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CHARACTERIZATION OF THE INESSENTIAL
ENDOMORPHISMS IN THE CATEGORY OF ABELIAN
GROUPS

S. ABDELALIM AND H. ESSANNOUNI*

Abstract

An endomorphism f of an Abelian group A is said to be inessen-
tial (in the category of Abelian groups) if it can be extended to
an endomorphism of any Abelian group which contains A as a
subgroup. In this paper we show that f is as above if and only
if (f —wvida)(A) is contained in the maximal divisible subgroup
of A for some v € Z.

1. Introduction

Throughout this paper, we will follow the terminology of [2]. Let M
be an object of a category C and f € End(M), f is called inessential
(in C) if for any monomorphism o: M — N there exists f € End(N)
such that fo = of, in other words the following diagram

M —2 5 N

| |7
M —“2—- N
comimutes.

Ines(M) denotes all the inessential endomorphisms of M. M is called
rigid if End(M) = Ines(M). For a concrete category C, the character-
ization of the inessential endomorphisms is one of the problems raised
in [2]. In this paper, we take C = Ab the category of the Abelian groups
and we show for an Abelian group A, and an endomorphism f of A,
that f is inessential (in Ab) if and only if there exists v € Z such that
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(f—vida)(A) C D, where D is the maximal divisible subgroup of A. In
particular if A is reduced then Ines(A) = Zid4. The proof of this result
uses the properties of the endomorphisms of some extensions of certain
direct sums of torsion cyclic groups.

From now on, the word group means Abelian group and we adopt the
notations of [3].

2. Some constructions

Construction 1. Let (o, )n>0 be a sequence of natural numbers such
that a,, < ap41 and 20,41 — ap + 1+ 3 < apqo, Vn € N If we put
0, = a, — a1 —n for n > 1 then we have 0, —0,_1 > n, n > 2. Let
p € N* and (¢5,m)n>m be a set of nonzero natural numbers, relatively
prime with p such that ¢; ;t;, =, if i > j > k.

We consider the direct product [] (z,) with o(z,,) = p®» and denote

n>1
by ¢r: [] (zn) — (zx) the canonical projection. For m > 1, we define
n>1
the element g,, of [] (x,) by
n>1
0 ifn<m

en(gm) = {panaml‘n if n>m.

We directly check that o(gm) = p*™, T = gm — PO+ "% g, 11 and

{gm/m > 1}) = D (gm)-

m>1
Let m € N* and ¢ a function from N into {0, 1}, we define the ele-
ment S(m, &) of ] (x,) by

n>1

0 ifn<m
E()tymp™ M1, if n > m.

en(S(m, €)) = {

We have

r

S(m,§) = (Z §(n)tn,mpn_m+a”1xn) b1 TS (r 4 1,6)

n=m

if r >m.
Let K7 be the subgroup of [] (z,) generated by
n>1

{gm/m > 1} U{S(m,&§)/m > 1, & € {0,1}""}.
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Lemma 2.1. The direct sum €D (x,,) is a subgroup of Ki and for all
n>1

A € End(K4) there exist s, N € N and v € Z such that ts 1p*" " A(z,,) =
pYr vz, Vn > N.

Proof: Let A € End(K). Let us show at first that there exists No > 1
such that if n > m > Ny then ¢, (p®™ """ A(2m,)) = 0.

If not, we can find a sequence (my)r>1 such that for all £ > 1, there
exists ng > myg with @, (p%™ " A2, ) # 0 and a,, < mp1. Let
¢: N — {0,1} be the function defined by {(n) =1 if n € {my/k > 1}
and ((n) = 0 otherwise. We can write:

a b
A(S(1,¢)) = Zcigi + ZdjS(m, £).

b
If we put t = ag, then p'A\(S(1,¢)) = p* >_ d;S(m,&;). For any k, we

j=1
have

pPme S (1, ¢) = plma

mk+171
’ K > C(n)tn,lpnlwnlxn> Flmy 1" S (Mg, §) | €pT Ky
n=1

because 0,,, + 1 4+n—1+ a1 > a, if mpy > n > 1, {(n) = 0 if
Mit1 > n > my and O, + 1+ mpg1 > oy, . If k is large enough, then

b
Py (pemk+1)‘(5(17C))) = Py pgmk—H Z djS(magj) =0
j=1
b
therefore p?»x =%« divides v(ny), where v(n) = 3. d;&;(n). Since the
j=1

set {v(n)/n € N} is finite and 6,,, — 0y, > ny, then there exists k; > 1
such that v(ng) =0, Vk > k1. On the other hand

pamk _mk+1S(17 C) - tmk,lpamk Tk Tmy, S pa"" K17
therefore

b
Pny | PO TS " diS(m, &) | £ 0

j=1
for k large enough. Therefore it exists ko > 1 such that v(ng)#0, V k> ko,
which is absurd. Thus there exists Ny € N such that: p®*»~"A(x,) =
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P Xy, Y > Ny, where r,, € Z. Since T(K1) = ] (gm) and
m>1
(vg

a < ap —n for k < n, therefore p®»~"\(g,) € p*n~ (EB k). Let
k>n

m > Ny and put for n > m, u, =l if p*~"\(g,) = p*™™ Z tk gk

k=
with (p~™¢,9; # 0 and I > n) and u,, = 0 if p* ™ A(gp,) € p*~~ m(gn>
Since zp, = gn—p*" 1" gp11, it is easy to see that the sequence (up)n>m
is decreasing. Since for w, # 0 we have u, > n, then there exists
M,, > m such that u, = 0, Vn > M,,. Therefore p*~~™\(g,) €
P ™{(gy), Vn > M Let &(n) = 1, Vn € N. We can write:

FA(S(1,&)) = pF ij &), where k', k,s € N, my,...,my, € Z

and &1, ..., & € {0, 1}N
We have pf»~"+18(1,&) — tn1p* "z, € p*»K; thus for n large

k
enough t, 1p™ "o (M) = por " Ton (Y m;S(s, &) = prtet
j=1

s—1

k
divides t51p° 'rn, — w(n) where w(n) = > m;&;(n). Accordingly, if
j=1

d € 7 such that the set {n € N/w(n+1) —w(n) = d} is infinite, then p™
divides d, ¥ m > Ny, therefore d = 0. Since the set {w(n+1)—w(n)/n €
N} is finite, then there exist vg € Z and N; € N such that w(n) = v,
Vn > Nj. It is clear that p*~! divides vg. Finally if we put vy = p*~tw,

we can find N € N such that t5 1p* " A(zy) = p*" "vx,, Vn > N. O

Construction 2. Let (a,),>0 be as in Construction 1, and let p and
q be two natural numbers different from zero and relatively prime, we
consider the two direct products

H(xn> and H(yn) with o(x,) = p** and o(y,) = ¢**, VYVn>1.
n>1 n>1

The elements h,, of [] (y,) are defined in the same way as the g,
of ] (zn) (see Cons&ilction 1). The elements Si(m,&) (respectively
Sg(ﬁjﬁ)) of T] (zn) (respectively [] (yn)) are defined like S(m,§) of
Constructionnlzivith tnm =q" ™ (;Lezsi)ectively tom =pP™).
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We put R(m, &) = Si(m, &) + Sa(m, ) € (11 (n)) @ (I (yn)), then

n>1 n>1
we have,

r

R(m,§)= ( > f(n)(pQ)”‘m(po‘"—lxn+q°“"‘1yn)>+(pq)r+1—mR(r+1, €)

n=m

if r>m.
Let Ky be the subgroup of ([] (xn)) ® (][] (yn)) generated by
n>1 n>1

{gm/m = 1} U {hm/m > 1} U{R(m,&)/m > 1, ¢ € {0,1}"}.

Lemma 2.2. The direct sum (@ (x,)) & (D (yn)) is a subgroup of

n>1 n>1
Ky and for all A € End(K,), there exist v € Z, N € N such that
P A(xy) = M0z, and ¢*" " A(yn) = ¢*" "oy, Y > N.

Proof: Let p: ([] (zn)) ® (II (yn)) — II (xn) be the canonical pro-
n>1 n>1 n>1
jection. Then p(K5) is the group K; of Construction 1 (with ¢, ,, =
q"~™). Let A € End(K3). There exists Ay € End(u(K3)) such that
A (p(X)) = p(AM(X)), VX € K,. By Lemma 2.1 there exist s;, Ny € N
and v; € Z such that ¢*1p® "\ (z,) = p*" "v12,, Vn > Ny, there-
fore ¢*1p®n " AN(x,) = p* "v1Zy, Vn > Ni. In the same way there are
s2, No € N and vg € Z such that p2¢®"~"A(y,) = ¢*" ™vayn, Y1 > Na.
We can take s1 = sy = s and Ny = No = N. Let {g(n) =1, Vn € N, we

k
can write: (pg)'\(R(1,&)) = (pg)' Y. m;R(m,&;) where I, k,m € N*,
j=1

mi,...,my € Z and &1,...,& € {0,1}. We can take m > 1+ s. By
applying p to this equality, we obtain:

k
P'A(S(L,&)) =1’ ijS(m,fj).

Then for n large enough p"™™~! divides ¢™~1=*p™~v; — v(n) where

k
v(n) = > m;&;(n) (see the proof of Lemma 2.1). Let d € Z such that
j=1

the set {n € N/v(n) = d} is infinite, then d = ¢™ 1=%p™ vy in the

same way d = p™ 1 =%¢™ lu,. If we put v; = ¢°v and v, = p°v, then we

can find N € N such that

Qn

" "Ny =p "oz, and ¢* T Ayn) =4¢"" " "0y, Yn>N. O
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Construction 3. Let (,)n>0 be as in Construction 1 and (3,,),>1 be

a sequence of nonzero natural numbers. Let p,qi1,...,qn,... be nonzero
relatively prime natural numbers. Let us consider the group ( [] (z,)) ®
n>1

(TI (zn)) with o(z,,) = p® and o(z,) = ¢, ¥n > 1, the elements g,
n>1
and S(m, &) of [] (z,) are defined as in Construction 1 with

n>1
1 ifn=m
g1 qm fn=m+1

tnﬂn‘_
n—m—1 _
(g1 gm)"™™ H Gmiy ) fn>m+2

the element R(m, &) of [] (zn) is defined as follows

n>1
0 ifn<m
on(R(m,€)) =

g(n)pn_mtn,mzn ifn>m

where ¢: [] (2n) — (2k) is the canonical projection. If we put
n>1

T(m, &) = S(m, &) + R(m,&) € | [J@n)) @ (J](zn) |,

n>1 n>1
we have
(Zf tnmp" " (P 0‘”‘1xn+zn)> Htrp1,mp T (41, €),
if r >m.
Let K3 be the subgroup of ( [] (z»))®( [] (2n)) generated by {gn/n >

n>1 n>1

1y U{zn/n > 1 U{T(m,,&)/m >1, £ € {0,1}}.
Lemma 2.3. The direct sum (P (x,,)) ® (P (2zn)) is a subgroup of K3
>1

n>1 n>
and for all A\ € End(K3), there exist v € Z and N,s € N such that
ts 10" " A(xy,) = p* vy, and ts 1A (zn) = vz, YN > N.

Proof: Let p: (I] (xn)) ® (11 (2n)) — 11 (zn) be the canonical pro-

n>1 n>1 n>1
jection. Then pu(K3) = K; is the group of Construction 1. Let A €
End(K3), the endomorphism A; of K defined by A\ (u(X)) = p(A(X)),
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VX € K3, is well defined. According to Lemma 2.1 there exist s, Ny € N

and v € Z such that t51p* " A1 (x,) = p*" "vx,, YN > Ny. It is

clear that A(z,) € (zn), Vn > 1. Putting A(z,) = knzn, Vn > 1,

we consider o: N — {0,1} with &(n) = 1, Vn € N we can write:
k

PrA(T(1,&)) = plr > d;T(m,&;) where r and p are relatively prime
j=1

and m > s. By applying u to this equality, we obtain:

k
PAS(L &) =) d;iS(m,¢)).
j=1

Following the same steps as in Lemmas 2.1 and 2.2, we can find N; € N
such that p"™™~1 divides t,, sp™ v — v(n), Vn > N, with v(n) =

k
> d;j€&;(n). Then there exists Ny such that v(n) = t,, p™ 'v, Vn > Na.
j=1

If n > m, then ¢~ divides t,, 1p™ 'k, —v(n). Finally there exists N € N
such that ts 10" " A(z,,) = vp*~"x, and ts 1\ (2,) = V2, Y > N. O

3. Characterization of the inessential endomorphisms in
the category of the Abelian groups

In the following, we suppose that A is a group, and f an endomor-
phism of A satisfying the following property.

(E) : For any exact sequence 0 — A 5 B there exists f € End(B) such
that the following diagram

0 A —Z
fl lf
0 A—2- B

is commutative.

Let (o )n>0 be a sequence as in Construction 1.

Lemma 3.1. For all a € A and any q € N*, there exists v € Z such
that (f(a) —wva) € ) ¢"A.
n>0

Proof: Let us consider the free group L = @ (e,,). We put G = Ad L,
n>1

Go = ({a—q*e,/n > 1}) and G = G/Gy. The homomorphism o: A —

G defined by o(b) = b+ Gy is a monomorphism, and if ,, = &, + o(A)

(&n = en + Go) then G/o(A) = @ (z,,) and o(x,) = ¢, Vn > 1. Let

n>1
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K, be a subgroup of [] (z,) defined in Construction 1 (with ¢, = 1,
n>1

Vn > m). There exists a commutative diagram, whose rows are exact,
and which has the following form:

G/o(A) —— 0

|

" KK ——0

&
W —

(see [3, 24.6]). We can find f € End(B) and A € End(K)) such that
fo=ocf and Ay = uf. By Lemma 2.1, there are v € Z and N € N such
that ¢*» " A(x,) = vg® "z, ¥Yn > N. For n > N, ul¢® " (f(&) —

ven)] = 0, therefore (f(a) — va) €q"A, so (f(a) — va) € N ¢"A. O
n>0

Corollary 3.2. If A = 0, then for all a € T(A) there exists v, € 7Z
such that f(a) = vea where T(A) is the torsion part of A.

Proof: Let us put ¢ = o(a) and let v € Z such that (f(a)—va) € () ¢"A.
n>0

Let p be a prime number, if p divides ¢ then (f(a) —va) € ﬂ p" A and

if p and ¢ are relatively prime, we also have (f(a) —va) € ﬂ p”A thus
n>0

f(a) = wva. O

Lemma 3.3. If A' = 0, then there exists v € Z such that f(a) = va,
VaeT(A).

Proof: We suppose that T(A) is bounded, then there exists xy € T'(A)
such that (x¢) is a direct summand of T'(A4) and o(zg).T(4) = 0. If
f(zg) = vxog, then Va € T(A), f(a) = va. We now suppose that T'(A) is
not bounded. If p is prime number, we denote by 7T}, the p-component
of T(A).

1st case: There exists a prime number p such that T}, is not bounded.
Let S be a basic subgroup of T}, we can write

S = @(a@ @ Sp with o(a,) =p™ and 1 <7, <rp41, VYVn>1.

n>1
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For each n > 1, we consider a, as an element of the group (X,) with
p*r X,, = a,. There exists a group G such that:

A<

n>1

A+

n>1

and

An [ Pixn) | = Plan).

n>1 n>1

We put =, = X,, + A, then G/A = @ (x,) and o(z,,) = p®, Vn > 1.
n>1
By [3, Proposition 24.6], there exists a commutative diagram, whose
rows are exact, and has the following form:

0 A G —— G/A —— 0
[ |
0 A—2-B Lt KK —0

K is the group of Construction 1 (with ¢, ., =1, Vn > m). There are
f € End(B) and X € End(K}) such that fo = of and A = pf. There
exist v € Z and N € N such that p®~"A(z,) = vp®*" "x,, Vn > N
(Lemma 2.1). We have for each n > N, u[p®~"(f(X,) —vX,)] =0, so
that (f(an) — va,) € p™A.

Let us put f(a,) = kpa, (Corollary 3.2), then we have p™ divides
k, —v, Vn > N. By using again Corollary 3.2, we can establish easily
that f(an) = van, Vn > 1. Let b € T, with ¢ # p, and put o(b) = ¢°.

Let us consider the free group L = @ (e,,). Let Ly be the subgroup of L
n>0

generated by {¢°eg} U {¢* e, —eg/n > 1}.
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We consider b as an element of L = L/Lg by identifying b with g =
eo + Lo. There exists a group G such that A < G,

€£)¢Xn> €>Z-§ Gﬁa

n>1

A+ | DX |el | =6
and

AN | P&Xn) | oL | = | Plan) | @ 0).

n>1 n>1

We put J;;L =X, +Aandy, =€, + A, then o(x;) = p*, o(yn) = q*".
Vn 21, and G1/A = (D (za)) & (D (yn))-

n>1 n>1
Let K5 be the group of Construction 2, there exists a commutative

diagram, whose rows are exact, and has the following form:

0 A Gl Gl/A — 0
Lo |
0 A o1 131 M1 l{2 .0

There exist f1 € End(By) and A\ € End(K5) such that flcrl =o1f and
A1 = pifi. By Lemma 2.2, there exist k € Z and M € N such that
PN () = kpor "z, and ¢ Ay (yn) = kq® ™y, Yn > M. For
n > M, p* " (f(Xn) — kXn) = 0 and ¢* " (f(en) — ken) = 0
and so (f(an) — kan) € p"A and (f(b) — kb) € ¢"A. Then k = v and
f(b) = vb. Therefore it is easy to deduce that f(a) = va, Va € T(A).

2nd case: T), is bounded for any prime number p. We can write T'(A) =
@ T,, and let for each n > 1, b, € T, such that (b,) is a direct
n>1
summand of T, and o(b,)T,, = 0.

We put o(b,,) = p» and we consider b,, as an element of the group (Z,,)
with pfnZ, = b,. We take m > 1, there exists a group H such that

A<SH (@ (Z) <H H=A+(@ (Z) and AN (D (Z.) =

n>m n>m n>m
@D (bn). If z, = Z, + A, then H/A = & (z,). By using Lemma 2.3
n>m n>m

and [3, Proposition 24.6], as before, we can find r; € N* whose only
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prime factors are py,, ..., P, m’ > m and (v1,N1) € Z x N such that
r1f(by) = vibn, Yn > Np. in the same way there exists ro € N whose
only prime factors are p,,/ ,...,p,, (in particular 7o A r; = 1) and
(ve, No) € Z x N such that 7o f(b,,) = vaby,, Vn > No. If v = y1v1 + Y202
(where v171 4+ 212 = 1) then for N = sup(Ny, No) we have f(b,) = vb,,
VYn > N.

We now suppose n; < N and put p = py,,, 8= 0n,. Let L= P (e,)
n>0

be the free group and L = L/L; where L; = ({pﬂg)} U{p*re, —eg/n >
1}) there exists a group H; such that A < Hy, L@ ( @ (Z,)) < Hy,
n>N

A+ (L& ( D (Z,)) = Hiand AN(L&( D (Zn))) = (bn,) & ( D (bn))-

n>N n>N n>N
Now put z, = e, + A (e, = e, + L1) and 2, = Z, + A, then
o(x,) = p*, o(z,) = p» and

Hi/A= | @) | & | D)

n>1 n>1

By applying again Lemma 2.3 and [3, Proposition 24.6] we show that
f(an,) = vay,. Thus f(a,) = va,, Yn > 1 and thereafter f(a) = va,
Vae€T(A). O

Lemma 3.4. If A' =0 and T(A) = 0, then there exists v € Z such that
f = UidA.

Proof: Let a € A with a # 0. There exists a prime number p such

that @ ¢ [ p"A. According to Lemma 3.1 there exists v € Z such
n>0
that (f(a) —va) € () p™A. Let ¢ € N*, there exists v, € Z such that
>

(f(a) — vga) € QO<£q>nA.

We have (v —_vq)a € [\ p"A, this implies v, = v, and thereafter
n>0

f(a) = va. Since A is torsion-free, it is easy to establish that f(b) = vb,

Vbe A. O

Lemma 3.5. If A' = 0, then there exists v € Z such that f = vida.

Proof: By Lemma 3.3, there exists v € Z such that f(x) = vx, Vz €
T(A).

Let a € A, we will show that f(a) € (a). We Suppose that (f(a) —
va) # 0, then there exists a prime number p such that (f(a) — va) ¢
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N p"A. By Lemma 3.1, there exists r € Z such that (f(a) — ra) €
n>0
() p"A, there also exists for all ¢ € N* an r, € Z such that (f(a)—rsa) €
n>0
N (pg)™A. Assume r, # r for some number g.
n>0

Since (r —rg)a € () p™A, then there exists s € N such that p°a €

n>0

() p™A. Therefore Vn € N, there exists a,, € A such that p*(a—p"a,) =
n>0
0, it follows that f(a—p™a,) = v(a—p™a,) and hence (f(a) —va) € p" A,
which is absurd. Thus r, = r, V¢ € N* and thereafter f(a) = ra.

Now, we will distinguish two cases:

Ist case: T(A) is not bounded. Let a € A with o(a) = oo and put
f(a) =ra. Yz € T(A), f(a+z) = (a + ) = ra + va which implies
that 7 =7 and (v — 7 )a = 0, since T(A) is not bounded so 7 = v.

2nd case: T(A) is bounded, let m € N* such that mT(A) = 0.

We consider the exact sequence 0 — T(A) - A — mA — 0. By
[3, Proposition 24.6] it is easy to see that the endomorphism g of mA
defined by g(ma) = mf(a) satisfies the property (E), since T'(mA) =0
and (mA)! = 0 then according to Lemma 3.4 there exists r € Z such
that mf(a) = rma, Va € A.

We suppose T(A) # A. Let a € A with o(a) = oo and f(a) = rqa,
therefore m(r, — a)a = 0 and hence r, = r.

Let x € T(A), then f(a+ ) = r(a+ ) = ra + va which implies that
(r—v)x =0, thus f(z) =rz.

Finally Vb € A, f(b) = rb. O

Theorem 3.6. If A is reduced, then there exists v € Z such that f =
UidA.

Proof: Let x € A such that (x) is a direct summand of A.

We can write A = (x) ® Ag. Let S be a divisible group such that
zes.

Let 0: A — S ® Ag, o(nz + ag) = nx + ag. Then there exists fe
End(S @ Ag) such that fo = of. If we put f(z) = ma + ag with m € Z
and ag € Ag, we get ag = f(a:) —mx € SN Ay = 0 which implies that
ag = 0 and thereafter f(z) = maz. Therefore if (x) is a direct summand
of A, then f(z) € (z).

By Lemma 3.5 there exists v € Z such that (f —vid)(A) C Al. We
put p=f—wvida.
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Show first that p(T(A)) = 0. Let B be p-basic subgroup of T'(A4) (p is

a prime number), B = @ (x;) and Vi € I, (x;) is a direct summand
el

of A. We put for i € I, f(x;) = m;x;. We have (m; —v)x; € A which

implies that m;x; = va; = f(x;).

Then p(B) = 0 and thereafter p(T'(A)) is p divisible. Therefore,
p(T(A)) is divisible and so p(T'(A))=0. Let us put A/T(A)=(D/T(A))®
(R/T(A)) with D/T(A) divisible, R/T(A) reduced, T(A) < D and
Al < D.

The homomorphism p: A/T(A) — A where p(a + T(A)) = p(a) is
well defined and p(D/T(A)) = p(D) = 0 because D/T(A) is divisible
and A is reduced. There exists a torsion-free divisible group C such
that A/D < C. By [3, Proposition 24.6], there exists a commutative
diagram, whose rows are exact, and has the following form:

0 D A A/D—>O
| | |
0 D 4, —*~ cC —— 0

Let D; be the maximal divisible subgroup of A;, D N Dy is then
divisible.

In fact if x € DN Dy and n € N*, we can write x = ny with y € D;
and p(z) = nu(y) = 0 so p(y) = 0 because C is torsion-free, therefore
y € D. Since A is reduced, then D N Dy = 0. there exists f; € End(A;)
such that fi(a) = f(a), Va € A.

If we put p; = f1 —vida,, we have p1(A) = p(A) C Al C D, from
an other side the homomorphism pr: A1/D — A; such that pr(a; +
D) = pi(aq), for a; € Ay, is well defined. Thus p;(A;) is divisible and
thereafter p1(A;) € D;. We then conclude that p(A) C DN Dy =0
which implies that p = 0. O

Corollary 3.7. Let A be a group and f be an endomorphism of A, f
satisfies (E) if and only if there exists v € Z such that (f—vida)(A) C D,
where D is mazimal divisible subgroup of A.

Proof: According to [3, Proposition 24.6], the endomorphism f of A =
A/D, (f(@) = f(a)) satisfies (E). By Theorem 3.6, there exists v € 7Z
such that (f —vida)(A) C D.

The second assertion is easy to establish. O

We end this paper by the following remarks:
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1. Let C be a reduced group. C is rigid (according to the terminology
of [2]) if and only if C is torsion cyclic or C is torsion-free and
End(C) ¢ Z.

2. A group A is rigid if and only if A = D@ C with D divisible and C
reduced rigid.

3. For any cardinal m there exists a rigid group of cardinality m ([1],
[4] and [5]).
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