ON THE TOËPLITZ CORONA PROBLEM

E. Amar

Abstract _

The aim of this note is to characterize the vectors $g = (g_1, \ldots, g_k)$ of bounded holomorphic functions in the unit ball or in the unit polydisk of \mathbb{C}^n such that the Corona is true for them in terms of the H^2 Corona for measures on the boundary.

Let D be a bounded domain in \mathbb{C}^n , the Corona problem is: given functions g_1, \ldots, g_N holomorphic and bounded in D such that:

$$\forall z \in D, \quad \sum_{i=1}^{N} |g_i(z)|^2 \ge \delta^2 > 0,$$

find f_1, \ldots, f_N still holomorphic and bounded in D such that $\sum_{i=1}^N f_i g_i = 1$ in D. This was solved for $D = \mathbb{D}$, the unit disk in \mathbb{C} by L. Carleson [8] and it is still open for n > 1 for the basic domains namely the unit ball \mathbb{B}_n and the unit polydisk \mathbb{D}^n .

We shall link this question to a question on Toëplitz operators via the $H^p(\mu)$ Corona.

1. Notations

We are interested by the basic domains, the unit ball in \mathbb{C}^n , $D = \mathbb{B}_n$, in fact any bounded convex domain with smooth boundary D, or the unit polydisc $D = \mathbb{D}^n$.

If $D = \mathbb{D}^n$ we set $bD = \mathbb{T}^n$, the distinguished boundary; if D is a bounded convex domain with smooth boundary, $bD = \partial D$ the topological boundary.

Recall that:

$$H^{\infty}(D):=\left\{f \text{ holomorphic in } D/\left\|f\right\|_{\infty}:=\sup_{z\in D}\left|f(z)\right|<\infty\right\}.$$

²⁰⁰⁰ Mathematics Subject Classification. 32A35, 32A36, 47B35. Key words. Corona problem, Toëplitz operators, Von Neumann Minimax theorem.

Let \mathcal{M} be the set of all probability measures on bD and for $\mu \in \mathcal{M}$ and $1 \leq p < \infty$ let $H^p(\mu)$ be the closure in $L^p(\mu)$ of the holomorphic polynomials.

If $\mu \in \mathcal{M}$ and $f \in H^{\infty}(D)$ then, with the assumption that $0 \in D$, for any r < 1, $f_r(z) := f(rz)$ is such that $f_r \in A(D) := H^{\infty}(D) \cap \mathcal{C}(\overline{D})$. There is a subsequence of $\{f_r, r < 1\}$ which converges in $(L^1(\mu), L^{\infty}(\mu))$ topology and uniformly on compact sets of D to a $\tilde{f} \in H^{\infty}(\mu) \cap H^{\infty}(D)$. Hence for a fixed $\mu \in \mathcal{M}$ we can assume that a $f \in H^{\infty}(D)$ is in $H^{\infty}(\mu) \cap H^{\infty}(D)$.

Now suppose that the Corona problem is solvable, i.e.

 $g_1, \ldots, g_N \in H^{\infty}(D)$ are such that $\exists f_1, \ldots, f_N \in H^{\infty}(D)$ with $1 = f_1g_1 + \cdots + f_Ng_N$; we have, for any polynomial P:

$$P = P f_1 q_1 + \dots + P f_N q_N.$$

Let $h \in H^p(\mu)$. Then there is a sequence $\{P_k\}_{k \in \mathbb{N}}$ of polynomials such that $P_k \to h$ in $H^p(\mu)$, hence:

$$P_k = \sum_{j=1}^{N} P_k f_j g_j;$$

but then $P_k f_j \to h_j$ in $H^p(\mu)$, because the f_j can be seen as in $H^{\infty}(\mu) \cap H^{\infty}(D)$.

So if the Corona is true then the $H^p(\mu)$ Corona is also true for any $\mu \in \mathcal{M}$:

$$CH^p(\mu): \forall h \in H^p(\mu), \quad \exists k_1, \dots, k_N \in H^p(\mu) \text{ s.t. } h = \sum_{j=1}^N g_j k_j$$

The aim of this paper is to show the converse.

If $f := (f_1, ..., f_N)$ we set $|f|^2(z) := \sum_{j=1}^N |f_j(z)|^2$ and $||f||_p := |||f(\cdot)|||_p$, where $||\cdot||_p$ is the $L^p(bD, \mu)$ norm and $||\cdot||_{\infty}$ is the sup norm in D.

Theorem 1.1. Let D be a bounded convex domain D containing O and with a smooth boundary or the unit polydisk \mathbb{D}^n of \mathbb{C}^n , $n \geq 1$. Let: $g_1, \ldots, g_N \in H^{\infty}(D)$ and $\delta > 0$. The following are equivalent:

- (i) There exist functions f_1, \ldots, f_N in $H^{\infty}(D)$ such that $\sum_{i=1}^N f_i g_i = 1$ and $||f||_{\infty}^2 \leq \frac{1}{52}$.
- (ii) For all measures μ on bD,

 $\forall h \in H^2(\mu)$

$$\exists k_1, \dots, k_N \in H^2(\mu) \text{ s.t. } h = \sum_{i=1}^N g_i k_i \text{ and } ||k||_2^2 \le \frac{1}{\delta^2} ||h||_2^2.$$

Let $g_1, \ldots, g_N \in H^{\infty}(D)$ be such that

$$\forall z \in D, \quad |g|(z)^2 := \sum_{j=1}^{N} |g_j(z)|^2 \ge \delta^2 > 0,$$

we already know that:

if $D = \mathbb{B}_n$, μ the Lebesgue's measure on $\partial \mathbb{B}_n$ and $2 \leq p < \infty$, then $CH^p(\mu)$ is true [2];

if $D = \mathbb{D}^n$, μ the Lebesgue's measure on \mathbb{T}^n and $1 \leq p < \infty$, then $CH^p(\mu)$ is true [10], [11];

if D is strictly pseudo-convex, μ the Lebesgue's measure on ∂D and $2 \leq p < \infty$, then $CH^p(\mu)$ is true [5];

if D is a bounded pseudo-convex domain with smooth boundary, μ the Lebesgue's measure on ∂D , then $CH^2(\mu)$ is true [4].

In the case $n=1, D=\mathbb{D}$ the unit disc in \mathbb{C} , μ the Lebesgue's measure on \mathbb{T} , then $CH^2(\mu) \Rightarrow CH^{\infty}(\mathbb{D})$ [12], by an operator method: the commutant lifting theorem of Nagy-Foias.

This means that the Corona theorem in one variable can be proved this way, hence there is some hope to prove a general version of the Corona theorem also by this way.

2. Proof of the theorem

We already seen that i) \Rightarrow ii); to prove that ii) \Rightarrow i) we shall use the minimax theorem of Von Neuman. The minimax theorem was already used by Berndtsson [6], [7] in order to get estimates on solutions of the $\bar{\partial}$ -equation; here the situation and the method are quite different.

We shall work with N=2 in order to simplify notations. Because D is always convex containing 0, we may assume by dilation that the data $g:=(g_1,g_2)$ are continuous up to the boundary, provided that the estimates do not depend on it.

Let Ω be an open set in D such that $\overline{\Omega} \subset D$, $0 \in \Omega$ and let, for $\epsilon > 0$, \mathcal{C}_{ϵ} be:

$$C_{\epsilon} := \{ (f = (f_1, f_2) \in A(D)^2, \text{ s.t. } \|1 - f \cdot g\|_{\Omega} \le \epsilon \}$$
where $\|f\|_{\Omega} := \sup_{z \in \Omega} |f(z)|$;

this set is clearly convex in $A(D)^2$. Let \mathcal{M} be the set of probability measures on bD and for $0 < \eta \le 1$ let $\mathcal{M}_{\eta} = \eta m + (1 - \eta)\mathcal{M}$, where m is the Lebesgue measure on bD; this is a convex weakly compact set.

Let us define N as

$$\forall f \in \mathcal{C}_{\epsilon}, \forall \mu \in \mathcal{M}_{\eta}, \quad N(f, \mu) := \|f\|_{\mu}^{2} := \|f_{1}\|_{L^{2}(\mu)}^{2} + \|f_{2}\|_{L^{2}(\mu)}^{2}.$$

Then N is convex on C_{ϵ} for μ fixed in \mathcal{M}_{η} and concave, in fact affine, and continuous on \mathcal{M} for f fixed in C_{ϵ} , hence we can apply the minimax theorem [9]:

$$\sup_{\mu \in \mathcal{M}_{\eta}} \inf_{f \in \mathcal{C}_{\epsilon}} N(f, \mu) = \inf_{f \in \mathcal{C}_{\epsilon}} \sup_{\mu \in \mathcal{M}_{\eta}} N(f, \mu);$$

by (ii) with h=1 we have $\exists \ k=(k_1,k_2)\in (H^2(\mu))^2,\ g\cdot k=1,\ \|k\|_{\mu}\leq \frac{1}{\delta};$ because $\mu=\eta m+(1-\eta)\nu$ we get $\|k\|_m\leq \frac{1}{\delta\sqrt{\eta}}$ hence $k\in (H^2(m))^2;$ by the very definition of $H^2(\mu)$ there is a sequence $f_n\in (A(D))^2$ such that $f_n\to k$ in $(H^2(\mu))^2$ hence also in $(H^2(m))^2$ hence $f_n\to k$ uniformly on compact sets of D; so for $\epsilon'\leq \epsilon$ there is a $f\in A(D)^2$ with $\|f-k\|_{\Omega}\leq \frac{\epsilon}{\|g\|_{\infty}}$ and $\|f-k\|_{H^2(\mu)}\leq \epsilon'.$ Hence we have

$$\|1-f\cdot g\|_{\Omega} = \|k\cdot g - f\cdot g\|_{\Omega} \leq \|g\|_{\infty} \, \|f-k\|_{\Omega} \leq \epsilon$$

which means that $f \in \mathcal{C}_{\epsilon}$. We deduce that the left side of (*) is bounded by $\frac{1}{\delta^2}$ hence for any $\epsilon > 0$, $\eta > 0$, $\gamma > 0$ there is a $f_{\epsilon,\eta,\gamma} \in \mathcal{C}_{\epsilon}$ with $\sup_{\mu \in \mathcal{M}_{\eta}} N(f_{\epsilon,\eta,\gamma},\mu) \leq \frac{1}{\delta^2} + \gamma$.

Now let $a \in D$ and ν_a a representing measure for a supported by bD, then we have with $\mu := \eta m + (1 - \eta)\nu_a$:

$$|\eta f_{\epsilon,\eta,\gamma}(0) + (1-\eta)f_{\epsilon,\eta,\gamma}(a)| = \left| \int f_{\epsilon,\eta,\gamma} d\mu \right| \le \frac{1}{\delta} + \gamma$$

and with $\mu = m$,

$$|f_{\epsilon,\eta,\gamma}(0)| = \left| \int f_{\epsilon,\eta,\gamma} dm \right| \le \frac{1}{\delta} + \gamma;$$

hence

$$|f_{\epsilon,\eta,\gamma}(a)| \le \frac{(1+\eta)(\frac{1}{\delta}+\gamma)}{1-\eta};$$

because this is true for any $a \in D$ we get

$$||f_{\epsilon,\eta,\gamma}||_{\infty} \le \frac{(1+\eta)(\frac{1}{\delta}+\gamma)}{1-\eta}.$$

Using Montel property we get that there is a $f \in (H^{\infty}(D))^2$ bounded by $\frac{1}{\delta}$ and such that $g \cdot f = 1$ on Ω hence, because Ω is open and $f \cdot g$ is holomorphic in D, $f \cdot g = 1$ in D.

3. Operator version

We shall give an operator version of the previous result strongly inspired by [3], but first we need some definitions. Let D be as before and $\mu \in \mathcal{M}$; for any function f in $L^{\infty}(\mu)$ define the Toëplitz operator T_f^{μ} on the Hilbert space $H^2(\mu)$ by

$$\forall g \in H^2(\mu), \quad T_f^{\mu}g := P_{\mu}(fg),$$

where P_{μ} is the orthogonal projection from $L^{2}(\mu)$ on $H^{2}(\mu)$. We can state:

Corollary 3.1. Let D be a bounded convex domain containing 0 and with a smooth boundary or the unit polydisk \mathbb{D}^n of \mathbb{C}^n , $n \geq 1$. Let: $g_1, \ldots, g_N \in H^{\infty}(D)$ and $\delta > 0$. The following are equivalent:

- (i) There exist functions f_1, \ldots, f_N in $H^{\infty}(D)$ such that $\sum_{i=1}^N f_i g_i = 1$ and $||f||_{\infty}^2 \leq \frac{1}{N^2}$.
- (ii) For all measures μ on bD, $\sum_{j=1}^{N} T_{g_j}^{\mu}(T_{g_j}^{\mu})^* \geq \delta^2 \mathbb{1}$.

For $D = \mathbb{D}^2$, this was proved in [1]; they used a method specific to the bidisc which explicitly cannot work even for \mathbb{D}^3 .

Proof: We shall prove that (ii) is equivalent to:

(iii) For all measures μ on bD,

$$\forall h \in H^2(\mu),$$

$$\exists k_1, \dots, k_N \in H^2(\mu) \text{ s.t. } h = \sum_{j=1}^N g_j k_j \text{ and } ||k||_2^2 \le \frac{1}{\delta^2} ||h||_2^2,$$

and then we apply the theorem to be done.

(ii) \Rightarrow (iii) (same proof as in [1]): Let μ be a probability measure on bD and set $G_i := T_{g_i}^{\mu}$; by (ii) we get that the operator $Q := G_1 G_1^* + \cdots + G_N G_N^*$ is invertible and $\|Q^{-1}\| \leq \frac{1}{h^2}$. We can define:

$$F_i := G_i^* Q^{-1}, \quad i = 1, \dots, N;$$

these are bounded operators on $H^2(\mu)$ and clearly we get:

$$(1) G_1F_1 + \dots + G_NF_N = 1.$$

Now take $k_i = F_i h$, $k := (k_1, \ldots, k_N)$; we have

$$||k||_2^2 = ||G_1^*Q^{-1}h||^2 + \dots + ||G_N^*Q^{-1}h||^2,$$

but

$$\|G_1^*Q^{-1}h\|^2 = \langle G_1^*Q^{-1}h, G_1^*Q^{-1}h \rangle = \langle G_1G_1^*Q^{-1}h, Q^{-1}h \rangle$$

hence

$$||k||_{2}^{2} = \langle h, Q^{-1}h \rangle \leq \frac{1}{\delta^{2}} ||h||^{2},$$

because $(G_1G_1^* + \cdots + G_NG_N^*)Q^{-1} = 1$.

Together with equation (1) this means precisely that the $H^2(\mu)$ Corona is true, i.e.

(iii) $\forall h \in H^2(\mu)$,

$$\exists k_1, \dots, k_N \in H^2(\mu) \text{ s.t. } h = \sum_{j=1}^N g_j k_j, \text{ and } ||k||_2^2 \le \frac{1}{\delta^2} ||h||^2.$$

(iii) \Rightarrow (ii): Let $\mu \in \mathcal{M}$, then by (iii) we have:

 $\forall h \in H^2(\mu),$

$$\exists k_1, \dots, k_N \in H^2(\mu) \text{ s.t. } h = \sum_{j=1}^N g_j k_j \text{ and } ||k||_2^2 \le \frac{1}{\delta^2} ||h||_2^2,$$

then $S_h := \{k = (k_1, \dots, k_N) \in (H^2(\mu))^N : \sum_{j=1}^N G_j k_j = h\}$ is not empty and it has elements of norm less than $\frac{1}{\delta^2} \|h\|_2^2$; S_0 is a subspace of the Hilbert space $(H^2(\mu))^N$ hence there is a unique element $k = (k_1, \dots, k_N)$ in S_h which is orthogonal to S_0 and hence of minimal norm. Then we get: $\|k\|_2^2 \le \frac{1}{\delta^2} \|h\|_2^2$ and, defining F_j by $F_j h := k_j$, $j = 1, \dots, N$, we

have:

(2)
$$\sum_{j=1}^{N} \|F_j h\|_2^2 \le \frac{1}{\delta^2} \|h\|_2^2$$

(3)
$$\forall h \in H^2(\mu), \quad \sum_{j=1}^N G_j F_j h = h.$$

From equation (3) we get:

$$\forall h \in H^2(\mu), \quad \left\langle \sum_{j=1}^N G_j F_j h, h \right\rangle = \|h\|_2^2,$$

hence $\forall h \in H^2(\mu), \sum_{j=1}^N \langle F_j h, G_j^* h \rangle = \|h\|_2^2$

$$\forall h \in H^2(\mu), \quad \|h\|_2^2 \le \sum_{j=1}^N \|F_j h\| \|G_j^* h\|$$

$$\leq \left(\sum_{j=1}^{N} \|F_j h\|^2\right)^{1/2} \left(\sum_{j=1}^{N} \|G_j^* h\|^2\right)^{1/2}.$$

Using equation (2) we get:

$$\forall \; h \in H^2(\mu), \quad \left\|h\right\|_2^2 \leq \frac{1}{\delta} \left\|h\right\|_2 \left(\sum_{j=1}^N \left\|G_j^*h\right\|^2\right)^{1/2},$$

hence
$$\forall h \in H^2(\mu), \sum_{j=1}^N \left\|G_j^*h\right\|^2 \ge \delta^2 \left\|h\right\|_2^2$$
 and the corollary. \square

References

- [1] J. AGLER AND J. E. MCCARTHY, Nevanlinna-Pick interpolation on the bidisk, J. Reine Angew. Math. **506** (1999), 191–204.
- [2] E. AMAR, On the corona problem, J. Geom. Anal. 1(4) (1991), 291–305.
- [3] E. AMAR AND C. MENINI, On an operator theory approach to the corona problem, *Bull. London Math. Soc.* **34(3)** (2002), 369–373.
- [4] M. Andersson, The H^2 corona problem and $\overline{\partial}_b$ in weakly pseudoconvex domains, *Trans. Amer. Math. Soc.* **342(1)** (1994), 241–255.

- [5] M. Andersson and H. Carlsson, Wolff type estimates and the H^p corona problem in strictly pseudoconvex domains, $Ark.\ Mat.\ 32(2)\ (1994),\ 255-276.$
- [6] B. Berndtsson, $\overline{\partial}_b$ and Carleson type inequalities, in: "Complex analysis, II" (College Park, Md., 1985-86), Lecture Notes in Math. **1276**, Springer, Berlin, 1987, pp. 42–54.
- [7] B. Berndtsson, Uniform estimates with weights for the $\overline{\partial}$ -equation, J. Geom. Anal. **7(2)** (1997), 195–215.
- [8] L. Carleson, Interpolations by bounded analytic functions and the corona problem, *Ann. of Math. (2)* **76** (1962), 547–559.
- [9] T. W. Gamelin, "Uniform algebras", Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969.
- [10] S.-Y. Li, Corona problem of several complex variables, in: "The Madison Symposium on Complex Analysis" (Madison, WI, 1991), Contemp. Math. 137, Amer. Math. Soc., Providence, RI, 1992, pp. 307–328.
- [11] K. C. Lin, The H^p-corona theorem for the polydisc, Trans. Amer. Math. Soc. 341(1) (1994), 371–375.
- [12] C. F. Schubert, The corona theorem as an operator theorem, *Proc. Amer. Math. Soc.* **69(1)** (1978), 73–76.

Département de Mathématiques Université de Bordeaux I 33405 Talence France

E-mail address: Eric.Amar@math.u-bordeaux.fr

Primera versió rebuda el 13 de desembre de 2002, darrera versió rebuda el 24 d'abril de 2003.