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WEIGHTED TWO-PARAMETER BERGMAN SPACE
INEQUALITIES

J. MICHAEL WILSON

Abstract

For f, a function defined on R% x R%2, take u to be its biharmonic
extension into Riﬁ_l X RiTH. In this paper we prove strong
sufficient conditions on measures p and weights v such that the
inequality

1/q

() [V1Vaul? du(z1, x2,y1,y2)
Rd1+1 XRd2+1

1/p
< (/ f|pvdx>
R%1 xR92

will hold for all f in a reasonable test class, for 1 < p <2 < g < oo.
Our result generalizes earlier work by R. L. Wheeden and the
author on one-parameter harmonic extensions. We also obtain
sufficient conditions for analogues of () to hold when the entries
of V1Vau are replaced by more general convolutions.

1. Introduction

In an earlier paper [WhWIi], Richard L. Wheeden and the author
studied the following weighted norm inequality for the Poisson inte-
gral u(z,y) (r € R%, y > 0) of a function f:

a 1/p
wny ([ veenraes) < ([ ipea)

In this inequality, V denotes the full gradient in Rf‘l: V = (9/0x1,...,
0/0xq4,0/0y); le_H is the usual upper half space R? x (0,00); u is a
positive Borel measure defined on Rfrl; and v is a non-negative function
in L. (R%). We studied this inequality primarily for p and ¢ in the
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range 1 < p < ¢ < co. For the case in which ¢ > 2, we proved sufficient
conditions on p and v (depending on p, ¢, and d) for the inequality (1.1)
to hold for all f € Uj<,<oo L"(RY, dz).

The argument in [WhWi] began with the observation that (1.1) is
a special case of a more general inequality. Let h be a smooth function
with decay at infinity (precisely how much decay will be specified later),
defined on R%. For y > 0, set hy(x) = y~%h(x/y), the usual L'-dilation.
If we set u(x,y) = f * hy(z), then any component of Vu(x,y) can be
written as f x (y~'¢,)(z), where ¢ is smooth, has some decay, and in
addition satisfies

(1.2) ¢dz = 0.
R4

This said, we may now shift our attention to an arbitrary smooth ¢
with decay (how much, again, to be specified presently), and which sat-
isfies (1.2), and we may ask: What conditions on p and v ensure that

(13) ( [RE <y1¢y><x>|wu<x,y>> " ([ isreas)”

holds for all f in our test class?

In this paper, we are concerned with two-parameter generalizations
of (1.1) and (1.3), and especially the latter. What does “two-parameter”
mean? Let R = R4 xR%. Fori = 1,2, let ¢; be smooth functions with
good decay, defined on R%, and which satisfy fRdi ¢;dx; = 0. In our
two-parameter problem, we look for sufficient conditions on measures u,
defined on RTH X Riﬁl, and non-negative weights v € L{ (R% xR%),
which are sufficient for the inequality

1/q
(1'4) (Ad1+1de2+l |f* [(y;1(¢1)y1)(y51(¢2)y2)} (1‘17 x2)|q d/‘(xv y))

1/p
< </ |f|Pv dx)
R4 xR42

to hold for all f. (Here we are using ‘(x,y)’ to stand for ‘(z1, z2, y1, y2).")
When we write (¢;)y,(:), we mean, of course, y; “¢;(zi/y;). In the
case where the ¢;’s are the kernels that “generate” the components of
the Poisson kernel (in their respective upper half spaces!), such a result
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would yield a sufficient condition for the inequality
1/q
1.5 1d
(1.5) </le“><Rdf“ |V1Vaul M($17$27y17y2)>

1/p
<([,  ureas)
R41 x Rd2

where v is f’s biharmonic extension and V; denotes the full gradient in
the (x;,y;) variables. Thus, V1Vau is a (d; + 1) x (dz + 1) matrix of
functions, and |V1Vau| can be taken to be the square root of the sum
of the squares of its entries.

In this paper we prove sufficient conditions for inequality (1.4), valid
for 1 < p <2 < g < oo and for a certain class of ¢;’s. This class includes
the kernels that generate the z-derivatives of the Poisson kernels, but not,
alas, the y-derivatives. The reason for this troubling gap is that, while
the convolution kernels for the z-derivatives of the d-dimensional Pois-
son kernel decay to order (1 + |z|)~¢~2, the corresponding y-derivative
kernel only decays like (1 + |z[)~¢~!. Unfortunately, our general one-
parameter result (Theorem 1.1 below) requires decay like (1 + |z])~¢=2.
In [WhWi], the authors treated the y-derivative by means a trick com-
bining harmonicity and the Poisson kernel’s semigroup property. The
whole trick is given on [WhWi, pp. 955-959], but in a nutshell it’s
this. Our duality argument (which works so well with the z-derivatives)
requires that we obtain good Littlewood-Paley estimates for a certain
function T'g(x), expressed as a weighted integral of 0P, (x — t)/0y over
(t,y) € Rf‘l. For the z-derivatives, the corresponding integrals involved
OPy(x —t)/0x;, and we got our Littlewood-Paley estimates by convolv-
ing with ), (-), where ¢ was a smooth, compactly-supported function
with cancellation. The extra decay in the OP,(z —t)/dz;’s let us bound
the resulting integrals nicely. Lacking that decay for the y-derivative,
R. L. Wheeden and the author convolved T'g with 0P,(-)/0y. By har-
monicity and the semigroup property, the resulting integral could be
expressed in terms of second partials in the x derivatives —for whose
kernels we do have good bounds. In our final section we drag this addi-
tional argument in to obtain a sufficient (but not so good) condition for
the y-derivatives in the bi-space setting as well.

Before stating our main theorem, we should state the one-parameter
result from [WhWI]] that motivated it. Even this earlier result is fairly
technical, and the two-parameter result is, in our opinion, liable to be
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completely indigestible to a reader who has not seen the one-parameter
version first.

The one-parameter result.

As is traditional in this business, we begin with cubes Q@ C R*. We
use £(Q) to denote the sidelength of @, and |Q] is its Lebesgue measure.
We denote the Euclidean center of Q) by zg. By @ we mean the set

Q={(zy) eR{ 0 €Q, 0<y <UQ)},
the so-called “Carleson box” sitting above Q. We use T(Q) to denote
the “top half” of Q:

T(Q) ={(x,y) e R 12 € Q, £(Q)/2 <y < UQ)}-

One more definition: If n > 0, o € L{ (R?) is a non-negative weight,
and Q C R% is a cube, we set

(1.6) U*(Q,n)E/Qa(x) log"(e + o(x)/oq) dz,

where og = (1/|Q|)fQ o, o’s average over (). Equation (1.6) defines
an Orlicz-type norm that shows up in weighted Littlewood-Paley the-
ory [W1], [W2], and whose properties underlie the results in [WhWi]
as well as those of the present paper.

Theorem 1.1. Let m be a non-negative integer. Let ¢ € C°(RY) have
[¢=0. Let ¢ also satisfy |p(z)| < (14 |z])~972"™ and |Veé(z)| < (1+
|z[)=4=3=™ for all x € RY. Let v € LL (R?) be a non-negative weight
and let i be a positive Borel measure on Ri“. Let1 <p<2<g<oo.
Set o = v'=P', where p' is the dual exponent to p. Letn > p'/2. There
is a positive constant C = C(n,p,q,d, m) such that the following is true:
If there exists a weight w satisfying

(L.7) o (Qu) < /Q w

and

P4 (o 4| — wlz 1/p
(18) WT@)" ( [ o8 e s o)/t dx)

(€@) + 1w — wQl) @2+ mw /7

< CZ(Q)d-i-l—(d-‘rQ-‘rm)/q’
for all cubes Q C R%, then (1.3) holds for all f € Uj<,<ooL"(RY, d2).

Remark. The reader can see what we mean by indigestibility.
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Remark. The theorem, as stated in [WhWi], actually gives a sufficient
condition for the range 1 < p < ¢ < oo, with ¢ > 2. We have stated
this limited form of the theorem to make it more closely resemble The-
orem 1.3 below. The restriction in Theorem 1.3 comes about because
our method of proof, in two parameters, requires p’ > 2. This is re-
lated to another difference between Theorem 1.1 and the corresponding
result in [WhWi|. The theorem in [WhWi] does not contain the hy-
pothesis (1.7). Rather, it speaks of pairs of weights (‘p’-pairs’) (o, w)
for which w also satisfies (1.8). However, as is pointed out in [WhWi,
p. 949] and in [W1], a pair that satisfies (1.7) s a p/-pair. Unfortu-
nately, we have no good characterization of p’-pairs (for p’ # 2) in the
two-parameter setting. We express Theorem 1.1 in this fashion in order
to make its statement look more like those of Theorem 1.3 and Theo-
rem 5.3 (see below).

Remark. If o belongs to the Muckenhoupt Ao, class, then (1.7) holds for
w = co, where ¢ depends on 7, d, and the A, “box specs” of ¢. In that
case, (1.8) amounts to saying that y and ¢ cannot put too much mass
too near any cube @. Since ¢ is big when v is small, this is a quantitative
way of saying that v cannot be too small near points where p is “large”.
Theorem 1.1 is a restatement of this fact for v’s whose corresponding o’s
are not in As.

The two-parameter result.

We begin here with rectangles R = Q)1 X ()2, where the @; are cubes
in R%. We use |R| to mean the Lebesgue measure of R. We set T'(R) =
T(Q1) x T(Q2) and R = Q1 x Qs, where T(Q;) and Q; are as defined
above.

We will be using the next definition so often that it merits its own
formal statement:

Definition 1.2. Let > 0 be a number and let 0 € Li (R% x R%)
be a non-negative weight. If R ¢ R% x R% is rectangle, we set

U(Rm)z/Ra(m)log"(e—ﬁ—a(x)/aR)dx,

where o = (1/|R|) [, o denotes o’s average over R.

Remark. The only difference between Definition 1.2 and the one given
earlier is that Definition 1.2 applies to rectangles.

Our main result, which we prove in Section 4, is:
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Theorem 1.3. Let my and mo be non-negative integers. For i = 1,2,
let ¢; € C°(R%) have [¢; = 0. Let the ¢; also satisfy |p;(x;)| <
(1 + |z;) =427 and | V()| < (14 |o5)~4=3=™ for all x; € R%.
Let v € Llloc(Rd) be a non-negative weight and let p be a positive Borel
measure on RT T x R‘f“. Let1 <p<2<q<oo. Seto=uv"",
where p' is the dual exponent to p. Let n > p' and let € > 0. There is a
positive constant C,
C= C(na €D, q, dlv d2a my, m2)7

such that the following is true: If there exists a weight w satisfying

(1.9) o(R,m) < /R w

and
1

T 1/Q/
w(T(R)) (Rdldez[@(Ql)”l_%)(d1+2+m1—e)p//q'

1
(U(Q2)+ |2 —20,|) (d2t2tma—e)p’/a’

X w(x)] dx) "

S Cg(Ql)dl-‘rl—(dl—i-?—i-ml —e)/q'z(Qz)d2+l—(d2+2+m2—e)/q/

X

(1.10)

for all rectangles R=Q1xQa, then (1.4) holds for all f€U1<,< oo L'(R4dz).

Remark. Note the absence of log’s in the numerator and the extra €’s in
the denominator of the two-parameter condition (1.10).

The rest of the paper is laid out as follows. In Section 2 we state and
prove certain results from weighted Littlewood-Paley theory which we
will need in the proof of Theorem 1.3. In Section 3 we state a technical
result from [WhWI], concerning convolutions of smooth functions with
specified amounts of decay and cancellation, and we apply this result to
prove a lemma (Lemma 3.2). Lemma 3.2 is a pointwise substitute for
a series of integral inequalities used in [WhWI{] to prove Theorem 1.1.
This pointwise result is part of what lets us prove our two-parameter
theorem without having a full-blooded, two-parameter weighted-norm
theory of the Littlewood-Paley square function; it is also where the ex-
tra €’s in (1.10) will come from. In Section 4 we prove Theorem 1.3.
In Section 5 we state and prove a sufficiency result for the biharmonic
Poisson kernel.
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2. Littlewood-Paley theory

The basis of all of our arguments is the Calderén-Torchinsky decom-
position lemma. Let ¢; (i = 1,2) be real, radial, C*> functions defined
on R% that satisfy:

1) fl/Ji =0
2) supp s C {a; : || < 1} € R%;
3) for any & € R% \ {0},

0 d
/ Wi(tf)|27t =1
0

For y; > 0, we let (v;)y, (z:) = yi =% (z:/y:). If y1 and yo are positive
numbers and z = (z1,22) € R4 x R%, we define y = (y1,y2) and
set Wy(x) = (¥1)y, (@1) - (¥2)y,(22). The Calderén-Torchinsky lemma
consists in the following observation: if f € L2(R% x R9), then, by
Fourier inversion,

dty dto dy; d
(2.1) f(x):Ld1+1 Rdﬁl(f*\l/y(t)).\l!y(m—t)w

Y1Yy2

as a distribution [CF.

It is easy to show that, for f € L?, the (vector-valued) integral (2.1)
actually converges to f in the L2 norm. If f is smooth and decays rapidly
at infinity, then the integral (2.1) converges uniformly and pointwise, and
can be cut up and rearranged at will. We will use this freedom in the
following way. Let R = Q1 x Q2 € R% x R% be a double-dyadic
rectangle, that is, a Cartesian product of dyadic cubes @Q; € R%, and
let T(R) = T(Q1) x T(Q2) be the corresponding “top half” of its two-
parameter Carleson box, as defined above. (It is important to note that
the family {T'(R)}r tiles RTH X R‘_if“.) With suitable (and quite
weak) hypotheses on f, we may re-write the integral formula (2.1) as a
sum:

f= Z/ (f * 0 ( %(x—ww:gmx)

Y1Yy2

Each of these functions by has support contained in R (the concentric
triple of R), is smooth (it inherits this from the v;’s), and has cancella-
tion in the z; and x5 directions; that is to say, for each fixed 27 € R%,

/ b, ) dt = 0,
Rd2
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and analogously for each fixed 73 € R%; this cancellation property is
also inherited from the ,;’s

The meaning of the Calderén-Torchinsky lemma is that any (essen-
tially arbitrary) function can be written as a sum of smooth, compactly
supported functions that have cancellation. We can go further. Let us
say that a function ar(z) is adapted to a rectangle R = Q1 X Q2 C
R% x R% if:

a) suppagr C R;

=3

)
) ag is infinitely differentiable;

) for each % € R™, ||Va,ar (2t )|leo < U(Q2) |R|~/2;
) for each 3 € R%, || Va,ar(-,23)|le < £(Q1) Y| R|~1/2;
) )
)
)

- O &0

(-
IV, Vasarlloo < AQ1) 7 (Q2 1|R|71/25
for each 7 € R% , Jras ar(F, 1) dt = 0;
for each 3 € R®, [p., ag(t,z3)dt =0.
Each of the functions br obtained above can be expressed as Azag,

where each ap is adapted to R, and the X i's are complex numbers
satisfying:

Y1Y2

1/2
|A~|<c</ 7 (”27@1&2@1@2)
Rl = I
T(R)

for some constant C' that depends on ¥ (which, recall, depends on d
and dg) but not on f.

Let us say that a function f is in standard form if there is a finite
family, G, of triples of double-dyadic rectangles, such that

(2) = > Arar(z)

RegG

where the Ag’s are real numbers and each ag is adapted to R. (Notice
that the ‘tildes’ have been “absorbed” into the R’s.)

We will use Littlewood-Paley theory to bound certain functions in
standard form on weighted spaces. We will measure the “badness” of
our weights via the Orlicz-type norm o(R,7n) given in Definition 1.2.
When 7 > 0, the ratio o(R,7)/ [, 0 measures the extent to which o’s
mass gets concentrated on a small part of R (that is, a subset with small
Lebesgue measure compared to |R|). In particular, the ratio is uniformly
bounded (for any n > 0) if and only if o is a two-parameter A, weight.

The proof of Theorem 1.3 depends on this result from [W2]:
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Theorem 2.1. Let > 2. There is a constant C = C(n,dy,ds) so that
the following holds: If o € LL _(R% x R%) is any non-negative weight
and f =) peg ArAR is any function in standard form, then

20dx < | .
/Rdldez‘f'” oy Br ‘Rl R.)

Reg

Theorem 2.1 has an immediate consequence. For f =>" Reg ARGR I

standard form, set
1/2
-( |)\R| .
R

Reg

(This is one of many variants of the Lusin square function.) The next
corollary follows by rearranging sums.

Corollary 2.2. Let ¢ and w be weights such that, for some n > 2,
o(R,n) < [pw for all rectangles R C R x R%. For any f in standard
form,

/ |f|o da < C(nvdlde)/ S2(fyw da.
R xR92 RA1 xRd2

In the one-parameter setting, both Theorem 2.1 and Corollary 2.2
have LP analogues for p # 2 [W1]. Precisely, by applying the one-
parameter version of the Calderén-Torchinsky lemma, we can write an
essentially arbitrary f as asum f = ZQ AQa(q), indexed over the dyadic
cubes Q@ C RY, where the A@’s are numbers and the a(g)’s are smooth
functions satisfying:

a) suppa(g) C Q, the concentric triple of Q;
b) [[Vag)llee < 4Q)7HQITY;

C) fa(Q) = 0.
We define an analogous one-parameter square function:
1/2

5= | 3 'Tg: xo(®)

Now let n > p/2 (0 < p < o0), and suppose that o and w are two weights
in L. _(R?) satisfying

loc
/U(x)log"(e—i—a(x)/aQ)de/w(;v)dm
Q Q
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for all cubes @ C RY. Then, for all reasonable f (say, f € Uicrcool”),

/|f|p0d$ < C(p,md)/(S(f))pwdx.

In the two parameter setting, the appropriate theorem would be that
if n > p, and ¢ and w are two weights such that o(R,n) < w(R) for all
rectangles R, then

/ |f|Po dz < C(n,p, dl,dg)/ (S(f))Pw da
R41 xR42 RA1 xRd2

for all f in standard form.

Unfortunately, this is not known to be the case (yet) in the two-
parameter context. Now, we obviously need some LP estimates to prove
our main result. However, the L? estimates we need do not have to be
the precise analogues of the one given in Corollary 2.2. This saving fact
lets us get around the hole in our theory by means of a trick. The
author introduced this device in the context of two-parameter martin-
gales in [W3], and we apply it with essentially no change here. The
only difference is that, in [W3], we used it to estimate linear sums of
two-parameter Haar functions, whereas here we are applying it to lin-
ear sums of two-parameter (i.e., rectangle) adapted functions, as defined
above.

The trick yields:

Theorem 2.3. Let r > 2 and let n > r. There is a constant C =
C(n,r,dy,ds) such that the following holds: If o € LL _(R% x R%) is
a non-negative weight and f = ZReg ARrapr is a function in standard

form, then

, Al o)
Jirads<c (S Satomar)

Reg

Proof of Theorem 2.3: Let § = (r/2)’, the dual exponent to /2 (which,
recall, is > 1). Let h be a non-negative, measurable function defined
on R x R%, such that [|h||ps(,) = 1 and

r/2
(2.2) / |f|"odex = (/ |f|2hadx) .
R41 xR42 R41 xR42
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Let @ = 2n/r > 2. Define w = ho. According to Theorem 2.1, the
right-hand side of (2.2) is less than or equal to

Al o\
(2.3) cl> 7 w(R,@)| .

RegG

Let us now consider one of the terms w(R, &). By following the argument
from [W3] (which is essentially Young’s Inequality') we see that w(R, &)
is bounded above by a positive constant times

(2.4) [ w@)o® @) da.
R
where ¢(®) is a positive function satisfying

L[ (6@ ()14
(25) T [ el @) <.

Now let’s apply Holder’s Inequality to (2.4). We get:

/w(w)qS(R)(x)dm:/h(x)a(x)qS(R)(x)dx
R

R

2/r
<Mh%y(LWm@W@mQ

§<Lw®@wam0”f

(What we just did is the beginning of the trick we mentioned before
the statement of the theorem.) Define 1 (x) = [¢()(z)]"/2. Because
of (2.5), the function v satisfies

1 5 1
E/ exp(p?/ DY dx = f\/ exp(p /M) dx
R R

<6.

1Here we are applying the Young’s Inequality that deals with pairs of so-called “com-
plementary” functions, not the more familiar theorem on LP estimates for convolu-
tions. We refer the reader to [St, p. 358] for a fuller discussion of this topic.
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But now, a second application of our Young’s Inequality argument im-
plies that

(2.6) w(R, &) < (/Rzﬂ(w)adxfﬁ

< Co(R,n)*/".

This finishes the trick.
Plugging (2.6) into (2.3) yields the result. O

It might be helpful here if we explain how we will use Theorem 2.3.
The reader of [WhWi| will recall how, in that paper, inequality (1.3)
was treated by writing the kernel ¢ as a sum of a ¥; and a 1, where 9,
had compact support and integral equal to 0; and 2, while not com-
pactly supported, had many moments of cancellation. The analogous
inequalities (1.3) for 11 and 19 were treated by different arguments. In
the two-parameter setting, we get four inequalities like (1.4). One of
these —that in which both kernels are compactly supported— will be
handled as a direct consequence of Theorem 2.3. The other three will
require more subtlety, but their treatment will follow the basic idea of
Theorem 2.3.

3. Two technical estimates

The proof of Theorem 1.3 depends on certain precise estimates on the
convolutions of smooth kernels that have cancellation. These estimates
are stated in the following (highly technical) lemma, whose proof can be
found in [WhWi], pp. 939-941].

Lemma 3.1. Let ¢; and ¢; belong to C>*(R%) (i =1,2). Assume that
each v; has support contained in {|z| < 1} and satisfies [; = 0. Fur-
thermore, suppose that, for some non-negative integer m;, and for all
x; € Rdi,

s ()] < (14 | ]) 2
V()] < (14 |ag]) =™,

and that [ga, ¢i(xi)P(x;)dx; = 0 for all polynomials of degree < m;+1.
Then the following estimates hold for the convolutions (1;)y * (¢i)n(xi),
for all x; € R% and positive numbers y and n:
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a) ifn >y,

W)y * (@) < — 21

(1 + | |)ditmats?
b) if n <y and |z;| > 5y,

Cyn™+2
(1 + )it

[(hi)y * (&) ()| <

c) ifn <y and |z;| < by,

Omi+21
@)y * (Bi)(a:)] < = ydifiﬁi +u/n)

for constants C = C; only depending on the ¢;’s, ¥;’s, m;’s, and d;’s.

We will be applying Lemma 3.1 in the following, very specific way.
Let Q; and Q' be dyadic cubes in R%. Call the center of Q; (resp., Q"),
zq, (resp., xq). Fix (zi,y;) € T(Q;) and (t;,m;) € T(Qs) (these as-
sumptions force y; ~ £(Q}) and n; ~ £(Q;)). If ¥, and ¢; satisfy the
hypotheses of Lemma 3.1 for some m;, then

(31) 0y Wiy, * (D) (8 — w3)]

\mi+1
<0 (%) og(e + £(Q))/UQ)),

if Q; € Q/; and

UQDUQ:)™ ™
(0(Qs) + |zg, — xQ(i|)di+7ni+3?

(32) ;M (Wi)y, * (i), (ts — w3)] < C

if Q; ¢ Q). Inequality (3.1) follows from statement c) in Lemma 3.1 and
inequality (3.2) follows from a) and b). We will be seeing a lot of (3.1)
and (3.2). Therefore, let us define, for dyadic cubes Q' and Q; in R%,
and non-negative integers m;:

2(Q;)mit! I - 5
(E(C(Q’Q)d)f'l‘m/z”> -log(e +£(Q7)/(Qq)) if Qi C QY

(QNUQ)™ !
Qi) + |xq, — mq])ditmits

The next lemma is important:

a”L(ngQZ) = .
if Qi ¢ Q.
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Lemma 3.2. With a;(Q},Q;) (i =1,2) as defined above, let

AdQ4, Qi) = a;(Q}, Qi) - |Qil.

Let v > 0,0 < e <1, and let k be an integer. There is a constant C' =
C(v,¢€,d;,m;) such that, for all z; € R%, all cubes Q; C R%, and all k,

(3.3) Yo AUQLQI] xg ()
Qi:(Q})=2"(Qs)
1 Y
@ e )
Proof of Lemma 3.2: For each fixed k, no point is in more than C(d;)

cubes Q'. Thus, it is enough to show that, if £(Q}) = 2"¢(Q;), then

(34) Ai(Q, Qi)XQ’i €]

< C(1+|k|)72’CIW(QZ,)(dﬁmﬁze)y(

—|kle Ndi+mi+2—e 1
< O+ [RD27H0(@Qi) ((g(@i) ¥z — in|)di+mi+26> :

We consider two cases: kK <0 and k£ > 0.

k < 0. Inthis case, {(Q;)+|rq, —zq,| is comparable to £(Q;)+|z; —zq,
and we have that

)

UQNUQs) it

@) = () + faq, — agr

g(Qi)dieriJrS

— 9~ Ikl ’
(Z(Qz) + |$QL — Q;Q”)dﬁ‘mi-&-s

so the inequality is trivial.

k> 0. If Q; C Q) then

0(Qi)
0(Q;)

di+m;+2
AQ Q) = ( ) log(e + £(Q1)/6(Q)

log(e + £(@7)/6(Qi))-

)di+mi+2€
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It is obvious that
e +4(Q7)/0(Q) < 02
therefore
log(e + £(Q7) /(@) < C(1+ k).

On the other hand, if z; € Q/, then £(Q;) and |z, — ;| are both
< CU(Q%). Therefore

3

é(Qz) >di+m7‘,+2—€

AQ;, Qi) < C(1+ k)27 ((f(Qi) + [z, — i)

which is what we wanted.
If Qi ¢ Q; and z; € Q;, then £(Q;) + |z; — vq;| < C(UQ:) + |vg —
zq,|), and the latter quantity is > C2¥4(Q;) = C¢(Q}). Thus:

0(QYA(Q) i tmt2
(UQi) + |zq, — zgy|)drmts

Ndi+mi+2
S O Z(Ql) o —
(UQi) + |zq, —zg[)htmt

E(Qi)di+mi+2—€

<C27ke
(K(Q’L) + |ZL'Q1 — xQ,iDdi+mi+27€

g(Qi)di+mi+2—e

< ke )
- (UQi) + [wq, — xi|)ditmit2=e

Definition 3.3. For R = Q1 x Q2 and R’ = @} X @Y, rectangles in
R4 x R%, set

B(R',R) = a1(Q', Q1) - a2(Q%, Q2)
B(R',R) = B(R', R) - |Q1] - |Q2]

= B(R,R) - |R|

= A1(Q1, Q1) - A2(Q3, Q2).

The next corollary follows by iterating Lemma 3.2:
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Corollary 3.4. Let v > 0 and 0 < € < 1. There is a constant C =

C(v, €, dy,do,my, my) so that, for all rectangles R = Q1 x Qs C R4 xR%
and all integers k1 and ks,

> B(R', R) x (1, 22)
RI=Q x Q) x£(Q})=2*1 £(Q:)
< Cx (14 [ky|)727 B 5 (1 4 [k |)727 IRl
X Z(Ql)(d1+7'L1+2—€)’Y « €<Q2>(d2+M2+2—6)'Y

1 ¥
" <<E<Q1>+x1 — 2 )T ({(Q2) Fwz - m2|>d2+m2+26) |

4. Proof of Theorem 1.3

We rephrase our weighted norm inequality in a dual form. Set o =
1P, Let ¢1 and ¢4 satisfy the respective hypotheses of Theorem 1.3.
If g: R‘j}"’l X R‘f“ — C is bounded, Borel measurable, and compactly
supported, we define:

Tg(x1,x2) :/d g(t1,ta,m1,m2)
RO

ht gt
X [y (D), (b1 — 21)m3 (f2)y (t2 — w2)] dpu(ty, ta, m1, m2).

This integral converges absolutely for all 2 € R% x R% because of our
special assumptions on g (note that the support of g stays away from
8(Ril""1 X Rf“)). The operator T is the adjoint of the operator that
takes f into

Fr [t (@0)y) - (2 H(d2)y,)] (21, 22).
Inequality (1.4) will hold for all f € Uj<,<ooL" (R4 x R, dx) if

1/p 1/q'
Tg(z)|P o dx < / t, 7 q t,
([, faloa) < ( e e 9001 y>>

for all these g. We will prove Theorem 1.3 by showing that that is what
happens (given hypotheses (1.9) and (1.10)).
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For i = 1,2, we can write
(4.1) ¢ =i+ p”,

where supp pll) C {i : |zi| <1} € R%, each [, pgj) =0, and

Jras pZ P( )dz = 0 for all polynomials P; (in the z; variables) of de-
gree < m;+1; we do this by, essentially, throwing m;+ 1 of ¢;’s moments
1) When we do this, the functions pgl) get one good property
(compact support), while the non-compactly supported p§2)
cancellation. Using our decompositon (4.1), we may write T'g as a sum
of four terms:

“onto” p;
’s get lots of

2
Z T ,J)g

where

7(k.7),
T g(xy1,29) /RdﬁlXRdﬁlg(t1,t2791,92)

(07 (0 ), (81 —21)85 (S Vo, (t2—x2)] dpa(tr, ta, 601, 62).

Now, the piece TV g, from its very formulation, is equal to a function
in standard form. We can dispose of it quickly. We write:

(4.2)

T(l’l)g(xl’x2):Adl+l Rd2+1 g(tlat2301792)
X

< [07 ()0, (81 —21)05 (PS5 o, (t—2)] dpa(tr, 2, 61, 82)
72/ tlat2301702)

X [07 (050, (t1—20)05 (05 o, (b2 —2)] dpa(tr, 12, 61, 62).

The sum is over all double-dyadic rectangles R, but only finitely many
terms are not identically zero, because g and the pgl)’s have compact
supports. It is clear that each summand in (4.2), as a function of z,

has support contained in its respective R. These functions also inherit

smoothness and cancellation from the pgl)’s. Thus we may write the
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sum as

Z)\Rbé(l‘l,l'g),
R

where each by is adapted to R and the X ;s satisfy
Mgl <C (/( )Ig\d/i(t, y)) UQ1) M (Qa) M RITH?
T(R

1/q'
<C (/ 9|7 du(mﬁ) p(T(R)M(Qr) (Q2) M| R|H/?
T(R)

with a constant C that depends on the d;’s and the p( )%,
Take n > p’, as in the hypotheses of Theorem 1.3, and suppose that w
is a weight satisfying (1.9) for all rectangles R. By Theorem 2.3,

p'/2
A . ,
/Rd Rd ‘T(l 1)g|P car<0 <Z | E: o n)z/p )
1 xRd42

<Z Ai o R/ )p//Q.

Since ¢’ < 2, the last quantity is less than or equal to

AR v'/d

R y(R) "/’

a3 (3 ity )

The hypothesis (1.10) on w implies (after an elementary estimate)
(TR Hw(B)T 7 0(Qr)~ " 0(Q2) ™[RI < C.

Therefore, our bound on A5 implies that (4.3) is less than or equal to

P’/q' p//q/
C / gq/d:u‘ tay :C / gq’d,ut,y 7
<§[ T(R) | | ( ) Ri1+1xR12+1 | | ( )

which is exactly what we want. Thus, the 71 g term is okay.

The terms T(12g, TZDg and T(2g involve non-compactly-
supported kernels, and require different arguments. This is where we
will use Lemma 3.1. It is obvious that T(1’2)g and T(z’l)g are the same
kind of animal, and so we need only treat one of them. It will turn out
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that the argument that handles 732 g can also be used, with minor
modifications, on 732 g. Therefore we shall deal with 72:2) g first.

Our argument is modeled closely on that of [WhWi]. Let x be the
dual exponent to p'/2 (which, recall, is > 1), and let h € L"(o) be
non-negative, satisfy [|h||z~) = 1, and be chosen so that

_ , ~ p'/2
(4.4) / T2 g|P o da = ( / |T(2’2)g|2hgdx> .
R4 xR%2 R4 xR%2

We seek a good a priori bound, independent of h, for the right-hand
side of (4.4).

The function T(Q’z)g is bounded, smooth, and has good decay at in-
finity. If we let ¥, be as defined at the beginning of Section 2, then by
a standard approximation argument (essentially Fatou’s Lemma), com-
bined with Theorem 2.1, we may write:

. ARl -
gl*hodx < C (ho)(R,n),
/RdldeQ\ g I RUAL)

where 7 is any number larger than 2, and
dty dto dyy d e
N e
T(R) Y1Yy2

As in the proof of Theorem 2.3, we can dominate (ho)(R,7) by a constant

times
/ ho ¢ da,
R

where QS(R) is positive and satisfies
1 ~
T/exp([d)(R)]l/")dx <6.
|R| J&
With the (b(é)’s now fixed, let us define

v(R) = /Rhaq’)(f?’) da.

Then: | ‘
Agr

T2 g12hodx < C v(R),

,/Rdl x Rd2 Z |R|

and it is this last object which we must bound.

We need to know how big A(R) can get (or doesn’t get). Let us make
the convention that “(z,y) € RfH X Ri’”l” means “x = (x1,%2);
z; € R%: y = (y1,2); i > 07; and analogously, when we write “(x,y) €
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T(R)”, with R = Q1 X Q2, we mean that (x;,y;) € T(Q;). For (¢,0) €
RTH X Rflﬁﬂ, set,
My (t) = (p)o, (t1) - (05)a, (t2)-

The “p(®” functions satisfy the cancellation and decay hypotheses re-
quired of the ¢;’s in the statement of Lemma 3.1. The discussion fol-
lowing the lemma shows that if (¢,6) € T(R) = T(Q1) x T(Q2) and
(z,y) € T(R) = T(Q1) x T(Q3), then

070510, * Tyt — 2)| < Car(Q), Q1) - aa(Qh, Qa)
= CB(R,R).
Since

T2 g5 Wy (x)] < / l9(t.0)[67 1650, * Tp(t — )| du(t, 0)

dy+1 do+1
RJr ><RJr

-y /(T(R) l9(t,0)[6705 410, * Ty (¢ — )| dp(t, 6),
R

we at once get that

1/2
A(R) = (/ |y = T(Q’Z)g(x)|2w>
T(R') Y12
< C|R'|/? Zﬁ(R/,R)G(R) 7
R

where we have set
GR) = [ la(t,6)] dutt,0).
T(R)

(We refer the reader to [WhWi, pp. 942-943] for a detailed discussion
of this argument in the one-parameter setting.)
If we now define

I(R) = u(T(R))'"7,

then Holder’s inequality implies

1/q' 1/q'
G(R)'T(R < / gl? du(t,0 .
(%: )> ( R{ xR oI At )
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On the other hand, the preceding discussion implies that

NN Ay o\
T2 g|Pe dm) <C | v(R'
</Rd1 de2| | B ; |R/| ( )

(4.5)

9 1/2

v(R)

<C Z[Z/@(R’, R)G(R)
R

RI
Our goal now is to show that, under the hypotheses of Theorem 1.3, the
inequality
2 1/2 1/q
V(R <C (Z G(R)‘I’F(R)>
R

R/

> [Z B(R',R)G(R)

obtains for all non-negative, finitely-supported sequences {G(R)}g.

In other words, we have reduced our problem to showing that the
“kernel” B(R’, R) maps boundedly from the sequence space Kq,(F(R))
into the sequence space £2(v(R)). We shall prove this boundedness in the
same way as in [WhWi], i.e., by means of the Riesz-Thorin Interpolation
Theorem.

We shall need two endpoint estimates, £ — ¢ and ¢! — 02/
(recall that 2/¢" > 1). In order to make these estimates (particularly
the first) go through smoothly, let us redefine our problem, by setting
G(R) = Y(R)|R|, and having {Y (R)} be the sequence that is acted on.
This change-of-variable requires that we replace the kernel S(R’, R) with
B(R’, R). In addition, we must replace the “weight” T'(R) by |R|Y T(R).
This done, we now need to show that the kernel B(R’, R) maps bound-
edly £ — (> and (*(|R|T(R)) — ¥/ (v(R)).

£%° +— £>°. This is equivalent to having » ", B(R',R) < C for all R/,
and this inequality will follow if we have, for ¢ = 1,2, and all dyadic
cubes Q) C R%,

ZAi(Q;, Qi) < C.
Qi

This is proved in [WhWi], though with slightly different notation from
what we have here. For the sake of completeness (and ease of reading),
we shall give a proof that uses our present notation.
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Let us write the sum as (I); + (IT); + (I1I);, where
D= 3 A(QLQ)
Q

QzCQQ;
(IDi= > Al(Q;Q)
Qi:Q:z Q)
0Qi)<(Q))
(IIi= > AiQ Q)
Qi:Q:7Q;
0Q:)>4(Q))
Now:
g : di+m;+2
mise ¥ (God) toste /@)
QiC1©;
Qi|:|1+6
<C ,
= QZ [Qél
Q:CQ,

for some 0 > 0, since d; + m; +2 > d;. But it is easy to see [WhWi]
that this last sum is < Cjs 4,. So much for (I);.

(11);:

(=Y 4:(Q Q1)

3 0Q) 27k e(Qy))mit? |
- Ckz—%/x“’f@é 27k0(Q)) + |z — mq [)ditmitD da;
<O HQN Q)™ Q) ™

=0

<C Z 27k:(mi+2)
k=0

<C.
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(I11);:

D@+
<
CZ/ (24 Q’ + @ — z gy [)EHmits dz;
<c> ok
k=1
<C.
The £*° — £°° bound has been proved.

Now for the ¢! — ¢2/4" bound. By Minkowki’s inequality for double
integrals,

2/11/ q//2
> v(R')

R’

> B(R,R)Y(R)

R

Y(R).

> B(R, R v(R)
=

Therefore, the ¢* — ¢2/ ¢ bound will follow if

q'/2
(4.6) (Z B(R’,RWu(R’)) < CIR|"T(R),
=

holds for all R, for some constant C'.
Inequality (4.6) will turn out to be an easy consequence of Lemma 3.2
and the hypotheses of Theorem 1.3.
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Proof of Inequality (4.6):

(4.7)
> B(R,R)*"v(R))
=

=> > B(R’,R)’Z/q’/~ ho B o d

ki,k2  R'=QxQ%h R
0(Q)=2"(Q;)

SCZ/R

> BR.RYxp() | P o dr
k1 ko d1 x Rd2

R'=Q}xQ}
0(Qy)=2"0(Q;)

2/p’

e[| Y BERRT ) |ods
kaoks [ TROREL S p_grxqy
0(Q))=2"1(Q;)

Inequality (4.7) is true because of Holder’s inequality (recall the normal-
ization on h) and the fact that, for each fixed pair (k1, k2), no point of
R% x R® lies in more than C(dy,ds) rectangles R’ with the specified
dimensions. The reasoning from Theorem 2.3 tells us that, for each R,

/(¢(R'))P//2XR,(aj)adx < Co(R',np'/2),

which, by taking 7 sufficiently close to 2, we may assume is < Cw(R').
Thus, we may dominate (4.7) by

2/p

CZ/

d d
k1,ko R%1 xR%2

Z B(R’,R)p,/qlxé,(x) wdx
R'=Q| xQj
(Q)=2"1(Q;)
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Because of Corollary 3.4, this is less than or equal to:

2/q
C Y [+ [Ral) (L + gy e e 7
k1,k2

1
X
</Rd1 xRz <(£(Q1) + |£U1 — SL’Q1|)d1+m1+2—5

1
X
(K(QQ) + ‘.732 — xQ2|)d2+mg+2_5

’

»'/q 2/p’
S N T

1
<C / (
< R41 xR%2 (E(Ql) —|— |,’I,‘1 — le |)d1+m1 +2—¢

1
X
(£(Q2) + [z — wq,|)Ptmatae

p'/q 2/p’
% E(Ql)(d1+m1+2—e)€(Q2)(d2+m2+2—e)) wdm) ,
which (see again the hypotheses of Theorem 1.3) is assumed to be less
than or equal to
Cu(T(R))_Q/QK(Ql)Q(dl"’l)é(Qg)Q(d?*l).
When we raise this to the power ¢’/2, the result is less than or equal to
Cu(T(R) /9| = CT(R)|R|",

which is what we wanted. Therefore, the T22) term is okay.
We can handle the term 7(12) g by modifying the preceding argument
just a little. First, observe that, if f € L2(R% x R%), then

(@8) fanwn) = [ 1) 02 (6) - (a)yalaz — )] T2

do+1
R Y2

in L?. The meaning of (4.8) is that we take the convolution of f with
(2)y, “in the xo variable” (leaving x; fixed), and then convolve that
with (¢2),, again, much as we do in the original Calderén-Torchinsky
formula (2.1). The proof of (4.8) comes by Fourier inversion, where we
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take the Fourier transform only with respect to the zo variable. If we
let f=T®02)gin (4.8), we get:

- dto d
(49) T(l’z)g(xlaIZ):/d H(x17t27y2)(7/}2)y2(x27t2) 2 yQa
Rz Yo
where
4.1 H =
( 0) ($17t27y2) Ail+lxRi2+l 9(5777)

T (0! ) (51— 20) [0 (W02) s * (05)) s (b2 — 52)]| dpals,m).-

Let us define
— 1
(411) F(xlasan7t27y2) =M 1(05 ))7]1 (51 - 1‘1)

X [0 (2) s * (p8))s (b2 — 52)].

If we plug (4.11) into (4.10), and then substitute that into (4.9), we get

F(1.2) _ P ta, ) d
g(x17$2) Rz Ril+1ij_2+l 9(5777) (171,5,777 273/2) ,LL(S,T])

4
dty d
x (¢2)y2($2 —tg) 2 4Y2
Y2
= Z / </ a +lg(8an)F($l7S7n,t2,y2) d/’[/(8777)>
02:0ac R’ T(Q2)g, .o cra \/T(Q1) xR
dto d
X (Y2)y, (w2 — t2) Qyng,

where the Q; are, as usual, dyadic cubes. For R’ = Q) xQ, € R% xR,
define

bro (1,22 = ( [ g st ) du(s,m)
T(Qy) \/T(Q)xRY?

X (Y2)y, (22 — tz)dtQ dyz.

Y2
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It is important to note that the integration over T'(Q%) is done in the
(t2,y2) variables and that the integration over T(Q7) x R™" is done in
the (s,n) variables: failure to observe this hung the author up for some
time.

It is easy to see that, if (s1,71) € T(Q}), then F(z1,s,n,t2,y2), con-
sidered as a function of x1, is supported in Q’l Similarly, if (t2,y2) €
T(Q5%), then (v2)y,(z2 — t2), as a function of 3, is supported in Q’Q
Therefore, bgr/(z1,22) is supported in R’. The function F inherits
smoothness and cancellation (in z1) from pgl), and therefore so does bp/.
In the same fashion, bg inherits smoothness and cancellation (in xs)
from (12)y, (2 — t2). Thus, we may write br/ (z1,22) = Arrap (1, 22),
where Ag/ is a number and ag, (z1,22) is adapted to R

We need a good bound on |Ag/|, which we get, as usual, by controlling
|brlloe- Let = (z1,29) € R ¢ R™ x R%. Note that, for any
T9 € Rd2,

dto d
/ (62 (2 — 12)] 222 < ¢
T(Q/z) Y2

for some constant C' = C(1)2, d2). Therefore,

(@12 () <€ sp [ gl
(t2,y2) €T (QL)J T(Q] JXRY 2

X HF(xl, S, n7t27y2)H du(san)a

=C sup /d1+1 izt lg(s,n)]

(t2,y2)€T(Q5)/R

X [‘F Z1,S 7777t271/2)|XT(Q )(517771)} dﬂ(sﬁ)a

=C sup /d1+1 d2+1 lg(s,m)]

(t2,y2)€T(Q4)/R

X [P(.’El, 5,1, ta, y2)] du(s, 77);

@ = s S [ g
(tz’yZ)eT(Qé)R:leQQ T(R)

X [P(LU], 5,1, t27 y?)] du(s, n)
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The key to estimating (4.12) is to bound P. Now, P has two factors,
one depending on (s1,7) and one depending on (s2,72) and (t2,y2). The
absolute value of the first factor, 7]1_1(p§1))n1 (1 —81)  X1(Q))(81,M), 18
less than or equal to C4(Q})~"~! and is zero if (s1,71) ¢ T(Q}). We
note that, if (s1,m) € T(Q1), then this factor is less than or equal to
a constant times what we have called a(Q},Q1), for any value of my.
The meaning of that last sentence is so simple-minded that it might
appear to result from a typographical error. What we mean is this: Take
(s1,m) € T(Q1). Either @, equals @} or it doesn’t. In the first case, our
factor is less than or equal to C¢(Q7)~1~! < Ca(Q,Q}) = Ca(Q},Q1);
and in the second case, it’s zero.

The function P’s second factor, [n; * (12),, * (pg))m, (ta—s2)| is treated
similarly. If (t2,y2) € T(Q%) and (s2,72) € T(Q2) (which is the situation
we have), then, by Lemma 3.1, this second factor is less than or equal
to a constant times a(Q%, Q2). Thus, in each of the separate integrals
in (4.13), the function P is dominated by a constant times what we have
called B(R’, R). Recalling our earlier convention,

G(R) = /T ol dus )

we see that

bl < CS" AR, RIG(R);
R

implying

Ar/| < CIR'M?

S B(R, RIG(R)

R

But this (see (4.5) and preceding) is precisely the bound we got ear-
lier! Our result now follows from the arguments that took care of the
T2 term. Theorem 1.3 is proved. U

5. The Poisson kernel

The Poisson kernel presents us with some new difficulties. One of
them concerns notation; something which, in this context, is non-trivial.
For i = 1,2, we let P(Y) denote the Poisson kernel for R%. If f: R% x
R — R is measurable and satisfies

/ /()]
Rt xRtz (14 22 [)BFH (1 4 [ag]) 2

dx < oo,
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then

u(x,y) = [(P(l))yl : (P(Q))yz] * f(xlaxZ)

E/d ) (PW)y, (21 — t1)(PP),y, (22 — t2) f(t1, t2) dt1 dts
R% xR%2

is defined, and is called f’s bi-harmonic extension into Ri”'l X Rﬂlf'H.
Let us (very temporarily) set z; = (:vz(-l), - ,xgdi')) and y; = xgo) (i =
1,2). As stated in the introduction, the full gradient V1Vau is a (d; +

1) x (d2 + 1) matrix whose entries are the second mixed partials
0?u
81‘91)81‘%”) ,

where the j;’s run respectively from 0 to d;. These entries are given by
double convolutions:

o%u _ i _ .
PPN /Rd e U1 )y (@1 = 1)y (05 (w2 — 1)
.’L’l .%'2 "1 XxR%2
X f(tl, tg) dtl dtQ,
where
opP o
— (@) if j; # 0;
80 (@) = § O

, _ opP® iy
—d; P (2;) — Zz;l mgk)w(xz) if j; = 0.
Oz,

It is easy to see that all of these kernels satisfy [ga, qi)l(.ji)(xi) dx; =0. If
we also have j; # 0, then ¢Z(-] ) satisfies
67 (@)l < Cild + fai) =2
Vo (@] < CilL + i)~

These are the hypotheses of Theorem 1.3 (with m; = 0). Therefore, the
following theorem is immediate:
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Theorem 5.1. Let 1 <p<2<g<oo andletv, u, and o be as in the
hypotheses of Theorem 1.3. Let n > p' and € > 0. There is a positive
constant

C= C(na €D q, dla d2)

such that the following is true: If there exists a weight w satisfying

o(R,n) < /Rw

and
1
T(R))/4 (/ { //
W(T(R)) R4 xRz | (U(Q1) + |21 — leD(dl'*'Q_E)P 7
% 1
(5 1) (‘g(QQ) + |fE2 — xQ2D(d2+276)p//q/

X w(m)] dm) v

< CE(QI)dl+1_(d1+2_5)/q/Z(Qz)d2+1—(d2+2—e)/q/

for all rectangles R = Q1 X Q2, then

1/q 1/
0%u ( ) i
— - |%dp(x, < / Py dz
</Ril+1><R12+1 ‘axgjl)axéjz) | dpu( y)) R Re ‘fl

holds for all mized partials such that neither j; = 0, and for all f €
Ut<r<oo L™ (R4, d2).

Unfortunately, the kernels (bgo) only decay like (14 |z;|)~%~!, which is
not quite good enough for Theorem 1.3. In [WhWi], the authors circum-
vented this by a trick that exploited harmonicity and the Poisson kernel’s
semigroup property. We refer the reader to [WhWi, pp. 957-959] for
the details of this argument. Its upshot is that, in obtaining our sequence
space estimates when j; = 0, it is sufficient to replace a;(Q}, Q;) by (see
the top of p. 959):

0(Q4)?
0 otherwise.

if £(Q:) < €(Q5);

We analogously define A*(Q,Q;) = a(Q},Q;) - |Qi|. The proof of
the following lemma is like that of Lemma 3.2, and we omit it.
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Lemma 5.2. Let v > 0, 0 < € < 1, and let k be a positive integer.
There is a constant C = C(v,¢€,d;) such that, for all all x; € R%, all
cubes Q; C R%, and all k,

(5.2) Z [47(Q, Q)] Xq, (z:)
Q7:4(Q))=24(Q1)

1 Y
< —key N (di+1—e€)y .
= C2 e(Qz) ((E(Qz) + lx _ in)di-&-l—s)

The proof of the following theorem is essentially identical to that of
Theorem 5.1, and we omit it.

Theorem 5.3. Let 1 <p <2< g < oo andletv, pu, and o be as in the
hypotheses of Theorem 1.3. Let n > p' and € > 0. There is a positive
constant

C= 0(777671)’ q7d17 d?)

such that the following is true: If there exists a weight w satisfying

o(R,m) < / w
R
and

1
T(R))/4 (/ < N
/J( ( )) R41 xR42 (E(Ql) + ‘l’l — le|)(d1+1_€)p /q

% 1
(5 3) (€(Q2) + |Z‘2 —TQ, D(d2+2—6)p’/q’

<o) do) "

< Cé(Ql)d1+17(d1+175)/q'g(QQ)ngrlf(dg#»Zfe)/q'

for all rectangles R = Q1 X Q2, then

1/q 1/
9%u p
| — 5 |7 du(x, y) < </ |f|pvd30)
(/Rj_l+1 ><th_2+1 axgo)&ré”) R41 xRd2
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holds for all mized partials such that jo # 0, and for all

[ € Ui<reooL"(R%,dz). The symmetric result holds for j» = 0 and
Jj1 #0. When j1 = jo = 0, the inequality analogous to (5.3) is:

1
H(T(R))l/q (/Rdldez {(5(@1) ¥ a1 — zg,|)@F1—ar/d

1
Q) + oz — wq, )BT

X w(m)] dac> "

< CUQy )i (dit1=0)/d p(,)dat1~(dat1=c)/d’

= C\R|l/qf(Ql)_e/qlg(Qz)_e/q,-
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