Mλ1
1 Mλ2

2 Mλ3
3 ,(2.73)

provided the point (s, 1/p) has baricentrical coordinates (λ1, λ2, λ3),
λi ≥ 0, relative to the triangle with vertices (si, 1/pi), i = 1, 2, 3.

We shall use the above remark twice, first for the triangle with ver-
tices at (ε, ε), (1 − ε, 1 − ε), (1/(r + ε) − 1, 1 − 1/(r + ε)) with ε > 0
sufficiently small. In this scenario, assuming that n ≥ 3, M1 and M2 are
controlled by Cε and M3 ≤ Cε(1+‖V ‖Lr(Ω)). Also, λ3 is a O(ε) variation
of r(1/p − s)/(2(r − 1)). This yields the first line in (2.68). The con-
dition r > 1 + (1 − sp)/(2p − 2) guarantees that the point (s, 1/p) lies
inside the triangle under discussion.

The second application of the aforementioned remark is similar in
spirit and requires a preparatory step. Specifically, as a result of (2.58)
and the factorization

TV : Lps+1/p,0(Ω) ↪→ Lnp/(n−1−sp)(Ω) TV−→ Lnp/(n−1−sp)(Ω)(2.74)

it follows that

(2.75) ‖TV ‖L(Lp

s+1/p,0(Ω),Lnp/(n−1−sp)(Ω)) ≤ C(1 + ‖V ‖Lr(Ω))

if 0 <
1
p
− s

n− 1
<

n(r − 1)
r(n− 1)

.

Note that the intersection between 1
p − s

n−1 = n(r−1)
r(n−1) with 1/p = 1 is the

point with coordinates (n/r−1, 1). Inspired by this observation, we write
(2.73) for the triangle with vertices at (1−ε, 1−ε), (1/(r+ε)−1, 1−1/(r+
ε)), (n/(r+ε)−ε(n−1)−1, 1−ε) for some sufficiently small ε > 0. This
time, assuming that n ≥ 3, we get M1 ≤ Cε, M2,M3 ≤ Cε(1+‖V ‖Lr(Ω)),
whereas λ2 + λ3 is a O(ε) variation of [(n− 1)/p− s− n + 2]/(2− n/r).
Availing ourselves of (2.58), (2.40), the second line of (2.68) follows. The
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role of r ≤ 1 + (1− sp)/(2p− 2) and 1
p − s

n−1 < n(r−1)
r(n−1) is to ensure that

the point (s, 1/p) lies inside the triangle we are currently considering.
The subcase of (iv) corresponding to n = 2 is handled similarly, and

requires that r > 4/3 (cf. Lemma 2.8).

Finally, we have all the necessary ingredients in order to tackle the

Proof of Theorem 2.1: Part II: Here we present the final arguments in
the proof of (2.6), (2.8), (2.7), and also treat the case r = n/2.

In what follows, if h is an arbitrary real-valued function, we set

h± := max{±h, 0} =
1
2
(|h| ± h),(2.76)

so that h± ≥ 0 and h = h+ − h−. Also, |h±(x)− h±(y)| ≤ |h(x)− h(y)|
so that

(·)± : Bp,ps (∂Ω) −→ Bp,ps (∂Ω) are bounded, 1<p<∞, 0 < s < 1.(2.77)

For the time being, we continue to assume r > n/2. If we now denote
by v

(±)
V ∈ Lps+1/p(Ω) the solutions of

Lv
(±)
V = (∆− V )v(±)

V = 0 in Ω, Tr v(±)
V = g±,(2.78)

then, clearly, vV := v
(+)
V − v

(−)
V solves

LvV = (∆− V )vV = 0 in Ω, Tr vV = g.(2.79)

Set also v
(±)
0 for the solutions of (2.78) with V = 0. According to

Lemma 2.3 we have

0 ≤ v
(+)
V ≤ v

(+)
0 and 0 ≤ v

(−)
V ≤ v

(−)
0 .(2.80)

Assuming sp < n− 1, it follows that

‖vV ‖Lnp/(n−1−sp)(Ω)≤‖v
(+)
V ‖Lnp/(n−1−sp)(Ω)+‖v

(−)
V ‖Lnp/(n−1−sp)(Ω)

≤‖v(+)
0 ‖Lnp/(n−1−sp)(Ω)+‖v

(−)
0 ‖Lnp/(n−1−sp)(Ω)

≤C‖v(+)
0 ‖Lp

s+1/p
(Ω) + C‖v(−)

0 ‖Lp

s+1/p
(Ω)

≤2C‖g‖Bp,p
s (∂Ω),

(2.81)

where the last constant C in (2.81) is that appearing in the estimate (2.5)
for V = 0. The case when sp > n−1 is similar, while the case sp = n−1
is proved with the help of Lemma 2.4.

Similarly, by wV we denote the solution to

LwV = (∆− V )wV = f in Ω, TrwV = 0.(2.82)
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Clearly, w0 = ∆−1
D f and wV = (∆− V )−1

D f , hence

‖wV ‖Lτ (Ω) = ‖(∆− V )−1
D ∆w0‖Lτ (Ω)

≤ ‖TV ‖L(Lp

s+1/p
(Ω),Lτ (Ω))‖w0‖Lp

s+1/p
(Ω)

≤ C‖TV ‖L(Lp

s+1/p
(Ω),Lτ (Ω))‖f‖Lp

s+1/p−2(Ω).

(2.83)

The constant C appearing in the last line is again the constant in the
estimate (2.5) for V = 0. Now, uV = vV + wV solves the desired equa-
tion (2.4) and the estimates (2.6)–(2.7) follow from (2.81), (2.83) and
Lemma 2.9.

In the two dimensional situation, the well posedness range (2.10) is
handled analogously, granted the work in [25], [26]. Here we only want
to remark that, in order to justify (2.30) for u ∈ Lps+1/p,0(Ω) and V ∈
Lr(Ω), r > (1−|1/(2p)−s/2|)−1, observe first that for some ε > 0 small,
V u ∈ L1+ε(Ω) ↪→ Lq2/q−2+ε(Ω), if q > 1. In turn, this further entails u =
pr1[Dir−1(V u)] ∈ Lq2/q+ε(Ω) ↪→ L2

1(Ω), thanks to the aforementioned
references. Since, under the current assumptions, V |u|2 ∈ L1(Ω) is also
readily verified, this takes care of (2.30) when n = 2.

Finally, we are left with the analyzing the case r = n/2, a task which
we take up next. For starters, we claim that it suffices to deal with the
situation when the datum f is actually selected from Lq(Ω), where q is
given by

1
q

:=
2
n

+
n− 1− sp

np
.(2.84)

Indeed, given an arbitrary f ∈Lps+1/p−2(Ω), set w :=∆−1
D f ∈ Lps+1/p,0(Ω).

Then u = u0 + w solves (2.1), provided u0 is a solution of
(∆− V )u0 = V w in Ω,

Tru0 = g ∈ Bp,ps (∂Ω),

u0 ∈ Lp
s+ 1

p

(Ω).

(2.85)

Now, w ∈ Lnp/(n−1−sp)(Ω) by standard embedding results and, further,
V w ∈ Lq(Ω) by Hölder’s inequality (note that (2.3) guarantees that
q > 1). This justifies the claim made at the beginning of the paragraph.

Assuming next that f ∈ Lq(Ω), it follows that ‖f±‖Lq(Ω) ≤ ‖f‖Lq(Ω).
Consider an approximating sequence Vj → V in Ln/2(Ω), so that Vj ≥ 0,
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Vj ∈ L∞(Ω), for each j, and let u±
j be the unique solution of

(∆− Vj)u±
j = −f∓ ∈ Lq(Ω),

Tru±
j = g± ∈ Bp,ps (∂Ω),

u±
j ∈ Lp

s+ 1
p

(Ω).

(2.86)

As before, we get that ‖u±
j ‖Lnp/(n−1−sp)(Ω) ≤ ‖u±

0 ‖Lnp/(n−1−sp)(Ω), where
u±

0 solves (2.86) with V0 := 0. From this and the decomposition uj =
u+
j −u−

j , we conclude that there exists some constant C > 0 independent
of V such that

‖uj‖Lnp/(n−1−sp)(Ω) ≤ C(‖f‖Lq(Ω) + ‖g‖Bp,p
s (Ω)).(2.87)

We now make the claim that (uj)j∈N is a Cauchy sequence in
Lnp/(n−1−sp)(Ω). To see this, for j, k ∈ N, we note that w := uj − uk
solves the problem

(∆− Vj)w = (Vj − Vk)uk ∈ Lq(Ω), w ∈ Lp
s+ 1

p ,0
(Ω).(2.88)

Hence, by virtue of (2.87), we have

‖uj−uk‖Lnp/(n−1−sp)(Ω)≤C‖(Vj−Vk)uk‖Lq(Ω)

≤C‖Vj−Vk‖Ln/2(Ω)‖uk‖Lnp/(n−1−sp)(Ω)

≤C‖Vj−Vk‖Ln/2(Ω)(‖f‖Lq(Ω)+‖g‖Bp,p
s (Ω)).

(2.89)

From this, our claim follows.
In order to continue, let u be the limit of the sequence (uj)j∈N in

Lnp/(n−1−sp)(Ω). We now intend to show that u solves (2.1). Denote
by u = Tg(f) the solution operator of the Poisson problem (2.1) corre-
sponding to V := 0. In particular, uj = Tg(f + Vjuj). Since Vjuj → V u
in Lq(Ω) ↪→ Lps+1/p−2(Ω), we may conclude that uj = Tg(f + Vjuj) →
Tg(f + V u) in Lps+1/p(Ω). From this we see that u = Tg(f + V u), i.e., u
solves (2.1).

To finish the proof of the theorem we need to show that the solution
we have just constructed is unique. By linearity, this comes down to
proving that the operator

∆−V : Lp
s+ 1

p ,0
(Ω)−→Lp

s+ 1
p−2

(Ω)=
(
Lp

′

2−s− 1
p

(Ω)
)∗

,
1
p

+
1
p′

= 1,(2.90)

is one-to-one. From what we have proved so far, this operator is onto
so, given the invariance of the conditions (2.2)–(2.3) to the transforma-
tion (s, 1/p) �→ (1 − s, 1 − 1/p), the desired result follows by duality.
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Parenthetically, let us note that we could have reached the same conclu-
sion using the ontoness of (2.90) plus the fact that, much as in (2.28),
the operator (2.90) is Fredholm with index zero.

3. Nonlinearities with polynomial growth

In this section we study the semilinear version of (2.4) in the case
when the nonlinearity is allowed to have superlinear growth. In order to
state our first result, recall that a function a(x, u) is called Carathéodory
if it is measurable in x and continuous in u.

Theorem 3.1. Assume that Ω ⊂ M is a connected Lipschitz domain
in M , where dimM = n ≥ 4. Also, suppose that a : Ω × R → R is a
Carathéodory function such that

0 ≤ a(x, u) ≤ k1(x) + k2(x)|u|m,(3.1)

where 0 ≤ kj ∈ Lqj (Ω) with qj ≥ 1, j = 1, 2.
For 1 < p <∞, 0 < s < 1, consider the following semilinear Poisson

problem with Dirichlet boundary condition:

∆u− a(x, u)u = f ∈ Lps+1/p−2(Ω),

Tru = g ∈ Bp,ps (∂Ω), u ∈ Lps+1/p(Ω).
(3.2)

Then there exists ε = ε(Ω) > 0 such that the problem (3.2) has at least
one solution provided the following is true: The pair (p, s) satisfies at
least one of the conditions in (2.2), sp < n− 1, and

0 ≤ 1
q1
≤ 2

n
and

1
q1

< 1− n− 1− sp

np
,(3.3)

0 ≤ m <
np

n− 1− sp

(
min

{
2
n
, 1− n− 1− sp

np

}
− 1

q2

)
.(3.4)

For sp ≥ n− 1 the number m could be taken arbitrarily large as long as
q1, q2 > ( 2

n + n−1
np − s

n )−1. Moreover,

(3.5) ∀M > 0 ∃K > 0

so that ‖f‖Lp

s+1/p−2(Ω) + ‖g‖Bp,p
s (∂Ω) ≤M =⇒ ‖u‖Lp

s+1/p
(Ω) ≤ K.

If sp ≥ 1 the solution u satisfies the estimate

‖u‖Lnp/(n−1−sp)(Ω) ≤ C(‖f‖Lp

s+1/p−2(Ω) + ‖g‖Bp,p
s (∂Ω))(3.6)

for some C = C(∂Ω, s, p, a) > 0.
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If, in addition, the nonlinearity b(x, u) := a(x, u)u satisfies

0 ≤ ∂

∂u
b(x, u) ≤ k̃1(x) + k̃2(x)|u|m,(3.7)

with 0 ≤ k̃j ∈ Lqj (Ω), j = 1, 2, qj’s and m as before, then the solution u
of the boundary problem (3.2) is also unique.

Analogous results are valid in dimensions n = 2 and n = 3. If
dimM = n = 3 the results stated above remain true without change,
provided sp ≥ 1/2 and p(1 + s) ≥ 2. Otherwise

0 ≤ m <
3p

2− sp

(
1
σ
− 1

q2

)
, 0 ≤ 1

q1
< 1− 2− sp

3p
,(3.8)

will suffice, where

σ :=


3
2 + 1−2sp

2(2−sp) , if 2sp < 1 and p(3 + s) ≥ 5,

3
2

(
1 + 2−p(1+s)

2−sp

)
, if p(1 + s) < 2 and p(3 + s) < 5.

(3.9)

If n = 2 the previous results are valid provided (2.10) is used in place
of (2.2), and

q1>2, 0≤m<
p(q2 − 2)

2q2(1− sp)
for sp < 1,

q1, q2>

(
1−

∣∣∣∣ 1
2p
− s

2

∣∣∣∣)−1

, m≥0, for sp ≥ 1.
(3.10)

By way of contrast, 1 < p < ∞, 0 < s < 1, will do in all dimensions
when ∂Ω ∈ C1.

A few comments are in order here.

(i) As far as the range of validity (described by means of (2.2), (2.10))
is concerned, our theorem is in the nature of best possible. This
is because the aforementioned range is optimal for the associated
linear problems.

(ii) In some instances m in (3.4) can be allowed to attain the value
np

n−1−sp

(
2
n − 1

q2

)
and the statement of the theorem remains true.

In order to avoid further complications we decided not to include
this case in the theorem given above. Interested reader can analyze
this boundary case by techniques outlined in the proof that follows.

(iii) Similar results are valid at the level of 2nd-order, formally self-
adjoint, non-positive, strongly elliptic systems, at least when n = 2
or n = 3.
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(iv) These results can be extended to allow other types of nonlinear
terms. We discuss the case of sub-linear nonlinearities in Section 5,
while in Section 6 we consider other classes of function spaces.

Proof of Theorem 3.1: Assume first that sp < n − 1. The idea is to
consider the map

T : Lnp/(n−1−sp)(Ω) −→ Lnp/(n−1−sp)(Ω)(3.11)

defined as follows. For a fixed g ∈ Bp,ps (∂Ω) and f ∈ Lps+1/p−2(Ω) we
take v = Tu to be the solution of the linear Poisson problem

∆v − a(x, u)v = f in Ω, Tr v = g, v ∈ Lps+1/p(Ω).(3.12)

The first order of business is to show that T is well defined. Sufficient
conditions have been discussed in Theorem 2.1 in terms of the integra-
bility properties of V (x) := a(x, u(x)). In this regard, we note that

(3.13)
1
r
≥ max

{
m

τ
+

1
q2

,
1
q1

}
=⇒ a(., u(.)) ∈ Lr(Ω)

and ‖a(., u(.))‖Lr(Ω) ≤ C(‖k1‖Lq1 (Ω) + ‖k2‖Lq2 (Ω)‖u‖mLτ (Ω)),

with τ := np/(n − 1 − sp), as is immediate from (3.1). Next, suppose
that r has been selected as in the first line of (3.13) and assume that
r ≥ n/2. The intention is to employ the estimates (2.6), (2.8) in order
to deduce that

‖v‖Lτ (Ω)≤C(1+‖a(., u(.))‖Lr(Ω))θ(‖f‖Lp

s+1/p−2(Ω)+‖g‖Bp,p
s (∂Ω))(3.14)

with C > 0 independent of u, and θ = θ(n, s, p, r) ∈ [0, 1). Here θ := 0
for sp ≥ 1, and is given by (2.9) when 0 < s < 1

p < s
n−1 + n(r−1)

r(n−1) . Note
that this last estimate entails 1/r < 1 − 1/τ , which can be viewed as a
necessary condition for (s, 1/p) to belong to the region where estimates
for θ are available (cf. (i)–(iv) in Lemma 2.9).

In summary, carrying out the step outlined in the previous paragraph
requires that

max
{
m

τ
+

1
q2

,
1
q1

}
≤ 1

r
≤ 2

n
and

1
r

< 1− 1
τ
.(3.15)

Clearly, the possibility of choosing r as in (3.15) hinges on whether

max
{
m

τ
+

1
q2

,
1
q1

}
≤ 2

n
and max

{
m

τ
+

1
q2

,
1
q1

}
< 1− 1

τ
,(3.16)

a condition which is equivalent to (3.3)–(3.4).
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Assuming that this is the case and choosing r as in (3.15), at this
stage we would like to be able to pick some R > 0 so that T maps the
ball {u ∈ Lτ (Ω); ‖u‖Lτ (Ω) ≤ R} into itself, i.e.

u ∈ Lτ (Ω), ‖u‖Lτ (Ω) ≤ R =⇒ ‖Tu‖Lτ (Ω) ≤ R.(3.17)

Another look at (3.13)–(3.14) reveals that matters can always be
arranged to that effect (by selecting R large enough) granted that

mθ < 1.(3.18)

Checking (3.18) amounts to analyzing several cases.

(i) If sp ≥ 1 then this is trivially satisfied, since θ = 0 in this case.

(ii) If θ is as in the first line of (2.9), we write (3.18) in a way which
emphasizes 1/r, i.e. 1

r < 1− m2 ( 1
p − s). In order to be able to select r as

in (3.15) which also satisfies this latest condition we therefore need

max
{
m

τ
+

1
q2

,
1
q1

}
< 1− m

2

(
1
p
− s

)
,(3.19)

or, equivalently,

(3.20) 0 ≤ m

< min

{(
1− 1

q2

) (
1
τ

+
1
2

(
1
p
− s

))−1

, 2
(

1− 1
q1

) (
1
p
− s

)−1
}

.

We now make the claim that (3.4) implies (3.20) whenever n ≥ 4, or
if n = 3 provided 2sp ≥ 1. With this aim in mind, it is sufficient to
verify that (

2
n
− 1

q2

)
τ <

(
1− 1

q2

) (
1
τ

+
1
2

(
1
p
− s

))−1

,(3.21)

(
2
n
− 1

q2

)
τ < 2

(
1− 1

q1

) (
1
p
− s

)−1

,(3.22)

under the hypotheses just mentioned, a task to which we now turn.
Given the linear nature of both sides of (3.21) in the parameter 1/q2 ∈
(0, 2/n] and the fact that (3.21) holds when 1/q2 = 2/n, it suffices to
check (3.21) when 1/q2 = 0. After some algebra, this limiting case
eventually comes down to verifying that

n2 − 4n + 2 ≥ −2sp,(3.23)

which clearly holds if n ≥ 4, or if n = 3 and 2sp ≥ 1. Verifying (3.22)
is done in a similar fashion; once again, matters are reduced precisely
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to (3.23). Finally, when n = 3 and 2sp ≥ 1, 1
p− s2 ≤ 1

2 , then necessarily θ

is as in the first line of (2.9) and, from what we have just proved, (3.18)
holds. This proves the claim made at the beginning of the paragraph.

(iii) Consider next the case when θ is as in the second line of (2.9).
Note that a necessary condition for this to happen is 1

p − s
n−1 > n−2

n−1 (as
a simple geometrical argument shows) or, equivalently,

1− 2
n

<
1
τ
.(3.24)

Then, in the case we are considering, mθ < 1 becomes equivalent to
the estimate 1

r < 2
n − m( 1

τ − n−2
n ). In turn, having this compatible

with (3.15) requires

(3.25) 0 ≤ m

< min

{(
2
n
− 1

q2

) (
2
τ
− n− 2

n

)−1

,

(
2
n
− 1

q1

) (
1
τ
− n− 2

n

)−1
}

.

We now make the claim that (3.15) and (3.24) always imply (3.25)
when n ≥ 4. Clearly, this will follows as soon as we prove that, for n ≥ 4,

τ

(
1− 1

τ
− 1

q2

)
≤

(
2
n
− 1

q2

) (
2
τ
− n− 2

n

)−1

,(3.26)

τ

(
1− 1

τ
− 1

q2

)
≤

(
2
n
− 1

q1

) (
1
τ
− n− 2

n

)−1

.(3.27)

Since (3.26) reduces to (3.24) if 1
q2

= 2
n , it is enough to consider the

case 1
q2

= 0 only, when (3.26) reduces to(
1
τ
− 1

2

) (
1
τ
− n− 2

n

)
≥ 0.(3.28)

On the other hand, (3.24) implies (3.28) as long as n ≥ 4. As for (3.27),
it suffices to check the situation when 1

q1
= 1 − 1

τ and 1
q2

= 2
n . This,

however, is clearly true for each n ≥ 3, thanks to (3.24). The claim made
at the beginning of the current paragraph is therefore justified.

Summarizing, at this point we have proved that, granted (3.16), mat-
ters can be arranged so that (3.18) holds unconditionally when n ≥ 4,
or if n = 3 provided 2sp ≥ 1 and p(1 + s) ≥ 2.

We now discuss a variant of the above reasoning which will even-
tually allow us to get manageable conditions on m, q1, q2 in the re-
maining cases as well. Suppose for a moment that, given r so that
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1
r ≥ max{mτ + 1

q2
, 1
q1
}, we demand that r is sufficiently large instead of

the usual condition r ≥ n/2. Say, r > σ, where σ ≥ n/2 is a parameter
to be specified later. Enforcing this additional restriction requires

max
{
m

τ
+

1
q2

,
1
q1

}
< min

{
1
σ
, 1− 1

τ

}
(3.29)

in lieu of (3.16). Once again, the immediate goal is to ensure that,
granted (3.29), the estimate (3.18) holds. With this in mind, in place of
(3.21)–(3.22) and (3.26)–(3.27) it suffices to check that(

1
σ
− 1

q2

)
τ <

(
1− 1

q2

) (
1
τ

+
1
2

(
1
p
− s

))−1

,

(
1
σ
− 1

q2

)
τ < 2

(
1− 1

q1

) (
1
p
− s

)−1

,

(3.30)

and (
1
σ
− 1

q2

)
τ ≤

(
2
n
− 1

q2

) (
2
τ
− n− 2

n

)−1

,

(
1
σ
− 1

q2

)
τ ≤

(
2
n
− 1

q1

) (
1
τ
− n− 2

n

)−1

,

(3.31)

respectively, where 0 < 1
q2

< 1
σ and 0 < 1

q1
< min

{
1
σ , 1 − 1

τ

}
. Much as

before, it suffices to check (3.30)–(3.31) only for suitable endpoint values
of 1/q1, 1/q2; we obtain:

σ ≥ 1 +
τ

2

(
1
p
− s

)
=⇒ (3.30) holds;

σ ≥ n− τ(n− 2)
2

=⇒ (3.31) holds.

(3.32)

It is now easy to see that implementing the strategy just outlined for
n = 3 and n = 2 leads to the choices (3.8), (3.9), (3.10). Finally, under
the same hypotheses on the numerical parameters as in the Lipschitz
case, ∂Ω ∈ C1 can also be allowed since the first inequality in (2.3) is
contained in (3.15).

Next, we make the claim that T in (3.11) is continuous and compact.
Continuity follows from Theorem 2.1 and the fact that the map u �→
a(., u(.)) is continuous from Lτ (Ω) into Lr(Ω) (since a is Carathéodory,
the latter fact is a simple consequence of (3.1), (3.4) and Egoroff’s the-
orem).
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To show compactness, let (ui)i≥1 be any bounded sequence in Lτ (Ω).
From (3.14) we get that vi := Tui are also uniformly bounded in Lτ (Ω).
Hence, introducing

hi := a(x, ui(x))vi(x), x ∈ Ω, i = 1, 2, . . . ,(3.33)

we learn from Lemma 2.2 that {hi}i is relatively compact in Lps+1/p−2(Ω).
Thus, by eventually passing to a subsequence (a fact which our notation
does not actually reflect), we can assume that hi converges to some h∗

in Lps+1/p−2(Ω). In particular, since

∆vi=f+hi in Ω, Tr vi = g, vi ∈ Lps+1/p(Ω), i = 1, 2, . . . ,(3.34)

from the well posedness of the linear problem (cf. Theorem 2.1) we may
conclude that vi converges to some v∗ in Lps+1/p(Ω). Consequently, vi →
v∗ in Lτ (Ω) and this finishes the proof of the fact that T is compact.

On account of (3.17), Schauder’s fixed-point theorem finally yields
that T has a fixed point u. This, in turn, solves (3.2) and obeys (3.5).

There remains uniqueness which we tackle next. The starting point is
the observation that if u1, u2 are two solutions of (3.2), then v := u1−u2

satisfies

(∆− Ṽ )v = 0 in Ω, v ∈ Lps+1/p,0(Ω),(3.35)

where Ṽ is given by

Ṽ (x) :=
∫ 1

0

(∂ub)(x, u2(x) + t(u1(x)− u2(x))) dt.(3.36)

Note that, due to our current assumptions,

0 ≤ Ṽ (x) ≤ k̃1(x) + k̃2(x) max{|u1(x)|m, |u2(x)|m}.(3.37)

In particular, Ṽ ∈ Lr(Ω) for some r ≥ n/2, so that v = 0 (i.e. u1 = u2)
from the uniqueness part in Theorem 2.1. This finishes the analysis of
the case sp < n− 1.

The case when sp ≥ n − 1 is treated in a similar fashion and this
completes the proof of the theorem.

Our next result shows that, in the previous theorem, the polynomial
growth condition (3.1) can be further relaxed to an exponential type
bound in the case sp ≥ n− 1. Specifically, we have the following.
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Theorem 3.2. Let a : Ω × R → R be a Carathéodory function and for
1 < p <∞, 0 < s < 1, consider the following semilinear Poisson problem
with Dirichlet boundary condition:

∆u− a(x, u)u = f ∈ Lps+1/p−2(Ω),

Tru = g ∈ Bp,ps (∂Ω), u ∈ Lps+1/p(Ω).
(3.38)

Then there exists ε = ε(Ω) > 0 with the following significance. Suppose
that the pair (p, s) satisfies at least one of the conditions in (2.2) and
that either

(a) sp = n − 1 and for each A > 0 there exists k ∈ Lt(Ω), t > n/2,
such that

0 ≤ a(x, u) ≤ k(x) exp(A|u|γ), with γ := γ(p) = p/(p− 1),(3.39)

or

(b) sp > n− 1 and

0≤a(x, u), ∀M >0 sup
u∈[−M,M ]

|a(x, u)|∈Lt(Ω) for some t>σ,(3.40)

where σ := ( 2
n + n−1

np − s
n )−1.

Then the boundary problem (3.38) has at least one solution u. More-
over, matters can be arranged so that

‖u‖Lτ (Ω) ≤ Cτ1−1/p(‖f‖Lp

s+1/p−2(Ω) + ‖g‖Bp,p
s (∂Ω))(3.41)

for some C = C(∂Ω, s, p, a) > 0 and any τ ∈ [2,∞), provided (a) holds.
If (b) holds we have that

‖u‖L∞(Ω) ≤ C(‖f‖Lp

s+1/p−2(Ω) + ‖g‖Bp,p
s (∂Ω))(3.42)

for some C = C(∂Ω, s, p, a) > 0. Furthermore, in either case

(3.43) ∀M > 0 ∃K > 0

so that ‖f‖Lp

s+1/p−2(Ω) + ‖g‖Bp,p
s (∂Ω) ≤M =⇒ ‖u‖Lp

s+1/p
(Ω) ≤ K.

If, in addition, the nonlinearity b(x, u) := a(x, u)u satisfies one of the
following two conditions:
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(a) sp = n − 1 and for each A > 0 there exists k̃ ∈ Lt(Ω), t > n/2,
such that

0≤ ∂

∂u
b(x, u)≤ k̃(x) exp(A|u|γ), with 0≤γ=γ(p)=p/(p− 1),(3.44)

(b) sp > n− 1 and

(3.45) 0 ≤ ∂

∂u
b(x, u),

∀M > 0 sup
u∈[−M,M ]

∣∣∣∣ ∂

∂u
b(x, u)

∣∣∣∣ ∈ Lt(Ω) for some t > σ,

then the solution u of the boundary problem (3.38) is also unique.
Finally, analogous results are valid in dimension n = 2, provided

(2.10) is used in place of (2.2). Moreover, 1 < p < ∞, 0 < s < 1,
sp ≥ n− 1, will do in all dimensions when ∂Ω ∈ C1.

Proof: Consider first the somewhat simpler case sp > n − 1. It follows
from Theorem 2.1 that any solution to the equation (2.4) satisfies

‖u‖L∞(Ω) ≤ C(‖f‖Lp

s+ 1
p
−2

(Ω) + ‖g‖Bp,p
s (∂Ω)),(3.46)

with C > 0 independent of V ≥ 0. Introduce N := C(‖f‖Lp

s+ 1
p
−2

(Ω) +

‖g‖Bp,p
s (∂Ω)), then define

ψN (u) :=


u, for |u| ≤ N,

N, for u > N,

−N, for u < −N,

(3.47)

and, finally, consider the Poisson problem:

∆u− a(x, ψN (u))u = f ∈ Lps+1/p−2(Ω),

Tru = g ∈ Bp,ps (∂Ω), u ∈ Lps+1/p(Ω).
(3.48)

The problem (3.48) satisfies all the assumptions in Theorem 3.1 and,
hence, has at least one solution u. Moreover, matters can be arranged
so that the solution also satisfies the estimate (3.46). This forces
a(x, u(x)) = a(x, ψN (u(x))), thus u solves (3.38) as well. The proof
of the uniqueness part parallels its counterpart in Theorem 3.1.
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Next, we turn our attention to the more interesting case sp = n− 1.
To begin with, define the vector space X p by setting

X p = {h : Ω −→ R; sup
τ≥2

τ−1+1/p‖h‖Lτ (Ω) <∞},(3.49)

and equip it with the norm

‖h‖Xp := sup
τ≥2

τ−1+1/p‖h‖Lτ (Ω).(3.50)

It is not very difficult to check that X p is indeed a Banach space. An
essential property enjoyed by functions in X p is that there exists κ =
κ(M,Ω) > 0 such that

h ∈ X p, α :=
κ

‖h‖p/(p−1)
Xp

=⇒ exp(α|h|p/(p−1)) ∈ L1(Ω).(3.51)

The proof of this fact can be carried out exactly as the proof of Trudin-
ger’s inequality; cf. [36, Chapter 13] for more details. Taking another
look at the estimate (2.7), we learn that the solution u to the equa-
tion (2.4) belongs to X p and there exists C > 0 independent of V such
that

‖u‖Xp ≤ C(‖f‖Lp

s+ 1
p
−2

(Ω) + ‖g‖Bp,p
s (∂Ω)).(3.52)

To proceed from here, consider first the case when f ∈ L∞(Ω). Denote
by u

(±)
V the solution to the boundary problem:

(∆− V )u(±)
V = f∓ in Ω, Tru(±)

V = g±.(3.53)

In this situation, relying on Lemma 2.3 we infer that 0 ≤ u
(±)
V ≤ u

(±)
0 ,

hence there exists h = u
(+)
0 + u

(−)
0 ∈ X p such that for any V ≥ 0 the

solution uV of (2.4) satisfies

|uV (x)| ≤ h(x), for any x ∈ Ω.(3.54)

Let us now define

O := {u ∈ L1(Ω); |u| ≤ h},(3.55)

so that, clearly, O ⊂ X p. Another simple yet useful observation is that
for any τ ∈ [2,∞) the set O is closed and convex in Lτ (Ω). Finally,
consider the operator T : O → O defined by agreeing that v := Tu is the
(unique) solution of

∆v − a(x, u)v = f in Ω, Tr v = g, v ∈ Lps+1/p(Ω).(3.56)
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In order to see that v is well defined, it is sufficient to observe that for
any u ∈ O we have a(x, u(x)) ∈ Lr(Ω) for some r > n/2. This, however,
is a consequence of

0 ≤ a(x, u) ≤ k(x) exp(A|u|γ) ≤ k(x) exp(A|h|γ).(3.57)

Indeed, since h ∈ X p, one can select A small enough so that exp(A|h|γ) ∈
Lq(Ω). Thus, the desired conclusion follows by choosing q sufficiently
large, so that 1/q + 1/t < 2/n. Also v = Tu ∈ O by (3.54). Finally, T is
a continuous and compact map in the Lτ (Ω) topology for any τ ∈ [2,∞).
Continuity follows from the fact that if ui → u pointwise on Ω and all
ui ∈ O, then also a(., ui(.)) → a(., u(.)) pointwise. As (3.57) gives
a common majorant in Lr(Ω) (for some fixed r > n/2), we see that
a(., ui(.))→ a(., u(.)) in Lr(Ω). With this at hand, Theorem 2.1 readily
finishes the proof of the continuity of T . The proof of the compactness
of T goes exactly as in Theorem 3.1. Hence, by Schauder’s fixed-point
theorem, the map T has a fixed point u ∈ O which, in turn, is the
solution of the Poisson problem we seek. Moreover, u satisfies (3.52).

There remains to show how to dispense off the extra hypothesis f ∈
L∞(Ω). The idea is to approximate f in Lps+1/p−2(Ω) by a sequence of
functions fj ∈ L∞(Ω). Granted what we have proved so far, at each
step j, we then solve

∆uj − a(x, uj)uj = fj in Ω, Truj = g, uj ∈ Lps+1/p(Ω).(3.58)

By (3.52), (uj)j is a bounded sequence in X p. Going further, this entails
that Vj(x) := a(x, uj(x)) are uniformly bounded in Lr(Ω), for some
r > n/2. Since we have that uj = Tg(f + Vjuj) (here Tg has the same
meaning as at the end of Section 2), an application of Lemma 2.2 shows
that the sequence (uj)j≥1 is bounded in Lps+1/p(Ω) and that there exists
a subsequence which converges to some u in the Lps+1/p(Ω) norm. In
turn, this readily yields that u solves (3.38), as desired. Finally, the
proof of uniqueness is essentially the same as before.

4. Neumann boundary conditions

Building on the sharp linear theory from [9], [30], in this section
we analyze the semilinear Poisson problem with nonlinear Neumann
boundary conditions.
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Theorem 4.1. Let Ω ⊂ M be an arbitrary Lipschitz domain with out-
ward unit conormal ν ∈ T ∗M . Also, fix a nonnegative function a(x, u) ∈
L∞(Ω×R) and consider L = ∆− V , where V ∈ Lr(Ω) for some r > n,
V ≥ 0 and V > 0 on a set of positive measure in Ω. Then there ex-
ists ε = ε(Ω, a) ∈ (0, 1] with the following significance. If s ∈ (0, 1),
p ∈ (1,∞) satisfy either one of the three conditions in (2.2) (or, respec-
tively, (2.10) if n = 2) and if q := (1 − 1/p)−1, λ ∈ R, 0 < δ < 1, then
the Neumann Poisson problem

(NP )


Lu− a(x, u)u = f ∈ Lq1

q −s−1,0
(Ω),

∂νu + λ|u|δ = g ∈ Bq,q−s (∂Ω),

u ∈ Lq
1−s+ 1

q

(Ω),

(4.1)

has at least a solution which satisfies

(4.2) ∀M > 0 ∃K > 0

so that ‖f‖Lq
1
q
−s−1,0

(Ω) + ‖g‖Bq,q
−s

(∂Ω) ≤M =⇒ ‖u‖Lq
1
q
−s+1

(Ω) ≤ K.

In the case of linear boundary conditions, i.e., when λ = 0, and when
the nonlinearity b(x, u) := a(x, u)u also satisfies 0 ≤ ∂ub(x, u) ∈ L∞(Ω×
R), the solution is also unique.

Furthermore, when ∂Ω ∈ C1, we can take any s ∈ (0, 1) and p ∈
(1,∞).

Proof: If u ∈ Lq
1−s+ 1

q

(Ω), then Tru ∈ Bq,q1−s(∂Ω) and recall from [33]

that

| · |δ : Bq,q1−s(∂Ω) −→ B
q/δ,q/δ
(1−s)δ (∂Ω)(4.3)

is well-defined and bounded. Furthermore, by allowing an arbitrary
small defect of smoothness (for the target space), this operator also be-
comes continuous and compact; cf. [32, Remark 5, p. 377].

Next, with u as above, we let v := Tf,g(u) be the unique solution of
the linear Poisson problem

Lv − a(x, u)v = f ∈ Lp1
q −s−1,0

(Ω),

∂νv = g − λ|u|δ ∈ Bq,q−s (∂Ω),

v ∈ Lq
1−s+ 1

q

(Ω).

(4.4)



388 M. Dindoš, M. Mitrea

That the latter is well posed, granted the current hypotheses, is guaran-
teed by the results in [30]. We aim at showing that

Tf,g : L
q

1−s+ 1
q

(Ω) −→ Lq
1−s+ 1

q

(Ω)(4.5)

is a continuous, compact mapping.
First, let uj → u0 in Lq

1−s+ 1
q

(Ω) and set vj := Tf,g(uj), v0 := Tf,g(u0).

We will show that

vj −→ v0 in Lq
1−s+ 1

q

(Ω).(4.6)

Clearly, it suffices to prove the convergence in (4.6) for a subsequence
(still denoted (vj)j≥1). Since, by the estimates of the linear theory and
(4.3), there exists C = C

(
‖a‖L∞ ,Ω, s, q, λ

)
> 0 such that

‖vj‖Lq

1−s+ 1
q

(Ω) ≤ C
(
‖f‖Lq

1
q
−s−1

(Ω)+‖g‖Bq,q
−s

(∂Ω)+‖uj‖δLq
1
q
−s−1

(Ω)

)
,(4.7)

an easy application of Rellich’s selection lemma, in concert with the
uniqueness in the linear theory, gives that for each small ε > 0 (and
after possibly restricting to a subsequence),

vj −→ v0 in Lq
1−s+ 1

q −ε
(Ω).(4.8)

Next, observe that vj − vk ∈ Lq
1−s+ 1

q

(Ω) satisfies

(4.9) L(vj − vk) = a(x, uj)vj − a(x, uk)vk −→ 0 in Lq
1−s+ 1

q

(Ω),

and ∂ν(vj − vk) −→ 0 in Bq,q−s (Ω).

Hence, once again by virtue of the estimates in the linear theory,

‖vj − vk‖Lq

1−s+ 1
q

(Ω) −→ 0.(4.10)

Clearly, this and (4.8) yield (4.6), hence the operator in (4.5) is contin-
uous.

Turning attention to the compactness of Tf,g in (4.5), assume that
uj ∈ Lq

1−s+ 1
q

(Ω) is an arbitrary bounded sequence and set

vj := Tf,g(uj),

fj := f + a(x, uj)vj ∈ Lq1
q −s−1,0

(Ω),

gj := g − λ|uj |δ ∈ Bq,q−s (∂Ω).

(4.11)
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Since a(x, uj) ∈ L∞, vj is a bounded sequence in Lq
1−s+ 1

q

(Ω) (cf. (4.7))

and the embedding

L∞(Ω) · Lq
1−s+ 1

q

(Ω) ↪→ Lq1
q −s−1,0

(Ω)(4.12)

is compact, there is no loss of generality (cf. also the discussion pertaining
to (4.3)) assuming that

(4.13) fj converges to some f0 in Lq1
q −s−1,0

(Ω),

and gj converges to some g0 in Bq,q−s (∂Ω).

Granted this and observing that
Lvj = fj ∈ Lq1

q −s−1,0
(Ω),

∂νvj = gj ∈ Bq,q−s (∂Ω),

vj ∈ Lq
1−s+ 1

q

(Ω),

(4.14)

it follows from the well-posedness of the linear problem that vj → v0 in
Lq

1−s+ 1
q

(Ω), where v0 is the unique solution of (4.14) with fj , gj replaced,

respectively, by f0 and g0. This proves that the operator in (4.5) is also
compact.

Note that if we let BR stand for the closed ball (centered at the
origin) of radius R in the space Lq

1−s+ 1
q

(Ω) then, by (4.7), the opera-

tor Tf,g : BR → BR is well-defined, continuous and compact, provided
R is large enough. At this stage, Schauder’s fixed-point theorem applies
and takes care of the solvability of the Neumann Poisson problem (4.1),
as well as, the accompanying estimate (4.2).

Finally, granted that λ = 0 and the extra condition 0 ≤ ∂u[a(x, u)u] ∈
L∞(Ω× R), uniqueness for the problem (4.1) can be readily reduced to
its linear version, i.e., when a(x, u) is independent of u. The reasoning
when ∂Ω ∈ C1 is similar and this finishes the proof.

5. Nonlinearities with sublinear growth

We retain our standard hypotheses on M and Ω made in Theorem 3.1.
As usual, set L = ∆−V . The main result of this section is the following.
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Theorem 5.1. Let N(x, u) be a Carathéodory function such that

|N(x, u)| ≤ k1(x) + k2(x)|u(x)|δ, for some 0 ≤ δ < 1,(5.1)

where 0 ≤ kj ∈ Lqj (Ω) with qj > n/2, j = 1, 2. Also, assume that V
satisfies (2.1). Then, if s, p satisfy either one of the three conditions
in (2.2) and if (2.3) holds, the Poisson problem with Dirichlet boundary
condition

Lu−N(x, u) = f ∈ Lps+1/p−2(Ω),

Tru = g ∈ Bp,ps (∂Ω), u ∈ Lps+1/p(Ω),
(5.2)

has at least one solution.
On the other hand, if q := (1−1/p)−1 and 0 ≤ V ∈ Lr(M) with r > n,

V > 0 on a set of positive measure in Ω, then the Poisson problem with
Neumann boundary condition

Lu−N(x, u) = f ∈ Lq1/q−1−s,0(Ω),

∂νu = g ∈ Bq,q−s (∂Ω), u ∈ Lq1−s+1/q(Ω),
(5.3)

has at least one solution.
Similar results hold in dimension n = 2 granted that (2.10) is used

in lieu of (2.2) and q1, q2 > (1 − | 1
2p − s

2 |)−1 in the case of Dirichlet
boundary conditions.

Finally, when ∂Ω ∈ C1, one can simply take 1 < p <∞ and 0 < s < 1
in place of (2.2), (2.10).

Proof: We shall only deal with the case of (5.2), since the case of Neu-
mann boundary conditions is similar. To this effect, consider first the
case when sp < n − 1, and define the map T : Lnp/(n−1−sp)(Ω) →
Lnp/(n−1−sp)(Ω) by taking v := Tu to be the unique solution of

Lv = f + N(x, u) in Ω,

Tr v = g ∈ Bp,ps (∂Ω), v ∈ Lps+1/p(Ω),
(5.4)

for each u ∈ Lnp/(n−1−sp)(Ω). Since by (5.1) and (the proof of) Lem-
ma 2.2, N(x, u(x)) belongs to Lps+1/p−2(Ω), Theorem 2.1 gives us that T

is well defined. Furthermore, there exists C > 0 such that

(5.5) ‖Tu‖Lnp/(n−1−sp)(Ω)

≤ C(‖f‖Lp

s+1/p−2(Ω) + ‖N(x, u)‖Lp

s+1/p−2(Ω) + ‖g‖Bp,p
s (∂Ω)).

The estimate (5.1) also gives us

‖N(x, u(x))‖Lp

s+1/p−2(Ω) ≤ K(1 + ‖u‖δLnp/(n−1−sp)(Ω))(5.6)
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for some K = K(k1, k2) > 0 independent of u. In particular, if we take
R > 0 big enough such that

C(‖f‖Lp

s+1/p−2(Ω) + ‖g‖Bp,p
s (∂Ω) + K(1 + Rδ)) ≤ R,(5.7)

then T maps the ball {h ∈ Lnp/(n−1−sp)(Ω); ‖h‖Lnp/(n−1−sp)(Ω) ≤ R}
into itself.

Next, the fact that T is continuous and compact is seen essentially as
in Theorem 3.1. Hence, by Schauder’s fixed-point theorem, the map T
has a fixed point Tu = u. Since Tu solves (5.4) we also have that
u = Tu ∈ Lps+1/p(Ω) and Tru = Tr(Tu) = g. This concludes the proof
of the case sp < n− 1.

The remaining cases discussed in the statement of the theorem are
dealt with similarly and are somewhat easier; we omit the straightfor-
ward details.

Example 5.1. Our first example illustrating Theorems 3.1, 4.1 is the
boundary problem

(DP )±


∆u± |u|qu = f ∈ Lp

s+ 1
p−2

(Ω),

Tru = g ∈ Bp,ps (∂Ω),

u ∈ Lp
s+ 1

p

(Ω).

(5.8)

Theorem 3.1 gives that for the choice of the negative sign (5.8) is solvable
for all p, s satisfying (2.2) and q such that

0 ≤ q <
np

n− 1− sp
·min

{
2
n
, 1− n− 1− sp

np

}
if sp < n− 1,(5.9)

and q > 0 if sp ≥ n−1, granted that n ≥ 4. Explicit conditions, modeled
upon (3.8)–(3.10), can be also given for n = 2, 3.

A case which is not directly amenable to the analysis we have devel-
oped so far corresponds to the choice of a positive sign in (5.8). In this
situation, a partial answer can be obtained by relying on Theorem 2.1
and proceeding much as in [32, Chapter 6] (parenthetically, it should be
pointed out that this approach works only for small data).

Finally, the range −1 < q < 0 is covered by Theorem 4.1 for ei-
ther choice of the sign. Furthermore, for (DP )− one can also establish
uniqueness in this range. This can be proved by adapting the argument
used in [8, Example 4.5].

Next we discuss a two dimensional curvature equation (cf. also [7], [8]
for a different context).
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Example 5.2. Let Ω ⊂ M be a connected Lipschitz domain on a two
dimensional compact manifold M , equipped with a Riemannian metric g,
whose Gauss curvature is k(x). The problem to be addressed is that of
conformally altering g to a new metric g̃ in Ω with a prescribed Gaussian
curvature k̃(x) ≤ 0 on Ω, and such that g̃|∂Ω = g|∂Ω.

A well known formula, whose proof can be found in, e.g., [36, Appen-
dix C], states that if g and g̃ are conformally related, i.e.,

g̃ = e2ug,(5.10)

then the curvatures k̃ and k satisfy

k̃(x) = e−2u(−∆u + k(x)),(5.11)

where ∆ = ∆g is the Laplace-Beltrami operator associated with the
original metric g. Thus, in view of (5.10)–(5.11), matters come down to
solving the nonlinear PDE

∆u = k(x)− k̃(x)e2u, u|∂Ω = 0.(5.12)

Next we study conditions guaranteeing that the nonlinear Dirichlet
problem just formulated satisfies the assumptions of Theorem 3.2. First,
observe that we can rewrite (5.12) as

∆u−
(
−k̃(x)

e2u − 1
u

)
u = k(x)− k̃(x),(5.13)

which, in the notation employed in Theorem 3.2, translates into

a(x, u) := −k̃(x)
e2u − 1

u
, and f(x) := k(x)− k̃(x).(5.14)

Clearly, a(x, u) ≥ 0 since, by assumption, k̃(x) ≤ 0. Also, both (3.39)
and (3.40) hold provided k̃ ∈ Lr(Ω) for some r > (1+ 1

2p − s2 )−1. Hence,
if we assume that the original metric tensor g satisfies (1.1), as well as,

g ∈ Lp
s+ 1

p

(Ω),(5.15)

then k ∈ Lp
s+ 1

p−2
(Ω), since it has the same smoothness as ∇2g. Thus,

granted these conditions, the existence part of Theorem 3.2 is applica-
ble. In fact, the uniqueness condition in Theorem 3.2 also holds, since
b(x, u) := −k̃(x)(e2u − 1), and therefore

∂

∂u
b(x, u) = −2k̃(x)e2u ≥ 0.(5.16)
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The conclusion is that for any s, p satisfying (2.10), and sp ≥ 1,
we can uniquely extend g satisfying (5.15) and (1.1) conformally in-
side Ω to a new metric g̃ with a prescribed curvature k̃ ≤ 0, k̃ ∈ Lr(Ω),
r > (1 + 1

2p − s2 )−1.
A discussion of the case when k, k̃ are locally bounded in R2 and

entire solutions (with prescribed asymptotic behavior at ∞) are sought,
is contained in [22].

6. Other types of estimates and function spaces

In this section we consider the regularity of the solution of Poisson
type problems in terms of the so called nontangential maximal operator.
Recall that for a function u ∈ L∞

loc(Ω), the latter is defined by

u∗(x) := sup
y∈γ(x)

|u(x)|, for each x ∈ ∂Ω.(6.1)

Here γ(x) is the nontangential approach region with vertex at the bound-
ary point x; cf. [27], [7]. In what follows, we make the assumption that
∪x∈∂Ωγ(x) = Ω.

An issue which arises naturally in this context is that of providing an
intrinsic description of the space

{∆u; u∗ ∈ Lp(∂Ω)}.(6.2)

While at the present time this question remains open, our next definition
identifies a rich linear subspace of (6.2).

Specifically, let Ω be a Lipschitz subdomain of the Riemannian man-
ifold M and fix n/2 < ρ ≤ ∞, 1 ≤ q ≤ ∞. We set

(6.3) Lqρ(Ω) :=

f =
∑
j

ujvj ; u∗
j ∈ Lq(∂Ω), vj ∈ Lρ(Ω),

∑
j

‖u∗
j‖Lq(∂Ω)‖vj‖Lρ(Ω) <∞


and equip it with the norm

(6.4) ‖f‖Lp
ρ(Ω) := ‖f‖L1(Ω)

+ inf

∑
j

‖u∗
j‖Lq(∂Ω)‖vj‖Lρ(Ω); f =

∑
j

ujvj a.e. on Ω

 .
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It is helpful to observe that

q ≥ ρ(n− 1)/[(ρ− 1)n] =⇒ ‖uv‖L1(Ω) ≤ C‖u∗‖Lq(∂Ω)‖v‖Lρ(Ω).(6.5)

In turn, this follows from Hölder’s inequality and the estimate contained
in the lemma below (cf. also [8, Lemma 4.1]).

Lemma 6.1. For every function u defined in the Lipschitz domain Ω
and p > 0, there holds

‖u‖Lpn/(n−1)(Ω) ≤ C(Ω, p)‖u∗‖Lp(∂Ω).(6.6)

Proof: The departure point is the observation that for each λ > 0,

Vol({|u| > λ}) ≤ C σ({u∗ > λ})n/(n−1),(6.7)

where dVol, d σ are, respectively, the volume element on M and the
surface measure on ∂Ω. Indeed, if n = 2 then this follows from defini-
tions and simple geometrical considerations. For n ≥ 3 the argument is
slightly more involved and requires working with “tent” regions

T (O) := Ω \

 ⋃
x∈∂Ω\O

γ(x)

(6.8)

associated with arbitrary open subsets O of ∂Ω. The idea is that (6.6)
is going to be a consequence of the simple inclusion

{|u| > λ} ⊆ T ({u∗ > λ}),(6.9)

used in concert with a general fact, to the effect that

Vol(T (O)) ≤ C σ(O)n/(n−1), ∀O open subset of ∂Ω.(6.10)

In turn, (6.10) is seen by decomposing O into a disjoint union of Whitney
cubes {Qk}k (considering ∂Ω as a space of homogeneous type), so that
T (O) ⊂ ∪kT (cQk) for some constant c = c(∂Ω) > 0, and then writing

Vol(T (O)) ≤
∑
k

Vol(T (cQk)) ≤ C
∑
k

σ(Qk)n/(n−1)

≤ C

[∑
k

σ(Qk)

]n/(n−1)

= C σ(O)n/(n−1).

(6.11)
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Having dealt with (6.7), recall from Chebysheff’s inequality that

λpσ({u∗ > λ}) ≤ ‖u∗‖pLp(∂Ω).(6.12)

Consequently,

λpn/(n−1)−1 Vol({|u| > λ}) ≤ C‖u∗‖p/(n−1)
Lp(∂Ω) λp−1σ({u∗ > λ}).(6.13)

Integrating both sides in λ ∈ (0,∞) readily yields (6.6).

As a consequence of (6.5), ‖f‖L1(Ω) may be omitted from (6.4) for q
large. It is not difficult to check that (6.4) is, indeed, a norm. Moreover,
when endowed with (6.4), Lqρ(Ω) becomes a Banach space, a claim which
is straightforward to check. Our final introductory remark is that, for
n/2 < ρ ≤ ∞, 1 ≤ q ≤ ∞,

Lqρ(Ω) ↪→ Lq
∗
(Ω), if

1
q∗
≥ 1

ρ
+

n− 1
nq

.(6.14)

Indeed, this readily follows from (6.6), Hölder’s inequality and defini-
tions.

The next proposition is a consequence of [8, Theorem 2.9]. To state
it, denote by tilde the extension by zero outside Ω.

Proposition 6.2. Let L = ∆ − V where V ≥ 0, V ∈ Lr(M) for some
r > n and let L−1 be the formal inverse of L on M . Let 1 ≤ q ≤ ∞ and
n
2 < ρ ≤ ∞. If also

1
t
>

1
q

+
1

n− 1

(
n

ρ
− 2

)
,(6.15)

then u := L−1(f̃)|Ω ∈ C0
loc(Ω) satisfies

‖u∗‖Lt(∂Ω) ≤ C‖f‖Lq
ρ(Ω)(6.16)

for some constant C = C(t, q, ρ) > 0. If, on the other hand,

1
t
>

1
q

+
1

n− 1

(
n

ρ
− 1

)
, ρ > n,(6.17)

then u := L−1(f̃)|Ω ∈ C1
loc(Ω) obeys

‖(∇u)∗‖Lt(∂Ω) ≤ C‖f‖Lq
ρ(Ω)(6.18)

for some constant C = C(t, q, ρ) > 0.

We are now prepared to discuss



396 M. Dindoš, M. Mitrea

Theorem 6.3. Retain the same assumptions on Ω, V , s and p as in
Theorem 2.1. Assume, in addition, that f ∈ Lqρ(Ω), where

1 ≤ q ≤ ∞,
n

2
< ρ ≤ ∞,

1
p

>
1
q

+
1

n− 1

(
n

ρ
− 2 + s

)
.(6.19)

Then the Dirichlet Poisson problem

(DP )


Lu = f ∈ Lqρ(Ω),

Tru = g ∈ Bp,ps (∂Ω),

u ∈ Lp
s+ 1

p

(Ω),

(6.20)

has a unique solution u ∈ C0
loc(Ω) which also satisfies u∗ ∈ Lt(∂Ω),

where 1/t := 1/p − s/(n − 1) if sp < n − 1, t := ∞ if sp > n − 1, and
t ∈ (1,∞) is arbitrary for sp = n− 1.

Moreover, there exists a constant C = C(p, s, t,Ω) > 0, independent
of V , such that

‖u∗‖Lt(∂Ω) ≤ C(‖f‖Lq
ρ(Ω) + ‖g‖Bp,p

s (∂Ω)).(6.21)

Finally, if sp = n− 1, there exists C = C(s, p,Ω) > 0 such that for any
t ∈ [2,∞):

‖u∗‖Lt(∂Ω) ≤ Ct1−1/p(‖f‖Lq
ρ(Ω) + ‖g‖Bp,p

s (∂Ω)).(6.22)

Proof: Since, thanks to (6.14) and our current assumptions, Lqρ(Ω) ⊂
Lps+1/p−2(Ω), the solvability of (6.20) follows from Theorem 2.1. Con-
sider first the situation V = 0 on Ω. In this case, relying on Proposi-
tion 6.2, we see that u can be written as

u = L−1(f̃)|Ω +Dh,(6.23)

where D is the double layer potential (cf. [30]) and h ∈ Bp,ps (∂Ω) is
suitably chosen. Now, Bp,ps (∂Ω) ⊂ Lt(∂Ω), if t is as in the statement of
our theorem. Also, the double layer potential satisfies ‖(Df)∗‖Lt(∂Ω) ≤
C‖f‖Lt(∂Ω); cf. [27]. Thus, the estimate (6.21) follows. The case sp =
n− 1 follows again from Lemma 2.4.

Now the claim for arbitrary V ≥ 0 follows from the previous result for
V = 0. This is due to the fact that we once again have 0 ≤ u

(±)
V ≤ u

(±)
0 ,

i.e. the positive (and the negative) part of the solution (defined by (3.53))
for V = 0 dominates the positive (and the negative) part of the solution
for arbitrary V ≥ 0.
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As a corollary, we can further augment the statement of Theorem 3.1
in the following way. To keep the matters simple we will consider only
the case sp < n− 1.

Theorem 6.4. Suppose that a : Ω× R → R is a Carathéodory function
such that

0 ≤ a(x, u) ≤ k1(x) + k2(x)|u|m,(6.24)

where 0 ≤ kj ∈ Lqj (Ω) with qj > n/2, j = 1, 2. For 1 < p < ∞,
0 < s < 1, consider the following semilinear Poisson problem with
Dirichlet boundary condition:

∆u− a(x, u)u = f ∈ Lqρ(Ω),

Tru = g ∈ Bp,ps (∂Ω), u ∈ Lps+1/p(Ω),
(6.25)

where

1 ≤ q ≤ ∞,
n

2
< ρ ≤ ∞,

1
p

>
1
q

+
1

n− 1

(
n

ρ
− 2 + s

)
.(6.26)

Then there exists ε = ε(Ω, q1, q2) > 0 for which the following is true. If
the pair (p, s) satisfies at least one of the conditions in (2.2), sp < n− 1
and if

0 ≤ m <
p(2q2 − n)

q2(n− 1− sp)
,(6.27)

then the boundary problem (6.25) has at least one solution u which sat-
isfies

‖u∗‖Lt(∂Ω) ≤ C(‖f‖Lq
ρ(Ω) + ‖g‖Bp,p

s (∂Ω))(6.28)

for some C = C(∂Ω, s, p, q, ρ, a) > 0 and 1/t := 1/p− s/(n− 1).
Similar results are valid in dimension n = 2 provided (2.10) is used

in place of (2.2), q1, q2 > (1− 1
2p + s

2 )−1 and m satisfies (3.10). Finally,
1 < p <∞, 0 < s < 1, will do in all dimensions when ∂Ω ∈ C1 as long
as both q1 and q2 satisfy (3.3).

Proof: By virtue of (6.14) and (6.19) we have Lqρ(Ω) ⊂ Lps+1/p−2(Ω). It
is then natural to try to show the existence of a solution u for (6.25)
by suitably modifying the proof of Theorem 3.1. A brief outline of
the main steps is as follows. First, (6.27) ensures that the conclusion
in (3.13) holds for some r > n/2. This guarantees that Theorem 2.1
applies and, hence, the operator (3.11) is meaningful. Second, the key
estimate (3.14) is deduced in the present setting (when f is a genuine
function and not just a distribution) from (6.21) (which, recall, holds
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with C > 0 independent of V for all admissible s and p) and (6.6).
In turn, this amounts to having (3.14) with θ = 0. Hence (3.18) is
automatically satisfied. The role of this latter estimate is to ensure the
existence of some R > 0 for which (3.17) holds. Then, as in the proof
of Theorem 3.1, using Schauder’s fixed-point theorem eventually yields
u ∈ Lnp/(n−1−sp)(Ω) which solves (6.25).

It remains to establish (6.28). To this end, if we set V (x) := a(x, u(x)),
we have that V ∈ Lr(Ω) where r satisfies (2.3). Also, u solves the lin-
ear PDE

(∆− V )u = f ∈ Lqρ(Ω),

Tru = g ∈ Bp,ps (∂Ω), u ∈ Lps+1/p(Ω).
(6.29)

Now, Theorem 6.3 gives that the solution of the boundary problem (6.29)
is unique and the estimate (6.21) holds. It follows, that u∗ ∈ Lt(∂Ω), as
desired.

In our last result we explore the possibility of including nonlineari-
ties in the boundary conditions, while retaining nontangential maximal
function estimates for the solution.

Theorem 6.5. Assume that Ω ⊂ M is an arbitrary Lipschitz domain,
and assume that a(x, u) ∈ L∞(Ω × R) is a nonnegative function, while
B(x, u) is a Carathéodory function on ∂Ω× R satisfying

|B(x, u)| ≤ k1(x) + k2(x)|u|δ,(6.30)

where kj ≥ 0, kj ∈ Lqj (∂Ω), j = 1, 2, and

δ >
1
p
− 1

q2
≥ 0, q1 ≥ p,

1
p
− 1

q2
> δ

(
1
p
− 1

n− 1

)
.(6.31)

Then there exists ε = ε(Ω) > 0 such that for each p ∈ (1, 2 + ε),
the semilinear Poisson problem with nonlinear Neumann boundary con-
ditions 

∆u− a(x, u)u = f ∈ Lqρ(Ω),

(∇u)∗ ∈ Lp(∂Ω),

∂νu + B(x, u) = g ∈ Lp(∂Ω),

(6.32)

has at least one solution, granted that

1
p

>
1
q

+
1

n− 1

(
n

ρ
− 1

)
, ρ > n,(6.33)
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and either δ < 1, or the norms of k1, k2 are suitably small. More
specifically, in the case when δ ≥ 1, there exist K = K(δ) > 0 and
M = M(δ, k1, k2) > 0 such that

(6.34) ‖k1‖δ−1
Lq1 (Ω)‖k2‖Lq2 (Ω) < K =⇒ the problem (6.32) has at least

one solution, ∀ f, g with ‖f‖Lq
ρ(Ω) + ‖g‖Lp(∂Ω) ≤M.

Once again, if ∂Ω ∈ C1, in the whole theorem we can take 1 < p <∞.

Proof: For any R > 0, define

OR := {u ∈ C1
loc(Ω); ‖(∇u)∗‖Lp(∂Ω) ≤ R}(6.35)

and for each u ∈ OR set v := Tu, the unique solution of the linear
Neumann problem 

∆v − a(x, u)v = f ∈ Lqρ(Ω),

(∇v)∗ ∈ Lp(∂Ω),

∂νv = g −B(x, u) ∈ Lp(∂Ω).

(6.36)

The well posedness of the above boundary value problem follows from our
assumptions, the second part of Proposition 6.2 and the results in [31].
Moreover, v obeys

(6.37) ‖(∇v)∗‖Lp(∂Ω)

≤ C(‖f‖Lq
ρ(Ω) + ‖g‖Lp(∂Ω) + ‖k1‖Lq1 (Ω) + ‖k2‖Lq2 (Ω)R

δ).

Hence if δ < 1, we have v ∈ OR, provided we pick R large enough so
that the right side of (6.37) is ≤ R. On the other hand, if δ ≥ 1 and the
number ‖k1‖δ−1

Lq1 (Ω)‖k2‖Lq2 (Ω) is small, it is a simple calculus exercise to
check that there exists R > 0 so that

R > C
(
‖k1‖Lq1 (Ω) + ‖k2‖Lq2 (Ω)R

δ
)
.(6.38)

For such R, if f and g are small in the norm, clearly R is bigger than the
right side of (6.37) so that, again, v ∈ OR. Thus, in either case there
exists a choice of R which guarantees that T : OR → OR is well-defined.

Finally, thanks to our hypotheses (6.30), (6.31), it is not too hard to
see that in fact the operator T is also continuous and compact (cf. also
[7, Theorem 2.4] for the latter claim). Consequently, by Schauder’s
theorem, T has a fixed point in OR, as desired.
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Verlag, Basel, 1993.



Semilinear Poisson Problems 401

[13] D. Gilbarg and N. S. Trudinger, “Elliptic partial differential
equations of second order”, Reprint of the 1998 edition, Classics in
Mathematics, Springer-Verlag, Berlin, 2001.

[14] E. Hebey, “Nonlinear analysis on manifolds: Sobolev spaces and
inequalities”, Courant Lecture Notes in Mathematics 5, New York
University, Courant Institute of Mathematical Sciences, New York,
1999.

[15] V. Isakov and A. I. Nachman, Global uniqueness for a two-
dimensional semilinear elliptic inverse problem, Trans. Amer. Math.
Soc. 347(9) (1995), 3375–3390.

[16] D. Jerison and C. E. Kenig, The inhomogeneous Dirichlet prob-
lem in Lipschitz domains, J. Funct. Anal. 130(1) (1995), 161–219.

[17] D. Jerison and C. E. Kenig, Unique continuation and absence
of positive eigenvalues for Schrödinger operators, Ann. of Math. (2)
121(3) (1985), 463–494.

[18] Z. Jin, Solvability of Dirichlet problems for semilinear elliptic equa-
tions on certain domains, Pacific J. Math. 176(1) (1996), 117–128.

[19] F. John and L. Nirenberg, On functions of bounded mean os-
cillation, Comm. Pure Appl. Math. 14 (1961), 415–426.

[20] J. Johnsen and T. Runst, Semi-linear boundary problems of
composition type in Lp-related spaces, Comm. Partial Differential
Equations 22(7–8) (1997), 1283–1324.

[21] C. E. Kenig, “Harmonic analysis techniques for second order el-
liptic boundary value problems”, CBMS Regional Conference Series
in Mathematics 83, American Mathematical Society, Providence,
RI, 1994.

[22] C. E. Kenig and W.-M. Ni, On the elliptic equation Lu − k +
K exp[2u] = 0, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12(2)
(1985), 191–224.

[23] J.-L. Lions, “Contrôle optimal de systèmes gouvernés par des
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