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A SCHWARZ LEMMA FOR CORRESPONDENCES AND
APPLICATIONS

Kaushal Verma

Abstract
A version of the Schwarz lemma for correspondences is stud-
ied. Two applications are obtained namely, the ‘non-increasing’
property of the Kobayashi metric under correspondences and a
weak version of the Wong-Rosay theorem for convex, finite type
domains admitting a ‘non-compact’ family of proper correspon-
dences.

1. Introduction

Let D and D′ be bounded domains in C
p and C

n respectively. A
complex analytic set A ⊂ D × D′ of pure dimension p that satisfies
A∩(D×∂D′) = ∅ is called a correspondence. In this situation, the natural
projection π : A → D is proper, surjective and a finite-to-one branched
covering. The number of points in the fiber over a generic point z ∈ D
is the multiplicity of A. We can also regard A as the graph of the mul-
tivalued mapping f̂ := π′ ◦ π−1 : D → D′ where π′ : A → D′ is the nat-
ural projection. Let Cor(D,D′, k) denote the family of correspondences
f̂ : D → D′ with multiplicity at most k. If both π and π′ are proper then
A is called a proper correspondence. Let PropCor(D,D′, k, k′) denote the
family of proper correspondences f̂ : D → D′ where k and k′ are the up-
per bounds for the multiplicities of the branched coverings π : A → D and
π′ : A → D′ respectively. Here are two examples: firstly, let f : D → D′

be a proper holomorphic mapping between bounded domains D, D′

in C
n. Then Graph(f) ⊂ D × D′ defines a proper correspondence of

pure dimension n. Secondly, let Ω = {(z, w) ∈ C
2 : |z|2 + |w|4 < 1}. The

graph of the multivalued mapping f̂(z, w) = (w2,±√
z) defines a proper

self correspondence of Ω.
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The purpose of this article is to prove the following version of the
Schwarz lemma for correspondences and to indicate some applications.
Let B

p, p ≥ 1, be the unit ball in C
p and k > 0 be a fixed inte-

ger. For an arbitrary domain D in C
n and a fixed point z′0 ∈ D,

let Cor(Bp,D, k, 0, z′0) will denote the family of correspondences f̂ ∈
Cor(Bp,D, k) with the additional property that z′0 ∈ f̂(0).

Theorem 1.1. (i) Let D � C
n be a domain such that each point

of ∂D is a local plurisubharmonic peak point. Fix z′0 ∈ D, k > 0
and consider an arbitrary f̂ ∈ Cor(Bp,D, k, 0, z′0). Then for all
η ∈ (0, 1), there exists a domain U � D not depending on f̂ and
containing z′0 such that

f̂0,z′
0
(ηB

p) ⊂ U.

(ii) Conversely, for each neighbourhood U � D of z′0 there exists η ∈
(0, 1) not depending on f̂ such that

f̂0,z′
0
(ηB

p) ⊂ U.

Roughly speaking, this says that the image of a smaller ball under f̂

can be controlled. We have to be careful here though; since f̂ is a
multivalued mapping, the image f̂(ηB

p) will consist of at most k distinct
components. The theorem is an assertion only about that component
which contains the apriori fixed point z′0. This will be made more precise
in the next section.

It is well known that the Caratheodory and the Kobayashi metric
are useful in studying the boundary behaviour of proper holomorphic
mappings. Moreover some of their basic properties are consequences of
the Schwarz lemma. In answering questions about the boundary behav-
iour of proper correspondences, S. Pinchuk [18] formulated and proved
a version of the Schwarz lemma for the class Cor(D,∆, k) where D ⊂ C

n

is an arbitrary domain and ∆ ⊂ C is the unit disc. This was used
to obtain the ‘non-increasing’ property of the Caratheodory metric un-
der correspondences and this led to the boundary continuity of proper
correspondences between strongly pseudoconvex domains in C

n. Theo-
rem 1.1 can be considered as a ‘dual’ statement to Pinchuk’s version of
the Schwarz lemma. It particular it leads to the ‘non-increasing’ prop-
erty of the Kobayashi metric. For an arbitrary domain D in C

n let
B

k
D(z, r) denote the Kobayashi ball of radius r > 0 centered at z ∈ D.

Also, let kD(z, w) denote the Kobayashi distance in D between z, w ∈ D
and d(z, w) the usual Euclidean distance.
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Theorem 1.2. (i) Let D be a smoothly bounded convex domain of fi-
nite type in C

n. Fix k>0 and consider an arbitrary f̂∈Cor(Bp,D, k).
Then for all η ∈ (0, 1), there exists R = R(k, η,D) > 0 such that

f̂0,q(ηB
p) ⊂ B

k
D(q, R)

where q ∈ f̂(0).
(ii) Conversely, for all R > 0 there exists η ∈ (0, 1) not depending on f̂

such that
f̂0,q(ηB

p) ⊂ B
k
D(q, R)

where q ∈ f̂(0).

Two points should be noted here. Firstly, the value of R > 0 obtained
above is independent of both f̂ ∈ Cor(Bp,D, k) and q ∈ f̂(0). Secondly,
having selected a q ∈ f̂(0), the theorem is an assertion only about that
component of f̂(ηB

p) that contains the chosen point q. Theorem 1.1
provides a neighbourhood U of q that contains f̂(ηB

p) and moreover we
can also choose R > 0 so that U ⊂ Bk

D(q, R). Indeed, it is known that
(see for example [1, Theorem 2.3.51, p. 229])

kD(q, z) ≤ c − (1/2) log d(z, ∂D)

for some positive constant c. To digress, note that this upper estimate
uses neither the convexity nor the finite type assumption. It is a con-
sequence of the smoothness of the boundary alone. Now since U � D,
d(z, ∂D) is positive for z ∈ U . The existence of R follows. Thus it may
seem that Theorem 1.2 is a direct consequence of Theorem 1.1. However,
the essential point is that the neighbourhood U obtained from Theo-
rem 1.1 apriori depends on q and hence so does R. A scaling procedure
for correspondences is used to remove this dependence on q. We use the
one that was developed in [11] to scale the domain while the normality
of the scaled family of correspondences follows from Pinchuk’s version of
the Schwarz lemma in [18]. The next section considers the notion of a
normal family of correspondences more precisely. These ideas can also be
applied to prove Theorem 1.2 in case D is strongly pseudoconvex. Thus
we recover the boundary continuity of proper correspondences between
strongly pseudoconvex domains in C

n as discussed in [18].
Considering normal families of correspondences also turns out to be

useful in another context. To motivate this, recall the following example
noted by Bedford-Bell [2]: Let Ω = {(z, w) ∈ C

2 : |z|2 + |w|4 < 1}.
Consider the proper map η(z, w) = (z, w2) from Ω to B

2. Choose {φj} ∈
Aut(B2) a sequence of automorphisms converging to (0, 1) ∈ ∂B

2. Such
a sequence exists as Aut(B2) is a non-compact real Lie group. Then
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{η−1◦φj ◦η} is a sequence of proper self correspondences of Ω converging
to (0, 1), (0,−1) ∈ ∂Ω. Thus a sequence of correspondences can converge
to strongly pseudoconvex points of ∂Ω even though Ω is not strongly
pseudoconvex. In particular the Wong-Rosay theorem does not hold
for correspondences. The next theorem is motivated by this example
in view of the recent results that characterize bounded domains in C

n

in terms of their automorphism groups. The reader is referred to the
survey article [13] which gives an overview of such results along with
some techniques used to prove them. Let D be a bounded domain in C

n.
Fix z0 ∈ D and a family F = {f̂ν : ν ≥ 1} ⊂ PropCor(D,D, k, k′). The
orbit of z0 with respect to F is the set {f̂ν(z0) : ν ≥ 1}. Note that
for each fixed ν, f̂ν(z0) is a finite set consisting of at most k points. A
point ζ0 ∈ ∂D is an orbit accumulation point provided the orbit of some
z ∈ D with respect to some family {f̂ν : ν ≥ 1} contains ζ0 in its closure.
[16] contains a related result.

Theorem 1.3. Let D be a bounded domain in C
n. Let ζ0∈∂D be a point

near which ∂D is smooth, convex and of finite type, say 2m. If ζ0 is an
orbit accumulation point with respect to a family F⊂PropCor(D,D, k, k′),
then there exists F̂ ∈ PropCor(D,G, k, k′) where,

G = {(z1, z
′) ∈ C × C

n−1 : 
(z1) + P (z′) < 0},
P (z′) being a real non-degenerate convex polynomial of degree at most 2m.
In particular, D is pseudoconvex.

The non-degeneracy of P (z′) means that {P = 0} does not contain
any non-trivial complex analytic sets. In case ζ0 is a strongly pseudo-
convex point, G is biholomorphic to B

n and hence we get a weak version
of the Wong-Rosay theorem for a ‘non-compact’ family of proper self-
correspondences. It seems very likely that Theorem 1.3 holds even in
case ζ0 is a smooth, finite type boundary point of some bounded domain
in C

2. Scaling of the domain near ζ0 is well understood but the main dif-
ficulty is to show the normality of the family of scaled correspondences.

Finally, recall the Greene-Krantz observation (see [12]): let D � C
n

be a domain with non-compact automorphism group. Let ζ0 ∈ ∂D be
a point where the orbit of some z ∈ D accumulates. Then ζ0 /∈ D̂, the
envelope of holomorphy of D. We show that this observation remains
valid in the context of proper self correspondences as well.

Proposition 1.1. Let D � C
n and fix

F = {f̂ν : ν ≥ 1} ⊂ PropCor(D,D, k, k′). Suppose that there exists
z ∈ D such that its orbit with respect to F accumulates at ζ0 ∈ ∂D.
Then ζ0 /∈ D̂.
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2. Some preliminary notions

Let D, D′ be bounded domains in C
n and f̂ ∈ Cor(D,D′, k). Pick

a ∈ K ⊂ D and b ∈ f̂ . Define a correspondence f̂a,b ∈ Cor(K◦,D′, k),
where K◦ refers to the interior of K, as follows. Consider the germ of f̂
at (a, b) and decompose it into finitely many irreducible germs of
branches of f̂ at (a, b). Analytic continuation of each of these irreducible
germs along all possible paths in K defines f̂a,b ∈ Cor(K◦,D′, k). Equiv-
alently, the graph of this new correspondence is the union of all those
irreducible components of Graph(f̂)∩(K×D′) which contain (a, b). Fur-
thermore, if S ⊂ K, f̂a,b(S) will denote the image of S under only those
branches of f̂ which are obtained by continuation of all irreducible germs
of branches of f̂ at (a, b) along all paths in S.

Let F = {f̂ν : ν ≥ 1} ⊂ Cor(D,D′, k). Following [14], we say that F
is compactly divergent if for all K � D and K ′ � D′, there exists ν0 so
that f̂ν(K)∩K ′ = ∅ for all ν ≥ ν0. On the other hand, {f̂ν : ν ≥ 1}
converges to f̂ ∈ Cor(D,D′, k) if there exists a sequence (z0, z

′
ν) ∈

Graph(f̂ν) with z′ν → z′0 ∈ D′ and for all K � D with z0 ∈ K,

(i) f̂ν
z0,z′

ν
∈Cor(K◦,D′, k) converges to f̂K◦ for some f̂K◦∈Cor(K◦,D′, k)

in the sense that the graph of f̂ν
z0,z′

ν
over K converges in the Haus-

dorff metric to the graph of f̂K◦ over K,
and

(ii)
⋃

K�D Graph(f̂K◦) = f̂ .
A family F is said to be normal if every sequence in it has either a
compactly divergent or a convergent subsequence.

Finally, B(z, r) will denote the euclidean ball centered at z with ra-
dius r > 0. For a set K ∈ C

n and ε > 0, K(ε) will denote the ε neigh-
bourhood of K. The class of plurisubharmonic functions on an arbitrary
domain Ω will be denoted by PSH(Ω).

3. Proofs of Theorems

The statement of Theorem 1.1 involves a domain having a local pluri-
subharmonic peak function at each of its boundary points. The existence
of such functions has been established for a wide class of domains. For
example, the class of so called B regular domains introduced in [20]
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satisfies this property. We refer the reader to [7], [9], [10] and [20]
which deal with such constructions.

Proof of Theorem 1.1: (i) Let z, z′ denote coordinates in B
p, D respec-

tively. The graph of f̂ ∈ Cor(Bp,D, k, 0, z′0) is an analytic set which can
be described by using canonical defining equations (cf. [6, §4]) as follows:

Graph(f̂) =

{
ΦI(z, z′) :=

∑
|J|≤k

ψIJ(z)(z′)J = 0 : |I| = k

}
(3.1)

where ψIJ ∈ O(Bp) for all multi-indices I, J . Since the projection
π : Graph(f̂) → B

p is proper, we can regard Graph(f̂) as an analytic set
in B

p × C
n. Fix a family of increasing, relatively compact domains Dν

which exhaust D. Suppose the theorem is false. Then there exists
η ∈ (0, 1), and a sequence of correspondences f̂ν ∈ Cor(Bp,D, k, 0, z′0)
such that

f̂ν
0,z′

0
(ηB

p) �⊂ Dν .

Each f̂ν can be described as above by writing,

Graph(f̂ν)=

{
Φν

I (z, z′) :=
∑

|J|≤kν

ψν
IJ(z)(z′)J =0 : |I|=kν , kν ≤k

}
(3.2)

where ψν
IJ(z) ∈ O(Bp) for all ν, I, J . After taking a subsequence, assume

that the multiplicity kν = k′ for all ν and we write k′ = k for brevity. For
each ν, let γν ⊂ ηB

p be a path parametrized by [0, 1] with the following
properties:

(i) γν(0) = 0, γν(1) = zν ,

and

(ii) analytic continuation of some irreducible germ of the branch of f̂ν

at (0, z′0) along γν results in a branch, say f̂ν
j(ν), j(ν) ≤ k, such

that f̂ν
j(ν)(zν) := z′ν ∈ ∂Dν .

After passing to a further subsequence, we may assume that zν → z0 ∈
ηB

p
and that z′ν → z̃′0 ∈ ∂D. The family {ψν

IJ : ν ≥ 1} is normal
since D is bounded and hence a further subsequence, still denoted by ψν

IJ ,
converges uniformly on compact subsets of B

p to ψIJ ∈ O(Bp) for all I, J .
Consider the analytic set V ⊂ B

p × C
n defined by

V =

{
ΦI(z, z′) :=

∑
|J|≤k

ψIJ(z)(z′)J = 0 : |I| = k

}
.(3.3)
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Note that (z0, z̃
′
0) ∈ V . Then V is a pure p dimensional analytic set.

Indeed, fix (z1, z
′
1) ∈ V and consider{

z′ : Φν
I (z1, z

′) =
∑
|J|≤k

ψν
IJ(z1)(z′)J = 0 : |I| = k

}
(3.4)

for a fixed ν. These are the canonical defining equations for the system
of points f̂ν(z1), which we will denote by

f̂ν(z1) = {fν
1 (z1), . . . , fν

k (z1)}.(3.5)

But ψν
IJ(z1) → ψIJ(z1) as ν → ∞ and so Φν

I (z1, z
′) converges uniformly

on compact subsets of C
n to ΦI(z1, z

′). As D is bounded, two conclusions
may be drawn from [6]. Firstly, the system of points f̂ν(z1) → f̂∞(z1) :=
{f∞

1 (z1), . . . , f∞
k (z1)} and secondly that ΦI(z1, z

′) are the canonical
defining equations for the system f̂∞(z1). Thus the fibre above z1 in V
is discrete and hence the complex subspace L := {z1} × C

n is such that
(z1, z

′) is isolated in V ∩L. We conclude that codim(z1,z′) V ≥ n. On the
other hand, the analytic sets Graph(f̂ν) are all pure p dimensional and
hence it follows that dim(z1,z′) V ≥ p. Therefore V is pure p dimensional.

Let φ be a local plurisubharmonic peak function at z̃′0 ∈ ∂D. Let V1

be an irreducible component of V containing (z0, z̃
′
0) which by the above

argument is isolated in the fibre over z0 in V . Choose neighbourhoods
z0 ∈ U and z̃′0 ∈ U ′ in B

p and C
n respectively so that the projec-

tion π : V1 ∩ (U × U ′) → U is proper. Let g1, . . . , gk be the branches
of π−1 which are locally well defined and holomorphic on U \ σ, where
σ ⊂ U is an analytic set of dimension at most p − 1. The function
ρ(z) = max(φ◦g1, . . . , φ◦gk) ∈ PSH(U \σ) is bounded above as φ ≤ 1. It
therefore extends as a plurisubharmonic function on U . Moreover, ρ ≤ 1
and ρ(z0) = 1. It follows that ρ ≡ 1 on U by the maximum principle. In
particular, one of the branches, say g1(z) ≡ z̃′0 for all z ∈ U . It follows
that U × {z̃′0} ⊂ V1 ∩ (U × U ′). The irreducibility of the analytic set
B

p×{z̃′0} implies that V1 = B
p×{z̃′0}. Since V1 was an arbitrary compo-

nent, it follows that there exists a unique component namely B
p × {z̃′0}

that contains (z0, z̃
′
0). A similar argument shows that if (z, z̃′0) ∈ V

where z is different from z0, there is again a unique component of V ,
namely B

p × {z̃′0} that contains it. In particular, if V ′ is another com-
ponent of V distinct from B

p ×{z̃′0}, then V ′ ∩ (Bp ×{z̃′0}) = ∅. If there
exists (z̃, z̃′) ∈ V with z̃′ ∈ ∂D, the same process as described above can
be used to identify the ‘constant component’ B

p × {z̃′} of V . However
(0, z′0) ∈ V shows that not all irreducible components of V are ‘constant’
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components. Let {z̃′1, . . . , z̃′l} ∈ ∂D be all the distinct points which cor-
respond to these ‘constant’ components. Let π : V → B

p, π′ : V → C
n be

the projections and V̂ := π′ ◦ π−1 denote the branches of V over B
p. It

follows that all the ‘non-constant’ branches of V are contained in D for
all z ∈ B

p. Moreover, since D is bounded, continuity of roots (cf. [6, §4])
of the canonical defining equations forces all the ‘non-constant’ branches
to be contained in some K � D for all z ∈ ηB

p.
Choose ε > 0 small enough so that ∂D(ε)∩K(ε) = ∅ and z′0 /∈ ∂D(ε).

The fact that ψν
IJ(z) converge uniformly on ψIJ(z) on ηB

p combined with
the boundedness of D and the continuity of roots now shows that all the
branches of f̂ν and V̂ , for all large ν, are contained in the disjoint union
∂D(ε) ∪K(ε) for z ∈ ηB

p. Since z′0 /∈ ∂D(ε), we must have f̂ν
0,z′

0
(ηB

p) ⊂
K(ε) � D for ν large enough. This contradicts the assumption that
f̂ν
0,z′

0
(ηB

p) �⊂ Dν for all ν.

(ii) Given a neighbourhood U � D of z′0, choose R > 0 so that
B(z0, R) � U . Corollary 5 of [14] now ensures the existence of η ∈ (0, 1),
independent of f̂ such that

f̂0,z′
0
(ηB

p) ⊂ B(z0, R) ⊂ U

holds.

Let us briefly recall the scaling of convex domains developed in [11]
(see [8] also). Let D be as in the hypotheses of Theorem 1.2. Without
loss of generality 0 ∈ ∂D and we may write the defining function of ∂D
in a neighbourhood, say U of the origin as

D ∩ U = {z = (z1, z
′) ∈ U : ρ(z) = 
(z1) + φ(�(z1), z′) < 0}(3.6)

where φ is a smooth convex function. Let (qν) ∈ D be a sequence con-
verging to 0 ∈ ∂D. Let q1

ν ∈ ∂D be closest to qν . Denote the complex line
containing q1

ν and qν by lν1 and set τν
1 = d(qν , q1

ν). Consider the orthogo-
nal complement (lν1 )⊥ in C

n. Since D is of finite type, the distances from
qν to ∂D in (lν1 )⊥ is uniformly bounded and there exists q2

ν ∈ ∂D where
the largest distance is reached. Denote the complex line containing qν

and q2
ν by lν2 and set τν

2 = d(qν , q2
ν). Consider the orthogonal complement

of the complex subspace generated by lν1 , lν2 and find the largest distance
from qν to ∂D therein. Repeating this process we get orthogonal lines
lν1 , lν2 , . . . , lνn. Let Uν be a unitary mapping of C

n sending lνj to the zj axis
and qj

ν to the positive imaginary axis 
(zj). Let Tν , T ′
ν be translations

sending qν to the origin, and the origin to (−τν
1 i, 0′) respectively. The

composition hν = T ′
ν ◦Uν ◦ Tν gives a coordinate system centered at q1

ν .
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Define the dilations

Λν(z) = (z1/τν
1 , z2/τν

2 , . . . , zn/τν
n)(3.7)

and the dilated domains

Dν = {z : ρ ◦ (hν)−1 ◦ (Λν)−1(z) < 0}.(3.8)

Note that Dν is convex and (−i, 0′) ∈ Dν for all ν. Among other things,
the following two claims were proved in [11] (cf. [8]): firstly, Dν converges
to

G = {(z1, z
′) ∈ C × C

n−1 : 
(z1) + P (z′) < 0},(3.9)

a convex domain of finite type at most 2m. Moreover, P (z′) is a convex
polynomial of degree at most 2m. Secondly, for all large ν, Dν and
hence G are all contained in the intersection H1 ∩ H2 ∩ · · · ∩ Hn where
each Hj is a half space of the form

H1 = {z ∈ C
n : 
(z1) < 0},

Hj =

{
z ∈ C

n : 

(

αjzj +
∑
k<j

αj,kzk

)
< 0

}
(3.10)

for j ≥ 2 with αj ∈ R \ {0} for all j ≥ 2 and αj,k ∈ R for all j, k.

Proof of Theorem 1.2: (i) Suppose that the assertion is false. Then there
exists η ∈ (0, 1), a sequence of correspondences f̂ν , qν ∈ f̂ν(0), and a
sequence of radii Rν → ∞ such that

f̂ν
0,qν

(ηB
p) �⊂ Bk

D(qν , Rν)(3.11)

for all ν. By Theorem 1.1 {qν} cannot cluster at any interior point of D.
After passing to a subsequence assume that qν → q∞ ∈ ∂D and q∞ = 0
after a translation of coordinates. Pick τ > 0 so that U := B(0, τ) is
such that D ∩ U is a convex domain of finite type. Fix η < η′ < 1.
Proposition 5.1 in [22] shows the existence of δ > 0 such that

f̂ν
0,qν

(η′
B

p) ⊂ B(0, τ)(3.12)

provided qν ∈ B(0, τ). This is true for all large ν as qν → 0. By (3.11)

f̂ν
0,qν

(ηB
p) �⊂ Bk

D∩U (qν , Rν)(3.13)
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for all ν. Note that Λν ◦ hν(qν) = (−i, 0′) ∈ Dν for all ν. Since bi-
holomorphic mappings are isometries for the Kobayashi metric it follows
that (

Λν ◦ hν ◦ f̂ν
)
0,(−i,0′)

(ηB
p) �⊂ Bk

Λν◦hν(D∩U)

(
(−i, 0′), Rν

)
(3.14)

for all large ν. Consider the family

F =
{(

Λν ◦ hν ◦ f̂ν
)
0,(−i,0′)

}
⊂ Cor

(
η′

B
p,Λν ◦ hν(D ∩ U), k

)
(3.15)

of scaled correspondences. We will show that a subsequence of F con-
verges to a limiting correspondence f̂∞ ∈ Cor

(
η′

B
p,G, k

)
where G is

as in (3.9). The convergence of Λν ◦ hν(D ∩ U) to G follows from [11]
as described earlier. To show the convergence of correspondences fix
an arbitrary sequence 0 < η1 < η2 < · · · < ηn < η′. We will first
show that a subsequence of F converges on η1B

p. For this consider the
projections πj(z) = zj onto the coordinate axes. Then (3.10) shows that

π1 ◦ Λν ◦ hν ◦ f̂ν(η′
B

p) ⊂ H1 = {
(z1) < 0}(3.16)

and moreover π1 ◦ Λν ◦ hν ◦ f̂ν(0) = −i for all ν. By Pinchuk’s version
of the Schwarz lemma (cf. [18]) it follows that the image(

π1 ◦ Λν ◦ hν ◦ f̂ν
)
0,−i

(ηnB
p)

is uniformly bounded for all large ν. Now consider the correspondences(
π2 ◦ Λν ◦ hν ◦ f̂ν

)
0,0

: η′
B

p → C. For z ∈ ηnB
p and w ∈

(
π2 ◦ Λν ◦ hν ◦

f̂ν
)
0,0

(z) we must have


(α2w) < −

(
α2,1

(
π1 ◦ Λν ◦ hν ◦ f̂ν

)
0,−i

(z)
)

(3.17)

for all large ν by (3.10) again. The right side is uniformly bounded above
if z ∈ ηnB

p and since α2 �= 0, it follows from the Schwarz lemma in [18]
that (

π2 ◦ Λν ◦ hν ◦ f̂ν
)
0,0

(ηn−1B
p)

is also uniformly bounded for all large ν. Proceeding inductively in the
same way as above and using the form of the half spaces Hj we see
that each component of

(
Λν ◦ hν ◦ f̂ν

)
0,(−i,0′)

is uniformly bounded on
η1B

p. Thus the family of symmetric functions of all the branches of each
member of F is uniformly bounded on compact sets of η′

B
p. By Montel’s

theorem and by passing to the diagonal subsequence we get a well defined
correspondence f̂∞ defined on η′

B
p. Since the domains Λν ◦ hν(D ∩ U)

converge on compact sets to G it follows that f̂∞ ∈ Cor
(
η′

B
p,G, k

)
.
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If z′ ∈ f̂∞(z) ∩ ∂G for some z ∈ B
p, Theorem 1.1 can be used to peel

off the ‘constant’ component of f̂∞ that contains (z, z′). This peeling off
process cannot exhaust all the branches of f̂∞ as (0, (−i, 0′)) ∈ f̂∞(0) is
not in ∂G. Moreover by Theorem 1.1 again, we must have

f̂∞
0,(−i,0′)(ηB

p) ⊂ U(3.18)

where U is a relatively compact neighbourhood of (−i, 0′) in G. Since the
diagonal subsequence, which we will still denote by Λν ◦hν ◦ f̂ν converges
uniformly to f̂∞ on ηB

p, the continuity of roots of these correspondences
implies that there exists a relatively compact neighbourhood of U in G,
say U ′ such that (

Λν ◦ hν ◦ f̂ν
)
0,(−i,0′)

(ηB
p) ⊂ U ′ � G(3.19)

for all large ν. The convergence of the domains Λν ◦ hν(D ∩ U) on
compact sets implies that(

Λν ◦ hν ◦ f̂ν
)
0,(−i,0′)

(ηB
p) ⊂ U ′ � Λν ◦ hν(D ∩ U)(3.20)

for all large ν. This shows that the distance between U ′ and the bound-
ary of Λν ◦ hν(D ∩ U) is uniformly bounded from below for all large ν.
This contradicts the assumption made in (3.14) and thus the theorem
follows.

(ii) For a given R > 0, let U ⊂ Bk
D(q, R) be a neighbourhood of q

in the Euclidean metric. Then Theorem 1.1 (ii) shows the existence of
η ∈ (0, 1), independent of f̂ such that

f̂0,q(ηB
p) ⊂ U ⊂ Bk

D(q, R)

holds.

Scaling near a point where the boundary is convex and of finite type
also leads to the next theorem.

Proof of Theorem 1.3: Let F := {f̂ν} ⊂ PropCor(D,D, k, k′) be such
that the orbit of z0 ∈ D with respect to F accumulates at ζ0 ∈ ∂D.
Fix an arbitrary K � D containing z0. Let zν ∈ f̂ν(z0) be such that
zν → ζ0. Fix ε > 0 so that ∂D ∩ B(ζ0, ε) is convex of finite type. Then
by Proposition 5.1 in [22]

f̂ν
z0,zν

(K) ⊂ D ∩ B(ζ0, ε)(3.21)
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for all large ν. From the previous theorem we can conclude two things:
firstly, the domain D ∩ B(ζ0, ε) can be scaled to get the domain G. Sec-
ondly, the family of correspondences given by

f̂ν
z0,zν

: K → D ∩ B(ζ0, ε)(3.22)

converges to a correspondence f̂∞
K ∈ Cor(K,G, k). By exhausting D

with an increasing sequence of relatively compact sub-domains that con-
tain z0 and passing to the diagonal subsequence, we get a correspondence
f̂∞ ∈ Cor(D,G, k). Since D is bounded, the scaled family of the inverses
of f̂ν also converges to a correspondence ĝ∞ ∈ Cor(G,D, k′). Proposi-
tion 7 in [14] shows that f̂∞ ∈ Cor(D,G, k) and ĝ∞ ∈ Cor(G,D, k′) and
that f̂∞ and ĝ∞ are inverses of each other. The desired proper corre-
spondence F̂ is given by f̂∞. Finally, let f̂∞

1 , . . . , f̂∞
k be the branches

of f̂∞ which are locally well defined away from an analytic set of codi-
mension at least 1 in D. If ψ(z) is a plurisubharmonic exhaustion for G,
then max(ψ ◦ f̂∞

1 , . . . , ψ ◦ f̂∞
k ) is a plurisubharmonic exhaustion for D

and hence D is pseudoconvex.

In case ζ0 is a strongly pseudoconvex point, then P (z′) is a convex,
positive definite Hermitian form of degree 2 (ζ0 has finite type 2). After
a change of coordinates, P (z′) =

∑n−1
j=1 |zj |2. Thus G is equivalent to B

n.
For z = (z1, . . . , zn) ∈ C

n, let si(z), 1 ≤ i ≤ n denote the elementary
symmetric polynomial in z of degree i. That is, si(z) is the sum of all
possible products of z1, . . . , zn taken i at a time. Define τ : C

n → C
n in

the following way:

τ(z1, . . . , zn) = (s1(z), . . . , sn(z)).(3.23)

It is known (for example [15, p. 86]) that τ is a finite-to-one, proper
surjection.

Proof of Proposition 1.1: Let F = {f̂ν} ∈ PropCor(D,D, k, k′) and sup-
pose that zν ∈ f̂ν(z) converges to ζ0 for a given z ∈ D. To obtain a
contradiction, assume that ζ0 ∈ D̂. Consider the family of all symmet-
ric functions of the various branches of

(
f̂ν

)−1. The boundedness of D
shows that this is a uniformly bounded family of holomorphic functions
on D. All these functions will extend to a small ball, say B(ζ0, ε) for
some ε > 0. Note that the extended functions which are now defined on
D∪B(ζ0, ε) will still be uniformly bounded. Since τ is proper, it follows
that (

f̂ν
)−1 : D ∪ B(ζ0, ε) → B(0, L)(3.24)
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for some large L. Moreover the number of branches is still at most k′.
Consider now the correspondences(

f̂ν
)−1

zν ,z
: B(zν , ε) → B(0, L).(3.25)

Choose r > 0 small enough so that B(z, r) � D. Theorem 1.1 (ii) now
yields 0 < η < ε, independent of ν, such that(

f̂ν
)−1

zν ,z
(B(zν , η)) ⊂ B(z, r).(3.26)

For large ν, the ball B(zν , η) intersects ∂D near ζ0. By (3.26), a piece
of ∂D is mapped inside B(z, r). This contradicts the fact that

(
f̂ν

)−1 is
proper.

Note. Not all the references given below have been stated in the ar-
ticle. However, they all contain material that is relevant to the above
presentation.

References

[1] M. Abate, “Iteration theory of holomorphic maps on taut man-
ifolds”, Research and Lecture Notes in Mathematics. Complex
Analysis and Geometry, Mediterranean Press, Rende, 1989.

[2] E. Bedford and S. Bell, Holomorphic correspondences of
bounded domains in C

n, in: “Complex analysis” (Toulouse, 1983),
Lecture Notes in Math. 1094, Springer, Berlin, 1984, pp. 1–14.

[3] E. Bedford and S. Bell, Boundary continuity of proper holo-
morphic correspondences, in: “Séminaire d’analyse P. Lelong-
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