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ℵ-PRODUCTS OF MODULES AND SPLITNESS

Feng Lianggui

Abstract
Let

0 −→
ℵ∏
I

Mα
λ−→

∏
I

Mα
γ−→ Coker λ −→ 0

be an exact sequence of modules, in which ℵ is an infinite cardinal,
λ the natural injection and γ the natural surjection. In this paper,
the conditions are given mainly in the four theorems so that λ (γ
respectively) is split or locally split. Consequently, some known
results are generalized. In particular, Theorem 1 of [7] and The-
orem 1.6 of [5] are improved.

1. Introduction

Let ℵ be an infinite cardinal number, and {Mi | i ∈ I} a family of
left R-modules. As a generalization of the direct sum of modules, the
ℵ-product of {Mi | i ∈ I} is the submodule

∏ℵ
I Mi = {x ∈

∏
I Mi |

| suppx| < ℵ} ≤
∏

I Mi, in which suppx is the support set of x =
(xα)α∈I , i.e., suppx = {α ∈ I | xα �= 0}. So, given any family of left
R-modules {Mα}α∈I , we can always obtain the following exact sequence:

0 −−−−→
ℵ∏
I

Mα
λ−−−−→

∏
I

Mα
γ−−−−→ Cokerλ −−−−→ 0,

where λ denotes the natural injection and γ denotes the natural projec-
tion. Just like the direct sum is not a summand of the direct product in
general, the same case often happens for the ℵ-product of modules. In
other words, the natural injection λ does not split generally. Here, the
questions arise naturally:
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What conditions can make λ (γ, resp.) split, even a bit weakly, locally
split? On the other hand, assume λ is split, then what information can
we also obtain from that?

In the present paper, we answer the questions above, and as an ap-
plication of the main results of this paper, some known results are gen-
eralized. For instance, we improve Theorem 1 of [7] and Theorem 1.6
of [5].

As usual, rings are associative with 1 �= 0, modules are unitary
throughout this paper. A cardinal ℵ is said to be regular if it is not
of form of

∑
i∈I µi with µi < ℵ and |I| < ℵ.

2. Main results

Recall that a left R-module M satisfies the ℵ-ACC on annihilators, if
any well-ordered ascending chain of annihilators of subsets of M has < ℵ
distinct elements. We first state an equivalent characterization of M has
ℵ-ACC on annihilators.

Lemma 1. Let M be a left R-module, ℵ an infinite regular cardinal and
I an index set with |I| = ℵ. Then the following are equivalent.

(1) M has ℵ-ACC on annihilators;
(2) The natural map HomR(R/A,

∏
I M) −→ HomR(R/A,Cokerλ) is

onto for every cyclic R-modules R/A, with A a left ideal generated
by ℵ elements.

Proof: (1) ⇒ (2). We only need use (1) ⇒ (3) of Theorem 8 of [6].

(2) ⇒ (1). Let ωℵ denote the least ordinal number with cardinality ℵ,
we can identify I with the set of ordinals < ωℵ. Suppose M does not
have ℵ-ACC on annihilators, then by (1) ⇐⇒ (4) of Theorem 8 of [6]
again, we have sets

S = {mα, α < ωℵ} ⊆ M and

S = {rα, α < ωℵ} ⊆ R

such that rαmα �= 0 for all α < ωℵ and rβmα = 0 for all α > β. Take
x = (mα)α<ωℵ , then x ∈

∏
I M . For all β < ωℵ, rβx = (rβmα)α<ωℵ ∈∏ℵ

I M because rβmα = 0 for all β < α. Consider the left ideal A of
R generated by {rα, α < ωℵ}, and let f : R −→

∏
I M , r −→ rx, then

f(A) ⊆
∏ℵ

I Rx. Therefore there exists a unique homomorphism ϕ such
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that the following diagram:

0 −−−−→
ℵ∏
I

M
λ−−−−→

∏
I

M
γ−−−−→ Cokerλ −−−−→ 0

�f |A
�f

�ϕ

0 −−−−→ A
i−−−−→ R −−−−→ R/A −−−−→ 0

commutes.
By hypothesis, there also exists a homomorphism ϕ1 : R/A −→

∏
I M

such that ϕ = γϕ1, where γ represents the natural mapping. So, using
Theorem 3.1 of [2], we can find a homomorphism ϕ2 : R −→

∏ℵ
I M such

that f |A = ϕ2i. Under this case, if let ϕ2(1) = (yα)α<ωℵ ∈
∏ℵ

I M , then
rβyβ = rβmβ �= 0 for all β < ωℵ, thus yα �= 0 for each α < ωℵ. This
contradicts the fact that ϕ2(1) ∈

∏ℵ
I M .

Theorem 1. Let ℵ be a regular cardinal, I an index set with |I| = ℵ,
and M a left R-module, together with the short exact sequence

0 −−−−→
ℵ∏
I

M
λ−−−−→

∏
I

M
γ−−−−→ Cokerλ −−−−→ 0.

If γ is locally split, then M has ℵ-ACC on annihilators. Moreover, if M
is faithful, then R has ℵ-ACC on annihilators.

Proof: Let A be a left ideal generated by ℵ elements. Take any
f ∈ HomR(R/A,Cokerλ). Note that R/A is cyclic, and generated
by 1̄. So let f(1̄) = x ∈ Cokerλ, then by hypothesis, there exists a
ψ : Cokerλ −→

∏
I M such that γψ(x) = x. Thus, let ψ1 = ψf , then

ψ1 ∈ HomR(R/A,
∏

I M) and γψ1 = γψf = f . Using Lemma 1, it
follows that M has ℵ-ACC on annihilators. Furthermore, suppose M
is faithful and γ is locally split, consider {sm : s ∈ S, m ∈ M}, then
x{sm; s ∈ S, m ∈ M} = 0 ⇐⇒ xS = 0. So the left annihilator of S is
the annihilator of a subset of M . This completes the whole proof.

Observation. Take ℵ = ℵ0 in the theorem above, obviously
∏ℵ0

I M =
⊕∞

i=1M . Now if ⊕∞
i=1M is a direct summand of

∏∞
i=1 M , then the exact

sequence

0 −−−−→
∞⊕

i=1

M
λ−−−−→

∞∏
i=1

M
γ−−−−→ Cokerλ −−−−→ 0

splits. Of course, γ is locally split. So in this case, Theorem 1 above
implies that M has ACC on annihilators. Furthermore, if we let M be
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a faithful left module, then Theorem 1 above shows also that R must
have ACC on annihilators, which is exactly the Corollary 2 of [4]. In
particular, when ⊕∞

i=1R is a direct summand of
∏∞

i=1 R, we get that R
has ACC on annihilators, a well-known result.

It is well known that a ring R is left coherent ⇐⇒
∏

I Mi is flat for
any family of right flat R-modules and many attempts have been made
to generalize it, mainly by means of direct or large subdirect products
of various special modules. For example, n-coherent rings, ℵ-coherent
rings and so on.

Let ℵ be an infinite cardinal. According to [5], a left module M is said
to be ℵ-finitely generated if for any subset S ⊆ M such that |S| < ℵ,
there exists a f.g. submodule N of M such that S ⊆ N ; A ring R is said to
be left ℵ-coherent if any f.g. left ideal I of R is ℵ-finitely presented (in the
sense that, I has the following resolution: 0 −→ K −→ F −→ I −→ 0,
in which F is f.g. free and K is ℵ-finitely generated). It is also shown
in [5] that R is left ℵ-coherent if and only if

∏ℵ
I R is right flat for any

index set I (see, [5, Theorem 1.6]). Now, we point out that this result
can be improved as follows.

Theorem 2. Let ℵ be an infinite cardinal, I a set with |I| = ℵ. Then
the following are equivalent.

(1) R is a left ℵ-coherent ring;
(2) For any resolution of

∏ℵ
I : 0 −→ K

i−→ P −→
∏ℵ

I R −→ 0 in
which P is projective and i represents the natural injection, i is
locally split. In other words,

∏ℵ
I R is right flat.

Proof: (1) ⇒ (2). By [5, Theorem 1.6],
∏ℵ

I R is right flat. Directly, by [3,
p. 163, Exercise 38; p. 154, Corollary 4.86; p. 129, Theorem 4.23],

∏ℵ
I R

is right flat ⇐⇒ For any resolution: 0 −→ K
i−→ P −→

∏ℵ
I R −→ 0

with projective P , i is locally split.

(2) ⇒ (1). Let I be a finitely generated left ideal of R, say I =
Rr1 + · · · + Rrn. Then there is the exact sequence of left R-modules,

0 −−−−→ K
i−−−−→ Rn p−−−−→ I = Rr1 + · · · + Rrn −−−−→ 0

where p : Rn −→ I is defined via ei −→ ri (i = 1, . . . , n). We need show
that K is ℵ-finitely generated. Consider the right R-module homomor-
phism q : R −→ Rn, x −→ (r1x, . . . , rnx), and let ER = Rn/ Imq. Then
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ER is f.p., and
0 −−−−→ Hom(ER, R) −−−−→ Hom(Rn, R) −−−−→ Hom(Imq, R)�θ2

�θ

�θ1

0 −−−−→ K −−−−→ Rn p−−−−→ R

commutes, where θ : Hom(Rn, R) −→ Rn defined by φ −→ (φ(e1), . . . ,
φ(en)) and θ1 : Hom(Imq, R) −→ R via ϕ −→ ϕ((r1, . . . , rn)), is a
monomorphism. Therefore E∗ = Hom(ER, R) � K. Now, we iden-
tify I with the set of ordinals < ωℵ again. For β < ωℵ, let {uα, α < β}
be a subset of E∗, consider the map u : E −→

∏ℵ
I R, e −→ (xα)α<ωℵ , in

which

xα =

{
uα(e), if α < β;

0, if α ≥ β.

Note that E is f.p. and
∏ℵ

I R is right flat, and hence by [3, p. 133,
Theorem 4.32] again, there exists a free R-module Rm and homomor-
phisms v : E −→ Rm and w : Rm −→

∏ℵ
I R such that wv = u. That is,

we have the following commutative diagram:

Rm

E
u

wv

ℵ∏
I

R

Suppose {e1, . . . , em} is the basis of Rm, and let pi be the ith coordinal
projection from Rm to R resp. Let v1 = p1v, . . . , vm = pmv, then for any
e ∈ E, u(e) = wv(e) = w(e1v1(e) + · · · + emvm(e)) = w(e1)v1(e) + · · · +
w(em)vm(e). More explicitly, for α < β, uα(e) = xα = (w(e1))αv1(e) +
· · · + (w(em))αvm(e). Thus uα = (w(e1))αv1 + · · · + (w(em))αvm. Fur-
thermore, {uα, α < β} ⊆ Rv1 + · · · + Rvm, a f.g. submodule of E∗, this
shows E∗ is ℵ-finitely generated, and so K is ℵ-finitely generated. The
proof is completed.

Corollary 1. Let ℵ be a regular cardinal, I a set with |I| = ℵ. Suppose∏ℵ
I R is a direct summand of

∏
I R and

∏
I R is right flat, then R is

ℵ-coherent and has ℵ-ACC on annihilators.

Proof: From Theorem 1 and Theorem 2, we deduce this corollary imme-
diately.
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From now on, let’s focus on those properties of single elements of∏
I M such that

0 −−−−→
ℵ∏
I

M
λ−−−−→

∏
I

M
γ−−−−→ Cokerλ −−−−→ 0

splits, where ℵ is a regular cardinal and I is any infinite index set
with |I| ≥ ℵ. Take x ∈

∏
I M , then x = (xα)α∈I . Construct a fam-

ily of ideals of R, Γ(x), as follows:

Γ(x) = {PK(x) = annR{xα}α∈K : K ⊆ I and |I\K| < ℵ}.

Motivated by the concept of ℵ-ACC on annihilators of modules, we
say Γ(x) has ℵ-ACC if any well-ordered ascending chain of Γ(x) has < ℵ
distinct elements. With this in hand, we now state the following theorem:

Theorem 3. Let ℵ be a regular cardinal, {Mα}α∈I a family of injective
left modules with |I| ≥ ℵ. If Γ(x) has ℵ-ACC for any x ∈

∏
α∈I Mα,

then

0 −−−−→
ℵ∏
I

Mα
λ−−−−→

∏
I

Mα
γ−−−−→ Cokerλ −−−−→ 0

splits. In other words,
∏ℵ

I Mα is injective.

For the proof of Theorem 3, we first need the following lemma.

Lemma 2. Let {Mα}α∈I be a family of modules, ℵ a regular cardinal
and |I| ≥ ℵ. For x ∈

∏
α∈I Mα, let Ix = {r ∈ R | rx ∈

∏ℵ
I Mα}. If

Γ(x) has ℵ-ACC, then there exists y ∈
∏ℵ

I Mα such that ax = ay for
any a ∈ Ix.

Proof: We assert that if Γ(x) has ℵ-ACC, then Γ(x) has a maximum
element. Otherwise, take PK1(x) ∈ Γ(x), since PK1(x) is not the max-
imum element, there exists PK2(x) ∈ Γ(x) such that PK1(x) � PK2(x).
In general, for an ordinal β < ωℵ, assume we have found PKα

(x) for all
α < β such that

PK1(x) � PK2(x) � · · · � PKα(x)

and
PKα

(x) � PKα+1(x) when α + 1 < β.
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Case 1: If β is an isolated ordinal, then β − 1 < β. Because PKβ−1(x) is
not a maximum element, there exists PK′(x) ∈ Γ(x) such that

PKβ−1(x) � PK′(x).

Let Kβ = K ′, then ∀α < β, PKα
(x) � PKβ

(x).

Case 2: If β is a limiting ordinal, take K∗ = ∩α<βKα, then |I\K∗| =∑
α<β |I\Kα| < ℵ since ℵ is regular. So PK∗(x) ∈ Γ(x), and once more,

since PK∗(x) is not a maximum one, there is PT (x) ∈ Γ(x) such that
PK∗(x) � PT (x). Let Kβ = T , then for any α < β, we have γ such that
α < γ < β because β is a limiting ordinal, as a result,

PKβ
(x) � PK∗(x) � PKγ

(x) � PKα
(x).

So, in a word, we have inductively defined a sequence {PKα(x) : α < ωℵ},
which has obviously ℵ distinct elements. It contradicts the fact that Γ(x)
has ℵ-ACC.

Now suppose PK∗(x) and PK∗∗(x) are two maximum elements of
(Γ(x),⊆). Note that K∗ ∩ K∗∗ ⊆ K∗ and K∗ ∩ K∗∗ ⊆ K∗∗, then
PK∗∩K∗∗(x)∈Γ(x) and PK∗(x)⊆PK∗∩K∗∗(x). Thus, PK∗(x)=PK∗∩K∗∗(x).
Similarly, PK∗∗(x) = PK∗∩K∗∗(x). This implies, Γ(x) has only one max-
imum element. Recalling the proof of the foregoing assertion, we also
find that each element of Γ(x) must be contained in a maximum element.
Therefore, up to now, we can say there exists PK0(x) ∈ Γ(x) such that
PK(x) ⊆ PK0(x) for all PK(x) ∈ Γ(x).

Let’s consider y = (yα)α∈I , in which

yα =

{
xα, α ∈ I\K0

0, α ∈ K0.

Obviously, y ∈
∏ℵ

I Mα. For any a ∈ Ix, since ax ∈
∏ℵ

I Mα, supp ax =
S ⊆ I satisfies | supp ax| < ℵ. So PI\S(x) ⊆ PK0(x) and a ∈ PI\s(x).
Consequently, ax = (axα)α∈I = ay. This completes the proof of Lem-
ma 2.
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Proof of Theorem 3: Let f be a homomorphism from A to
∏ℵ

I Mα,
where A is any left ideal of R. Note

∏
I Mα is injective, there is a

homomorphism φ : R −→
∏

α∈I Mα such that the following diagram

0 −−−−→
ℵ∏
I

Mα −−−−→
∏

I Mα�f

�φ

0 −−−−→ A −−−−→ R

commutes. Suppose x = (xα)α∈I = φ(1), then Γ(x) has ℵ-ACC by
assumption. So, using Lemma 2, we can find y ∈

∏ℵ
I Mα, such that

ax = ay for all a ∈ Ix. Obviously, A ⊆ Ix, so if we define a homomor-
phism φ1 : R −→

∏ℵ
I Mα via 1 −→ y, then we have φ1|A = f immedi-

ately. This shows that
∏ℵ

I Mα is injective. The proof of Theorem 3 is
completed.

As an application of our Theorem 1 and Theorem 3, we claim that
the Theorem III of [1] can be obtained easily as our next corollary, i.e.,

Corollary 2. Let ℵ be a regular cardinal. For an injective left R-mod-
ule M , the following statements ar equivalent.

(1)
∏ℵ

I M is injective, for any index set I;
(2)

∏ℵ
I M is injective, for some index set I with |I| = ℵ;

(3) M has ℵ-ACC on annihilators.

Proof: (1) ⇒ (2). Obvious.

(2) ⇒ (1). Since
∏ℵ

I M is injective, the exact sequence

0 −−−−→
ℵ∏
I

M
λ−−−−→

∏
I

M
γ−−−−→ Cokerλ −−−−→ 0

splits. So, by Theorem 1, M has ℵ-ACC on annihilators.

(3) ⇒ (1). We only need consider the case |I| ≥ ℵ. In fact, if |I| < ℵ,
then

∏ℵ
I M =

∏
I M , of course, is injective. Now assume M has ℵ-ACC

on annihilators, naturally Γ(x) has ℵ-ACC for all x ∈
∏

I M , so (1) is
obtained by Theorem 3 immediately.
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Proposition 1. Let ℵ1, ℵ2 be two infinite cardinals with ℵ1 ≤ ℵ2,
{Mα}α∈I a family of left R-modules over an infinite set I with |I| ≥ ℵ1.
Then we have

(1) The exact sequence: 0−→
∏ℵ1

α∈I Mα
λ−→

∏ℵ2
α∈I Mα

γ−→Cokerλ−→
0 is always a pure exact sequence. So, if

∏ℵ2
I Mα is projective,

then λ is locally split.
(2) If 0 −→

∏ℵ1
α∈I Mα

λ−→
∏ℵ2

α∈I Mα
γ−→ Cokerλ −→ 0 splits, then

0 −→
∏ℵ1

α∈J Mα
λ−→

∏ℵ2
α∈J Mα

γ−→ Cokerλ −→ 0 is also split,
for all J ⊆ I. In particular, if

∏ℵ1
I Mα is a direct summand of∏

I Mα, then
∏ℵ1

J Mα is also a direct summand of
∏

J Mα for all
J ⊆ I.

Proof: (1) Given any f.g. left ideal of R : 〈r1, . . . , rn〉, we have the exact
sequence: 0 −→ 〈r1, . . . , rn〉 −→ R −→ R/〈r1, . . . , rn〉 −→ 0.

For any homomorphism ϕ : R/〈r1, . . . , rn〉 −→ Cokerλ, it induces
f : R −→

∏ℵ2
I Mα and f1 : 〈r1, . . . , rn〉 −→

∏ℵ1
I Mα such that the fol-

lowing diagram
0 −−−−→ 〈r1, . . . , rn〉 −−−−→ R −−−−→ R/〈r1, . . . , rn〉 −−−−→ 0

f1

� �f

�ϕ

0 −−−−→
ℵ1∏
I

Mα −−−−→
ℵ2∏
I

Mα −−−−→ Cokerλ −−−−→ 0

commutes. Let f(1) = (xα)α∈I , f1(r1) = (x(1)
α )α∈I , . . . , and f1(rn) =

(x(n)
α )α∈I , then | supp f1(r1)| < ℵ1, . . . , | supp f1(rn)| < ℵ1. So

ri(xα)α∈I = (rixα)α∈I = (x(i)
α )α∈I

for each i = 1, . . . , n. Consequently,

rixα =

{
0, α ∈ I\ supp f1(ri);

rixα �= 0, α ∈ supp f1(ri).

Construct y = (yα)α∈I , via

yα =

{
xα, α ∈ ∪n

i=1 supp f1(ri);

0, α /∈ ∪n
i=1 supp f1(ri).

Since | ∪n
i=1 supp f1(ri)| =

∑n
i=1 | supp f1(ri)| < ℵ1, y ∈

∏ℵ1
I Mα.

Define φ : R −→
∏ℵ1

I Mα via φ(1) = y, then f1 = φ|〈r1,...,rn〉. By
[2, Theorem 3.1], the natural map Hom(R/〈r1, . . . , rn〉,

∏ℵ2
I Mα) −→
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Hom(R/〈r1, . . . , rn〉,Cokerλ) is onto. Moreover, if
∏ℵ2

α∈I Mα is projec-
tive, then by [3], Cokerλ is flat and so λ is locally split.

(2) We only need note that
∏ℵ1

J Mα ⊕
∏ℵ1

I\J Mα =
∏ℵ1

I Mα and∏ℵ1
J Mα ⊆

∏ℵ2
J Mα, the proof is completed directly.

Any infinite set I carries a well-ordering <, such that (I,<) is
order isomorphism to [0, θ), we always can identify it with the set of
ordinals < θ. Let x ∈

∏
I Mα, then we can write x as (xα)α<θ. Now let

Pα(x) = {r ∈ R | rxβ = 0 for all β ≥ α}, obviously, P0(x) = ann(x) ⊆
Pα(x) ⊆ Pβ(x) for all α ≤ β < θ.

Theorem 4. Let ℵ be an infinite cardinal, I a set with |I| ≥ ℵ. We
identify I with the set of ordinals < θ. If

∏ℵ
α<θ Mα is a direct summand

of
∏

α<θ Mα, then |{Pα(x) | α < θ}| < ℵ for any x ∈
∏

α<θ Mα.

Proof: It is easy to see θ ≥ ωℵ. Assume to the contrary that there exists
a x = (xα)α<θ with |{Pα(x) | α < θ}| ≥ ℵ. Then we can find a strictly
infinite ascending chain:

α1 < α2 < · · · < αµ < · · · < θ

and
Pα1(x) � Pα2(x) � · · · � Pαµ

(x) � · · · µ < ωℵ.

Since Pαµ
(x) � Pαµ+1(x), there exists aµ ∈ Pαµ+1(x) but aµ /∈ Pαµ

(x).
Thus, ∃xγµ

∈ Mγµ
such that aµxγµ

�= 0 and αµ+1 > γµ ≥ αµ. In
connection with {Mγµ}µ<ωℵ , we construct the p-functors sequence: {Uµ :
µ < ωℵ}, as follows: Uµ : R -Mod −→ Z -Mod, M −→ annM Pγµ

(x).
In this case, xγµ

∈ Uµ(Mγµ
) − Uµ+1(Mγµ

), so, using Lemma 1 of [6],∏ℵ
µ<ωℵ

Mγµ is not a direct summand of
∏

µ<ωℵ
Mγµ . By Proposition 1,∏ℵ

α<θ Mα is not a direct summand of
∏

α<θ Mα, a contradiction.

Remark. Take ℵ = ℵ0 in Theorem 4 above, we get: if ⊕α<θMα is a
direct summand of

∏
α<θ Mα, then |{Pα(x) | α < θ}| is finite for all

x ∈
∏

α<θ Mα. So, we can say we have generalized Theorem 1 of [7]. In
addition, combining this theorem with Theorem 3 before, we also obtain
the following result, which is exactly Theorem II of [1].

Corollary 3. Let ℵ be a regular cardinal. The following are equivalent:
(1) R is a left ℵ-ACC ring;
(2) The exact sequence 0 −→

∏ℵ
I Mα

λ−→
∏

I Mα
γ−→ Cokerλ −→ 0

splits for any family of injective modules {Mα}α∈I .
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Proof: (1) ⇒ (2). By Theorem 3.

(2) ⇒ (1). Otherwise, there exists an ascending chain:

I1 � I2 � · · · � Iα � · · · α < ωℵ.

Let E(R/Iα) be the injective hull of R/Iα, and let 1α be the image of
ηαiα, in which ηα is the natural map R −→ R/Iα, iα is the injection
from R/Iα to E(R/Iα). Obviously, x = (1α)α<ωℵ ∈

∏
α<ωℵ

E(R/Iα),
and Iα = Pα(x). Consequently,

|{Pα(x) | α < ωℵ}| = ℵ.
By Theorem 4,

∏ℵ
α<ωℵ

E(R/Iα) is not a direct summand of
∏

α<ωℵ
E(R/Iα),

a contradiction.
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