CENTRE-BY-METABELIAN GROUPS WITH A CONDITION ON INFINITE SUBSETS

Nadir Trabelsi

Abstract ___

In this note, we consider some combinatorial conditions on infinite subsets of groups and we obtain in terms of these conditions some characterizations of the classes $\mathcal{L}(\mathcal{N}_k)\mathcal{F}$ and $\mathcal{F}\mathcal{L}(\mathcal{N}_k)$ for the finitely generated centre-by-metabelian groups, where $\mathcal{L}(\mathcal{N}_k)$ (respectively, \mathcal{F}) denotes the class of groups in which the normal closure of each element is nilpotent of class at most k (respectively, finite groups).

1. Introduction and results

Following a question of Erdös, B. H. Neumann proved in [13] that a group is centre-by-finite if, and only if, every infinite subset contains a commuting pair of distinct elements. Since this result, problems of similar nature have been the object of many papers (for example [1], [2], [3], [4], [5], [9], [11], [10], [16], [17]). We present here some further results of the same type.

Let k be a fixed positive integer. Denote by E_k^* the class of groups such that for every infinite subset X there exist two distinct elements x, y in X, and integers t_0, t_1, \ldots, t_k depending on x, y, and satisfying $\left[z_0^{t_0}, z_1^{t_1}, \ldots, z_k^{t_k}\right] = 1$, where $z_i \in \{x, y\}$ for every $i \in \{0, 1, \ldots, k\}$ and $z_0 \neq z_1$. Denote also by $E_k^\#$ the class of groups $G \in E_k^*$ for which the integers t_0, \ldots, t_k belong to $\{-1, 1\}$. In [3], it is proved that if G is a finitely generated soluble group in the class E_k^* (respectively $E_k^\#$), then there is an integer c, depending only on c, such that c is in c0, c1 (respectively c1, where c2 and c3 denote respectively the class of nilpotent groups of class at most c3 and the class of finite groups. In [3], it is also proved that a finitely generated metabelian group c3 is in c3, it is also proved that a finitely generated metabelian group c4 is in c5, and it is

²⁰⁰⁰ Mathematics Subject Classification. 20F16, 20F45.

 $Key\ words.$ Engel conditions, finitely generated soluble groups, Levi classes, nilpotent groups.

observed that these results are not true if the derived length of G is ≥ 3 . Among the examples cited, which are due to Newman [14] (see also [2]), there is a finitely generated torsion-free nilpotent group G of class 4, of derived length 3, and whose 2-generated subgroups are nilpotent of class at most 3. So G is a finitely generated centre-by-metabelian group which belongs to E_3^* (respectively $E_3^{\#}$) and such that $G \notin \mathcal{N}_3\mathcal{F}$ (respectively $G \notin \mathcal{F}\mathcal{N}_3$). Note that if a group belongs to \mathcal{N}_k , then it is in $\mathcal{L}(\mathcal{N}_{k-1})$, where $\mathcal{L}(\mathcal{N}_{k-1})$ denotes the class of groups in which the normal closure of each element is nilpotent of class at most k-1. Considering this weaker condition we are able to prove the following results:

Theorem 1.1. A finitely generated centre-by-metabelian group G is in E_{k+1}^* if, and only if, G belongs to $\mathcal{L}(\mathcal{N}_k)\mathcal{F}$.

Theorem 1.2. A finitely generated centre-by-metabelian group G is in $E_{k+1}^{\#}$ if, and only if, G belongs to $\mathcal{FL}(\mathcal{N}_k)$. In particular, a torsion-free centre-by-metabelian group G is in $E_{k+1}^{\#}$ if, and only if, G belongs to $\mathcal{L}(\mathcal{N}_k)$.

In [7], it is proved that a metabelian group G is (k+1)-Engel if, and only if, G belongs to $\mathcal{L}(\mathcal{N}_k)$. Morse [12] extended this result to a certain class of soluble groups of derived length ≤ 5 which contains the centre-by-metabelian groups. So our theorems improve Morse's result for the centre-by-metabelian groups.

Denote by \mathcal{B}_k^* the class of groups such that every infinite subset contains an element x such that $\langle x \rangle$ is subnormal of defect k. It is proved in [8, Corollary 2.5] that a metabelian non-torsion group is a k-Baer group (that is every cyclic subgroup of G is subnormal of defect k) if, and only if, G is a k-Engel group. Here, using Theorem 1.2, we shall improve this result with the following:

Theorem 1.3. Let G be a finitely generated centre-by-metabelian group. If G is in \mathcal{B}_k^* , then G is finite-by-(k-Engel). In particular, a torsion-free centre-by-metabelian group G belongs to \mathcal{B}_k^* if, and only if, G is k-Engel.

2. Proof of the results

Lemma 2.1. Let G be a finitely generated torsion-free nilpotent group of class at most k + 1. If G belongs to E_k^* , then G is a k-Engel group.

Proof: Let G be a group in E_k^* and assume that G is not k-Engel. Therefore there exist x, y in G such that $[x, ky] \neq 1$. The group G, being a finitely generated torsion-free nilpotent group, is a residually finite p-group for every prime p. So G has a normal subgroup N such that $[x, ky] \notin N$ and $|G/N| = p^r$ for some positive integer r. Considering the infinite subset $\left\{x^{p^{r+i}}y: i \text{ integer}\right\}$, there are integers $n, m, t_0, t_1, \ldots, t_k$ such that $\left[z_0^{t_0}, z_1^{t_1}, \ldots, z_k^{t_k}\right] = 1$, where $z_i \in \left\{x^{p^{r+n}}y, x^{p^{r+m}}y\right\}$, $n \neq m$ and $z_0 \neq z_1$. Since G is nilpotent of class at most k+1, the commutator $\left[z_0^{t_0}, z_1^{t_1}, \ldots, z_k^{t_k}\right]$ is linear in each argument [1, Lemma 1], so we get that $[z_0, z_1, \ldots, z_k]^{t_0 t_1 \ldots t_k} = 1$, and therefore $[z_0, z_1, \ldots, z_k] = 1$ since G is torsion-free. Put $z_0 = x^{p^{r+s_0}}y$ and $z_1 = x^{p^{r+s_1}}y$, where $s_0 \neq s_1 \in \{m, n\}$. So

$$\begin{split} 1 &= [z_0, z_1, \dots, z_k] = \left[\left[x^{p^{r+s_0}} y, x^{p^{r+s_1}} y \right], z_2, \dots, z_k \right] \\ &= \left[\left[x^{(p^{r+s_0} - p^{r+s_1})}, y \right]^{z_1}, z_2, \dots, z_k \right] = \left[x^{(p^{r+s_0} - p^{r+s_1})}, y, z_2, \dots, z_k \right]^{z_1}. \end{split}$$

Hence

$$1 = \left[x^{(p^{r+s_0} - p^{r+s_1})}, y, z_2, \dots, z_k \right] = \left[x, y, z_2, \dots, z_k \right]^{(p^{r+s_0} - p^{r+s_1})}.$$

Thus $[x, y, z_2, \ldots, z_k] = 1$ as G is torsion-free and $s_0 \neq s_1$. Consequently $[x, y, z_2, \ldots, z_k] N = N$. Now $x^{p^{r+n}}, x^{p^{r+m}} \in N$, so $z_i N = y N$. It follows that [x, ky] N = N; this means that $[x, ky] \in N$, a contradiction which completes the proof.

It is proved in [12, Theorem 1] that if G is nilpotent of class at most k+2, then G is (k+1)-Engel if and only if $G \in \mathcal{L}(\mathcal{N}_k)$. So combining this result and Lemma 2.1, we have the following consequence:

Lemma 2.2. Let G be a finitely generated nilpotent group of class at most k+2. If G is in E_{k+1}^* , then G belongs to $\mathcal{FL}(\mathcal{N}_k)$. In particular, a torsion-free nilpotent group G of class at most k+2 is in E_{k+1}^* if, and only if, G belongs to $\mathcal{L}(\mathcal{N}_k)$.

Proof: Let G be a finitely generated nilpotent group of class at most k+2 and suppose that G is in E_{k+1}^* . Then T, the torsion subgroup of G, is finite and G/T is a finitely generated torsion-free group of nilpotency class at most k+2 which belongs to E_{k+1}^* . It follows, from Lemma 2.1, that G/T is a (k+1)-Engel group, and by [12, Theorem 1], G/T belongs to $\mathcal{L}(\mathcal{N}_k)$. Hence, G is in $\mathcal{FL}(\mathcal{N}_k)$; as claimed.

Now, we suppose that G is a torsion-free group of nilpotency class at most k+2 which belongs to E_{k+1}^* and let $x, y_1, \ldots, y_{k+1} \in G$. Then $H = \langle x, y_1, \ldots, y_{k+1} \rangle$ is a finitely generated group of nilpotency class at most k+2 which belongs to E_{k+1}^* . It follows, from the first part of the proof, that H is in $\mathcal{FL}(\mathcal{N}_k)$. So H is in $\mathcal{L}(\mathcal{N}_k)$ since it is torsion-free. Hence, $[x^{y_1}, \ldots, x^{y_{k+1}}] = 1$, and this means that G belongs to $\mathcal{L}(\mathcal{N}_k)$.

Clearly, any group in $\mathcal{L}(\mathcal{N}_k)$ is (k+1)-Engel, so it belongs to E_{k+1}^* . \square

Proof of Theorem 1.1: Let G be a finitely generated centre-by-metabelian group in E_{k+1}^* . So G/Z(G) is a finitely generated metabelian group in E_{k+1}^* . Therefore, by [3, Theorem 1.3], G/Z(G) is in $\mathcal{N}_{k+1}\mathcal{F}$. Hence, G belongs to $\mathcal{N}_{k+2}\mathcal{F}$. Since finitely generated nilpotent groups are (torsion-free)-by-finite [15, 5.4.15(i)], G has a normal subgroup H, of finite index such that H is a torsion-free nilpotent group of class at most k+2 which belongs to E_{k+1}^* . It follows, by Lemma 2.2, that H is in $\mathcal{L}(\mathcal{N}_k)$; so G belongs to $\mathcal{L}(\mathcal{N}_k)\mathcal{F}$.

Conversely, suppose that G is in $\mathcal{L}(\mathcal{N}_k)\mathcal{F}$. Therefore there is a positive integer n and a normal subgroup H such that $H \in \mathcal{L}(\mathcal{N}_k)$ and |G/H| = n. So H is a (k+1)-Engel group and $x^n, y^n \in H$ for any x, y in G. Hence, $[x^n,_{k+1}y^n] = 1$ and consequently G belongs to E_{k+1}^* .

Proof of Theorem 1.2: Let G be a finitely generated centre-by-metabelian group in $E_{k+1}^{\#}$. So G/Z(G) is a finitely generated metabelian group which belongs to $E_{k+1}^{\#}$. Therefore, by [3, Theorem 1.6], $\frac{G/Z(G)}{Z_{k+1}(G/Z(G))}$ is finite; so $G/Z_{k+2}(G)$ is finite. It follows, by [6, Theorem 1], that G is in the class $\mathcal{F}\mathcal{N}_{k+2}$. Let H be a finite normal subgroup such that G/H is nilpotent of class at most k+2. If T/H is the torsion subgroup of G/H, then T/H is finite; so T is finite and G/T is a torsion-free finitely generated nilpotent group of class at most k+2 which belongs to $E_{k+1}^{\#}$. It follows, by Lemma 2.2, that G/T is in $\mathcal{L}(\mathcal{N}_k)$; so G belongs to $\mathcal{F}\mathcal{L}(\mathcal{N}_k)$; as required.

Conversely, suppose that G is in the class $\mathcal{FL}(\mathcal{N}_k)$. Therefore there is a finite normal subgroup H such that G/H is (k+1)-Engel. Since G is a finitely generated soluble group, G/H is therefore nilpotent. It follows that G is finite-by-nilpotent, so G is residually finite. Consequently, there is a normal subgroup N of finite index such that $H \cap N = 1$. Since G/N is finite, if X is an infinite subset of G, then there are $x, y \in X$ such that $x \neq y$ and xN = yN. We have $[x, k+1y] \in H$ and $\frac{\langle x, y \rangle N}{N}$ is cyclic, since G/H is (k+1)-Engel and xN = yN. Thus, $[x, k+1y] \in H \cap N$. It follows that [x, k+1y] = 1 and, therefore, G belongs to $E_{k+1}^{\#}$.

Now we suppose that G is a torsion-free centre-by-metabelian group in the class $E_{k+1}^{\#}$ and let $x, y_1, \ldots, y_{k+1} \in G$. Then $H = \langle x, y_1, \ldots, y_{k+1} \rangle$ is a torsion-free finitely generated centre-by-metabelian group. It follows, from the first part of the proof, that H belongs to $\mathcal{FL}(\mathcal{N}_k)$, and consequently $H \in \mathcal{L}(\mathcal{N}_k)$ since it is torsion-free. Hence, $[x^{y_1}, \ldots, x^{y_{k+1}}] = 1$ and, therefore, G belongs to $\mathcal{L}(\mathcal{N}_k)$.

For the proof of Theorem 1.3, we need further lemmas. Note that it is proved in [8, Theorem 2.3] that every non-torsion k-Baer group is a k-Engel group. But the converse is shown only in the metabelian case. As a consequence of Morse's result [12], we will extend this result with the following lemma:

Lemma 2.3. Let G be a non-torsion centre-by-metabelian group. Then, G is a k-Baer group if, and only if, G is a k-Engel group.

Proof: Let G be a non-torsion centre-by-metabelian group, and suppose that G is a k-Engel group. From [12, Theorem 2], G is in $\mathcal{L}(\mathcal{N}_{k-1})$. Let x in G; then x^G , the normal closure of x in G, is in \mathcal{N}_{k-1} . Now, it is well known that subgroups of a group of nilpotency class at most k-1 are subnormal of defect k-1. Thus, $\langle x \rangle$ is (k-1)-subnormal in x^G , so $\langle x \rangle$ is k-subnormal in G. It follows that G is a k-Baer group.

Lemma 2.4. Let G be a torsion-free group in $\mathcal{L}(\mathcal{N}_k)$. If G belongs to \mathcal{B}_k^* , then G is a k-Engel group.

Proof: Let x, y in G; since G is torsion-free, the subset $\left\{x^i: i \text{ positive integer}\right\}$ is infinite. Therefore there is a positive integer i such that $\left\langle x^i\right\rangle$ is k-subnormal in G. Thus, $\left[x^i, \left[y,_{k-1}x^i\right]\right] \in \left\langle x^i\right\rangle$, so $\left[x^i, \left[y,_{k-1}x^i\right]\right] = x^r$ for some integer r. Since G belongs to $\mathcal{L}(\mathcal{N}_k)$, we have that G is a (k+1)-Engel group. Hence, $1 = \left[x^i,_{k+1}\left[y,_{k-1}x^i\right]\right] = x^{r^{k+1}}$; and this gives that r = 0 as G is torsion-free. It follows that $\left[x^i, \left[y,_{k-1}x^i\right]\right] = 1$, so $\left[y,_kx^i\right] = 1$. Now, because x^G is in \mathcal{N}_k , we have that every commutator in x^G of length k is multilinear. Thus $1 = \left[y,_kx^i\right] = \left[\left[y,x^i\right],_{k-1}x^i\right] = \left[y,_kx^i\right]^{i^k}$. Once again, as G is torsion-free, we obtain that $\left[y,_kx\right] = 1$; this means that G is a k-Engel group.

Proof of Theorem 1.3: Let G be a finitely generated centre-by-metabelian group in the class \mathcal{B}_k^* . So every infinite subset of G contains an element x such that $\langle x \rangle$ is k-subnormal in G. Hence, for any y in G we have $[y,_{k+1}x] = 1$. Thus, G belongs to $E_{k+1}^{\#}$. It follows, from [11, Theorem 1], that G is finite-by-nilpotent. Therefore there is a finite normal subgroup T such that G/T is a torsion-free centre-by-metabelian

group which belongs to $E_{k+1}^{\#}$. It follows from Theorem 1.2 that G/T is in $\mathcal{L}(\mathcal{N}_k)$, and by Lemma 2.4, we obtain that G/T is a k-Engel group. Therefore, G is finite-by-(k-Engel); as claimed.

Now, assume that G is a torsion-free centre-by-metabelian group in \mathcal{B}_k^* and let x, y in G. Then, from the first part of the proof, $H = \langle x, y \rangle$ is finite-by-(k-Engel). Since G is torsion-free we deduce that H is k-Engel. Hence, [y, kx] = 1, so G is a k-Engel group.

Conversely, suppose that G is a torsion-free centre-by-metabelian and a k-Engel group. From Lemma 2.3 we get that G is a k-Baer group, so G is in \mathcal{B}_k^* .

References

- [1] A. ABDOLLAHI, Some Engel conditions on infinite subsets of certain groups, *Bull. Austral. Math. Soc.* **62(1)** (2000), 141–148.
- [2] A. ABDOLLAHI AND B. TAERI, A condition on finitely generated soluble groups, *Comm. Algebra* **27(11)** (1999), 5633–5638.
- [3] A. ABDOLLAHI AND N. TRABELSI, Quelques extensions d'un problème de Paul Erdös sur les groupes, *Bull. Belg. Math. Soc. Simon Stevin* **9(2)** (2002), 205–215.
- [4] C. Delizia, A. Rhemtulla and H. Smith, Locally graded groups with a nilpotency condition on infinite subsets, *J. Austral. Math. Soc. Ser. A* **69(3)** (2000), 415–420.
- [5] G. Endimioni, Groups covered by finitely many nilpotent subgroups, Bull. Austral. Math. Soc. **50(3)** (1994), 459–464.
- [6] P. Hall, Finite-by-nilpotent groups, Proc. Cambridge Philos. Soc. 52 (1956), 611–616.
- [7] L.-C. KAPPE AND R. F. MORSE, Levi-properties in metabelian groups, in: "Combinatorial group theory" (College Park, MD, 1988), Contemp. Math. 109, Amer. Math. Soc., Providence, RI, 1990, pp. 59–72.
- [8] L.-C. Kappe and G. Traustason, Subnormality conditions in non-torsion groups, *Bull. Austral. Math. Soc.* 59(3) (1999), 459–465.
- [9] J. C. LENNOX AND J. WIEGOLD, Extensions of a problem of Paul Erdös on groups, J. Austral. Math. Soc. Ser. A 31(4) (1981), 459–463.
- [10] P. LONGOBARDI, On locally graded groups with an Engel condition on infinite subsets, Arch. Math. (Basel) 76(2) (2001), 88–90.

- [11] P. LONGOBARDI AND M. MAJ, Finitely generated soluble groups with an Engel condition on infinite subsets, *Rend. Sem. Mat. Univ. Padova* 89 (1993), 97–102.
- [12] R. F. Morse, Solvable Engel groups with nilpotent normal closures, in: "Groups St. Andrews 1997 in Bath, II", London Math. Soc. Lecture Note Ser. 261, Cambridge Univ. Press, Cambridge, 1999, pp. 560–567.
- [13] B. H. NEUMANN, A problem of Paul Erdös on groups, J. Austral. Math. Soc. Ser. A 21(4) (1976), 467–472.
- [14] M. F. NEWMAN, Some varieties of groups, Collection of articles dedicated to the memory of Hanna Neumann, IV, J. Austral. Math. Soc. 16 (1973), 481–494.
- [15] D. J. S. Robinson, "A course in the theory of groups", Graduate Texts in Mathematics 80, Springer-Verlag, New York-Berlin, 1982.
- [16] B. Taeri, A question of Paul Erdös and nilpotent-by-finite groups, Bull. Austral. Math. Soc. **64(2)** (2001), 245–254.
- [17] N. TRABELSI, Characterisation of nilpotent-by-finite groups, Bull. Austral. Math. Soc. 61(1) (2000), 33–38.

Département de Mathématiques Faculté des Sciences Université Ferhat Abbas Sétif 19000 Algérie

E-mail address: trabelsi_dz@yahoo.fr

Primera versió rebuda el 25 de setembre de 2002, darrera versió rebuda el 19 de marc de 2003.