Publ. Mat. 47 (2003), 133-141

ON THE GEOMETRIC STRUCTURE OF THE LIMIT
SET OF CONFORMAL ITERATED FUNCTION
SYSTEMS

ANTTI KAENMAKI

Abstract

We consider infinite conformal function systems on R¢. We study
the geometric structure of the limit set of such systems. Suppose
this limit set intersects some I-dimensional C!-submanifold with
positive Hausdorff ¢-dimensional measure, where 0 < I < d and t
is the Hausdorff dimension of the limit set. We then show that
the closure of the limit set belongs to some [-dimensional affine
subspace or geometric sphere whenever d exceeds 2 and analytic
curve if d equals 2.

1. Introduction

We work on the setting introduced by Mauldin and Urbaiiski in [6].
There they consider uniformly contractive countable collections of con-
formal injections defined on some open, bounded and connected set 2 C
R9. Tt is needed that there exists some compact set X C Q with non-
empty interior such that each contraction maps this set to some subset of
itself. For this kind of setting, even without the conformality assumption,
there is always so called limit set associated. We denote it with F and we
are particularly interested in the properties of this set. The conformality
assumption is basically needed for good behavior of the derivatives. As
usual, open set condition (OSC), introduced by Moran in [8], is used for
getting decent separation for those previously mentioned subsets of X.
We also need bounded distortion property (BDP), which says that the
value of the norm of derivatives cannot vary too much. This is actually
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just a consequence of our previous assumptions. And finally the bound-
ary of X is assumed to be “smooth” enough. For example all convex sets
are like that. From this property one may verify that the limit set is a
Borel set. In the finite case it is always compact. Together with OSC it
also guarantees some properties for the natural Borel regular probability
measure, so called conformal measure, associated to this set.

This is one way to generalize similar kind of situation for finite collec-
tion of similitudes; the setting introduced by Hutchinson in [2]. Mattila
proved in [3] for the limit set F of this kind of setting the following re-
sult: Either F lies on an [-dimensional affine subspace or H/(ENM) =0
for every [-dimensional C'-submanifold M C R¢. Here 0 < [ < d and
H! denotes the t-dimensional Hausdorff measure, where ¢ = dimpy (FE),
the Hausdorff dimension of the set E. The main result in this note is a
generalization for this. Our approach is based on an extensive use of tan-
gents. Before going into more detailed preliminaries we should mention
that Springer has proved in [10] similar result in the plane and Mauldin,
Mayer and Urbanski have studied similar behavior for connected limit
sets in [5] and [7].

As usual, let I be a countable set with at least two elements. Put
I = o, I" and I = IN = {(i1,4a,...) : i; € I for j € N}. Thus,
if i € I* there is k € N such that i = (i1,...,ix), where i; € I for all
j=1,...,k. We call this k as the length of i and we denote |i| = k. If
i € I*® we denote |i| = co. For i € I* UTI* we put il = (i1,...,k)
whenever 1 < k < |i].

Choose ©Q to be open, bounded and connected set on R?. Now for
each i € I we define an injective mapping ¢;: 2 — £ such that it is
contractive, that is, there exists 0 < s; < 1 such that

(1.1) lpi(z) — pi(y)] < silz —yl

whenever x,y € Q. A mapping with equality in (1.1) is called simil-
itude. We assume also that ¢; is conformal, that is, |@}|? = |J,
where J stands for normal Jacobian and the norm in the left side is
just the normal “sup-norm” for linear mappings. Here the derivative
exists H%almost all points using Rademacher’s theorem. This defin-
ition for conformality is usually better known as 1-quasiconformality;
see [12]. Note that a conformal mapping is always C*° by [9, Theo-
rem 4.1] of Reshetnyak. We assume also that there exists a compact
set X with int(X) # @ such that ¢;(X) C X for every i € I. The

use of the bounded set {2 here is essential, since conformal mappings
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contractive in whole R? are similitudes, as d exceeds 2. We call a col-
lection {p; : i € I} as conformal iterated function system (CIFS) if the
following conditions (1)—(4) are satisfied:

(1) Mappings ¢; are uniformly contractive, that is, s := sup;c; s; < 1.
Denoting ¢; = ¢;, 0+ -0, for each i € I*, we get from this property
that for every n € N
(1.2) d(py, (X)) < 5™ d(X)

whenever i € I*°. Here d means the diameter of a given set. Now we
may define a mapping 7: I*° — X such that

(1.3) {r(1)} = [ e1.(X)
n=1
We set

(1.4) E=n(I*)= J ) ¢u.(X)

iel*>* n=1
and we call this set as the limit set of the corresponding CIFS. Our
aim is to study this set. Observe that E satisfies the natural invariance

equality, F' = {J,c; ¢i(E).
(2) Bounded distortion property (BDP), that is, there exists K > 1
such that |} (z)| < K|gi(y)| for every i € I* and z,y € Q.

For a finite collection of mappings, this is just a consequence of smooth-
ness (see [6, Lemma 2.2]) and in the infinite case it follows from Koebe’s
distortion theorem as d equals 2 and [11, Theorem 1.1] whenever d ex-
ceeds 2. Using these assumptions we may prove that each mapping ¢;
is a diffeomorphism and that there exists D > 1 such that

d(@i(E))

[l
for every i € I*. Here ||¢}|| = sup,cq ¢} (2)].

(3) Open set condition (OSC) holds for int(X), that is, ¢; (int(X)) N

¢; (int(X)) = @ for every i # j.
(4) There exists o > 0 such that
HE(B(x,r) Nint(X

(1.6) inf inf (B, r) Nint(X))
z€0X 0<r<rg Hd(B(ZII, 7‘))

where X is the boundary of the set X.

(1.5) Dl <

<D

>0,
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We should mention that in [6], instead of assumption (4), it was used
so called cone condition, which says that for each boundary point x
there exists some “cone” in the interior of X with vertex . However,
assumption (4) is sufficient for our setting, as was remarked also in [6].
Using these assumptions it follows that E is a Borel set. Suppose there
exists a Borel regular probability measure m on E such that

(L.7) m(ps(4)) = /A oL (@)[f dim(z),

where t = dimy(E), A C X is a Borel set and 1 € I*. Then OSC and
assumption (4) are crucial to derive that m(p;(X) N¢;(X)) = 0 for
every i # j (see [6, Section 3] for details). If this measure exists, we call
it a t-conformal measure and the corresponding CIFS regular. Observe
that finite CIFS’s are always regular (see [6, Section 3] for details). If
we consider measure theoretical Jacobian J,,, for function ¢; defined as

. m(@l(B(xaT)))
1.8 T s — lim —2AT )
for each point = € E, we notice using conformality of ¢; and (1.7)

_ -1 _ _ i
that Jngps ' (03(2)) = (Jmes(2)) " = @l (@)t = | (¢5?) (#1())]" for
m-almost all z € E and for all i € I* (recall also [4, Theorem 2.12]).
Thus for example, using BDP

m(prt(4)) = /A (oY) (@) dm(z)

< [l )'l'm(A) < K*[J¢4||~"m(A)
whenever A C ;(X) is Borel. Furthermore by setting ®|[,,x)(z) =

(1.9)

@7 H(x) for all i € I we get at m-almost every point defined mapping
®: U,erpi(X) — X for which

(1.10) m(®(A)) :/A|<I>’(x)|tdm(x).

In fact, m is ergodic and equivalent to some invariant (with respect to
the function ®) measure (see [6, Section 3] for details). In the finite case,
the t-conformal measure is Ahlfors reqular, that is, there exists C > 1
such that

m(B(x, T))
rt
for all x € E and r > 0 small enough (see [6, Lemma 3.14]).

Let 0 < [ < d be an integer and G(d,[) be the collection of all I-di-
mensional subspaces of R?. We denote by Py the orthogonal projection

(1.11) c < <C
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onto V € G(d,l) and we put Qy = Py, ., where V' is the orthogonal
complement of V. For x € RY we denote V +z = {v+z:v eV} If
a€RYV €G(d,]) and 0 < 6 < 1 we set

X(a,V,0) ={x e R : |Qv (2 — a)| < Vi|x — a|}
(1.12)
={z eR¥:d(z,V +a) < Vi|z — al}.

Note that the closure of X(a,V,d) equals to the complement of
X(a, V1,1 —4). We say that V is a (t,1)-tangent plane for E at a
if

B(a,r)\X(a,V,d
(1.13) fim (Bl T)\t (@.V.0) _,
.0 T
for all 0 < 4 < 1. Furthermore we say that V' is a strong l-tangent plane
for given set A C R? at a if for every 0 < 6§ < 1 there exists r > 0 such

that
(1.14) AN B(a,r) C X(a,V,9).

For example, an [-dimensional C'-submanifold has a strong [-tangent
plane at all of it’s points. Observe that these two tangents are exactly
the same for E in the case of Ahlfors regular m. However, we shall not
need this fact here. Recall also that t-dimensional upper density of a
measure p at a is defined as

n(B(a,r)) .

t

(1.15) 0* (i, a) = lim sup
7\,0 r

2. Main result

The main result of this note is the following theorem.

Theorem 2.1. Suppose CIFS is given, t = dimgy(F) and 0 < I < d.
Then either H'(E N M) = 0 for every I-dimensional C'-submanifold
M c R? or the closure of E is contained in some l-dimensional affine
subspace or l-dimensional geometric sphere whenever d exceeds 2 and
analytic curve if d equals 2.

Using this theorem we are able to find minimal amount of essential
directions for where the set E is spread out. It also follows that if ¢
is an integer, then the limit set is always either t-rectifiable or purely
t-unrectifiable. See [4] for definitions and properties for these concepts.
Provided that d exceeds 2, it is also easy to see that if at least one of our
conformal mappings is similitude, the latter case of the theorem concerns
only affine subspaces.
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The proof is divided into three parts. We start with an easy lemma
which provides a useful dichotomy for our purposes.

Lemma 2.2. Suppose CIFS is given, t = dimpy (F) and 0 < [ < d. Then
either HY(E N M) = 0 for every l-dimensional C*-submanifold M C R?
or the system is reqular and at least one point of E has a (t,1)-tangent
plane.

Proof: Assume H!'(E N M) > 0 for some M. Since H'(E) < oo, the
regularity of the system is guaranteed by [6, Theorem 4.17]. From [1,
2.10.19(4)] of Federer we get that ©* (m| g\ s, 2) = 0 for H'-almost every
x € ENM. Let a € EN M be such point and V € G(d,l) be a strong
[-tangent plane for M at a. This means that for any given 0 < § < 1
there exists r5 > 0 such that
(2.1) Mn B(a,r) C X(a,V,9)
whenever 7 < rs. Thus for every 0 < § < 1
B(a,r)\X(a,V,d B(a, MnB(a,

limsupm( (a T)\t (a )) glimsupm( (a T)\( n (a 7")))

(2.2) ™0 r N0 r

=0 (m|p\m,a) =0
and V is a (¢,1)-tangent plane for E at a. O

With this dichotomy in mind it is enough to study what happens if
one point of E has a (¢,)-tangent plane.

Theorem 2.3. Suppose CIFS is regular, t = dimy (F) and 0 < I < d.
If one point of E has a (t,1)-tangent plane then m-almost all of E is
contained in the set f(V'), where V € G(d,l) and f is some conformal

mapping.

Proof: Suppose a € FE has a (t,l)-tangent plane V € G(d,l) and let
e > 0. Now for each j € N there exists r;¢ > 0 such that

(2.3) m(B(a,m)\X (a,V, %)) <ert

whenever r < rjo. Let 1 € I* be such that 7(i) = a. For each j € N
choose some fixed radius r; < r; o and n; € N such that

Pl (E) C B(a,rj) and
(2.9 ou., (E\B(@,3) # 2.
Since trivially a € ), (E) for all n, we have

(2.5) %J < d((pi‘n]_ (E)) <2rj.
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For each j define mapping t; : R? — R such that ¢;(x) = H(p’il ||t (z—
nj
a) + a. Then

(26) U (X(@ V. 1) = X(a. V. )
and
(2.7) [95(2) = ;)| = Ik, [ |z =yl

for every x,y € RZ. Now Fj :=1jo¢p;), isclearly a conformal mapping
']

from  to R?. Since for arbitrary z,y € Q

K=o —yl < llgyy, 7M1, VI e —

i‘nj

(2.8) < lleyy,, 17 et (@) = a,, W)

= |Fj(2) = Fj(y)| < |z — 9]

using BDP and mean value theorem, we notice that F} is bi-Lipschitz
with constants K1 and 1 for every j € N. Using now Ascoli-Arzela’s
theorem we shall find an uniformly converging subsequence, say, Fj;, — F,
as k — oo. According to [12, Corollaries 37.3 and 13.3] of Viisila we
notice that F~! is conformal. Since

m(B\E; (X (0, V2 3))) =m (g3 (o, (BN (a1 1)

< K|l [17m(es,, (B\X (a,V, )
(2.9) '
<(DEK)'d(py), (B)'m(B(a,r;)\X(a, V. 1))

<(2DK)'r;ter}
for every j € N using (1.9), (1.5), (2.4), (2.3) and (2.5), we conclude
(2.10) m(E\F~"(V +a)) < (2DK)'e.
We finish the proof by letting € N\ 0. O

Notice that the inclusion in the previous theorem holds for the closure
of E, since any set of full m-measure is dense in E and any [-dimensional
C'-submanifold is closed in R?. Now the main theorem follows as a corol-
lary just by recalling that conformal mappings are complex analytic in
the plane and by Liouville’s theorem Mobius transformations elsewhere
(see [9, Theorem 4.1] of Reshetnyak).
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Remark. The proof of the main theorem was found in January 01 and
it was supposed to be part of the author’s thesis. Since recently there
has been some interest for similar kind of questions (particularly [7]), it
was decided to be published independently.
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many useful discussions during the preparation of this note and the ref-
eree for pointing out couple of excellent remarks.
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