Publ. Mat. 47 (2003), 3-29

THE FOURIER TRANSFORM IN WEIGHTED
LORENTZ SPACES

GORD SINNAMON

Abstract

Necessary conditions and sufficient conditions on weights u and w
are given for the Fourier transform F to be bounded as a map
between the Lorentz spaces I'g (w) and Ay (u). This may be viewed
as a weighted extension of a result of Jodeit and Torchinsky on
operators of type (1,00) and (2,2). In the case 0 < p < 2 = ¢,
the necessary and sufficient conditions are equivalent and give a
simple weight condition which is equivalent to F: 'z (w) — Ap(u)
and also to F: I'ay(w) — I'p(u).

1. Introduction

The Fourier transform on R™ is bounded as a map from L! to L™
and also as a map from L? to L?. We say it is of type (1,00) and (2,2).
In [8], Jodeit and Torchinsky showed that a map T is of type (1,00)
and (2,2) if and only if there is a constant D such that

z z 1/t 2
(1.1) /O(Tf)*(x)degD/O /O f*) dt, feL'nL? z>0.

Here f* denotes the non-increasing rearrangement of f. We give weighted
extensions of this result and interpret them as boundedness properties
of the operator T' between weighted Lorentz spaces. If p € (0,00) and v
is a non-negative weight we define the Lorentz space A,(v) to be the
collection of functions f: R™ — R for which

) 1/p
T ( / (f*)%)
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is finite. Define f** by f**(¢) = %fot f* and let T'y(v) be the collection

of those f for which
) 1/p
Il = ([ 00)
0
is finite.

Our object is to investigate inequalities of the form

1/q

w2 ([T@n e i)

) 1/t p 1/p
§C</ </ f*) v(t)dt) , feL'nlL?
0 0

for p,q € (0,00) and non-negative weights u and v. In the case 0 <
p < 2 = q our investigation yields a simple condition on weights
and v which is necessary and sufficient for (1.2) when T is the Fourier
transform. Taking p = ¢ = 2 and u = v = X(g,-) in (1.2) shows that
(1.1) is included and, in view of the discussion below, may be interpreted
as a weighted Lorentz norm inequality. To interpret (1.2) as a Lorentz
space inequality we take w(t) = t?~2v(1/t) and make the change of
variable ¢ — 1/t in the right hand side of (1.2). It becomes

(1.3) 1Tl A, ) < Clfllr, w)

which expresses the boundedness of T': T'),(w) — Ag(uw).

In [7], H. P. Heinig uses the Jodeit and Torchinsky result to greatly
simplify the proofs of Fourier inequalities between weighted Lebesgue
spaces, first proved in [1], [2], and goes on to look at the Fourier trans-
form as a map on A,(v). Our work here represents a development of his
ideas in a different direction and would not have been possible without
his cooperation and the inspiring discussions we were fortunate to have
with him on the topic.

In the next section we introduce our tools and techniques; the level
function, a class of averaging operators, and recent work on embeddings
of the cone of quasi-concave functions. In Section 3 these are used to
give conditions on p, ¢, u, and v which are sufficient to imply (1.2).
In Section 4 we focus on the Fourier transform, constructing the test
functions that provide our necessary conditions. The last section shows
that the conditions of Sections 3 and 4 reduce to a single simple condition
in the case 0 < p <2 =gq.
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To complete the introduction we present some notation used through-
out the paper. The n-dimensional Fourier transform of f is

Ff(z) = f(z) = / o

n

We use the common notation f whenever possible, reserving F for situ-
ations where an operator name is required.

Let L™ be the set of Lebesgue measurable functions h: (0,00) —
[0, 0] and, for a+ 3 > 0, let Q, g denote the collection of those h € LT
such that t*h(t) is non-decreasing and t~“h(t) is non-increasing. We
only use two instances of this definition; the quasi-concave functions,
Qp,1; and a class that arises naturally in our situation, s o. We will use
some distinguished elements of (25 ¢: For each z > 0 define w, by

w,(t) = min(z72,t72).

The characteristic function of the set E is denoted xg. It takes the
value 1 on F and 0 otherwise. The notation w,, T u means that {u,} is a
non-decreasing sequence of functions that converge pointwise to u. On
there other hand ¢ | means that ¢ is a non-increasing function.

We say that the two expressions A and B are equivalent and write
A =~ B when there are constants m and M such that mA < B < MA.
The constants may depend on indices p and g but not on weights or
functions. Similarly we write A < B when there is a constant M such
that A < MB.

We take [3] as our standard reference for Banach Function Spaces, re-
arrangements and rearrangement invariant spaces. In particular we fol-
low that text in our use of the Hardy-Littlewood-Pdlya relation h; < ho

to mean
t t
/ hfﬁ/ hs, forall ¢ > 0.
0 0

2. Preparation

The level function construction of [6] and [9] has been developed fur-
ther in [12], [13], [14]. The properties we need here are contained in the
next proposition which follows from [14, Proposition 1.2 and Proposi-
tion 5.1] by taking the measure A to be Lebesgue measure on (0, 00).
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Proposition 2.1. To each h € L™ there corresponds a non-increasing
function h° € LY, called the level function of h, having the following
properties:
a) For all non-increasing ¢ € LT, [ oh < [ oh°.
b) If0 < h,, T h pointwise then h 1 h° pointwise.
¢) If h is bounded and compactly supported then there exists a (nec-
essarily finite or countable) collection of disjoint intervals (a;,b;),
each of finite length, such that

1

he () =
) bj — a;

bj
/ h, fora; <x <y,
a

and h°(xz) = h(z) for x ¢ U;(aj,b;).

To use Proposition 2.1c¢) effectively we introduce the class A of
averaging operators: Given a (necessarily finite or countable) collec-
tion {(a;,b;)} of disjoint subintervals of (0, c0), each of finite length, we
define the averaging operator A by

h fora; <z <b;
Ah(.’E) _ bi—a; 7aJ f J
h(x) otherwise.

The class A is the collection of all such operators A and Proposition 2.1c)
says that if A is bounded and compactly supported then there exists an
A € A such that h° = Aph.

It is clear that for any A € A, if h € L' is non-increasing then so
is Ah. Moreover, [3, Proposition 2.3.7] shows that Ah < h so that if
h € LT is non-increasing then foa: Ah < fow h for all z > 0 and it follows
that [;°(Ah)p < [;° he whenever ¢ € L™ is also non-increasing. As
an illustration of the interplay between properties a) and ¢) of Proposi-
tion 2.1 we show that if h € L* is non-increasing then h° = h. Taking
© = X(0,z) in Proposition 2.1a) we have

/h</ h° = Ahh</ h
0 0

for all x > 0 and hence h = h°. The other property of these averaging
operators that we will use is their self-adjointness. An easy calculation
shows that for any A € A

/ (Ah)p / h(Ayp), h,p€ L™.
0
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It became evident in [14] that the effectiveness of level function tech-
niques is not restricted to functions in Lebesgue spaces. The next
lemma shows that it arises naturally in connection with the Hardy-
Littlewood-Pdlya relation, the fundamental relation in rearrangement
invariant spaces. Recall that hy < hg implies that ||hi||x < ||h2llx
for any rearrangement invariant space X. In particular if h; < hy and
¢ € LT is non-increasing then [;° hip < [ hbe.

Lemma 2.2. Suppose that h,u € L with h non-increasing. Then

o0 (o) (o)
sup / ou = sup/ (Ah)u:/ hu®.
0<pl,p<hJO AeAJo 0

Proof: In view of the Monotone Convergence Theorem and Proposi-
tion 2.1b) it is enough to prove the lemma for « bounded and of compact
support. In this case there is an operator A, € A such that A,u = u°.
We use the self-adjointness of A, to get

/OOO h = /OOO h(Ayu) = /OOO(Auh)u < sup /Ooo(Ah)u_

Now h is non-increasing so for any A € A, Ah is also non-increasing and
we have Ah < h. Thus

sup/ (Ah)u < sup / OU.
0 0

AcA 0<pl,p<h

For the remaining inequality we apply Proposition 2.1a) and then ¢ < h
to see that

oo oo o0
sup / pu < sup / wu’ < / hu®.
0<epl,p=<h JO 0<¢l,p<h JO 0

The last inequality is valid because u° is non-increasing. This completes
the proof. O

The next two corollaries look at the extent to which this lemma carries
over to norms.

Corollary 2.3. Suppose that h € L%t is non-increasing and suppose
that X is a Banach Function Space of functions defined on (0,00). Then

sup |lol[x = sup [[Ah[/x.
0<pl,p=<h AcA
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Proof: Since ¢ is non-negative, the norm in X can be expressed as a
suprema over all non-negative u in the unit ball of the associate space X'.

sup{fl¢llx :0<p |, ¢ < h}

o0
s [Tui0s ol p<hue I fully < 1)
0

= sup{/ (Ahyu: A€ A, ue LT, |jul|x < 1}
0
= sup{||Ah||x : A € A}. O

Corollary 2.4. Suppose 1 < s < oo and h,u € Lt with h non-in-
creasing. Then

sup H‘PHs,u = sup [|Ah |s,u < ”hHs,uO'
AcA

0<pl, p=<h

Proof: Since s > 1, L;, is a Banach Function Space so the first statement
follows from Corollary 2.3. By the Monotone Convergence Theorem it
is enough to prove the second statement in the case that h is bounded.
Fix A € A. Since h is non-increasing, so is Ah. By Proposition 2.1a)

/Ooo(Ah)Su < /Ooo(Ah)su".

We cut down u® to u, = min(n,u?)y, ., and note that u, is still non-
increasing. Since h is bounded, so is Ah and thus [~ (AR)*u, < .
Now Ah < h and (Ah)*~u, is non-increasing so

/ (Ah)sun:/ Ah(Ah)Sflung/ h(AR)* " u,.
0 0 0

This is the estimate we want in the case s = 1. If s > 1 we apply Holder’s
inequality,

/000<Ah)sun < (/OOO hsun)l/s (/OOO(Ah)sun)l_l/s,

and divide by ([, (Ah)*u,)'~!/* to conclude that

() s([ )

for all s > 1. Now let n — oo to get

([ o) ([ )

which completes the proof. O
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The next lemma will enable us to eliminate the level function when
it appears in weight conditions.

Lemma 2.5. Ifu € L then for allz >0

1 [ 1 [ 1 (Y AN
(2.1) —/ uozsup—/ AuSqup—/ ug—/ u’.
T Jo AeA T Jo y>z Y Jo T Jo

Proof: Fix x > 0. The function x(g ) is non-increasing so the first
statement follows from Lemma 2.2 and the self-adjointness of the oper-
ators A € A.

Now fix A € A and let (a;,b;) be the collection of disjoint intervals
associated with A. If x is not in any of the intervals (a;, b;) then an easy
calculation using the definition of A shows that

/Auz/u
0 0

For such an x it is trivial that

1 [* 1 [Y
- Auﬁ?sup—/ U.
T Jo y>z Y

Otherwise z € (ay, b;) for some j and since Au takes the value _ia_ f;] U
J J J
on the interval (a;,b;) we have

/Au:/]Au—&—/ Au:/Ju—l—x_a]/ u</u+ /
0 0 a; 0 bj — a; b

Note that a; < x < b; implies 7—= < £. Tt follow that for this = we
J J J
also have

1 /" 1 /Y
— Au§2sup—/ U
T Jo y>z Y

and, taking the supremum over all A € A proves the middle inequality
n (2.1). For the last inequality, Proposition 2.1a) and the monotonicity
of u® show that for y > =z,

1 /Y 1 0m ., 1 [,
— u < — u’ < — u
YJo YJo T Jo

which completes the proof. O
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2
The functions ( fol/ K f*) that arise from the Jodeit and Torchin-

sky result (1.1) belong to the cone 3. That is to say, they are non-
increasing and become non-decreasing when multiplied by 2. We employ
recent results on weighted embeddings of this cone. The next proposi-
tion follows from [15, Theorems 2.6 and 2.7] with & = 2 and 8 = 0. For
related work on these embedding problems see [4], [5], [10] and [16].

Proposition 2.6. Suppose p,q € (0,00) and u,v € LT. Let

hllg/2,u
B = sup 7” o2, .
h€eQs2 0 ||h||p/27v
If p < q then
00 2/q oo —2/p
B ~ sup </ min(z~ 9, t"Nu(t) dt> </ min(z" P, t"Pu(t) dt)
z>0 0 0

and if g < p then

oo . q/(p—9)
o0 ~a_=a)y(t) dt
B~ / <f0 min(z Ju®) ) x~%(x) dx
0

2(p—q)/(pq)

Jo© min(z—P, t=P)(t) dt

3. Sufficient conditions

In this section we give conditions on weights v and v and indices p
and g which are sufficient to imply the inequality (1.2) for any operator T
of type (1,00) and (2,2). Since the Fourier transform is one such opera-
tor, the conditions imply weighted Fourier inequalities. Specifically, they
ensure that the Fourier transform is bounded between certain weighted
Lorentz spaces.

Theorem 3.1. Suppose that 0 < p < o0, 2 < ¢ < oo and u,v € LT.
If T is of type (1,00) and (2,2) then the inequality (1.2) holds for all
feLYNL? with C defined by

Ah
C?*=D sup 7“ o/ .
A€A, h€Qa o Hh||p/2,v
Here D is a constant depending only on the operator T .

Proof: Since T if of type (1,00) and (2,2), [8, Theorem 4.6] shows that
there exists a D depending only on T such that (1.1) holds. Fix f €
L' N L? and define hy and ¢ by

1/t 2
hy(t) = (/0 f*> and @f(x) = (Tf)"(x)*/D.
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Clearly, h¢(t) is non-increasing and we can see that t2hs(t) is non-
decreasing by recognizing it as (the square of) a moving average of the
non-increasing function f*. Thus hy € Q2. The function ¢y is also
non-increasing and (1.1) shows that ¢y < hy. We apply Corollary 2.3

with X = LY? to get

HSDqu/Q,u ||‘P||q/2,u
—IHaEY < su g/ su
1sllp/20 ~ ool o=ns 1 llp/2.0
Ayl
AeA ||hf||p/2,v
HAth/Q,u

IN

A€A, h€Qs o ”hHP/vi .

With C as above this can be written

lesllarzu < C2D7HIRgllp2,0-
Cancelling the D’s and taking the square root of both sides yields

(/OOO(Tf)*(x)qu(a:) dx)l/q <c (/O"o (/Ol/t f*>1’v(t) dt) 1/p

as required. O

We can interpret this result as a sufficient condition for the bounded-
ness of the operator T' between weighted Lorentz spaces.

Corollary 3.2. Suppose that 0 < p < 00, 2 < q < 00 and u,w € L.
Set v(t) = tP~2w(1/t). If T is of type (1,00) and (2,2) and if

Ah
. bz
A€A, heQa o ”h’HP/Q,U
then
(32) T: Ty(v) = Ag(w).

The weight condition in Theorem 3.1 and Corollary 3.2 involves a
supremum over all functions in Q3 o. All that is required in the proof is
the supremum over a smaller class, those functions of the form

1/t 2
(3.3) F(t)z(/o f*) . fert
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While each such F' is in 3, not every function in €5 is of the
form (3.3). The next proposition shows that nothing is lost by work-
ing with the larger class.

Proposition 3.3. If ' € Q¢ then there is a non-decreasing se-
quence {F,} of functions of the form (3.3) such that

F(t) < lim F(t) <AF(t), t>0.
n—oo
Proof: Fix F € Qq and define G by G(z) = F(1/z)'/2. Tt is easy to see

that G € Q1. By [15, Lemma 2.3] the least concave majorant G of G
satisfies G < G < 2G and G(¢) is the limit of a non-decreasing sequence

of functions of the form
t [e’e]
/ / ()% dy.
0 Jy s

With fn(y) = fi(y) = fyoo hn(s)% we have

n—oo

F(t)=G(1/t)2<G(1/t)*>= lim </l/tf;;> <(2G(1/t))>=4F(t). O
0

The condition (3.1) is not simple to verify. However, we can give a
stronger condition in a form that is much easier to work with. The idea

is to replace the weight u by its level function to eliminate the supremum
over all A € A.

Theorem 3.4. Suppose 0 < p < o0, 2< g < oo andu,v € L*. If T is
of type (1,00) and (2,2) then there exists a constant C such that (1.2)
holds for all f € L' N L? provided either p < q and

<1. /U )1/¢1 ( p/oo (1/t > dt)l/p
sup | — U T - v —
z<y \Y Jo T t 0 tP

is finite, or q < p, 1/r =1/q—1/p, and both

oo 1/q oo -1/p
L) ()
0 0
and
—r 1/r
/g v \e <1t Ndat\ Y dtde
/ sup—/ u xp/ —/1} — x“’/ v(t)——
0o \w>z Y Jo « \tJo (2 p w

are finite.



THE FOURIER TRANSFORM IN WEIGHTED LORENTZ SPACES 13
Proof: Applying Corollary 2.4 to the weight condition of Theorem 3.1
shows that if

||th;(/2,uo

(3.4) B? =
heQ o ”th/Q,v

then (1.2) holds. We use Proposition 2.6 with u replaced by u°. If p < ¢
then

00 1/q oo -1/p

B =~ sup (/ min(x~9,t"DHu’(t) dt) (/ min(x P t7P)v(t) dt) .
x>0 0 0

The monotonicity of u® permits some simplification. We have

/ t~u(t) dt < uo(m)/ t=9dt

xT

S0
/ min(z~ 9, ¢t"Du’(t) dt
0

- oo qm—q i3
— 1 / ul(t) dt + / t O (t) dt < / u’(t) dt.
0 x 0

q—1
Combining this with Lemma 2.5 yields

oo 2 —q y
/ min(z~9 " DHu(t) dt < gl sup L / u.
0 q— 1 y>z Y Jo

Also, by an interchange of the order of integration,

(3.5) /OOO min(z7, tP)o(t) dt :p/:o (% /Ot v> g.

Now we have

Y 1/‘1 [e'e] 1 t dt _1/p
B < sup <xqsupm/ u> (/ (/ ’U) )
T a>0 y>z Y Jo « \tJo /P
T Yy l/q oo 1 t dt 71/1)
Gl LD
e<y \Y Jo = \tJo tr

This completes the proof in the case p < q.
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If ¢ < p then Proposition 2.6 shows that

1/r
o [ [ min(x~9, ¢~ 9)u(t) dt " _
B~ / 0_ r™ % (x) dw
0 Jo min(z=P,t=P)v(t) dt
and we use the monotonicity of u° as above to get
1/r

r/p
o =9 [T ul(t) dt
BZ / I Jo w(®) x” WO (z) dx
~\Jo Jo min(z=P,t=P)v(t) dt
We omit the details of the integration by parts that reduces this last
expression to

<q /O Oo( /0 $u0(t) dt)T/q <x” mein(x—l’, t=P)o(t) dt)r/qmp /m oov(t)%‘iﬁ
+g (/OOO u’(t) dt) T </Ooo v(t) dt) _T/p> v

Now Lemma 2.5 and (3.5), together with the fact that [~ u® = [~ u
give us

[e%s) x r/q [e%s) t -r/q %)
o[t [ L L)) 2
- 0 y>z Y Jo T 3 0 2 T vz
) r/q 00 —r/p 1/r
) )
0 0

This completes the proof. O

Another way to replace (3.1) by a stronger sufficient condition that
does not involve a supremum over all A € A is to note that for any
A € A and any non-increasing h,

Ah(z)gl/ Ah < 1/ h =B (z).
0 0

T €T

Thus
ARl 20 17" g /2,
AcA heQao Mllpr2w = neao IBllpj20
It is possible to write down an expression equivalent to this last supre-
mum by following the method of [15, Theorem 5.1]. However, we do not
present the result here because there are many weight conditions involved
and the result, while sufficient for (1.2), is unlikely to be necessary.
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4. Necessary conditions

The results of this section build up to the construction of functions
that will serve as a test functions in (1.2). Ideally, we want to construct
a small collection of functions f with the property that if (1.2) holds
for these f then the sufficient condition of Theorem 3.4 also holds. The
extent to which we succeed is seen in Theorem 5.1.

The sufficient condition of Theorem 3.1 is a supremum over all A € A
and all h € Q3 but the test functions we construct will be indexed by
A € A and only certain functions in Qg . Since

we see that w, € Qg for each z > 0. Moreover this representation
of w, suggests that we should look at functions f whose rearrangement
1S X(0,1/2)-

Even for a fixed z > 0, there is a large class of functions f equimea-
surable with x(g,1/.). Our task is to show that for each A € A there
is one such f whose Fourier transform satisfies ( f)*2 > Aw,. This is
done, up to a small epsilon and a constant multiple, in Theorem 4.6.
Our necessary condition for (1.2) is given in Corollary 4.8.

We begin with an estimate of the rearrangement of a function that
arises as the Fourier transform of a characteristic function.

Lemma 4.1. Let S(z) = sin(z)/z. Then S*(y) > (37 +y) L.

Proof: We estimate the distribution function pg(a) of S as follows. For
a >0,

ps(a) = [{z : |sin(z)/z| > a}|

=2|{x > 0: |sin(z)| > za}|

=2 |z € ((n—)mnr) : [sin(z)| > za}|.

n=1
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For z € ((n — 1)m,nm) the condition |sin(z)| > x«a is weaker than the
condition |sin(x)| > nma so we have

ps(a) > 22 {z € (n — 1)m,nnr) : |sin(z)| > nral|

n=1

=2 Z {z € (0,7) : sin(z) > nral|
n=1

= 42 {z € (0,7/2) : sin(z) > nral}|

using the symmetry of sin(z). Since the condition sin(z) > nra is never
satisfied for nma > 1 we may restrict the sum to those n for which
nma < 1. To this end we let N be the integer satisfying (1/(7ra)) — 1 <
N < 1/(wa). Also, sin(x) > 2z /7 for 0 < 2 < 7/2 so we have

N
ns(a) > 42 {z € (0,7/2) : sin(x) > nra}|
n=1

N
> 42 Hz € (0,7/2) : 22 /7 > nwal|

n=1

N
42(7r/2 — nn?a/2)

2n(N — maN(N +1)/2).

The definition of N completes the estimate of pg(a).

1 1 1 1
ps@ zor (1= T (L))o L ogn
T 2 Ta \Ta «
Now for any y > 0,
S*(y)=inf{a : ps(a) <y}>inf{a: (1/a) =37 <yl=@Br+y)~'. O
Corollary 4.2. Ifz >0 and f = x(0,1/z) then ()*(y) > Brz+y/2)~ L.

Proof: The (one-dimensional) Fourier transform of f is

R 1/z ) —ix/z __ 1
f(z) = / P
0

—r
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If S(z) = sin(z)/x as in Lemma 4.1 we have
1 efiz/(Qz) eim/(2z) _ efiz/(2z)
z x/(22) 2i

sin(z/(22)) ‘
z/(22)

218G/ (22)]

The rearrangement satisfies (ag)* = |a|g* for any complex number a and
function g. Also, since we are taking the rearrangement with respect to
Lebesgue measure, it respects dilation. That is, if g,(z) = g(ax) then
95(y) = g*(Jaly). These properties, together with Lemma 4.1 show that

NV PPN S S
(W) = 257w/ 2 S 7)) ~ sme v g2

|f ()| =

1
oz

The Fourier transform of a dilation of f is the inverse dilation of
the Fourier transform of f, up to a scaling factor. The next result and
its corollary are counter-intuitive because the same dilation appears in
both the time and frequency domains. To achieve this we break up f
into several equimeasurable pieces with disjoint supports. Since we are
only concerned with rearrangements we are free to multiply each piece
by high frequency functions of unit modulus to produce translation in
the frequency domain and prevent the Fourier transforms of the pieces
from reinforcing. O

Lemma 4.3. Suppose that f: R — C is a compactly supported L' func-
tion and k is a positive integer. For any € > 0 there exists a compactly
supported L function g such that g*(s) = f*(s/k) for s >0 and

(4.1) (N (/k) = < (@) (W) < (/) (y/k) +e
fory > 0.
Proof: We show that for T and X sufficiently large,
k
g(t) =Y "X f(t +4T)
j=1

will do. It is clear that such a ¢ is compactly supported and in L.
Choose T so large that the supports of f(t + jT), j = 1,...,k are
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disjoint. Then no matter what X is, for all @ > 0 we have

{t:1g()] > a}f = Zl{t A+ 3T > o} = k|{t: [f(#)] > a}]

using the translation invariance of Lebesgue measure. We use this to
express the rearrangement of g in terms of the rearrangement of f.

g9"(s) = inf{a: [{t : [g(t)| > a}| < s}
= inf{o: |[{t: [f(t)] > o} < s/k} = [*(s/F).

Now we turn to the Fourier transform of g and the choice of X. By
the Riemann-Lebesgue Lemma we have

R [f(@)l=0

so we may choose X so large that |f(z)| < e/k whenever |z| > X/2.
Since

k
3 eI g )
=1

we see that if z € (jX — X/2,jX + X/2) for some j then only the jth
term of the sum can contribute more than /k so
(4.2) (@ = iX)| —e < |§(2)] < |f(z—jX)| +e

and if x ¢ (X — X/2,5X + X/2) for any j then none of the terms in
the sum can contribute more than €/k so |§(x)| < . Thus, for a > ¢ we
have

k
Hz:g(z)|>al|= Z|{$€ (JX — X/2,iX + X/2) : |§(z)] > a}|
k
ZHJTE(JX X/2,jX + X/2) : |[f(z—jX)|>a —e}|

k
) Nz e (-X/2,X/2) |f(@)] > a— e}

<kl : [f(2)] > a—e}l.
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This implies that if (§)*(y) > & then
(9)"(y) = inf{a: {z: [g(x)] > o} <y}
< inf{a:|[{z:|f(z)] > a—c}| < y/k}
=inf{a—e:[{z:|f(@)| > a—c}| <y/k} +e

= (f)(y/k) +e.

Of course, if (§)*(y) < e then we also have (3)*(y) < (f)*(y/k) + € so
we have established the second inequality in (4.1).

To prove the first inequality in (4.1) we observe that for all a > 0,
(4.2) implies that

k
{z:]g(x )|>a}|>Z|{w€ (X —X/2,jX + X/2) : |§(z)| > o}
k
> {re(iX — X/2,jX + X/2) 1 |f(x—jX)|>a +e}|
j=1

{z € (=X/2,X/2) : |f(2)] > a+e}|

M- 1

<.
Il
-

=kl{z: |f(2)] > a + e}
where the last equality uses the fact that |f(z)| < e for |z| > X/2. Now
(9)"(y) = inf{a: [{z: |g(z)| > o} <y}
> inf{a: [{z:|f(z)] > a+e}| < y/k}
=infla+e:|{z:|f(a) >a+e}| <y/k}—¢
> inf{a s [{z: |f(@)] > a}| < y/k} - e
= () (y/k) ¢
as required. This completes the proof. ]

Corollary 4.4. Given z > 0, r > 0 and € > 0 there exists a compactly
supported L' function g: R — C such that

9" =Xpoa/» and (§)"(y) +e = Br(r+ 1)z +y/(2r)"
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Proof: Let k be the positive integer that satisfies kK — 1 < r < k and set
J = X(0,1/(kz))- Choose g by Lemma 4.3 so that

g*(s) = f7(s/k) = X[0,1/(k=))(8/k) = X[0,1/2)(5)

and
(9" () = (/)" (y/k)—e = Brkz+y/(2k)) "= = (Br(r+1)z+y/(2r)) .
Here we have used Corollary 4.2 to estimate (f)*. O

The same idea used in Lemma 4.3 is used below to keep the Fourier
transforms of the terms of a sum from reinforcing in the frequency do-
main. This time the summands are not equimeasurable, however, so the
estimate is rather coarse.

Lemma 4.5. Suppose that {f;} is a sequence of compactly supported
Junctions mapping R to C and satisfying [ = Xxo,s;) for j = 1,2,...
with E;’il sj = 59 < 0o. Then for any € > 0 there exists a g such that
9" = X0,s0) and

(4.3) @)W =)@ —e y>0j=12....

Proof: We show that there are sequences {T};} and {X;} so that

g(t) = e fi(t+1Ty)

J=1

will do. Let T7 = 0 and suppose that T1,...,7T,_1 have been chosen.
Choose T,, so large that the supports of f;(t + 1), j = 1,...,n are
disjoint. Then no matter what the sequence {X,} is, for all @ > 0 we

have
o0

[t lg@) > a}l =D [t : [fit+T)] > a}l.

j=1

Since f} = Xjo,s;) this sum is zero for a > 1 and takes the value s for
a < 1. Tt follows that g* = X[o,s0)-

To construct the sequence {X;} we first apply the Riemann-Lebesgue
Lemma to each f; to select an R; > 0 such that |f;(z)| < 277 whenever
|z] > R;. Now set X; = 0 and suppose that X1,...,X,_1 have been
chosen. Choose X,, so large that no two of the intervals (X; — R;, X, +
Rj), j=1,...,n intersect.
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Since the sum that defines g converges in L', the sum

o0

§x) = 3T fia - X))

Jj=1

converges in L. It follows that for almost every z € (X; —R;, X, +R;),

|fie = X)) =& < |3()|

since the £th term of the sum contributes at most €27¢ unless ¢ = j. For
a > 0 we have

{z:[g()| > a}| =Yz € (X; - R, X; + Ry) : |3(2)] > o}

Jj=1

Z {ze(X;—R;,X; +Rj): |fj(x — X;)|>ate}|
Z|{x6 (—=R;, R)) : |fj(x)| > a + ¢}

—Z|{x |fj )| > a+e}
> sup|{z : | fj(x)] > a +e}|.
jz1

Here we have used the fact that for z ¢ (—R;, R;), |f;(z)| <e277 <e <
a + e. Thus, for each j,

(§)"(y) = inf{a: |{z: [§(@)] > a}] <y}
> inf{o: [{z: |f(2)] > o+ )| <y}
—inf{ate:|{o:|fy@)] > ate) <y)-c
> inf{o: |{o: |fy(@)] > o} <y}~
= (f)*(w) -

This completes the proof. O
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Now we are ready to put these results together to construct a test
function f for each averaging operator A € A and z > 0. Recall that
w,(t) = min(z72,¢72).

Theorem 4.6. Suppose z > 0 and A € A. For each € > 0 there exists
a function f: R — C with f* < x[0,1/-) and

(Aw)'? < er((f)* + o)
with ¢; = 87.7.

Proof: Fix z > 0 and A € A. The intervals associated with A are
disjoint so there exists at most one that constains z. Let (ag,bp) be the
interval of A containing z if it exists. Otherwise let ag = by = z. Of the
remaining intervals of A we select those that lie to the right of z and are
long compared to their distance from zero. Set

J={j:z<a; <b;/2}.
Let fo = X(0,1/(42))- By Corollary 4.2 we have
f5 =X/ and  (fo)*(y) > (1272 +y/2) "
Choose gy by Corollary 4.4 with z replaced by 4z and r = rg =
V/bo/(247z) so that g} = X(0,1/(4z)) and
-1
(90)" () +2/22 (12m(roH)z+y/(2r0)) ™' = ((1+y/bo) /6rboz +1272)

For each j € J we choose g; by Corollary 4.4 with z replaced by

4(z 4+ a;) and r = r; = \/b;/(247(z + a;)) so that g5 = X(0,1/(4(:+a,)))
and

(90)*(y) +€/2 > (127 (r; + 1)(z + a;) +y/(2r;)) "

> ((1 +y/bj)/ 67D, (2 + a;) + 127(z + aj)>_1 .

We plan to apply Lemma 4.5 to the collection { fo,g0,9; : j € J}. To
do this we must show that the sum

converges. The definition of J shows that a; € (z,00) for all j € J.
Moreover, since the intervals indexed by J satisfy b; > 2a;, at most
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one a; can be in any interval of the form (27z,2™T!z) form =0, 1,... .
Thus

1 1 & 1 1
< 4 <
50 = 4z+4z+w;4(z+2mz) =57

By Lemma 4.5 there is a function f such that f* = x0,s5) < X[0,1/2)
which satisfies

2-2-m 1 L+ 1 -
= —4— == < 0.
z 2z 2z z

WK

0

3
Il

(/)" (W) = (fo)"(y) — /2,
() () = (90)*(y) — /2,
()W) = (@) (y) —</2, jed.

Using the above estimates of (fo)*, (§o)*, and (G5)*, we get
L

(4.4) (F) (y)+e=(12mz +y/2)"

-1

4.5) () (y)+e> ((1 +y/bo)\/67boz + 12772:) , and

(4.6) ()" (y)+e= (<1+y/bj>\/6wbj<z+aj>+12w<z+aj>)_ , jed

To complete the proof we must show that Aw. ()2 < ¢ ((f)*(y)+e).
We do this in three cases.

Case 1: Aw,(y) < 2w,(y). We have

sz(y)l/Q < \@min(l/z71/y) < \/5( 127w +1/2 >

1272 +y/2
Now (4.4) yields

Aw:(y)'? < V2(12m + 1/2)((/)*(9) +¢) < (/)" (y) + )

Case 2: ag < y < bp. This case only arises when (ag,bp) is an interval
of A containing z. Since w, is non-increasing,

1 bo 1 [ho 1 [
Az = 2 < 2 < z = 7 _
w (y) bo — ag /ao W= bO/O W= bO/O w boz

Since y < by and z < by we have

V2 V2(2V6r + 121) - V2(2V/67 + 127)
Vboz  2v6m/boz + 12m/boz ~ (14 1/bo)v/6mboz + 1212

Aw:(y) V2=
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and we may use (4.5) to get

Aw-(y)'? < V2(2V6m + 120)((F)"(y) + ) < 1 ()" () + )

Case 3: Aw,(y) > 2w.(y) and y ¢ (ag,bp). Since Aw, is not equal
to w, at y it follows that y must be in some interval (a,b) of A. We have
specifically excluded the possibility that a < z < b. If a < y < b < z then
Aw, is the average of the constant function =2 on (a,b) so Aw.(y) =
272 = w, (y) which rules out this possibility as well. Therefore, this case
only arises when z < a < y < b for some interval (a,b) of A. We can use

this information to calculate that
w(y) =y~> and Aw.(y) =1/(ab).

Now

1 1 y?

“= Aw. (y)b < 2w,(y)b  2b
so the interval (a,b) is (aj,b;) for some j € J. For this j we have
2¢/ajb; > 2a; > z + a; so

b
2

1 1 2V/127 + 247
Aw(y)/* = =
ajbj 2\/677(2aj)bj + 1271’(2 ajbj)
< 2V 121 4 247
T (1+y/bj)\/6m(z 4+ a;)b; + 127(z + a;)
< (V127 + 247m)((f)* () + ) < er((f)*(v) +©).
Here we have applied (4.6). This completes the proof. O

It is a simple matter to extend this result to functions on R™.

Corollary 4.7. Suppose n is a positive integer, z > 0 and A € A. For
each € > 0 there exists a function f: R" — C with f* < x[0,1/) and

(Aw)'? < eal(f)" + )
with ¢, = 87.7(3m + 1/2)"~1.

Proof: Let f; be the function constructed in Theorem 4.6 and set fo =
fs == fu=Xp,1)- Then f: R" — C defined by

flt1,ta, .. tn) = fi(tr) fa(te) ... fu(tn)

is easily seen to be equimeasurable with f1. Thus f* = fi' < x0,1/2)-



THE FOURIER TRANSFORM IN WEIGHTED LORENTZ SPACES 25

By Corollary 4.2, for j =2,3,...,n
(f)*(y) = Br+y/2)"' > B+ 1/y) "X ()
SO
(f1)*(y1)(f2)*(y2) e (fn)*(yn)
> (3m+ 1/2)17n(fA1)*(yl)X[o,l)(yz) o X[0,1) (Un)-

The n-dimensional Fourier transform of f can be expressed in terms of
the one-dimensional Fourier transforms of fi, fo,..., fn as

f($173€27 ey Ty) = fl(xl)f2($2) oo fn(fﬂn)

and this product is easily seen to be equimeasurable with

Thus A )
(/)" (y) = Bm +1/2)'"(f1)*(y)
and so
(Aw.)' 2 <er (1) (9)+e) <er(Br+1/2)" () (w)+e) <enl(H) (y)+e)
as required. O

Testing over the functions we have constructed yields the following
necessary condition for (1.2).

Corollary 4.8. Suppose 0 < p < 00, 0 < g < 00 and u and v satisfy

( / RURORIO) dy>” "¢ ( /Ooo ( // ﬁ)pv(y) dy>1 .

for all f: R® — C in L' N L2. Then

A z u

[ Aw:||q/2, §4ciC’2
A€A, 2>0 ||WZH;D/2,U

where ¢, is the constant of Corollary 4.7.

Proof: Fix A € A and z > 0. Since A has no infinite interval it is easy to
see that Aw, is non-increasing and does not vanish on (0, 00). Fix Y > 0
and define € > 0 by ¢, (2¢) = Aw.(Y)'/2. Apply Corollary 4.7 to produce
a function f such that f* < x(o,1/») and (Aw,)!/? < en((f)* +¢)2. Note
that f € L' N L2. For all y € (0,Y) we have

cn(2) = Aw. (V)2 < Aw. ()2 < ea(())*(y) + ).
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It follows that ¢ < (f)*(y) and we obtain
Aw. (1) < enl(f)7(y) + ) < 2ea(f)* ()

Let Y — oo to complete the proof. O

5. Necessary and sufficient conditions

In the case ¢ = 2, the natural weight condition that arises from the
analysis in this paper involves the level function u° of the weight w.
Calculating as in the proof of Theorem 3.4 we see that for u,v € LT,

1/2 —1/p
By = sup (/ min(z~2,¢7?) ) (/ min(z 7P, t7P)v (t)dt)
>0
N ( _2/33 0>1/2 (/oc (1/t )dt)l/p
~sup |z u - v — .
>0 0 « \l.Jo L2

There is and equivalent expression in terms of u rather than u°. Let

y o\ /2 < /1 ft -1/p
B =sup (E/ u) (xp/ (—/ v) ﬂ) .
z<y \¥Y Jo x tJo P

The equivalence of By and Bj is an immediate consequence of Lemma 2.5.

The main result of this section is a weighted extension of the Jodeit
and Torchinsky result with simple necessary and sufficient conditions on
the weights.
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Theorem 5.1. Suppose 0 < p < 2 and u,v € Lt. Then there erists a
constant C' such that

o (/ooo(f N dﬂ”)w <C </ooo </ol/t f*)pvu) dt> :

holds for all f € L' N L? if and only if By < 0o or equivalently By < oo.

Proof: By Theorem 3.4, By < oo is sufficient to imply (5.1).
To prove the necessity of By < oo we suppose that (5.1) holds. By
Corollary 4.8,
su [Aw. [|1,u
p
A€A, z>0 ||wsz/2,v
Recall that w,(t) = min(272,¢72). We express By in terms of w, and
apply Lemma 2.2 to get

oo %)
B2 = sup 7f0 el = 7f0 (Aw:)u
z>0 ||wz||p/2,'u A€A, z>0 ||wz||p/2,'u

This completes the proof. ]

As a consequence we can characterize the boundedness of the Fourier
transform as a map between weighted Lorentz spaces.

Corollary 5.2. Suppose 0 < p < 2 and u,v € L*. The following are
equivalent:

w) — Ao (u),

) (
w) — Az (u?),
w) — Ta(u?)
) (

F:Tp(
F:Tp(
F: T ,
F:Tp(w) — Ta(u),

and

Y 1/2 1/x 00 —1/p
(5.2) sup (E/ u) :Ep/ <tp/ w(s)ﬁ) @ < 00.
x<y \Y Jo 0 t st )t

Proof: We show that all the statements are equivalent to the condi-
tion By < oo with v(t) = tP72w(1/t).

Theorem 5.1 shows that By < oo is equivalent to (5.1) which is readily
reduced to the inequality

1 flaz(w) < ClSfllr, w)-
Thus we wee that By < oo is equivalent to F: I')(w) — Ag(u).
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Since u° is non-increasing we have (u°)° = u° and it follows that
By < oo for the pair (u,v) if and only if it is finite for the pair (u°,v).
We apply Theorem 5.1 with u replaced by u® to show that By < oo is
equivalent to F: I'p(w) — Az(u®).

It follows easily from [11, Theorem 4] that, since u° is non-increasing,
As(u®) = T'o(u®) with equivalent norms. Therefore, F: I',(w) — I'a(u®)
is also equivalent to By < co.

For any f,
< *\ 2 > *%\ 2 < **%\2 0
Loz [ [

so I'a(u®) C T'a(u) € Ag(u). Thus F:T'y(w) — T'a(u) is equivalent to
By < o as well.

Lemma 2.5 shows that By < oo if and only B; < oo and the sub-
stitution ¢ — 1/t in the second factor reduces By < oo to (5.2). This
completes the proof. O

As a map between these weighted Lorentz spaces, no operator of
type (1,00) and (2,2) behaves worse than the Fourier transform. Our
final result makes this statement precise.

Corollary 5.3. Suppose that 0 < p <2 and u,w € L. If F: T'p(w) —
Ao(u) then T: Tp(w) — Ag(u) for any operator T of type (1,00) and
(2,2).

Proof: If F: T'y(w) — As(u) then By < oco. (Again we take v(t) =
tP=2w(1/t).) In the proof of Theorem 5.1 we saw that this is equivalent
to (5.2). By Corollary 3.2, we have T': T'y,(w) — Ag(u) for any operator T’
of type (1,00) and (2, 2). O
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