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SUMS OF AN ENTIRE FUNCTION IN CERTAIN
WEIGHTED L2-SPACES

Bruno Brive

Abstract
We consider the functional equation f(z+σ)−f(z) = g(z) where σ
is a complex number, f and g are entire functions of a complex
variable z, with growth conditions. We prove the existence of
certain types of solutions of this equation by an a priori estimate
method in certain weighted L2-spaces.

1. Introduction

We consider the functional equation

f(z + σ) − f(z) = g(z)(1.1)

where σ is a non zero complex number, g a given function and f an
unknown function, both of one complex variable z.

If (1.1) occurs when σ = 1, f is usually said to be the sum of g. This
is an old question. In 1887, Guichard [5] and later in 1897, Hurwitz [7]
proved that any given entire function admits an entire sum. A modern
treatment of this subject can be found in [1].

One can formulate the following more precise problem:

(1.2) Let σ ∈ C∗. Given s > 0, α > 0 and an entire function g satisfying
the growth condition

g(z) = O
(
es|z|α

)
(1.3)

as |z| → +∞, does there exist an entire function f satisfying (1.1) and
an analogous growth condition

f(z) = O
(
et|z|β

)
(1.4)
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as |z| → +∞, with precise relations on the relative values of α, β, s, t
and σ?

In 1935, Whittaker [16] showed that any entire function of given or-
der α admits an entire sum of the same order.

We consider the above question from the point of view of functional
analysis.

Let O(C) be the set of all entire functions f : C → C, equipped
with the topology of uniform convergence on compact subsets of C. For
σ ∈ C, we denote by τσ the translation z �→ z + σ in C and by Tσ the
operator f �→ f ◦ τσ acting on f ∈ O(C). We call Tσ the translation
operator associated to σ. We also denote by I the identity operator and
by Sσ the operator Tσ − I. If σ = 1, we simply write τ for τ1, T for T1

and S for S1.
We substitute the growth condition (1.3) by the integrability condition

∫
C

|g(z)|2e−s|z|α dλ(z) < +∞(1.5)

where dλ denotes the Lebesgue measure on C. Entire functions sat-
isfying (1.5) form a Hilbert space that we shall denote by H(s, α).
The H(s, α) spaces are a particular case of general weighted Lp-spaces:
Given a domain Ω in C, a number p in ]1,+∞[ and a measurable func-
tion ϕ : Ω → R, the space Lp(Ω, ϕ), is defined to be the set of all mea-
surable functions g : Ω → C such that

∫
Ω

|g|pe−ϕ dλ < +∞.

This is a Banach space with the norm ‖f‖ =
(∫

Ω
|f |pe−ϕ dλ

) 1
p . When

p = 2, L2(Ω, ϕ) is a Hilbert space for the product 〈f, g〉 =
∫
Ω

fge−ϕ dλ.
Let O(Ω) be the set of all holomorphic functions on Ω. If e

1
p−1 ϕ is

locally integrable over Ω then Lp(Ω, ϕ) ∩ O(Ω) is a closed subspace of
Lp(Ω, ϕ), see [3].

We consider the weights ϕ(z) = s|z|α, with s > 0 and α > 0. For p ∈
[1,+∞[ and α = 2 we obtain the Bargmann-Fock spaces (See e.g. [13],
[15], [11].) For p = 2 and α > 0 then H(s, α) = L2(C, ϕ) ∩ O(C).

Our results concern the existence of solutions of the equation (1.1),
in the H(s, α) spaces, when α � 1.

Let us now state our main theorems.
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Theorem 1. Let α � 1.

(1) For any β > α and any t > 0, S induces a closed, densely defined
and surjective unbounded operator from H(t, β) onto H(1, α).

(2) There exists t0 such that for any t > t0, S induces a closed,
densely defined and surjective unbounded operator from H(t, α)
onto H(1, α).

Theorem 2. Let α � 1 and s > 0.

(1) If α < 1, there exists t′ > 0 such that for any t > t′, Sσ induces a
closed, densely defined, surjective unbounded operator from H(t, α)
onto H(s, α).

(2) If s|σ| <
√

2π, there exists t′′ > 0 such that for any t > t′′, Sσ

induces a closed, densely defined, surjective unbounded operator
from H(t, 1) onto H(s, 1).

Theorem 1 was announced in [2]. It gives an answer to (1.2) in
cases α � 1, σ = 1 and s = 1.

In order to prove the surjectivity of the operators in Theorem 1, we use
a priori estimates. More precisely, we apply the following statement [6].

(1.6) Let H1 and H2 be two Hilbert spaces and u a closed, densely defined
unbounded operator from H1 to H2. Then u is surjective if and only if
there exists a positive constant C such that for any g ∈ dom(u∗)

‖g‖H2 � C‖u∗g‖H1 .

The H(s, α) spaces enable us to reduce the preceeding inequality to
an inequality between series, whose coefficients are computed from the
Taylor series of the functions. Our method may apply to more general
functional equations than (1.1).

This article is organized as follows.

In Section 2, we present the material of weighted L2-spaces of entire
functions. In particular, we give the Aronszajn-Bergman reproducing
kernel for a general class of such spaces.

In Section 3, we study the action of translation operators on the
H(s, α) spaces.

The Sections 4, 5 and 6 are devoted to the proofs of Theorems 1 and 2.
Finally, in Section 7, we give further results. In particular we deter-

mine all periodic functions in H(s, α) in the case α � 1 (Subsection 7.2).
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We also give a growth condition for functions belonging in H(s, α) (Sub-
section 7.1). This enables us to state a theorem in the spirit of Whit-
taker’s result.

2. Weighted L2-spaces of entire functions

2.1. Aronszajn-Bergman Kernel in weighted L2-spaces.

The Bergman kernel theory in L2-spaces is well-known [8], [4]. The
analogous theory in general weighted L2-spaces may also be regarded
as a particular case of the Aronszajn-Bergman reproducing kernel the-
ory [17].

Let Ω be a domain in C and ϕ : Ω → R a measurable function on Ω.
Recall that if eϕ is locally integrable on Ω then H = L2(Ω, ϕ) ∩O(Ω) is
a closed subspace of the Hilbert space L2(Ω, ϕ).

Let f ∈ H. Let z be in Ω and r > 0 such that the closed disk of
center z and radius r, D = {w ∈ C/|w − z| � r}, is contained in Ω.
Being holomorphic, f satisfies the mean-value property

f(z) =
1

πr2

∫
D

f dλ.

Writing f = fe−
1
2 ϕe

1
2 ϕ and applying Cauchy-Schwarz inequality in the

above integral, we are led to the inequality

|f(z)| � 1
πr2

(∫
D

eϕ dλ

) 1
2

‖f‖.

It follows [17] that H has a reproducing kernel K, that is a
map K : Ω × Ω → C with the properties:

(i) For any fixed w in Ω, the function Kw : z �→ K(z, w) belongs to H.

(ii) For any f in H and z in Ω, f(z) =
∫
Ω

f(w)K(z, w)e−ϕ(w) dλ(w).

Now, let the operator P be defined on L2(Ω, ϕ) by

Pg(z) =
∫

Ω

g(w)K(z, w)e−ϕ(w) dλ(w)

for any g in L2(Ω, ϕ) and any z in Ω. Then for any g ∈ L2(Ω, ϕ), Pg
belongs to H and the operator P : L2(Ω, ϕ) → H coincides with the
orthogonal projection.

If (φn)n�0 is a complete orthonormal system of H, then K(z, w) =
+∞∑
n=0

φn(w)φn(z) for any z and w in Ω.
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2.2. A particular class of weighted L2-spaces.

We consider the case where Ω = C and ϕ depends only on the modulus
of the variable.

Proposition 1. Let φ : R+ → R be measurable and such that for any
positive integer p, the integral

∫ +∞
0

rpe−φ(r) dr converges. Let ϕ : z �→
φ(|z|), z ∈ C, and H = L2(C, ϕ) ∩ O(C).

(i) The monomials γn : z �→ zn, n ∈ N, form a complete orthogonal
system in H.

(ii) Let f(z) =
+∞∑
n=0

anzn be an entire function. Then

f ∈ H ⇐⇒
+∞∑
n=0

|an|2
∫ +∞

0

r2n+1e−φ(r) dr < +∞.

If f ∈ H, then ‖f‖2 = 2π
+∞∑
n=0

|an|2
∫ +∞
0

r2n+1e−φ(r) dr, (the Par-

seval formula). The Taylor series of f in 0 converges in L2(C, ϕ).
(iii) The Aronszajn-Bergman reproducing kernel is given in H by

K(z, w) =
+∞∑
n=0

(z w)n

‖γn‖2
.

Proof: For any two integers p and q, we have 〈γp,γq〉=
∫
C

zpzqe−ϕ(z) dλ(z).
Computing this integral with polar coordinates, we find that 〈γp, γq〉 = 0
if p 
= q and ‖γn‖2 = 2π

∫ +∞
0

r2n+1e−φ(r) dr. Now, integrating the
classical Gutzmer formula

1
2π

∫ 2π

0

|f(reiθ)|2 dθ =
+∞∑
n=0

|an|2r2n

in r over [0,+∞[, for f(z) =
+∞∑
n=0

anzn, we find the Parseval formula for f

in H.

2.3. The H(s, α) spaces.

Let α > 0 and s > 0. The Hilbert space H(s, α) is the particular case
of the situation described in Proposition 1 where φ(r) = srα. Here we
have∫ +∞

0

rpe−φ(r) dr =
∫ +∞

0

rpe−srα

dr =
1
α

s−
1
α (p+1)Γ

(
p + 1

α

)
< +∞.
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Throughout this article, we shall denote by:

‖f‖s,α the norm of any function f in H(s, α),

en(s, α) the function
γn

‖γn‖s,α
for n ∈ N.

Proposition 1 states that (en(s, α))n∈N is a basis of H(s, α). Let f ∈
H(s, α) with f(z) =

+∞∑
n=0

anzn its Taylor expansion at the origin. Then

f =
+∞∑
n=0

an‖γn‖s,αen(s, α) is the expansion of f in the basis (en(s, α))n∈N

in H(s, α). This gives the Parseval formula

‖f‖2
s,α =

+∞∑
n=0

|an|2‖γn‖2
s,α

where ‖γn‖2
s,α = 2π

α s−
2
α (n+1)Γ

(
2
α (n + 1)

)
. The Aronszajn-Bergman re-

producing kernel is therefore given in H(s, α) by

K(z, w) =
+∞∑
n=0

(z w)n

2π
α s−

2(n+1)
α Γ( 2(n+1)

α )
.

Note that if moreover α = 2, then

K(z, w) =
s

π
es z w,

as it is well-known (see [15]).
The next proposition compares the two spaces H(s, α) and H(t, β).

See also [11].

Proposition 2. Let α > 0 and s > 0.
(i) For any β > α and any t > 0, H(s, α) ⊂ H(t, β).

(ii) For any t > s, H(s, α) ⊂ H(t, α).
The inclusions are strict and dense.

Proof: The inclusions are clear. A polynomial is always contained in
H(s, α) thus H(s, α) is a dense subspace of H(t, β) when H(s, α) ⊂
H(t, β).

Set an = s
1
α (n+1)Γ

(
2
α (n + 1)

)− 1
2 , n ∈ N and f(z) =

+∞∑
n=0

anzn. Then

f /∈ H(s, α), but
1. f ∈ H(t, β) if β > α and t > 0.

2. f ∈ H(t, α) if t > s.
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3. Translation operators

Let σ ∈ C and Tσ be the corresponding translation operator. For
s > 0, α > 0, t > 0 and β > 0, Tσ induces an unbounded operator from
H(t, β) to H(s, α) with domain

dom(Tσ) = {f ∈ H(t, β) | Tσf ∈ H(s, α)}.

It is not surprising that the properties of Tσ depend on the relative sizes
of the spaces H(t, β) and H(s, α). We explain this idea more precisely
in the two following propositions.

Proposition 3. Let α > 0 and s > 0. Let σ ∈ C∗.

(i) For any β > α and any t > 0, Tσ induces a bounded operator from
H(s, α) to H(t, β).

(ii) For any t > s, Tσ induces a bounded operator from H(s, α) to
H(t, α).

(iii) If α � 1 then Tσ induces a one-to-one bounded operator on H(s, α).

For a more general statement concerning Lp-spaces and radial weights,
see [3].

Proposition 4. Let α > 0 and s > 0. Let σ ∈ C∗.

(i) For any β > α and any t > 0, Tσ induces a closed, densely defined
unbounded operator from H(t, β) to H(s, α).

(ii) For any t > s, Tσ induces a closed, densely defined unbounded
operator from H(t, α) to H(s, α).

(iii) If α > 1 then Tσ induces a closed, densely defined unbounded op-
erator in H(s, α).

In each of cases (i), (ii) and (iii), the domain of the operator is not
closed.

Proof of Proposition 3: Let β > 0 and t > 0. For any f in H(s, α) we
have the estimate

‖Tσf‖2
t,β � sup

z∈C
es|z+σ|α−t|z|β · ‖f‖2

s,α.

The proposition is therefore a consequence of the following observations.
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(i) If β > α and t > 0 then the function z �→ es|z+σ|α−t|z|β vanishes
at infinity, in particular it is bounded over C.

(ii) If t > s then the function z �→ es|z+σ|α−t|z|α vanishes at infinity, in
particular it is bounded over C.

(iii) The function z �→ es|z+σ|α−s|z|α is bounded over C if and only if
α � 1.

Proof of Proposition 4: The operator is always densely defined because
its domain always contains polynomials. Consider case (i). Let us prove
that Tσ is closed, that is, its graph {(f, Tσf) | f ∈ dom(Tσ)} is closed
in H(t, β) × H(s, α). Consider a sequence (fn, Tσfn)n�0 in this graph,
converging to (f, g) in H(t, β)×H(s, α). We will prove that f ∈ dom(Tσ)
and that g = Tσf . By our hypothesis the sequence (fn)n�0 converges
to f in H(t, β), hence also in O(C), that is, uniformly on compact subsets
of C. Thus lim

n→+∞
fn ◦ τσ = f ◦ τσ in O(C). But fn ◦ τσ = Tσfn and by

hypothesis, the sequence (Tσfn)n�0 converges to g in H(s, α), hence also
in O(C). Unicity of the limit in O(C) shows that g = f ◦ τσ, and since
g ∈ H(s, α) this proves that f ∈ dom(Tσ) and that g = Tσf . Therefore
Tσ is closed in case (i). The same proof holds for the corresponding
assertions in cases (ii) and (iii).

We now look at the domain of the operator Tσ. Let β > 0 and s > 0.
We study sup

n∈N
‖Tσen(t, β)‖s,α. We have

‖Tσen(t, β)‖2
s,α =

1
‖γn‖2

t,β

∫
C

|z + σ|2ne−s|z|α dλ(z).

Set z = σw in the above integral, this gives

‖γn‖2
t,β ·‖Tσen(t, β)‖2

s,α= |σ|2n+2

∫
C

|w + 1|2ne−s|σ|α|w|α dλ(w)

= |σ|2n+2

∫ +π

−π

dθ

∫ +∞

0

(r2+2r cos θ+1)ne−s|σ|αrα

r dr.

By considering only the values of θ such that cos θ � 0, we obtain

‖γn‖2
t,β · ‖Tσen(t, β)‖2

s,α � |σ|2n+2

∫ + π
2

−π
2

dθ

∫ +∞

0

(r2 + 1)ne−s|σ|αrα

r dr.
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Since (r2 + 1)n � r2n + nr2n−1, the right-hand side of the above
inequality is bounded below by

π|σ|2n+2

(∫ +∞

0

r2n+1e−s|σ|αrα

r dr + n

∫ +∞

0

r2ne−s|σ|αrα

r dr

)
and so

‖Tσen(t, β)‖2
s,α � β

2α

s−
2
α (n+1)

t−
2
β (n+1)

Γ
(

2(n+1)
α

)
Γ

(
2(n+1)

β

)+
β

2α
|σ|n s−

2n+1
α

t−
2
β (n+1)

Γ
(

2n+1
α

)
Γ

(
2(n+1)

β

) .

We now look at the asymptotic behavior of the right-hand side of the
above inequality as n → +∞. We consider three cases.

1. If β > α, the first term behaves like n2( 1
α− 1

β )n which tends to +∞
as n → +∞.

2. If β = α and t > s, the first term behaves like
(

s
t

)− 2
α (n+1) which

tends to +∞ as n → +∞.
3. If β = α and t = s, the above inequality may also be written as

‖Tσen(s, α)‖2
s,α � 1

2


1 + |σ|s 1

α
nΓ

(
2n+1

α

)
Γ

(
2(n+1)

α

)

 .

The second term on the right behaves like n(1− 1
α ) which tends

to +∞ as n → +∞ if α > 1.
In the above three cases (which correspond respectively to cases (i),

(ii) and (iii) of the proposition), we have sup
n∈N

‖Tσen(t, β)‖s,α = +∞, so

that an application of the closed-graph theorem shows that the domain
of Tσ is not closed.

Remark. If α � 1 then we may specify the domain of Tσ in cases (i)
and (ii) of Proposition 4. For, if f is such that Tσf belongs to H(s, α),
f = T−σTσf ∈ H(s, α) since this space is stable under the action of T−σ.
Hence dom(Tσ) = H(s, α).

4. Preliminaries to the proofs of Theorems 1 and 2

Let α > 0, β > 0, s > 0 and t > 0. Let

D = {f ∈ H(t, β) | Sσf ∈ H(s, α)}.
Then Sσ induces an unbounded operator from H(t, β) to H(s, α) with
domain D. As in Proposition 4, one shows that Sσ is closed and densely
defined.
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Proposition 5. Let g ∈ dom(S∗
σ) with g(z) =

+∞∑
n=0

anzn. Then S∗
σg(z) =

+∞∑
n=1

bnzn where

bn =
1

‖γn‖2
t,β

n−1∑
k=0

(
n

k

)
σn−kak‖γk‖2

s,α.

Proof: Expanding S∗
σg in the basis (e(t, β))n�0 of H(t, β), we have

S∗
σg =

+∞∑
n=0

〈S∗
σg, en(t, β)〉en(t, β) =

+∞∑
n=0

1
‖γn‖2

t,β

〈S∗
σg, γn〉γn.

Let n � 0. Since γn ∈ dom(Sσ), we have

〈S∗
σg, γn〉 = 〈g, Sσγn〉.

Since Sσγ0 = 0 and Sσγn =
n−1∑
k=0

(
n
k

)
σn−kγk if n � 1, we have, for n � 1

〈g, Sσγn〉 =
n−1∑
k=0

(
n

k

)
σn−k〈g, γk〉.

The identity 〈g, γk〉 = ak‖γk‖2
s,α thus gives the required result.

We use the notations of Proposition 5. The Parseval formula yields

‖g‖2
s,α =

+∞∑
n=0

|an|2‖γn‖2
s,α(4.1)

and

‖S∗
σg‖2

t,β =
+∞∑
n=1

|σ|2n

‖γn‖2
t,β

∣∣∣∣∣
n−1∑
k=0

(
n

k

)
σ−kak‖γk‖2

s,α

∣∣∣∣∣
2

.(4.2)

If we set

xn = σ−nan‖γn‖2
s,α

for n � 0 and

yn =
n−1∑
k=0

(
n

k

)
xk
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for n � 1, then (4.1) may be written as

‖g‖2
s,α =

+∞∑
n=0

|xn|2
|σ|−2n‖γn‖2

s,α

and (4.2) as

‖S∗
σg‖2

t,β =
+∞∑
n=1

|yn|2
|σ|−2n‖γn‖2

t,β

.

Now, consider the two following assertions:

First assertion. There exists a constant C > 0 such that the inequality

‖g‖s,α � C‖S∗
σg‖t,β

holds for any g in dom(S∗
σ).

Second assertion. There exists a constant C > 0 such that the in-
equality

+∞∑
n=0

|xn|2
|σ|−2n‖γn‖2

s,α

� C

+∞∑
n=1

|yn|2
|σ|−2n‖γn‖2

t,β

holds for any sequences of complex numbers (xn)n�0 and (yn)n�1 such
that

yn =
n−1∑
k=0

(
n

k

)
xk for n � 1,

and that the above series are convergent.

It is clear that the first assertion follows from the second one. Actually
we shall give sufficient conditions on the values of α, β, s, t and σ
for the second assertion to be valid. Under these conditions, the first
assertion will be valid too and, according to (1.6), this will prove that Sσ

is surjective.
In the sequel, our main tools will be:
• The classical properties of the Gamma function and the Beta func-

tion, in particular the Stirling formula.

• The asymptotic behavior of Bernoulli numbers.

• The following inequality, which we obtain as a consequence of the
log-convexity of the Gamma function: if a, b, δ and θ are real > 0
such that a � θ−1 and b � θ−1 then

Γ(a + b)δ

Γ(θ(a + b))
� Γ(2a)

δ
2

(θa)
1
2 Γ(θa)

· Γ(2b)
δ
2

(θb)
1
2 Γ(θb)

.
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5. Proof of Theorem 1

We now prove the second assertion, with s = 1 and σ = 1.

5.1. A triple sum.

Let β and t be two positive numbers. Let x = (xn)n�0 and y =
(yn)n�1 be any two sequences of complex numbers such that

• yn =
n−1∑
k=0

(
n
k

)
xk for n � 1.

• The series
+∞∑
n=0

|xn|2
‖γn‖2

1,α
and

+∞∑
n=1

|yn|2
‖γn‖2

t,β

are convergent.

We first invert the relations between the terms of the sequences x
and y.

Proposition 6. Let (xn)n�0 and (yn)n�1 be two sequences of complex
numbers such that for any n � 1,

yn =
n−1∑
k=0

(
n

k

)
xk.

Then for any n � 0,

xn =
n+1∑
p=1

λp,nyp

with
λp,n =

n!Bn+1−p

p!(n + 1 − p)!
for 1 � p � n + 1,

where the Bm, m � 0, are the Bernoulli numbers, defined by the expan-
sion

t

et − 1
=

∑
m�0

Bm
tm

m!
.

In particular, B0 = 1, B1 = − 1
2 , B2 = 1

6 and Bm = 0 for any odd
m > 1.

Proof: The result follows from the identity

(−1)nBn

n!
=

∣∣∣∣∣∣∣∣∣∣

1
2! 1 0 . . . . . . 0
1
3!

1
2! 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . .

1
(n+1)!

1
n! . . . . . . . . . . 1

2!

∣∣∣∣∣∣∣∣∣∣
which can be found in [12, p. 139].
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According to Proposition 6, we have

|xn|2 = xn xn =
∑

(p,q)∈{1,...,n+1}2

λp,nλq,nypyq.

We set

Ω =
⋃
n�0

{n} × {1, . . . , n + 1}2 ⊂ N3,

X(n, p, q) =
|λp,nλq,n||yp||yq|

‖γn‖2
1,α

for (n, p, q) ∈ Ω,

S =
∑

(n,p,q)∈Ω

X(n, p, q).

Then the triangular inequality gives

+∞∑
n=0

|xn|2
‖γn‖2

1,α

� S.

If (n, p, q) ∈ Ω then (n, q, p) ∈ Ω and X(n, p, q) = X(n, q, p). In other
words, the domain Ω is symmetric with respect to the plane {p = q}
in N3. For any k the sets Ω∩{p = q+k} and Ω∩{p = q−k} are images
of each other by this symmetry and the corresponding terms X(n, p, q)
contribute equally to the sum S.

We set

S(k) =
∑

(n,p,q)∈Ω∩{p=q+k}
X(n, p, q)

for any k � 0. Therefore

S = S(0) + 2
+∞∑
k=1

S(k).

The term X(n, p, q) vanishes when λp,n or λq,n does. Define Ω′ to be the
set of (n, p, q) in Ω such that the product λp,nλq,n 
= 0. For any k, we
shall give a geometric representation of points of Ω′ ∩ {p = q + k}: we
picture the points of Ω ∩ {p = q + k} featuring the elements of Ω′ with
a dot (•) and the points of Ω \ Ω′ with a cross (×).
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•
• •
• • •
× • • •
• × • • •
× • × • • •
• × • × • • •
× • × • × • • •

•
• •
× • •
× × • •
× × × • •
× × × × • •
× × × × × • •
× × × × × × • •

Ω ∩ {p = q} Ω ∩ {p = q + 1}

•
× •
• × •
× • × •
• × • × •
× • × • × •
• × • × • × •
× • × • × • × •

×
• ×
× • ×
× × • ×
× × × • ×
× × × × • ×
× × × × × • ×
× × × × × × • ×

Ω ∩ {p = q + k}, even k, k � 2 Ω ∩ {p = q + k}, odd k, k � 3.

From these pictures we deduce the following expressions:

S(0) = S
(1)
(0) + S

(2)
(0) + S

(3)
(0) + S

(4)
(0),(5.1)

with

S
(m)
(0) =

+∞∑
i=0

a
(m)
(0) (i)|y1+i|2 for 1 � m � 3,

S
(4)
(0) =

+∞∑
j=0

+∞∑
i=0

a
(4)
(0)(i, j)|y1+i|2,

where

a
(1)
(0)(i) =

λ2
1+i,i

2π
α Γ

(
2
α (i + 1)

) , a
(2)
(0)(i) =

λ2
1+i,1+i

2π
α Γ

(
2
α (1 + i + 1)

) ,

a
(3)
(0)(i) =

λ2
1+i,2+i

2π
α Γ

(
2
α (2 + i + 1)

) , a
(4)
(0)(i, j) =

λ2
1+i,4+2j+i

2π
α Γ

(
2
α (4 + 2j + i + 1)

) ,

S(1) = S
(1)
(1) + S

(2)
(1),(5.2)
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with

S
(m)
(1) =

+∞∑
i=0

a
(m)
(1) (i)|y2+i||y1+i| for 1 � m � 2,

where

a
(1)
(1)(i) =

|λ2+i,1+iλ1+i,1+i|
2π
α Γ

(
2
α (1 + i + 1)

) ,

a
(2)
(1)(i) =

|λ2+i,2+iλ1+i,2+i|
2π
α Γ

(
2
α (2 + i + 1)

) ,

and for k � 2, if k is even

S(k) =
+∞∑
j=0

+∞∑
i=0

a(k)(i, j)|yk+1+i||y1+i|,(5.3)

where

a(k)(i, j) =
|λk+1+i,k+2j+iλ1+i,k+2j+i|

2π
α Γ

(
2
α (k + 2j + i + 1)

) ,

if k is odd

S(k) =
+∞∑
i=0

a(k)(i)|yk+1+i||y1+i|,(5.4)

where

a(k)(i) =
|λk+1+i,k+1+iλ1+i,k+1+i|
2π
α Γ

(
2
α (k + 1 + i + 1)

) .

5.2. Majorisation of S(0).

The idea of the Majorisation. We have obtained S(0) as a sum of
four terms that we shall majorise successively. Each one of the first three

terms is of the form of a series in one variable
+∞∑
i=0

a(i)|y1+i|2. We have

an explicit formula for the coefficient a(i). Examinating the asymptotic
behavior of the product a(i)‖γ1+i‖2

t,β as i → +∞, we shall prove that
explicit conditions on the relative values of β, α and t are sufficient for
this product to be bounded. Under these conditions, there will therefore
exists a positive constant C such that

+∞∑
i=0

a(i)|y1+i|2 � C

+∞∑
i=0

|y1+i|2
‖γ1+i‖2

t,β

.
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The fourth term of S(0) is a series in two variables
+∞∑
j=0

+∞∑
i=0

a(i, j)|y1+i|2.

We still have an explicit formula for a(i, j). We shall prove that explicit
conditions on the relative values of β, α and t, together with the addi-
tional condition α � 1 are sufficient for the product a(i, j)‖γ1+i‖2

t,β to
be bounded, uniformly in i, by the general term c(j) of a convergent
series in j. Under these conditions, we shall have

+∞∑
j=0

+∞∑
i=0

a(i, j)|y1+i|2 �


+∞∑

j=0

c(j)


 ×

(
+∞∑
i=0

|y1+i|2
‖γ1+i‖2

t,β

)
.

In the above inequality, the right-hand side has the required form.
To obtain the inequality a(i, j)‖γ1+i‖2

t,β � c(j), we shall majorise
a(i, j)‖γ1+i‖2

t,β by the product of a function of the single variable i and
a function of the single variable j, and observe that the function of i is
bounded.

The first three terms of S(0). Recalling the values of the λp,n (Propo-
sition 6), we deduce from the Stirling formula the following asymptotic
relations as i → +∞:

a
(1)
(0)(i)‖γ1+i‖2

t,β ∼ c · i2( 1
β − 1

α )i
( 2

β )
2
β i

( 2
α )

2
α i

e−2( 1
β − 1

α )it−
2
β ii2(

1
β − 1

α )+2( 1
β −1),

a
(2)
(0)(i)‖γ1+i‖2

t,β ∼ c · i2( 1
β − 1

α )i
( 2

β )
2i
β

( 2
α )

2i
α

e−2( 1
β − 1

α )it−
2i
β i4(

1
β − 1

α ),

a
(3)
(0)(i)‖γ1+i‖2

t,β ∼ c · i2( 1
β − 1

α )i
( 2

β )
2i
β

( 2
α )

2i
α

e−2( 1
β − 1

α )it−
2i
β i4(

1
β − 1

α )+2(1− 1
α ),

where c is a constant independent of i. We see that whenever one of the
two conditions

(1) α < β

or

(2) α = β and t > 1

is satisfied then a
(1)
(0)(i)‖γ1+i‖2

t,β , a
(2)
(0)(i)‖γ1+i‖2

t,β and a
(3)
(0)(i)‖γ1+i‖2

t,β are
bounded.
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The fourth term of S(0). We have

a
(4)
(0)(i, j)‖γ1+i‖2

t,β =
(4 + 2j + i)!2B2

4+2j

(1 + i)!2(4 + 2j)!2

2π
β t−

2
β (i+2)Γ

(
2
β (i + 2)

)
Γ

(
2
α (4 + 2j + i + 1)

) .

We deduce that
a
(4)
(0)(i, j)‖γ1+i‖2

t,β � a′(j) a′′(i)

where

a′(j) =
αΓ (2(4 + 2j))

( 2
α (4 + 2j))1/2Γ

(
2
α (4 + 2j)

) B2
4+2j

(4 + 2j)!2
,

a′′(i) =
Γ

(
2
β (i + 2)

)
t−

2
β (i+2)Γ (2(i + 1))

β(1 + i)!2( 2
α (i + 1))1/2Γ

(
2
α (i + 1)

) .

We have, as j → +∞

a′(j) ∼ c · j4(1− 1
α )j 44j

( 4
α )

4j
α

e−4(1− 1
α )j(2π)−4jj−

1
2+8(1− 1

α ),(5.5)

and as i → +∞

a′′(i) ∼ c · i2( 1
β − 1

α )i
( 2

β )
2i
β

( 2
α )

2i
α

e−2( 1
β − 1

α )it−
2i
β 22ii2(

1
β − 1

α )+2( 1
β −1),(5.6)

where c denotes some constant independent of i and j.
If one of the two following conditions is satisfied

(1) α � 1, α < β and t > 0
or

(2) α � 1, α = β and t > 2α

then a′(j) is the general term of a convergent series and a′′(i) is bounded.

5.3. Majorisation of S(1).

Since for any i, |y2+i||y1+i| � |y2+i|2 + |y1+i|2, we deduce from (5.2)
that S

(1)
(1) � S

(1′)
(1) + S

(1′′)
(1) and S

(2)
(1) � S

(2′)
(1) + S

(2′′)
(1) where

S
(1′)
(1) =

+∞∑
i=0

a
(1)
(1)(i)|y2+i|2, S

(1′′)
(1) =

+∞∑
i=0

a
(1)
(1)(i)|y1+i|2,

S
(2′)
(1) =

+∞∑
i=0

a
(2)
(1)(i)|y2+i|2, S

(2′′)
(1) =

+∞∑
i=0

a
(2)
(1)(i)|y1+i|2.
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We study each one of the previous sums in the same way as the first
three terms of S(0). As i → +∞, we have the asymptotic relations

a
(1)
(1)(i)‖γ2+i‖2

t,β ∼ c · i2( 1
β − 1

α )i
( 2

β )
2i
β

( 2
α )

2i
α

e−2( 1
β − 1

α )it−
2i
β i−1+ 6

β − 4
α ,

a
(1)
(1)(i)‖γ1+i‖2

t,β ∼ c · i2( 1
β − 1

α )i
( 2

β )
2i
β

( 2
α )

2i
α

e−2( 1
β − 1

α )it−
2i
β i−1+4( 1

β − 1
α ),

a
(2)
(1)(i)‖γ2+i‖2

t,β ∼ c · i2( 1
β − 1

α )i
( 2

β )
2i
β

( 2
α )

2i
α

e−2( 1
β − 1

α )it−
2i
β i1+

6
β − 6

α ,

a
(2)
(1)(i)‖γ1+i‖2

t,β ∼ c · i2( 1
β − 1

α )i
( 2

β )
2i
β

( 2
α )

2i
α

e−2( 1
β − 1

α )it−
2i
β i1+

4
β − 6

α ,

where c is a constant independent of i.
If one of the two conditions

(1) α < β

or
(2) α = β and t > 1

is satisfied then each one of the previous equivalences is bounded.

5.4. Majorisation of
+∞∑
k=2

S(k).

Preliminaries. We begin with some computations. Write
+∞∑
k=2

S(k) =
+∞∑
h=1

{S(2h) + S(2h+1)}.

The term S(2h) is of the form of a double series of positive numbers. We
invert the order of the summations and set, for h � 1 and i � 0,

A(h, i) =
+∞∑
j=0

|λ2h+1+i,2h+2j+iλ1+i,2h+2j+i|
Γ

(
2
α (2h + 2j + i + 1)

)
and

B(h, i) =
|λ2h+2+i,2h+2+iλ1+i,2h+2+i|

Γ
(

2
α (2h + 2 + i + 1)

) .
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Then

2π

α
{S(2h) + S(2h+1)} =

+∞∑
i=0

A(h, i)|y2h+1+i||y1+i|

+
+∞∑
i=0

B(h, i)|y2h+2+i||y1+i|

=
+∞∑
i=0

|y1+i|{A(h, i)|y2h+1+i| + B(h, i)|y2h+2+i|}.

Let (wh)h�1 be a sequence of positive real numbers whose values will be
fixed later. For any i the general term of the above sum is equal to

|y1+i|
wh‖γi+1‖t,β

{A(h, i)wh‖γi+1‖t,β |y2h+1+i|+B(h, i)wh‖γi+1‖t,β |y2h+2+i|}.

This expression is of the form c(a + b), with

c =
|y1+i|

wh‖γi+1‖t,β
,

a = A(h, i)wh‖γi+1‖t,β |y2h+1+i|,

b = B(h, i)wh‖γi+1‖t,β |y2h+2+i|.
Since the inequality

c(a + b) � c2 + a2 + b2,

holds for any three positive numbers a, b and c, we obtain

2π

α

+∞∑
h=1

{S(2h) + S(2h+1)} �
+∞∑
h=1

+∞∑
i=0

|yi+1|2
w2

h‖γi+1‖2
t,β

+ A + B,(5.7)

where

A =
+∞∑
h=1

+∞∑
i=0

A(h, i)2w2
h‖γi+1‖2

t,β |y2h+1+i|2

and

B =
+∞∑
h=1

+∞∑
i=0

B(h, i)2w2
h‖γi+1‖2

t,β |y2h+2+i|2.
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The idea of the majorisation. The first term in the right member

of (5.7) is equal to
(

+∞∑
h=1

w−2
h

)
×

(
+∞∑
i=0

|y1+i|2
‖γ1+i‖2

t,β

)
, so the majorisation is

of interest only when the series
+∞∑
h=1

w−2
h is convergent, which we shall

assume until a later more precise hypothesis.
We rewrite

A =
+∞∑
h=1

+∞∑
i=0

Ã(h, i)
|y2h+1+i|2

‖γ2h+1+i‖2
t,β

and

B =
+∞∑
h=1

+∞∑
i=0

B̃(h, i)
|y2h+2+i|2

‖γ2h+2+i‖2
t,β

,

with

Ã(h, i) = A(h, i)2w2
h‖γi+1‖2

t,β‖γ2h+1+i‖2
t,β

and

B̃(h, i) = B(h, i)2w2
h‖γi+1‖2

t,β‖γ2h+2+i‖2
t,β .

We shall prove that the condition α � 1 and some conditions on the
relative values of α, β and t are sufficient for Ã(h, i) and B̃(h, i) to be
majorised, uniformly in i, by the general term of a convergent series in h,
respectively ah and bh. Then A will be majorised by

+∞∑
h=1

+∞∑
i=0

ah
|y2h+1+i|2

‖γ2h+1+i‖2
t,β

=
+∞∑
h=1

ah

+∞∑
i=0

|y2h+1+i|2
‖γ2h+1+i‖2

t,β

.

Since for any h � 1,

+∞∑
i=0

|y2h+1+i|2
‖γ2h+1+i‖2

t,β

�
+∞∑
s=1

|ys|2
‖γs‖2

t,β

,

there will exist a constant CA > 0, independent of h, such that

A � CA

+∞∑
s=1

|ys|2
‖γs‖2

t,β

,
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as we may take, e.g., CA =
+∞∑
h=0

ah. A similar argument shows that there

will exist a constant CB > 0 independent of h such that

B � CB

+∞∑
s=1

|ys|2
‖γs‖2

t,β

.

End of the proof. Writing down the expressions for Ã(h, i) and B̃(h, i)
and applying repeatedly analogous majorisations as above, we obtain
that there exists a constant c independant of h and i such that Ã(h, i)
and B̃(h, i) are both majorised by c · W ′(h)W ′′(i) where

W ′(h) =
w2

h

h
t−

4h
β

Γ (8h) Γ
(

16h
β

) 1
4

Γ (2h)2 Γ
(

4h
α

)2 ,

W ′′(i) =
t−

4i
β Γ

(
2
β (i + 2)

)
Γ (4(i + 1)) Γ

(
4
β (i + 1)

) 1
4

(1 + i)!2(1 + i)Γ
(

2
α (i + 1)

)2 Γ (i + 2)2
.

From now on, we fix wh = hλ where λ is any positive number such

that
+∞∑
h=1

w−2
h < +∞, i.e. λ > 1

2 . As h → +∞, we have the asymptotic

relation

W ′(h) ∼ c · h4( 1
β − 1

α )h+4(1− 1
α )h

(
32t−

1
β

( 16
β )

1
β

( 16
α )

1
α

e
2
α− 1

β −1

)4h

h2λ+ 3
8(5.8)

where c is a constant independent of h. As i → +∞, we have the
equivalent

W ′′(i) ∼ c · i4( 1
β − 1

α )i

(
(
2
β

)
2
β (

2
α

)−
1
α 4e−( 1

β − 1
α )t−

1
β

)4i

i
6
β − 4

α− 25
8(5.9)

where c is a constant independent of i.
This proves that if one of the following conditions is satisfied

(1) α � 1, α < β and t > 0,
(2) α � 1, α = β and t > sup( 2

α4α, 32),

then the series of general term W ′(h) is convergent and the term W ′′(i)
is bounded.

The theorem follows.
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6. Proof of Theorem 2

We shall now prove Theorem 2, which extends to other values of s
and σ the result of Theorem 1 in the case α = β.

Let σ be any non zero complex number.
Assume s = 1.
Following the same lines as in the proof of Theorem 1, we obtain the

next result.

Proposition 7. Let α > 0 and σ ∈ C∗.
(i) If α < 1, there exists t1 > 0 such that for any t > t1, Sσ induces

an unbounded, densely defined, closed and surjective operator from
H(t, α) onto H(1, α).

(ii) If |σ| <
√

2π, there exists t2 > 0 such that for any t > t2, Sσ in-
duces an unbounded, densely defined, closed and surjective operator
from H(t, 1) onto H(1, 1).

Now we obtain Theorem 2 as a consequence of the previous proposi-
tion and the next clear lemma.

Lemma 1. Let α, β, t and s be real and positive. Let µ ∈ C∗. Let
mµ : z �→ µz acting on z ∈ C, and Mµ : f �→ f ◦mµ acting on f ∈ O(C).
Let σ ∈ C∗.

(i) Mµ is a continuous one-to-one operator from H(s, α) to H(s|µ|α,α).
(ii) The following diagram commutes:

H(t, β) Sσ−−−−→ H(s, α)�Mµ

�Mµ

H(t|µ|β , β)
Sµ−1σ−−−−→ H(s|µ|α, α)

.

(iii) Sσ : dom(Sσ) ⊂ H(t, β) → H(s, α) is surjective if and only if
Sµ−1σ : dom(Sµ−1σ) ⊂ H(t|µ|β , β) → H(s|µ|α, α) is surjective.

7. Further results and applications

7.1. Pointwise estimates for elements of H(s, α).

Let α > 0, s > 0. Let f ∈ H(s, α). For any z ∈ C and any r > 0, the
mean-value property and the Cauchy-Schwarz inequality give

|f(z)|2 � C(s, α, r, z)
∫

D(z,r)

|f(w)|2e−s|w|α dλ(w)

where D(z, r) is the disk of center z and radius r, and C(s, α, r, z) a
positive constant depending only on s, α, r and z.
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Minimizing C(s, α, r, z) with respect to r, we obtain [3] two positive
constants C and M such that

|f(z)| � C · ‖f‖s,α · |z|α−1e
s
2 |z|

α

for all f ∈ H(s, α) and |z| � M .
Applying the results of [14] and [9, Lemma 18(a)], we obtain a positive

constant C such that

|f(z)| � C · ‖f‖s,α · |z|α
2 −1e

s
2 |z|

α

(7.1)

for all f ∈ H(s, α) and z ∈ C∗.
For a more general statement in Lp-spaces, see [3]. For analogous

statements in Bargmann-Fock spaces, see [15] and [11].

7.2. Periodic functions.

If g vanishes identically then a solution f of (1.1) is a σ-periodic
function.

Proposition 8. Let σ be a non-zero complex number and f ∈ H(s, α)
be σ-periodic.

(i) If α < 1 then f = c ∈ C, a constant.
(ii) If α = 1 then there exists an N ∈ N such that for any z ∈ C,

f(z) =
+N∑

k=−N

cke2iπkσ−1z with ck ∈ C for −N � k � N . If more-

over s|σ| < 4π then f is a constant.

Proof: (Inspired by Markushevich [10, Th 4.10, t III, Ch 4].) Since f is

σ-periodic, we may write f(z) =
+∞∑

k=−∞
cke2ikπσ−1z for z in C, where the

coefficients ck are given by

ck =
1

2πrk

∫ 2π

0

f
( σ

2π
(θ − i ln r)

)
e−ikθ dθ(7.2)

for any k ∈ Z and any r > 0. From (7.2) and (7.1) we deduce

|ck| � C‖f‖
2πrk

∫ 2π

0

e
s
2

|σ|α
(2π)α (θ2+(ln r)2)

α
2

dθ

and so

|ck| � C‖f‖
rk

e
s
2

|σ|α
(2π)α ((2π)2+(ln r)2)

α
2
,(7.3)

where C is a constant.
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Consider first α < 1. Letting r → 0 in (7.3) we see that ck = 0 for
k � −1, while letting r → +∞ we see that ck = 0 for k � 1. This proves
that f = c0, a constant.

Consider α = 1. Letting r → 0 in (7.3) we see that ck = 0 for
k < − s

2
|σ|
2π while letting r → +∞ we see that ck = 0 for k > s

2
|σ|
2π .

The proposition follows.

7.3. An application.

From Proposition 7.1 and Theorem 2 we obtain the following theorem.

Theorem 3. Let σ ∈ C∗. Let α � 1 and s > 0.
(1) If α < 1, there exists t′ > 0 such that:

For any t > t′ and any entire function g verifying

g(z) = O
(
es|z|α

)
as |z| → +∞, there exists an entire function f verifying

f(z + σ) − f(z) = g(z) for any z ∈ C,(i)

f(z) = O
(
|z|α

2 −1et|z|α
)

as |z| → +∞.(ii)

(2) If s|σ| <
√

2π, there exists t′′ > 0 such that:

For any t > t′′ and any entire function g verifying

g(z) = O
(
es|z|

)
as |z| → +∞, there exists an entire function f verifying

f(z + σ) − f(z) = g(z) for any z ∈ C,(i)

f(z) = O
(
|z|− 1

2 et|z|
)

as |z| → +∞.(ii)
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Université des Sciences et Technologies de Lille
59665 Villeneuve d’Ascq cedex
France
E-mail address: brive@agat.univ-lille1.fr
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