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ENDPOINT ESTIMATES AND WEIGHTED NORM
INEQUALITIES FOR COMMUTATORS OF

FRACTIONAL INTEGRALS

D. Cruz-Uribe, SFO and A. Fiorenza

Abstract
We prove that the commutator [b, Iα], b ∈ BMO , Iα the frac-
tional integral operator, satisfies the sharp, modular weak-type
inequality

|{x∈R
n : |[b, Iα]f(x)| > t}|≤C Ψ

(∫
Rn

B

(
‖b‖BMO

|f(x)|
t

)
dx

)
,

where B(t) = t log(e + t) and Ψ(t) = [t log(e + tα/n)]n/(n−α).
These commutators were first considered by Chanillo, and our
result complements his. The heart of our proof consists of the
pointwise inequality,

M#([b, Iα]f)(x) ≤ C‖b‖BMO [Iαf(x) + Mα,Bf(x)],

where M# is the sharp maximal operator, and Mα,B is a gener-
alization of the fractional maximal operator in the scale of Orlicz
spaces. Using this inequality we also prove one-weight inequalities
for the commutator; to do so we prove one and two-weight norm
inequalities for Mα,B which are of interest in their own right.

1. Introduction

Given α, 0 < α < n, define the fractional integral operator Iα by

Iαf(x) =
∫

Rn

f(y)
|x − y|n−α

dy.

If b ∈ BMO we define the first order commutator [b, Iα] to be the operator

[b, Iα]f(x) = b(x)Iαf(x) − Iα(bf)(x) =
∫

Rn

(b(x) − b(y))
f(y)

|x − y|n−α
dy.
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Since b ∈ Lp(K) for any p > 1 and K compact, this integral converges
for all f ∈ Cc(Rn).

The commutators [b, Iα] were introduced by Chanillo [3], who showed
that for 1 < p < n/α, 1/q = 1/p− α/n, [b, Iα] : Lp(Rn) → Lq(Rn). This
corresponds to the norm inequalities satisfied by Iα.

The fractional integral also satisfies an endpoint inequality:

|{x ∈ R
n : |Iαf(x)| > t}| ≤ C

(
1
t

∫
Rn

|f | dx

)n/(n−α)

.

However, a straightforward computation with f(x) = χ[0,1] and b(x) =
log(1 + x)χ(1,∞) shows that [b, Iα] is not weak (1, n/(n − α)). (For a
stronger counter-example, see Section 6 below.) Our main result is a
sharp endpoint inequality for the commutator.

Theorem 1.1. Given α, 0 < α < n, and a function b ∈ BMO, let
B(t) = t log(e + t) and Ψ(t) = [t log(e + tα/n)]n/(n−α). Then there exists
a constant C such that

|{x∈R
n : |[b, Iα]f(x)|>t}|≤C Ψ

(∫
Rn

B

(
‖b‖BMO

|f(x)|
t

)
dx

)
.(1.1)

Furthermore, this result is sharp: if (1.1) holds with Ψ replaced by an
increasing function Ψ0, then there exist positive constants γ and K such
that Ψ(t/γ) ≤ KΨ0(t), t > 0.

Remark 1.2. Since B and Ψ are submultiplicative, we could write the
righthand side of (1.1) as

C Ψ(B(‖b‖BMO)) Ψ
(∫

Rn

B

( |f(x)|
t

)
dx

)
;

this appears more natural, but (1.1) is stronger since it is homogeneous
in b: we can multiply b by a constant without changing the size of the
constant C.

To prove Theorem 1.1 we first prove a pointwise inequality relat-
ing [b, Iα], Iα, and a fractional maximal operator defined using the scale
of Orlicz spaces. (For precise definitions, see Section 2 below.) Given a
Young function B (for example, B(t) = t log(e + t)), and α, 0 ≤ α < n,
define the fractional Orlicz maximal operator Mα,B by

Mα,Bf(x) = sup
Q�x

|Q|α/n‖f‖B,Q,



Commutators of Fractional Integrals 105

where the supremum is taken over all cubes containing x. When B(t) = t
this reduces to the classical fractional maximal operator,

Mαf(x) = sup
Q�x

|Q|α/n

|Q|

∫
Q

|f | dy.

The relationship between Mα,B and [b, Iα] involves the sharp maximal
function of Fefferman and Stein [11]. Recall that it is defined by

M#f(x) = sup
Q�x

1
|Q|

∫
Q

|f(y) − fQ| dy, where fQ =
1
|Q|

∫
Q

f(x) dx.

Theorem 1.3. Let B(t) = t log(e + t). Given α, 0 < α < n, b ∈ BMO
and a non-negative function f , there exists a constant C such that for
all x,

M#([b, Iα]f)(x) ≤ C‖b‖BMO [Iαf(x) + Mα,Bf(x)].(1.2)

Remark 1.4. Theorem 1.3 remains true if B(t) = t log(e + t) is replaced
by any “larger” Orlicz function. We will make this precise in Section 2.

Remark 1.5. Inequalities similar to (1.1) and (1.2) for singular integral
operators (which formally correspond to the case α = 0) are true. These
were first proved by Pérez [22], and our proofs are modeled on his.
However, our approach to sharpness is different from his.

We can also use Theorem 1.3 to prove one-weight norm inequalities
for [b, Iα]. The first is a strong (p, q) inequality due to Segovia and
Torrea [26] which generalizes Chanillo’s original result.

Theorem 1.6. Given α, 0 < α < n, and p, 1 < p < n/α, fix q so that
1/q = 1/p−α/n. Let w be a weight satisfying the Apq condition: for all
cubes Q, (

1
|Q|

∫
Q

wq dx

)1/q (
1
|Q|

∫
Q

w−p′
dx

)1/p′

≤ K < ∞.(1.3)

Then, given any function b ∈ BMO, [b, Iα] satisfies the strong (p, q)
inequality(∫

Rn

|[b, Iα]f |q wq dx

)1/q

≤ C‖b‖BMO

(∫
Rn

|f |p wp dx

)1/p

.(1.4)

Remark 1.7. We can also use Theorem 1.3, together with the ideas in [9]
and [6], to prove two-weight norm inequalities for commutators of frac-
tional integrals. These will be treated in a separate paper.
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The Apq condition governs the strong (p, q) inequalities for Iα; this
is due to Muckenhoupt and Wheeden [18]. Given this fact, it seemed
natural to conjecture that in the limiting case p = 1, q = n/(n − α),
the condition which governs the weak (1, n/(n − α)) inequality for Iα,
wq ∈ A1, (also due to Muckenhoupt and Wheeden) would govern a
weighted version of (1.1). However, this is not the case.

Example 1.8. There exists a function w defined on R such that wq ∈
A1, q = 1/(1 − α), but there is no constant C such that

wq({x∈R : |[b, Iα]f(x)|>t})≤C Ψ
(∫

R

B

(
‖b‖BMO

|f(x)|
t

)
w dx

)
,(1.5)

where B and Ψ are as in Theorem 1.1, holds for all f .

This result is very surprising, especially since the analogous weighted
inequality with α = 0 holds for singular integral operators. (See [22].)
We are unsure what the correct condition on the weight w should be
for (1.5) to hold.

The remainder of this paper is organized as follows. In Section 2 we
state some preliminary definitions and results about Orlicz spaces. In
Sections 3 and 4 we state and prove an endpoint estimate and weighted
norm inequalities for the Orlicz fractional maximal operator Mα,B . We
use these, together with Theorem 1.3, to prove Theorems 1.1 and 1.6.
We actually prove results which hold for a large class of Young func-
tions B, since we can do so for essentially no more work and they are of
independent interest. In Section 5 we prove Theorem 1.3, in Section 6
we prove Theorem 1.1, and in Section 7 we prove Theorem 1.6, and
construct Example 1.8.

Throughout this paper all notation is standard or will be defined
as needed. All cubes are assumed to have their sides parallel to the
coordinate axes. Given a cube Q and r > 0, rQ will denote the cube
with the same center as Q and whose sides are r times as long. By weights
we will always mean non-negative, locally integrable functions which are
positive on a set of positive measure. Given a Lebesgue measurable
set E and a weight w, |E| will denote the Lebesgue measure of E and
w(E) =

∫
E

w dx. Given 1 < p < ∞, p′ = p/(p − 1) will denote the
conjugate exponent of p. C and c will denote positive constants whose
value may change at each appearance.

Finally, we assume that the reader is familiar with the definition and
basic properties of the Hardy-Littlewood maximal operator M , its dyadic
variant Md, and the Muckenhoupt Ap weights, 1 ≤ p ≤ ∞. We refer the
reader to [10] or [13] for further information.
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2. Background on Orlicz spaces

In the following we are going to use some notions of Orlicz space
theory. Here we summarize some basic facts; we refer the reader to [16],
[17], or [24] for further details.

A function B : [0,∞) → [0,∞) is a Young function if it is continuous,
convex and strictly increasing, and if B(0) = 0, B(t) → ∞ as t → ∞.

If A, B are Young functions, we write A(t) ≈ B(t) if there are con-
stants t0, c1, c2 > 0 such that c1A(t) ≤ B(t) ≤ c2A(t) for t ≥ t0. Also, we
say that B dominates A, and denote this by A � B, if there exists c > 0
such that for all t > 0, A(t) ≤ B(ct). If this is true for all t ≥ t0 > 0, we
say that A � B near infinity.

A Young function B is said to be doubling if there exists a positive
constant C such that B(2t) ≤ CB(t) for all t > 0; B is called submul-
tiplicative if B(st) ≤ CB(s)B(t) for all s, t > 0. Clearly B(t) = tr,
r ≥ 1, is submultiplicative. A straightforward computation shows that
B(t) = ta[log(e + t)]b, a ≥ 1, b > 0, is also submultiplicative. (For sim-
plicity, hereafter we will omit the brackets and write simply ta log(e+t)b.)

Given a non-empty open set E in R
n and a Young function B, the

Orlicz space LB(E) is the Banach space of Lebesgue measurable func-
tions f such that B(|f |/λ) is (Lebesgue) integrable on E for some λ > 0.
It is equipped with the Luxemburg norm

‖f‖LB(E) = inf
{

λ > 0 :
∫

E

B

( |f |
λ

)
dx ≤ 1

}
.

When E has finite measure (e.g. it is a cube) we often want to normalize
by replacing the measure dx by dx/|E|. In particular, given a cube Q,
we define the mean Luxemburg norm of f on Q by

‖f‖B,Q = inf
{

λ > 0 :
1
|Q|

∫
Q

B

( |f |
λ

)
dx ≤ 1

}
.(2.1)

When B(t) = tr, 1 ≤ r < ∞,

‖f‖B,Q =
(

1
|Q|

∫
Q

|f |r dx

)1/r

,

so the Luxemburg norm coincides with the (normalized) Lr norm.
If A � B near infinity then there exists a constant C, depending on A

and B, such that for all cubes Q and functions f , ‖f‖A,Q ≤ C‖f‖B,Q.
This follows from the standard embedding theorem which shows that
LB(Q) ⊂ LA(Q). However, we stress that because this is the mean
Luxemburg norm, the constant C is independent of Q.
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It follows from this that if A � B near infinity, then Mα,Af(x) ≤
CMα,Bf(x). In particular, in Theorem 1.3 we can take B to be any
Young function such that t log(e + t) � B near infinity. (This makes
precise Remark 1.4.)

Given a Young function B, the complementary Young function B̄ is
defined by

B̄(t) = sup
s>0

{st − B(s)}, t > 0.(2.2)

B and B̄ satisfy the following inequality: t ≤ B−1(t)B̄−1(t) ≤ 2t.
We will need a generalization of Hölder’s inequality to Orlicz spaces

due to O’Neil [19]. (Also see [17] or [24].)

Lemma 2.1. Given a Young function B, then for all functions f and g
and all cubes Q,

1
|Q|

∫
Q

|fg| dx ≤ 2‖f‖B,Q‖g‖B̄,Q.(2.3)

More generally, if A, B and C are Young functions such that for all
t > 0,

B−1(t)C−1(t) ≤ A−1(t),

then

‖fg‖A,Q ≤ 2‖f‖B,Q‖g‖C,Q.(2.4)

If we set g ≡ 1 in (2.3), it immediately follows that for all Young
functions B, α, 0 ≤ α < n, and x ∈ R

n,

Mαf(x) ≤ CMα,Bf(x).(2.5)

3. Endpoint inequality for Mα,B

In this section we prove a modular endpoint inequality for the Orlicz
fractional maximal operator which we need for the proof of Theorem 1.1.
To state it we need the following definition.

Definition 3.1. Given a Young function B, define the function hB by

hB(s) = sup
t>0

B(st)
B(t)

, 0 ≤ s < ∞.

Remark 3.2. The function hB could be infinite if s > 1, but if B is
doubling then it is finite for all 0 < s < ∞. (See [17, Theorem 11.7].)
If B is submultiplicative then hB ≈ B. More generally, given any B, for
all s, t ≥ 0, B(st) ≤ hB(s)B(t).
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Theorem 3.3. Given α, 0 ≤ α < n, let B be a Young function such
that B(t)/tn/α is decreasing for all t > 0. Then there exists a constant
depending only on B such that for all t > 0, Mα,B satisfies the modular
weak-type inequality

Φ(|{x ∈ R
n : Mα,Bf(x) > t}|) ≤ C

∫
Rn

B

(
f(x)

t

)
dx,(3.1)

for all non-negative f ∈ LB(Rn), where Φ is any function such that

Φ(s) ≤ C1Φ1(s) =




0 if s = 0
s

hB(sα/n)
if s > 0.

Before proving Theorem 3.3 we make a number of observations about
its statement.

Remark 3.4. When α = 0 we interpret the growth condition to mean
that B can be any Young function.

Remark 3.5. The function Φ1 is well-defined: by Lemma 3.12 below, it
follows from the fact that B(t)/tn/α is decreasing that 0 < hB(sα/n) < ∞
for all s > 0. Also note that if B is submultiplicative, B ≈ hB , so
Φ1(s) ≈ s/B(sα/n).

Remark 3.6. Suppose Φ is continuous and invertible. If we let Ψ = Φ−1,
and if Ψ is doubling, then inequality (3.1) can be written as

|{x ∈ R
n : Mα,Bf(x) > t}| ≤ C Ψ

(∫
Rn

B

(
f(x)

t

)
dx

)
.(3.2)

By Lemma 3.12, for any B satisfying the assumptions of Theorem 3.3
there exist functions Φ, invertible, satisfying Φ(s) ≤ CΦ1(s). In the
proof of Theorem 1.1 we use (3.2) with B(t) = t log(e + t).

Remark 3.7. We can weaken the growth condition on B as follows: if
I(B) < n/α, where I(B) denotes the upper Boyd index of B, then
there exists a Young function B1 such that B1 ≈ B and B1(t)/tn/α is
decreasing. See [12, Theorem 1.1] for further details.

Remark 3.8. When B(t)= t, Φ(t) = t1−α/n (or Ψ(t) = tn/(n−α) in (3.2)),
and Theorem 3.3 reduces to the weak (1, n/(n − α)) inequality for the
classical fractional maximal operator (cf. [10, p. 89]). When α = 0,
Φ(t) = Ψ(t) = t, and (3.1) becomes the modular endpoint inequality for
M0,B due to Pérez [21].
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Remark 3.9. In the proof of Theorem 1.3 we need Theorem 3.3 for the
case B(t) = t log(e + t). Since B is submultiplicative, we can take

Φ(t) =
t1−α/n

log(e + tα/n)
,

or equivalently,
Ψ(t) = [t log(e + tα/n)]n/(n−α).

We could replace tα/n by t in the definition of Φ and Ψ; we chose not to
since with the given definitions we recapture the case α = 0.

Remark 3.10. In the limiting case B(t) = tn/α, Theorem 3.3 is trivial:
for all x ∈ R

n,

Mα,Bf(x) = sup
Q�x

|Q|α/n

(
1
|Q|

∫
Q

|f |n/α dx

)α/n

=
(∫

Rn

|f |n/α dx

)α/n

,

and therefore Mα,Bf is constant. Then (3.1) is trivially true with Φ
defined by Φ(0) = 0, Φ(s) = 1, s > 0.

The proof of Theorem 3.3 requires four lemmas.

Lemma 3.11. If B is a Young function then hB is nonnegative, submul-
tiplicative, increasing in [0,∞), strictly increasing in [0, 1] and hB(1)=1.

For the (easy) proof see [6, Lemma 3.1] or [17, p. 84].

Lemma 3.12. Given α, 0 ≤ α < n, let B be a Young function such
that B(t)/tn/α is decreasing for all t > 0. Then the function Φ1 in
Theorem 3.3 is increasing, and Φ1(s)/s is decreasing. Moreover, there
exists Φ such that Φ(s) ≤ C1Φ1(s) and Φ is invertible.

Proof of Lemma 3.12: If α = 0, the assertion is trivial. If 0 < α < n,
for 0 < s < σ and t > 0, sα/nt < σα/nt. Since the function B(t)/tn/α is
decreasing,

B(σα/nt)
σtn/α

≤ B(sα/nt)
stn/α

;

therefore,
B(σα/nt)

σB(t)
≤ B(sα/nt)

sB(t)
.

If we take the supremum over all t, then

hB(σα/n)
σ

≤ hB(sα/n)
s

.

It follows immediately that Φ1(s)≤Φ1(σ). Furthermore, by Lemma 3.11,
Φ1(s)/s is decreasing.
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Finally, if C(s) is any continuous and strictly increasing function such
that C(0) = 1, C(s) → 2 as s → +∞, then trivially the function Φ
defined by Φ(s) = C(s)Φ1(s) is invertible and satisfies Φ(s) ≤ 2Φ1(s)
since Φ1(s) > 0 if s > 0.

Lemma 3.13. If Φ(t)/t is decreasing, then for any positive sequence {xj},

Φ


∑

j

xj


 ≤

∑
j

Φ(xj).

For a proof, see [14, p. 83, n. 103].

Lemma 3.14. Given a non-negative, locally integrable function f and
α, 0 ≤ α < n, suppose that for some Young function B, cube Q and
t > 0,

|Q|α/n‖f‖B,Q > t.

Then there exists a dyadic cube P such that Q ⊂ 3P and a positive
constant βα,n, depending only on α and n, such that

|P |α/n‖f‖B,P > βα,nt.

When B(t) = t this result is proved in [5], and when α = 0 this is
implicit in [21, Lemma 4.1]. Either proof readily adapts and we omit
the details.

Proof of Theorem 3.3: Fix a non-negative function f in LB(Rn). Fix
t > 0 and define

Et = {x ∈ R
n : Mα,Bf(x) > t}.

If t is such that the set Et is empty, we have nothing to prove. Otherwise,
for each x ∈ Et there exists a cube Qx containing x such that

|Qx|α/n‖f‖B,Qx > t.

By Lemma 3.14, there is a constant β such that for each x there exists
a dyadic cube Px with Qx ⊂ 3Px and

|Px|α/n‖f‖B,Px
> βt.(3.3)

Since f ∈ LB(Rn), we can replace the collection {Px} with a maximal
disjoint subcollection {Pj}. Each Pj satisfies (3.3), and by our choice of
the Qx’s, Et ⊂

⋃
j 3Pj .
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By Lemmas 3.12 and 3.13,

Φ1(|Et|) ≤ Φ1


∑

j

|3Pj |


 ≤

∑
j

Φ1(|3Pj |).

On the other hand, inequality (3.3) implies that for each j,

‖(βt)−1|Pj |α/nf‖B,Pj
> 1,

and so by the definition of the Luxemburg norm (2.1) and by Defini-
tion 3.1,

1 <
1

|Pj |

∫
Pj

B

( |Pj |α/nf(x)
βt

)
dx

≤ 1
|Pj |

∫
Pj

hB(|Pj |α/nβ−1)B
(

f(x)
t

)
dx

≤ hB(β−1)hB(|Pj |α/n)
|Pj |

∫
Pj

B

(
f(x)

t

)
dx

≤ 3n hB(β−1)hB(|3Pj |α/n)
|3Pj |

∫
Pj

B

(
f(x)

t

)
dx

= 3n hB(β−1)
Φ1(|3Pj |)

∫
Pj

B

(
f(x)

t

)
dx.

Hence, since the Pj ’s are disjoint,∑
j

Φ1(|3Pj |) ≤ 3nhB(β−1)
∑

j

∫
Pj

B

(
f(x)

t

)
dx

≤ 3nhB(β−1)
∫

Rn

B

(
f(x)

t

)
dx.

Inequality (3.1) now follows at once.

Remark 3.15. If B is a submultiplicative Young function, then inequal-
ity (3.1) is sharp in the sense that Φ1 cannot be replaced by an essentially
larger function, at least for x large. To show this we construct a simple
example. Fix n = 1, 0 < α < 1, and x such that xα > B−1(1). Now fix
N = x/B(xα) < x; the reason for this choice will be clear below. If we
let f = χ[0,N ], then for all y ∈ [0, x],

Mα,Bf(y) ≥ xα‖f‖B,[0,x] =
xα

B−1(x/N)
= 1.
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In particular,

[0, x] ⊂ {y ∈ R : Mα,Bf(y) > 1/2}.

Hence, if (3.1) holds for some function Φ, then, since B is submultiplica-
tive we must have that for all x sufficiently large,

Φ(x) ≤ Φ(|{y ∈ R : Mα,Bf(y) > 1/2}|)

≤ C

∫
R

B(2f(x)) dx

= CB(2)N

≤ CΦ1(x);

the last inequality follows from Remark 3.5.
We conjecture that for a submultiplicative Young function B, Φ1 is

the best possible function for all x, and not just x large, but we cannot
prove this. However, we can prove this for a large class of such functions.
Let B be a submultiplicative Young function such that

lim inf
x→0

lim sup
z→∞

B(zx)
B(z)B(x)

> c > 0.(3.4)

Intuitively, (3.4) implies that B is essentially multiplicative for z large
and x small. A large number of Young functions have this property: for
example, a straightforward computation using L’Hôpital’s rule shows
that for a ≥ 1, b > 0, B(t) = ta log(e + t)b satisfies (3.4).

However, not every submultiplicative Young function satisfies (3.4).
For instance, given 1 < α < β, the function

B(t) =

{
tα 0 < x < 1
tβ x ≥ 1

is submultiplicative, but (3.4) does not hold:

lim inf
x→0

lim sup
z→∞

B(zx)
B(z)B(x)

= lim inf
x→0

lim sup
z→∞

(zx)β

zβxα
= 0.



114 D. Cruz-Uribe, SFO, A. Fiorenza

Given a submultiplicative Young function B which satisfies (3.4), we
modify the above argument as follows. Since α > 0, condition (3.4)
implies that there exist x0, z0 > 0, z0 depending on x, such that if
0 < x < x0 and z > z0, then

B(zxα)
B(z)B(xα)

> c.(3.5)

Fix x<x0 and choose N > 0 such that 0 < N < x and 2B−1(x/N)x−α >
z0. Again let f = χ[0,N ]. If we fix t > 0 such that

2t =
xα

B−1(x/N)
,

then we have that for y ∈ [0, x], Mα,Bf(x) > t. We now argue as before
to get that

Φ(x) ≤ CNB

(
2B−1(x/N)

xα

)
.

If we let z = 2B−1(x/N)x−α in (3.5), then since B is submultiplicative
we get

≤ CN
B(2B−1(x/N))

B(xα)

≤ C
x

B(xα)

≤ CΦ1(x).

Remark 3.16. If a Young function B is not submultiplicative we suspect
that Φ1 is still the best possible, but we have no evidence to support
this.

4. Weighted norm inequalities for Mα,B

In this section we prove weighted norm inequalities for Mα,B which we
will need to prove Theorem 1.6. We establish a more general, two-weight
result which is interesting in its own right.

Definition 4.1. Given p, 1 < p < ∞, we say that a Young function B
satisfies the Bp condition if there exists a constant c > 0 such that∫ ∞

c

B(t)
tp+1

dt < ∞.
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Theorem 4.2. Given p, q, 1 < p ≤ q < ∞, and α, 0 ≤ α < n, let A, B
and C be Young functions such that A−1(t)C−1(t) ≤ B−1(t), and such
that C is doubling and satisfies the Bp condition. If (u, v) is a pair of
weights such that for every cube Q,

|Q|α/n+1/q−1/p

(
1
|Q|

∫
Q

uq dx

)1/q

‖v−1‖A,Q ≤ K < ∞,(4.1)

then for all f ∈ Lp(vp),(∫
Rn

(Mα,Bf)q uq dx

)1/q

≤ C

(∫
Rn

|f |p vp dx

)1/p

.

Remark 4.3. The case α = 0 and p = q was first proved by Cruz-Uribe
and Pérez [8]. Our proof is adapted from theirs.

We will need the following corollary in the proof of Theorem 1.6.

Corollary 4.4. Given α, 0 < α < n, and p, 1 < p < n/α, fix q so that
1/q = 1/p − α/n. Let w be a weight satisfying the Apq condition (1.3),
and let B(t) = t log(e + t). Then for all f ∈ Lp(wp),(∫

Rn

(Mα,Bf)q wq dx

)1/q

≤ C

(∫
Rn

|f |p wp dx

)1/p

.

Remark 4.5. In the special case when u = v = 1, then Mα,B : Lp → Lq if
B ∈ Bp. We give a short proof of this fact. We first claim that if B ∈ Bp

then B � tp near infinity. To see this, note that by Definition 4.1, there
exists t0 > 0 such that if t ≥ t0 then∫ 2t

t

B(s)
sp+1

ds ≤ 1.

Since B is increasing, this implies that

1 ≥ B(t)
(2t)p

∫ 2t

t

ds

s
=

B(t)
(2t)p

ln(2).

Hence, B � tp near infinity.
Now, given any cube Q,

|Q|α/n‖f‖B,Q = |Q|α/n‖f‖αp/n
B,Q ‖f‖1−αp/n

B,Q

≤ C|Q|α/n

(
1
|Q|

∫
Q

|f |p dy

)α/n

‖f‖1−αp/n
B,Q

≤ C‖f‖1−p/q
p ‖f‖p/q

B,Q.
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Hence, for all x,

Mα,Bf(x) ≤ C‖f‖1−p/q
p M0,Bf(x)p/q.

Pérez [21] showed that if B ∈ Bp then M0,B is bounded on Lp. There-
fore, ∫

Rn

(Mα,Bf)q dx ≤ C‖f‖q−p
p

∫
Rn

(M0,Bf)p dx

≤ C‖f‖q−p
p

∫
Rn

|f |p dx

= C‖f‖q
p,

which is what we wanted to show.

The proof of Theorem 4.2 requires the following lemma.

Lemma 4.6. Fix α, 0 ≤ α < n. Given a Young function B, suppose f
is a non-negative function such that |Q|α/n‖f‖B,Q tends to zero as |Q|
tends to infinity. Given a > 2n+1+α/n, for each k ∈ Z there exists a
disjoint collection of maximal dyadic cubes {Qk

j } such that for each j,

ak < |Qk
j |α/n‖f‖B,Qk

j
≤ 2n+α/nak,(4.2)

and there exists β > 1, depending only on n and α, such that

{x ∈ R
n : Mα,Bf(x) > βak} ⊂

⋃
j

3Qk
j .

Further, let Dk =
⋃

j Qk
j and Ek

j = Qk
j \ (Qk

j ∩ Dk+1). Then the Ek
j ’s

are pairwise disjoint for all j and k and there exists a constant γ > 1,
depending only on a and γ, such that |Qk

j | ≤ γ|Ek
j |.

Remark 4.7. To have f satisfy the hypotheses of Lemma 4.6, it suffices
to assume that f is bounded and has compact support.

The case α = 0 of Lemma 4.6 was proved in [8]; the same proof, with
the obvious changes, works for 0 < α < n, and we omit the details.

Proof of Theorem 4.2: Fix a function f ; without loss of generality we
may assume that f is non-negative, bounded, and has compact support.
Fix a > 2n+1+α/n and for k ∈ Z let

Ωk = {x ∈ R
n : Mα,Bf(x) > βak}.
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For each k form the collection of dyadic cubes {Qk
j } in Lemma 4.6. Then

we can estimate as follows:

∫
Rn

(Mα,Bf)q uq dx =
∑

k

∫
Ωk\Ωk+1

(Mα,Bf)q uq dx

≤ C
∑

k

akquq(Ωk)

≤ C
∑
k,j

akquq(3Qk
j )

≤ C
∑
k,j

uq(3Qk
j )|Qk

j |qα/n‖f‖q

B,Qk
j

= C
∑
k,j

uq(3Qk
j )|Qk

j |qα/n‖fv · v−1‖q

B,Qk
j

.

By Lemmas 2.1 and 4.6, and by (4.1),

≤ C
∑
k,j

|Qk
j |qα/nuq(3Qk

j )‖v−1‖q

A,Qk
j

‖fv‖q

C,Qk
j

≤ C
∑
k,j

|3Qk
j |qα/n

(
1

|3Qk
j |

∫
3Qk

j

uq dx

)

× ‖v−1‖q

A,3Qk
j

‖fv‖q

C,Qk
j

|Ek
j |

≤ C
∑
k,j

‖fv‖q

C,Qk
j

|Ek
j |q/p.

Since q/p ≥ 1 and the Ek
j ’s are pairwise disjoint,

≤ C


∑

k,j

‖fv‖p

C,Qk
j

|Ek
j |




q/p

≤ C


∑

k,j

∫
Ek

j

M0,C(fv)p dx




q/p

≤ C

(∫
Rn

M0,C(fv)p dx

)q/p

.
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As we noted above, since C satisfies the Bp condition, M0,C is bounded
on Lp (see [21]); hence

≤ C

(∫
Rn

|f |p vp dx

)q/p

.

This completes our proof.

Proof of Corollary 4.4: Fix α, p and q as in the hypotheses. It will suffice
to show that if w ∈ Apq then the pair (w, w) satisfies the hypotheses of
Theorem 4.2.

Let r = 1 + p′/q; then we can re-write the Apq condition as(
1
|Q|

∫
Q

w−p′
dx

) (
1
|Q|

∫
Q

(w−p′
)1−r′

dx

)r−1

≤ K < ∞.

Hence w−p′
is in Ar, and so satisfies the reverse Hölder inequality with

exponent s > 1. Let A(t) = tsp′
; then A−1(t) = t1/sp′

. Therefore, if we
let

C−1(t) =
t1/(sp′)′

log(e + t)
,

we have that

A−1(t)C−1(t) =
t

log(t)
≈ B−1(t).

Furthermore,

C(t) ≈ (t log(e + t))(sp′)′ ;

since sp′ > p′, (sp′)′ < p, and so C satisfies the Bp condition.
Inequality (4.1) now follows at once:

|Q|α/n+1/q−1/p

(
1
|Q|

∫
Q

wq dx

)1/q

‖v−1‖A,Q

=
(

1
|Q|

∫
Q

w−p′
dx

)1/q (
1
|Q|

∫
Q

w−p′s dx

)1/sp′

≤ C

(
1
|Q|

∫
Q

w−p′
dx

)q (
1
|Q|

∫
Q

w−p′
dx

)1/p′

≤ K.
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5. Proof of Theorem 1.3

Our proof requires several facts about functions in BMO and about
the fractional integral operator. We gather these in two lemmas.

Lemma 5.1. The following are true:

(1) A function b is in BMO if for each cube Q there exists a con-
stant cQ such that

sup
Q

1
|Q|

∫
Q

|b(x) − cQ| dx < ∞.

Further, this supremum is comparable to ‖b‖BMO .

(2) For each p, 1 < p < ∞, there exists a constant Cp such that

sup
Q

(
1
|Q|

∫
Q

|b(x) − bQ|p dx

)1/p

≤ Cp‖b‖BMO .

(3) If b ∈ BMO then there exists a constant C such that for every
cube Q,

1
|Q|

∫
Q

exp
( |b(x) − bQ|

C‖b‖BMO

)
dx < ∞.

(4) If b ∈ BMO then for any cube Q and k ≥ 0,

|b2k+1Q − bQ| ≤ 2(k + 1)‖b‖BMO .

For a proof of (1)–(3), see [10, Chapter 6]. For a proof of (4), see [27,
p. 206].

Lemma 5.2. Given α, 0 < α < n, and a non-negative function f , the
following are true:

(1) There exists a constant C such that for any cube Q,∫
Q

Iαf dx ≤ C|Q|α/n

∫
Rn

f dx;(5.1)

(2) Iαf ∈A1, that is, there exists a constant C such that M(Iαf)(x) ≤
CIαf(x) for almost every x. Hence, it satisfies the reverse Hölder
inequality for some exponent s > 1.

(3) Iα is weak (1, n/(n − α)): for all λ > 0,

|{x ∈ R
n : |Iα(x)| > λ}| ≤ C

(
1
λ

∫
Rn

|f(x)| dx

)n/(n−α)

.(5.2)
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Proof: Inequality (5.1) follows easily from Fubini’s theorem:∫
Q

Iαf dx =
∫

Q

∫
Rn

f(y) dy

|x − y|n−α
dx

=
∫

Rn

f(y)
[∫

Q

|x − y|α−n dx

]
dy

≤ C|Q|α/n

∫
Rn

f(x) dx.

To see that Iαf ∈ A1, it suffices to note that |x|α−n ∈ A1, and the
convolution of a non-negative function with an A1 weight is again in A1.
(Cf. [25].) For the weak (1, n/(n − α)) inequality, see [10, p. 89].

Proof of Theorem 1.3: By homogeneity, it will suffice to prove (1.2) for
x = 0. Further, by Lemma 5.2(2), and Lemma 5.1(1), it will suffice to
show that, given a cube Q centered at the origin, there exists a con-
stant cQ such that

1
|Q|

∫
Q

|[b, Iα]f(y) − cQ| dy ≤ C‖b‖BMO [M(Iαf)(0) + Mα,Bf(0)].(5.3)

Decompose f as f1+f2, where f1 = fχQ∗ , and Q∗ is the cube centered at
the origin whose sides are 2

√
n times larger. Let cQ = (Iα((b−bQ∗)f2))Q.

Then, since [b, Iα]f = [b − bQ∗ , Iα]f ,

1
|Q|

∫
Q

|[b, Iα]f(y) − cQ| dy

≤ 1
|Q|

∫
Q

|(b(y) − bQ∗)Iαf(y)| dy

+
1
|Q|

∫
Q

|Iα((b − bQ∗)f1)(y)| dy

+
1
|Q|

∫
Q

|Iα((b − bQ∗)f2)(y) − (Iα((b − bQ∗)f2))Q| dy

= I1 + I2 + I3.

We estimate each integral in turn. For I1, by Lemma 5.2(2), Iαf
satisfies the reverse Hölder inequality with exponent s > 1. Therefore,
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if we apply Hölder’s inequality with exponent s, by Lemma 5.1(2),

I1 ≤
(

1
|Q|

∫
Q

|(b(y) − bQ∗)|s′
dy

)1/s′ (
1
|Q|

∫
Q

Iαf(y)s dy

)1/s

≤ C‖b‖BMO

(
1
|Q|

∫
Q

Iαf(y) dy

)

≤ C‖b‖BMOM(Iαf)(0).

To estimate the second integral, note that by Lemma 5.1(3),

1
|Q∗|

∫
Q∗

exp
( |b(y) − bQ∗ |

C‖b‖BMO

)
dy < ∞.

Since B(t) = t log(e + t), B̄(t) � et − 1; therefore, by (2.1),

‖b − bQ∗‖B̄,Q∗ ≤ C‖b‖BMO .

Hence, by Lemma 5.2(1), and by the generalized Hölder inequality (2.3),

I2 ≤ C|Q|α/n

|Q|

∫
Rn

|b(y) − bQ∗ |f1(y) dy

=
C|Q∗|α/n

|Q∗|

∫
Q∗

|b(y) − bQ∗ |f(y) dy

≤ C|Q∗|α/n‖b − bQ∗‖B̄,Q∗‖f‖B,Q∗

≤ C‖b‖BMOMα,Bf(0).

Finally, we estimate the third integral. By the mean-value theorem,
if |x| > 2|h| then there exists θ, 0 ≤ θ ≤ 1, such that

∣∣∣∣ 1
|x|n−α

− 1
|x + h|n−α

∣∣∣∣ ≤ C
|h|

|x + θh|n−α+1
≤ C

|h|
|x|n−α+1

.
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If x, y ∈ Q and z ∈ R
n \ 2kQ∗, k ≥ 0, then |x − z| > 2k+1|y − x|.

Therefore,

I3≤
1
|Q|

∫
Q

1
|Q|

∫
Q

∫
Rn\Q∗

|(b(z)−bQ∗)f(z)|
∣∣∣∣ 1
|y−z|n−α

− 1
|x−z|n−α

∣∣∣∣ dz dx dy

≤ 1
|Q|2

∫
Q

∫
Q

∞∑
k=0

∫
2k+1Q∗\2kQ∗

|(b(z) − bQ∗)f(z)| |y − x|
|x − z|n−α+1

dz dx dy

≤ C

|Q|2
∫

Q

∫
Q

∞∑
k=0

2−k

|2k+1Q∗|1−α/n

∫
2k+1Q∗

|(b(z) − bQ∗)f(z)| dz dx dy

≤C

∞∑
k=0

2−k

|2k+1Q∗|1−α/n

∫
2k+1Q∗

|(b(z) − b2k+1Q∗)f(z)| dz

+C

∞∑
k=0

2−k

|2k+1Q∗|1−α/n

∫
2k+1Q∗

|(b2k+1Q∗ − bQ∗)f(z)| dz

≤
∞∑

k=0

2−k|2k+1Q∗|α/n‖b − b2k+1Q∗‖B̄,2k+1Q∗‖f‖B,2k+1Q∗

+C‖b‖BMO

∞∑
k=0

(k + 1)2−k

|2k+1Q∗|1−α/n

∫
2k+1Q∗

|f(z)| dz

≤C‖b‖BMOMα,Bf(0) + C‖b‖BMOMαf(0)

≤C‖b‖BMOMα,Bf(0).

The fifth inequality follows from Lemma 5.1(4), and the last inequality
follows from (2.5). This completes the proof.

6. Proof of Theorem 1.1

In our proof we need a variant of the good-λ inequality of Fefferman
and Stein [11] relating the dyadic maximal operator and the sharp max-
imal operator. (Also see [10, p. 121].) This exact result is given by
Pérez [22]; the proof is a straightforward modification of the proof of
the standard result and so is omitted.
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Lemma 6.1. Let ϕ be a positive function on (0,∞) such that ϕ(2t) ≤
ϕ(t) for all t > 0. Then there exists a positive constant C such that

sup
λ>0

ϕ(λ)|{y ∈ R
n : Mdf(y) > λ}|≤C sup

λ>0
ϕ(λ)|{y ∈ R

n : M#f(y) > λ}|

for all functions such that the lefthand side is finite.

Proof of Theorem 1.1: First, fix a function in BMO . If ‖b‖BMO = 0
then b is constant and the result is trivial. We may therefore assume
that ‖b‖BMO 
= 0.

Now fix a function f . Since we can decompose an arbitrary function
into the sum of its positive and negative parts, without loss of generality
we may assume that f is non-negative. By homogeneity, it will suffice
to prove (1.1) when t = 1, that is,

|{x ∈ R
n : |[b, Iα]f(x)| > 1}| ≤ C Ψ

(∫
Rn

B (‖b‖BMO |f(x)|) dx

)
.(6.1)

But in this case,

|{x ∈ R
n : |[b, Iα]f(x)| > 1}|

≤ Ψ(B(1)) sup
t>0

1
Ψ(B(1/t))

|{x ∈ R
n : |[b, Iα]f(x)| > t}|

≤ Ψ(B(1)) sup
t>0

1
Ψ(B(1/t))

|{x ∈ R
n : Md([b, Iα]f)(x) > t}|.

Let ϕ(t) = 1/Ψ(B(1/t)); then a straightforward but somewhat tedious
calculation shows that

lim
t→0

ϕ(2t)
ϕ(t)

= lim
t→∞

ϕ(2t)
ϕ(t)

= 2n/(n−α),
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and so ϕ(2t) ≤ Cϕ(t) for all t > 0. Therefore, by Lemma 6.1 and
Theorem 1.3,

|{x∈R
n : |[b, Iα]f(x)| > 1}|

≤ C sup
t>0

1
Ψ(B(1/t))

|{x ∈ R
n : M#([b, Iα]f)(x) > t}|

≤ C sup
t>0

1
Ψ(B(1/t))

∣∣∣∣
{

x∈R
n : Iαf(x)+Mα,Bf(x)>

t

C‖b‖BMO

}∣∣∣∣
≤ C sup

t>0

1
Ψ(B(1/t))

∣∣∣∣
{

x ∈ R
n : Iαf(x) >

t

C‖b‖BMO

}∣∣∣∣
+ C sup

t>0

1
Ψ(B(1/t))

∣∣∣∣
{

x ∈ R
n : Mα,Bf(x) >

t

C‖b‖BMO

}∣∣∣∣ .

By (5.2) and (3.2), and since Ψ and B are submultiplicative,

≤ C sup
t>0

1
Ψ(B(1/t))

(‖b‖BMO

t

∫
Rn

|f(x)| dx

)n/(n−α)

+ C sup
t>0

1
Ψ(B(1/t))

Ψ
(∫

Rn

B

(
‖b‖BMO

|f(x)|
t

)
dx

)

≤ C sup
t>0

1
Ψ(B(1/t))

· 1
tn/(n−α)

(∫
Rn

‖b‖BMO |f(x)| dx

)n/(n−α)

+ C sup
t>0

1
Ψ(B(1/t))

· Ψ(B(1/t))Ψ
(∫

Rn

B (‖b‖BMO |f(x)|) dx

)

= J1 + J2.

Note that

sup
t>0

1
Ψ(B(1/t))

· 1
tn/(n−α)

≤ C,(6.2)

since

1
Ψ(B(1/t))

· 1
tn/(n−α)

=
1[

log(e+1/t) log
(
e + [(1/t) log(e + 1/t)]α/n

)] n
n−α

is continuous and has finite limits as t → 0, t → ∞ (0 and 1 respectively).
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Furthermore, since t ≤ B(t) and tn/(n−α) ≤ Ψ(t), we have that(∫
Rn

‖b‖BMO |f(x)| dx

)n/(n−α)

≤Ψ
(∫

Rn

B (‖b‖BMO |f(x)|) dx

)
.(6.3)

From (6.2) and (6.3) we get that

J1 + J2 ≤ C Ψ
(∫

Rn

B (‖b‖BMO |f(x)|) dx

)
,

which proves (6.1).
We will now show that (1.1) is sharp, in the sense that if we can

replace Ψ by Ψ0, then for all t > 0, Ψ(t/γ) ≤ KΨ0(t). To do so, we
will adapt the argument in Remark 3.15, which explored sharpness in
Theorem 3.3. Let n = 1 and 0 < α < 1, fix x > 0 and let N be such that
0 < N < x; the exact value of N will be chosen below. Let f = χ[0,N ].

First, we show that there is a constant K, depending only on α such
that for all y > N ,

Mα,Bf(y) ≤ Kyα

B−1(y/N)
.(6.4)

(As we showed in Remark 3.15, the opposite inequality holds with con-
stant 1.) To see this, note that since f is a non-increasing function
on [0,∞),

Mα,Bf(y) = sup
z≥y

zα‖f‖B,[0,z] = sup
z≥y

zα

B−1(z/N)
.

Therefore, it will suffice to show that there exists K > 0, such that if
z ≥ y,

zα

B−1(z/N)
≤ Kyα

B−1(y/N)
.

Let H(t) = tα/B−1(t/N); since for all t > 0, B−1(t) ≈ t/ log(e + t), we
have that

H(z)
H(y)

≤ C
(z/N)α−1 log(e + z/N)
(y/N)α−1 log(e + y/N)

.

The function log(e + t)/t1−α is either decreasing or has a unique local
maximum on [1,∞); it follows, therefore, that the righthand term is dom-
inated by a constant which depends only on α. This establishes (6.4).

Now let b(y) = log(e + y/N)χ(N,∞)(y). Since the BMO norm is
dilation invariant, the BMO norm of b does not depend on N . For all z,
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Iα(bf)(z) = 0, so for all y such that N < y < x,

|[b, Iα]f(y)| = b(y)Iαf(y)

= log(e + y/N)
∫ N

0

dz

|z − y|1−α

≥ N log(e + y/N)
y1−α

≥ cyα

B−1(y/N)
;

by inequality (6.4),

≥ cMα,Bf(y)

>
cxα

B−1(x/N)
.

The constant c depends only on α.
We now consider two cases, depending on whether x is large or

small. Suppose first that x is such that cxα > B−1(2), and let N =
x/B(cxα) < x/2. Then the above inequality shows that for all y ∈
[x/2, x], [b, Iα]f(y) > 1. Hence, if inequality (1.1) holds for some in-
creasing function Ψ0 then we have that

x/2 ≤ |{y ∈ R : |[b, Iα]f(y)| > 1}|

≤ C Ψ0

(∫
R

B(‖b‖BMOf(y)) dy

)

≤ C Ψ0(NB(‖b‖BMO)).

On the other hand, there is a constant γ, depending only on α, such
that

B(‖b‖BMO)N =
B(‖b‖BMO)x

B(cxα)
≤ γΦ(c1/αx),

where Φ = Ψ−1. Therefore, if set the righthand side equal to t and solve
for x, we get that

c1/αx = Ψ(t/γ).

If we combine this with the inequality above we get that for all t suffi-
ciently large, Ψ(t/γ) ≤ KΨ0(t).

We will now show that the same inequality holds for all t sufficiently
small. Fix x > 0 small and let 0 < N < x/2; the exact value of N will be
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fixed below. Then, by the above argument we have that if N < y < x,

[b, Iα]f(y) ≥ cxα

B−1(x/N)
.

Therefore, if we fix u such that

2u =
cxα

B−1(x/N)
,

then arguing as above and as in Remark 3.15, we have that

x/2 ≤ C Ψ0

(∫
R

B

(
‖b‖BMO

f(y)
u

)
dy

)

= C Ψ0

(
NB

(
‖b‖BMO

2B−1(x/N)
cxα

))
.

Again arguing as in Remark 3.15 we can choose N sufficiently small such
that

≤ C Ψ0(CB(‖b‖BMO)x1−α)

≤ C Ψ0(CB(‖b‖BMO)Φ(x)).

We can now argue as we did above to get that for all t sufficiently small,
Ψ(t/γ) ≤ KΨ0(t). This completes our proof.

7. Proof of Theorem 1.6 and Construction of
Example 1.8

Our proof of Theorem 1.6 requires two facts which we give as a lemma.

Lemma 7.1. The following are true:
(1) If w ∈ Ap for some p > 1, then for all q > 0, there exists a

constant Cq such that∫
Rn

(Mdf)q w dx ≤ Cq

∫
Rn

(M#f)q w dx.

(2) Given α, 0 < α < n, p, 1 < p < n/α, let 1/q = 1/p − α/n. Then
if w ∈ Apq,(∫

Rn

|Iαf |q wq dx

)1/q

≤ C

(∫
Rn

|f |p wp dx

)1/p

.

The first inequality is due to Journé [15]; also see [10, p. 144]. The
second is due to Muckenhoupt and Wheeden [18].
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Proof of Theorem 1.6: Fix a function f ; as in the proof of Theorem 1.1,
we may assume without loss of generality that f is non-negative. Now,
arguing as we did in Section 4 in the proof of Corollary 4.4, if w ∈ Apq

then wq ∈ Ar, r = 1+ q/p′. Therefore, by Lemma 7.1 and Corollary 4.4,

(∫
Rn

|[b, Iα]f |q wq dx

)1/q

≤
(∫

Rn

Md([b, Iα]f)q wq dx

)1/q

≤ C

(∫
Rn

M#([b, Iα]f)q wq dx

)1/q

≤ C‖b‖BMO

(∫
Rn

(Iαf)q wq dx

)1/q

+ C‖b‖BMO

(∫
Rn

(Mα,Bf)q wq dx

)1/q

≤ C‖b‖BMO

(∫
Rn

fp wp dx

)1/p

.

Construction of Example 1.8: For clarity, we let α = 1/2; the following
example can be readily adapted to any α, 0 < α < 1. We will show that
there exists a function w such that wq ∈ A1 and such that

wq({x ∈ R : Mα,Bf(x) > t}) ≤ C Ψ
(∫

R

B

( |f(x)|
t

)
w(x) dx

)
(7.1)

B(t) = t log(e + t), Ψ(t) = t2 log(e + t1/2)2, fails to hold with a uniform
constant for all f . For then an argument almost identical to that at the
end of the proof of Theorem 1.1 shows that (1.5) cannot hold with a
uniform constant.

The desired function w is w(x) = |x|−1/4. Then wq(x) = w(x)2 =
|x|−1/2 ∈ A1. (Cf. [10, p. 141].) For N ≥ 2, let Q = [N4 − N, N4]. Fix
x0 > N such that

N =
x0

B(xα
0 )

=
x

1/2
0

log(e + x
1/2
0 )

.

(Since Θ(t) = t1/2/ log(e + t1/2) is increasing, we can always find such
an x0.) Let Q̄ = [N4 − N, N4 − N + x0]. Now define f = χQ; since f
is the translation of χ[0,N ], the function which appears in Remark 3.15,
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the argument given there shows that if y ∈ Q̄, Mα,Bf(y) ≥ 1. Hence,

Q̄ ⊂ {x ∈ R : Mα,Bf(x) > 1/2}.

Let t = 1/2 in (7.1); we estimate each side in turn. The righthand
side is a constant independent of N ≥ 2:

Ψ
(∫

R

B(2|f(x)|) w(x) dx

)
= Ψ

(∫
Q

B(2)x−1/4 dx

)

≤ Ψ
(

B(2)N
(N4 − N)1/4

)

≤ C.

The lefthand side of (7.1) is unbounded. Since x0 = Θ−1(N) ≈
N2 log(e + N1/2)2, there exists c > 0 such that

wq({x ∈ R : Mα,Bf(x) > 1/2}) ≥ wq(Q̄)

≥
∫ N4+cN2 log(e+N1/2)2

N4
x−1/2 dx

≥ cN2 log(e + N1/2)2

(N4 + cN2 log(e + N1/2)2)1/2

≥ c log(e + N1/2)2.

Therefore, as N tends to infinity, (7.1) cannot hold with a uniform
constant and we are done.
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Francia (El Escorial, 1989), Publ. Mat. 35(1) (1991), 209–235.

[27] A. Torchinsky, “Real-variable methods in harmonic analysis”,
Pure and Applied Mathematics 123, Academic Press, Inc., Orlando,
FL, 1986.

D. Cruz-Uribe, SFO:
Department of Mathematics
Trinity College
Hartford, CT 06106-3100
U.S.A.
E-mail address: david.cruzuribe@mail.trincoll.edu

A. Fiorenza:
Dipartimento di Costruzioni e Metodi Matematici in Architettura
Universitá di Napoli
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