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SUR L’INTERSECTION DES COURANTS LAMINAIRES

Romain Dujardin

Abstract

We try to find a geometric interpretation of the wedge product
of positive closed laminar currents in C2. We say such a wedge
product is geometric if it is given by intersecting the disks filling
up the currents.
Uniformly laminar currents do always intersect geometrically in
this sense. We also introduce a class of “strongly approximable”
laminar currents, natural from the dynamical point of view, and
prove that such currents intersect geometrically provided they
have continuous potentials.

1. Introduction

Une motivation pour l’étude du produit extérieur des courants posi-
tifs fermés au cours des années 70 était de donner un nouveau point de
vue sur l’intersection des ensembles analytiques. Il apparâıt que dans
le cas de courants d’intégration sur des diviseurs, l’intersection pluripo-
tentialiste et l’intersection algébro-géométrique cöıncident. Ce sont des
raisons analogues qui ont poussé E. Bedford, M. Lyubich et J. Smillie
(voir [BLS, pp. 79–80]) à introduire les courants laminaires, et à étudier
leur intersection potentialiste sous un angle géométrique, s’appuyant en
cela sur une construction de D. Ruelle et D. Sullivan [RS]. Il y est
effectivement montré que dans le cas des automorphismes polynomiaux
de C

2, les courants dynamiques stable et instable ont une structure lami-
naire et que leur produit extérieur admet une interprétation géométrique;
la preuve repose de façon essentielle sur la théorie de Pesin des systèmes
dynamiques non uniformément hyperboliques. Ce résultat d’intersection
géométrique est utilisé pour montrer que les points périodiques de type
selle sont situés dans le support de la mesure d’entropie maximale et
engendrent des intersections homoclines.
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Nous allons étudier ces questions sous un angle plus systématique, et
retrouver ces résultats dans un cadre indépendant de toute dynamique.
Ceci fournit en contrepartie une preuve des résultats de [BLS] men-
tionnés ci-dessus, qui n’utilise pas la théorie de Pesin.

Rappelons qu’un courant positif fermé de bidegré (1, 1) dans un ou-
vert Ω ⊂ C2 est dit uniformément laminaire s’il est localement un
courant d’intégration sur une lamination transversalement mesurée et
laminaire s’il est localement défini comme intégrale directe d’une famille
de disques compatibles (voir la Section 2 pour plus de détails). On dira
que le produit extérieur de deux courants laminaires est géométrique s’il
est décrit par les intersections des disques constituant ces courants, avec
la convention que l’intersection d’un disque avec lui même est nulle. En
particulier l’auto-intersection d’un courant laminaire est géométrique si
et seulement si elle est nulle.

On ne considèrera que des courants diffus, la théorie de l’intersection
des courants d’intégration étant bien comprise, et tout courant positif
fermé se décomposant d’après le théorème de semi-continuité de Siu en
une somme de courants d’intégration et d’un courant ne chargeant pas
les sous ensembles analytiques (voir [De1]).

Nous montrons à la Section 3 que le produit extérieur des courants uni-
formément laminaires est toujours géométrique —pourvu qu’il soit défini.
Des exemples simples montrent qu’il n’est pas raisonnable d’espérer un
résultat aussi général pour les courants laminaires. Les courants dy-
namiques apparaissant en dynamique des automorphismes polynomiaux
de C2 (et plus généralement, des applications birationnelles) ont toute-
fois une propriété supplémentaire: ils sont limites de suites de diviseurs
rationnels 1

dn
[Cn] de topologie contrôlée. Nous dirons de ces courants

qu’ils sont fortement approximables (voir la Section 4 pour une définition
formelle). Notre résultat principal est le suivant:

Théorème. Soient T1 et T2 des courants laminaires fortement appro-
ximables dans Ω, de potentiel continu. Alors le produit extérieur T1 ∧T2

est géométrique dans Ω.

Un corollaire de ce théorème est que tous les courants laminaires ne
sont pas fortement approximables: il est aisé de trouver des exemples
de courants laminaires de potentiel continu satisfaisant T ∧ T > 0. Ceci
suggère que la classe des courants laminaires fortement approximables
exhibe des propriétés intéressantes. Nous prévoyons de les étudier plus
avant dans un article à venir.
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Le plan de l’article est le suivant. Nous rappelons dans le premier
paragraphe quelques faits concernant les courants laminaires et leur in-
tersection. À la Section 3 nous étudions l’intersection des courants uni-
formément laminaires, et à la Section 4 celle des courants fortement
approximables.

Cet article est issu de la thèse de doctorat [Du3] de l’auteur.

2. Définitions et quelques exemples

Nous commençons par rappeler brièvement les diverses notions de
laminarité [BLS], [Ca], [Du1], [Du3] pour les courants positifs fermés.
On fixe un ouvert Ω ⊂ C

2. T étant un courant positif, on notera Supp(T )
son support, M(T ) sa masse, et ‖T‖ sa mesure trace. La notation D

désigne le disque unité dans C.

Définition 2.1.

i) Le courant T est uniformément laminaire si pour tout x ∈ Supp(T ),
il existe des ouverts V ⊃ U 3 x, tels que V soit biholomorphe
au bidisque D2 et dans la carte correspondante de V , T |U soit
l’intégrale directe d’une famille de courants d’intégration sur des
graphes disjoints dans D2, plus précisément:

Il existe une mesure finie µ sur {0}×D et une famille de graphes
disjoints (Γa) dans D

2 tels que (0, a) ∈ Γa, et

(1) T |U =

∫

{0}×D

[Γa ∩ U ] dµ(a).

ii) Le courant T est laminaire dans Ω s’il existe une suite d’ouverts Ωi⊂
Ω tels que ‖T‖ (∂Ωi)=0 et une suite croissante de courants (T i)i≥0,
T i uniformément laminaire dans Ωi, telles que

lim
i→∞

T i = T.

Un courant uniformément laminaire est un cycle feuilleté sur une
lamination par surfaces de Riemann, plongée et munie d’une mesure
transverse invariante. On montre facilement (en utilisant [BLS]) que T
est laminaire au sens de la Définition 2.1 si et seulement s’il est faible-
ment laminaire au sens de [BLS], c’est à dire que T s’écrit localement
comme intégrale d’une famille mesurée de disques holomorphes compa-
tibles, i.e. on a la représentation

(2) T =

∫

A

[Da] dµ(a),
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où deux disques s’intersectant ont un ouvert en commun. Dans les cas
que nous considèrerons par la suite, Ωi = Ω\∂Qi où Qi est une subdi-
vision de Ω à un ensemble de ‖T‖ mesure nulle près. Il est important
de noter que la représentation d’un courant laminaire —comme limite
croissante ou intégrale d’une famille de disques— n’est jamais unique
puisqu’il est toujours possible de la modifier sur un ensemble de ‖T‖
mesure nulle. On dira qu’un courant est diffus s’il ne charge aucun sous
ensemble analytique.

Soient T1 et T2 deux courants positifs fermés dans Ω. Supposons
que le courant T1 admette un potentiel u1 dans Ω, i.e. T1 = ddcu1 où
ddc = i

π∂∂̄. On dira que le produit extérieur T1 ∧ T2 est admissible si

u1 ∈ L1
loc(‖T2‖). Ceci ne dépend clairement pas du choix de u1. On

définit alors le produit extérieur T1 ∧ T2 par la formule usuelle

T1 ∧ T2 = ddc(u1T2)

qui est une mesure positive de masse localement finie. N. Sibony a
montré (voir [Du3]) que le produit extérieur ainsi défini est symétrique
—autrement dit T1 ∧ T2 admissible implique T2 ∧ T1 admissible et T1 ∧
T2 = T2 ∧ T1— et satisfait un théorème de convergence décroissante.
On voit également que si T ′

1 ≤ T1 et T ′
2 ≤ T2 sont des courants positifs

fermés alors

(3) T1 ∧ T2 admissible =⇒ T ′
1 ∧ T

′
2 admissible et T ′

1 ∧ T
′
2 ≤ T1 ∧ T2.

En effet on peut localement choisir un potentiel ui de Ti (resp. u′i de T ′
i ),

i = 1, 2, tels que u′i ≥ ui.
Cette notion nous semble bien adaptée au produit extérieur des cou-

rants (uniformément) laminaires, notamment parce qu’elle est stable par
restriction du domaine. On aurait cependant pu également adopter la
condition d’admissibilité de [FS], qui satisfait également la relation (3).

Étant donnés deux disques holomorphes ∆1 et ∆2, définissons la
mesure [∆1 ∩ ∆2] comme la somme des masses de Dirac aux points
d’intersection de ∆1 et ∆2, comptés sans multiplicité (celle ci n’a pas
d’influence sur l’intersection des courants diffus, et on aurait tout autant
pu la compter) si ceux-ci sont isolés, [∆1 ∩ ∆2] = 0 si les deux disques
ont un ouvert en commun.

Si T1 et T2 sont des courants uniformément laminaires diffus, s’écri-
vant dans l’ouvert U sous la forme

Ti =

∫

Ai

[∆i,a] dµi(a), i = 1, 2,
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(où les ∆i,a sont des sous variétés de U), et admettant un produit
extérieur, on définit la mesure d’intersection géométrique dans U comme

T1∧̇T2 =

∫

A1×A2

[∆1,a ∩ ∆2,b] dµ1(a) dµ2(b),

(en particulier T1∧̇T1 = 0) et on dira que l’intersection de T1 et T2 est
géométrique dans U si T1 ∧ T2 = T1∧̇T2. Nous verrons à la section
suivante que c’est en fait toujours le cas.

Soient maintenant des courants laminaires fermés diffus T1 et T2 ad-
mettant un produit extérieur. T1 et T2 admettent des représentations
comme limites croissantes Tk = limT i

k, avec T i
k uniformément laminaire

dans Ωi
k; nous dirons que ces représentations sont compatibles si pour

tout i, ∂Ωi
k est de ‖Tj‖ mesure nulle, j, k ∈ {1, 2}. On dira que le pro-

duit extérieur de T1 et T2 est géométrique s’il existe des représentations
de T1 et T2 comme limites croissantes comme à la Définition 2.1 telles
que la suite des mesures d’intersection géométrique T i

1∧̇T
i
2 (définie dans

Ωi
1 ∩ Ωi

2) croisse vers T1 ∧ T2. En particulier l’auto-intersection d’un
courant laminaire est géométrique si et seulement si elle est nulle.

En termes de représentation comme intégrales de disques comme
en (2), l’intersection est géométrique si et seulement si on a l’égalité

T1 ∧ T2 =

∫

A1×A2

[D1
a ∩D2

b ] dµ1(a) dµ2(b).

Nous appellerons mesure d’intersection géométrique, le membre de droite
de cette égalité, ou de façon équivalente la limite croissante des mesures
T i

1∧̇T
i
2.

On voit que la mesure d’intersection géométrique est très sensible
à la représentation des courants. En particulier si T1 ∧ T2 est sin-
gulière par rapport à ‖T1‖ et ‖T2‖, il est toujours possible de modifier
les représentations de manière que la mesure d’intersection géométrique
associée soit nulle. Il est donc essentiel de pouvoir disposer de représen-
tations adaptées des courants laminaires. Ce sera une motivation pour
l’introduction des courants fortement approximables (Définition 4.1 ci-
après).

Les exemples suivants illustrent la difficulté de l’interprétation géo-
métrique de l’intersection des courants laminaires généraux.

Exemple 2.2. Cet exemple est une manifestation du phénomène évoqué
ci dessus. Soit X un compact non polaire et de mesure nulle dans D,
et µ une mesure à potentiel continu portée par X . Soient T h et T v
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deux courants respectivement de supports horizontal et vertical dans D2,
définis par

T h =

∫

X

[D × {w}] dµ(w) et T v =

∫

X

[{z} × D] dµ(z).

Bien entendu le produit T h ∧ T v = µ ⊗ µ est géométrique. Cependant,
si on subdivise chacun des {z}× (D\X) et (D\X)×{w} en une réunion
de disques disjoints, on obtient des représentations de T h et T v comme
courants laminaires et la mesure d’intersection géométrique associée est
nulle, puisque les disques ainsi construits ne se coupent pas.

De même le courant T = T h + T v est laminaire, de potentiel continu
et T ∧ T > 0. Cette auto-intersection n’est donc pas géométrique, et
illustre le fait que des disques subordonnés au courant s’intersectent;
ceci n’est pas le cas dans l’exemple suivant.

Exemple 2.3. J.-P. Demailly [De2] a introduit le courant positif fermé
dans C2

T = ddc max(log+ |z| , log+ |w|)

qui se décompose de la façon suivante:

T =

∫

S1

[{eiθ} × D] dλ(θ) +

∫

S1

[D × {eiθ}] dλ(θ) +

∫

S1

[Vθ] dλ(θ),

où λ est la mesure de Lebesgue sur le cercle unité S1, et Vθ =
{

(z, w)∈C2 ,

z = eiθw, |z| > 1
}

. Le courant T est donc un courant laminaire, fermé,
et de potentiel continu. Le courant T se prolonge par ailleurs comme
courant positif fermé de potentiel continu dans le plan projectif P

2. On
montre aisément que T ∧ T > 0 est la mesure de Lebesgue sur le tore
unité. Cette auto-intersection n’est donc pas géométrique.

Exemple 2.4. L’auto-intersection (au sens de la théorie du pluripoten-
tiel) d’un courant laminaire ne provient pas nécessairement de l’inter-
section géométrique des disques ou de leurs prolongements, comme le
montre l’exemple suivant. Soit un ensemble de Cantor de dimension < 1
dans le plan et GK sa fonction de Green. On suppose que GK est con-
tinue, et on a GK = 0 sur K, GK > 0 hors de K. Soit G(z, w) =
max(GK(z), GK(w)), on a

Supp(ddcG) ⊂ {GK(z) = GK(w) > 0} ∪ (K ×K).
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Comme dim(K × K) < 2, K × K n’est pas chargé par ddcG; de plus
l’hypersurface

{GK(z) = GK(w) > 0} = {GK(z) −GK(w) = 0} \(K ×K)

est Levi-plate, donc feuilletée par des courbes analytiques. On en déduit
que le courant ddcG est laminaire, uniformément dans le complémentaire
de K ×K par le théorème de support de J.-P. Demailly [De1]. De plus
(ddcG)2 est une mesure de probabilité portée par K ×K car G est la
fonction de Green pluricomplexe de K ×K.

Il est possible de choisir K de telle sorte que les courbes feuilletant
{GK(z) = GK(w) > 0} ne se prolongent pas à travers K (à l’exception
de la droite (z = w)). Soit un point (z0, w0) de K × K et un disque
holomorphe local ∆ 3 (z0, w0), que l’on pourra supposer être un graphe
∆ = {(ζ, ϕ(ζ)), ζ ∈ U} au dessus de la première coordonnée, tel que
∆\(K ×K) ⊂ {GK(z) = GK(w) > 0}.

On a alors ϕ(z0) = w0 et sur U\K, GK(z) = GK(ϕ(z)), relation qui
par continuité s’étend à U . Quitte à se restreindre à un sous ouvert
de U on peut supposer que ϕ n’a pas de points critiques. Il suffit donc
de trouver un tel compact K n’ayant pas d’automorphismes conformes
locaux, auquel cas cette relation implique ϕ = id. On modifie pour
cela la construction de l’ensemble de Cantor triadique usuel de façon
que la dimension de Hausdorff locale de K soit une fonction strictement
croissante sur K ⊂ [0, 1]. Par [T, §III.16], on peut faire en sorte que la
fonction de Green GK soit continue.

3. Courants uniformément laminaires

Nous montrons dans cette section que le produit extérieur des courants
uniformément laminaires est géométrique dès qu’il est bien défini. Nous
donnons par ailleurs un critère simple assurant l’admissibilité du pro-
duit extérieur dans ce cadre. Le cas du produit de deux courants uni-
formément laminaires dont l’un est à potentiel continu est traité dans le
Lemme 8.3 de [BLS]: leur preuve est facilement étendue au cas général
puisqu’elle n’utilise qu’un argument de convergence monotone.

Théorème 3.1. Soient T1 et T2 des courants uniformément laminaires
diffus, tels que le produit extérieur T1 ∧T2 soit admissible. Alors l’inter-
section T1 ∧ T2 est géométrique.

En particulier si T1 ∧ T1 est un produit extérieur admissible, alors
T1 ∧ T1 = 0.
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Corollaire 3.2. Soient T1 et T2 des courants laminaires, munis de re-
présentations (compatibles) comme limites croissantes, comme à la Défi-
nition 2.1, Tk =limi→∞ T i

k, k=1, 2, et tels que le produit extérieur T1∧T2

soit admissible. Alors la mesure d’intersection géométrique ν de T1 et
T2 est dominée par T1 ∧ T2. En particulier ν est de masse localement
finie.

Preuve du Corollaire 3.2: Rappelons que les représentations comme li-
mite croissantes sont compatibles si les bords des ouverts Ωi ne sont pas
chargés par les courants. Soit

νi = T i
1∧̇T

i
2|Ωi

1
∩Ωi

2

la mesure d’intersection géométrique des courants uniformément lami-
naires T i

1 et T i
2. Dans Ωi

k on a Tk = T i
k + Ri

k, k = 1, 2, et donc dans
Ωi

1 ∩ Ωi
2 on a

T1 ∧ T2 = T i
1 ∧ T

i
2 + T i

1 ∧Ri
2 +Ri

1 ∧ T
i
2 +Ri

1 ∧R
i
2

où tous les produits extérieurs sont admissibles d’après la relation (3).
D’après le théorème on a l’égalité νi = T i

1 ∧ T i
2, et donc νi ≤ T1 ∧ T2.

La mesure d’intersection géométrique étant la limite croissante des ν i on
conclut.

Preuve du Théorème 3.1: Soit x ∈ Supp(T1)∩Supp(T2), il suffit de mon-
trer le résultat au voisinage de x. Soient respectivement L1 et L2 les
laminations sous-jacentes à T1 et T2. Fixons un ouvert V 3 x biholo-
morphe à un bidisque, tel que la feuille L1(x) passant par x soit un graphe
au dessus de la première coordonnée dans V . Alors pour un voisinage V ′

de x, et pour tout y ∈ V ′, L1(y
′) est un graphe dans V . Ainsi on peut

écrire T1 = T ′
1 + T ′′

1 , dans V où T ′
1 est le courant uniformément lami-

naire formé des feuilles de T1 rencontrant V ′. T ′
1 est fermé dans V et

T1|V ′ = T ′
1|V ′ . Le produit extérieur T ′

1 ∧ T2 est admissible et il suffit
donc de montrer qu’il est géométrique. Sans perte de généralité on écrit
dorénavant T1 pour T ′

1.
Dans des coordonnées adaptées dans V on a un potentiel pour T1 de

la forme

u1 =

∫

log |y − ψa(x)| dµ1(a),

et puisque u1∈L1(‖T2‖), pour presque tout a, log |y − ψa(x)|∈L1(‖T2‖),
c’est à dire que pour le graphe Γa correspondant, le produit [Γa]∧T2 est
admissible. Montrons qu’il est géométrique.

Fixons un nouveau système de coordonnées (z, w) telles que le
graphe Γa (maintenant fixé) ait pour nouvelle équation {w = 0}. Alors
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pour λ générique, quitte à réduire encore une fois V et V ′, les feuilles
de L2 intersectant V ′ sont des graphes au dessus de {w = 0} dans le
système de coordonnées (z + λw,w) = (ζ, w).

On écrit T2 =
∫

B
[Db] dµ2(b) dans V . Notons tout d’abord que si pour

un certain Db il y a un point d’intersection non transverse dans Γa ∩
Db, il sera perturbé en k points d’intersection transverses en changeant
légèrement b [BLS, Lemme 6.4]. Ceci signifie que quitte à retirer une
quantité au plus dénombrable de paramètres b ∈ B (ce qui ne change
pas T2 puisque la mesure µ2 est diffuse) on peut supposer toutes les
intersections transverses.

On suit maintenant [BLS, Lemme 8.3]. On écrit l’équation de Db

sous la forme w = ϕb(ζ) et on a

log |w − ϕb(ζ)| =

Nb
∑

j=1

log |ζ − pj | + hb(ζ)

où hb est harmonique. Soient

BR = {b ∈ B, ‖hb‖L∞ ≤ R, Nb ≤ R} ,

et u2,R =
∫

BR
log |w − ϕb(ζ)| dµ2(b). On peut supposer que tous les

logarithmes sont négatifs. Quand R → ∞, BR crôıt vers B et u2,R

décrôıt vers u2. D’après le théorème de convergence monotone (stan-
dard) u2,R[Γa] ⇀ u2[Γa] et donc ddcu2,R ∧ [Γa] ⇀ ddcu2 ∧ [Γa]. Par
ailleurs le produit extérieur ddcu2,R∧[Γa] est géométrique car le théorème
de Fubini s’applique et l’intersection pluripotentaliste de deux courbes
est géométrique.

Il est alors naturel de se poser la question suivante: sous quelles con-
ditions le produit extérieur de deux courants uniformément laminaires
est il admissible? Il est aisé de construire des exemples de courants uni-
formémement laminaires d’auto-intersection non admissible. C’est en
effet le cas pour un courant d’intégration sur une courbe: dans des coor-
données (z, w) adaptées la courbe a pour équation {z = 0} et le courant
associé a pour potentiel log |z|. Pour obtenir des exemples diffus, il suf-
fit de considérer des courants de la forme

∫

[z = α] dµ(α) où µ est une
mesure d’énergie infinie (i.e.

∫

u dµ = −∞, u étant un potentiel de µ).
En considérant une seconde mesure µ2 ≥ 0 telle que

∫

u dµ2 = −∞,
on obtient un exemple de deux courants distincts dont on ne peut pas
prendre le produit extérieur.

La proposition suivante dit que ces exemples sont essentiellement les
seuls.
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Proposition 3.3. Soient T1 et T2 des courants uniformément laminaires
diffus. Supposons que les feuilles des laminations sous jacentes L1 et L2

ne se coupent qu’en des points isolés. Alors le produit extérieur T1 ∧ T2

est localement admissible.

Avant de commencer la preuve, rappelons une situation géométrique
simple dans laquelle le produit extérieur de deux courants est admissible:
c’est le cas si Ω ⊂ C

2 est un ouvert borné pseudoconvexe et T1, T2 sont
des courants positifs fermés tels que SuppT1 ∩ Supp T2 b Ω (voir par
exemple [De1], [FS]).

Preuve: Soit x ∈ SuppT1 ∩ SuppT2; nous allons montrer qu’il y a un
voisinage de x dans lequel le produit extérieur T1 ∧ T2 est admissible.
Soient respectivement L1(y) et L2(y) les feuilles des laminations associées
à T1 et T2 passant par y. Soit V 3 x tel que Lk(x) ∩ V , k = 1, 2 soient
des sous variétés de V et L1(x) ∩ L2(x) ∩ V = {x}. Alors pour V ′ 3 x
suffisamment petit, on a

(4)
⋃

y∈V ′

L1(y) ∩ L2(y) b V.

Comme dans la preuve du théorème précédent, on écrit Ti = T ′
i + T ′′

i ,
où T ′

i est le courant subordonné à Ti formé des feuilles issues de V ′; en
particulier T ′

i |V ′ = Ti|V ′ . La propriété (4) assure que le produit T ′
1 ∧ T

′
2

est admissible dans V .

4. Courants fortement approximables

On a vu à la Section 2 que la représentation des courants laminaires
pose problème en vue de l’interprétation géométrique de leur produit
extérieur. Ces problèmes peuvent être surmontés si on dispose d’une
suite de courbes holomorphes convergeant vers le courant de manière
contrôlée. C’est le cas pour les courants adhérents aux courbes entières
injectives [BLS], [Ca], et pour les limites de certaines suites de diviseurs
rationnels [Du1]. Rappelons que ceci entrâıne la laminarité des courants
invariants par les applications birationnelles de P2. Nous ne savons pas
cependant si les courants laminaires construits par H. de Thélin [dT]
—qui donne un critère local de laminarité— satisfont la Définition 4.1
ci-dessous. Rappelons quelques éléments des constructions présentées
dans ces travaux.

Soit Ω un ouvert de C2. On considère une suite de sous ensembles ana-
lytiques, éventuellement à bord, définis dans un voisinage de Ω, d’aire dn

tendant vers l’infini, et tels que d−1
n [Cn] ⇀ T . On veut obtenir les dis-

ques de T comme graphes pour une projection linéaire π. Soit L une
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base de la projection orthogonale à la direction de π; pour une subdi-
vision Q de L en carrés de taille r, on dira qu’une composante connexe
de π−1(Q) ∩ Cn, Q ∈ Q, est bonne si c’est un graphe au dessus de Q,
mauvaise sinon. On retirera également en général un certain nombre de
bonnes composantes afin d’assurer une propriété de compacité (critère de
Montel ou borne sur l’aire). Dans les situations mentionnées plus haut,
on a un contrôle en O(dn) du nombre total de mauvaises composantes,
comptées avec multiplicité. Ainsi ces courants satisfont la Définition 4.1
ci-dessous.

Dans la suite, nous considèrerons des subdivisions en carrés de taille r,
images par une isométrie affine de la subdivision standard

⋃

(j,k)∈Z2

{z ∈ C, jr < <(z) < (j + 1)r, kr < =(z) < (k + 1)r} ;

on omettra en général la mention de la base L de projection. On
notera ω1 la restriction à L de la forme Kählerienne standard de C2,
et la notation C désignera une “constante”, pouvant varier de ligne en
ligne, mais toujours indépendamment de n et r.

Définition 4.1. Soit T un courant positif fermé dans Ω. T est forte-
ment approximable s’il existe une suite (Cn) de sous ensembles analy-
tiques définis dans un voisinage de Ω, éventuellement à bord, telles que
d−1

n [Cn] ⇀ T , au moins deux projections linéaires π, et une constante C,
telles que si Q est une subdivision en carrés de taille r, et TQ,n désigne le
courant formé des bonnes composantes de Cn au dessus de Q, normalisé
par dn, on ait l’estimation

(5)
〈

d−1
n [Cn] − TQ,n, π

∗ω1

〉

≤ Cr2.

Un courant satisfaisant cette définition est laminaire (nous en re-
donnerons une preuve ci après à la Proposition 4.4). Les courants lami-
naires construits dans l’article [Du1] vérifient cette définition dans tout
ouvert de P2; nous les dirons “fortement approximables dans P2”. Les
courants adhérents aux courbes entières injectives [BLS], [Ca], de même
que les courants invariants des applications d’allure Hénon [Du2] sont
également fortement approximables.

On a le théorème d’intersection géométrique (local) suivant.

Théorème 4.2. Soient T1 et T2 des courants fortement approximables
dans Ω, de potentiel continu. Alors le produit extérieur T1 ∧ T2 est
géométrique dans Ω.



118 R. Dujardin

On pourra noter que le théorème est également valable lorsqu’il existe
un ouvert Ω′ ⊂ Ω dans lequel les courants T1 et T2 sont de potentiel
continu et la masse de T1 ∧ T2|Ω′ soit totale dans Ω. Ceci s’applique
par exemple si T1 et T2 sont de potentiel borné, continu hors d’un fermé
pluripolaire, ou encore si les potentiels de T1 et T2 sont continus hors d’un
nombre fini de points ou l’un au plus des Ti admet un nombre de Lelong
—une situation analogue apparâıt naturellement dans la dynamique de
certaines applications birationnelles [Di2]—.

Corollaire 4.3. Soit T un courant fortement approximable dans Ω, et
de potentiel continu. Alors T ∧ T = 0 dans Ω. En particulier il existe
des courants laminaires qui ne sont pas fortement approximables.

En effet nous avons donné à la Section 2 des exemples de courants
laminaires de potentiel continu et d’auto-intersection strictement pos-
itive. On sait par ailleurs qu’un courant positif fermé de P2 tel que
T ∧ T soit admissible est d’auto-intersection strictement positive pour
des raisons homologiques [FS]. On déduit en particulier de ce corollaire
que les courants laminaires de potentiel continu dans P

2 —c’est le cas
en particulier pour l’Exemple de Demailly 2.3— ne peuvent pas être
fortement approximables.

Une autre conséquence du corollaire est le fait que pour le courant de
Green T+ d’un automorphisme polynomial de C2, qui est de potentiel
continu dans C2, l’auto-intersection T+ ∧ T+ est concentrée au point
d’indétermination I+. Cet exemple montre également qu’une hypothèse
sur le potentiel des courants est nécessaire dans le Théorème 4.2. Le
courant considéré ici admet un nombre de Lelong strictement positif au
point I+.

De manière plus générale, l’auto-intersection géométrique d’un cou-
rant laminaire est par définition toujours nulle, donc si T est un courant
laminaire de P2 tel que T ∧T soit admissible, ce produit, qui est de masse
strictement positive, n’est jamais géométrique. Il serait intéressant d’en
comprendre la structure.

Comme évoqué dans l’Introduction, le Théorème 4.2 donne une ap-
proche relativement directe pour certaines propriétés fines des automor-
phismes polynomiaux de C2. Nous renvoyons au panorama de N. Si-
bony [Si] pour un exposé de leurs principales propriétés. Soit par exem-
ple f un automorphisme de Hénon de C2, et p un point périodique de
type selle, que nous supposerons fixe sans perte de généralité. Alors
les variétés stable et instable globales W s(p) et W u(p) sont des immer-
sions injectives de C dans C2. On peut associer à de telles immersions
des “courants d’intégration” fermés, qui sont des limites de courants
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d’intégration sur de grands disques, et sont laminaires d’après [BLS].
De plus leur structure laminaire est “limite” de celle des grands disques
approximants. Si T s est associé à W s(p) et normalisé, alors Supp(T s) ⊂
K+. D’après un théorème de Fornæss-Sibony, ceci implique T s = T+.
On obtient de façon analogue T u = T− pour un courant d’intégration
sur la variété instable. Comme T+ et T− sont de potentiel continu et
T+ ∧ T− > 0, le Théorème 4.2 s’applique et force les variétés stable et
instable à se couper (transversalement). Ceci a des conséquences dy-
namiques (théorème homocline de Smale): par exemple p est accumulé
par des points selles. Plus généralement ceci permet de retrouver directe-
ment tous les résultats du § 9 de [BLS]. La même méthode s’applique
au cas des applications birationnelles (très régulières) telles que les en-
sembles d’indétermination de f et f−1 soient dans l’ensemble de Fatou
(“completely separating” selon la terminologie de J. Diller [Di1, §6]).

Le Théorème 4.2 peut être également utilisé comme résultat de con-
vergence dans des situations où la théore du pluripotentiel est délicate
d’emploi. Nous illustrons ceci sur un exemple. Soit f un automor-
phisme polynomial de C2, L et L′ deux droites complexes de C2, évitant
les points d’indétermination. On a

(6)
1

dn
(fn)∗[L] ⇀ T− et

1

dn
(fn)∗[L] ⇀ T+.

On montre facilement à l’aide du théorème qu’on a la caractérisation
suivante de la mesure µ = T+ ∧ T−:

µ = lim
n→∞

1

d2n
[fn(L) ∩ fn(L′)].

Les méthodes usuelles de théorie du pluripotentiel ne permettent pas
de démontrer un tel résultat à partir de (6). Il est à noter que T.-
C. Dinh et N. Sibony ont récemment obtenu des résultats de convergence
analogue pour une vaste classe d’applications biméromorphes en toute
dimension [DiS].

Le reste de cette section sera consacré à la preuve du Théorème 4.2.
Nous commençons par montrer une version quantitative de la Défini-
tion 2.1. Certains arguments peuvent être simplifiés dans le cas des
courants fortement approximables dans P2, cependant nous préférons
donner le résultat dans toute sa généralité. Le théorème étant local on
pourra supposer que Ω est une boule.
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Proposition 4.4. Soit T un courant laminaire fortement approximable
dans Ω. Fixons Ω′

b Ω. Alors pour des projections linéaires distinctes
π1, π2 comme à la Définition 4.1 et pour toutes subdivisions S1, S2 de C

en carrés de taille r,

Q =
{

π−1
1 (s1) ∩ π

−1
2 (s2), (s1, s2) ∈ S1 × S2

}

est une subdivision d’un voisinage de Ω′ en 4-cubes affines et il existe un
courant TQ ≤ T , uniformément laminaire dans chaque Q ∈ Q, tel que

(7) MΩ′(T − TQ) ≤ Cr2,

où c, C sont indépendants de r (MΩ′ désigne la masse restreinte à Ω′).

Preuve: La preuve est similaire à celle de la Proposition 3.4 de [Du1],
la différence étant que l’on doit contrôler la masse simultanément dans
deux directions. Un point délicat vient de ce qu’on n’a pas de contrôle
sur les bonnes composantes à l’extérieur de Ω.

Soient une suite (Cn) ainsi que deux projections satisfaisant les hy-
pothèses de la Définition 4.1. Quitte à réduire légèrement Ω, on sup-
posera que les courants d−1

n [Cn] y sont de masse uniformément bornée.
Considérons deux subdivisions Si de taille r et formons les courants T i

Si,n

en retirant à d−1
n [Cn] les mauvaises composantes relatives à πi et Si, ainsi

que les bonnes composantes dont la restriction à Ω est de grand volume.
Le nombre de ces composantes est majoré par O(dn), car la masse de
d−1

n [Cn] est O(dn) dans Ω. Ainsi l’estimée (5) est satisfaite:
〈

d−1
n [Cn] − T i

Si,n, π
∗
i ω1

〉

≤ Cr2, i = 1, 2.

Pour i = 1, 2, le courant T i
Si,n

est le courant d’intégration sur une courbe

à bord (non connexe), dont le bord est inclus dans π−1
i (∂Si),

T i
Si,n =

1

dn
[Ci

Si,n].

Considérons la subdivision Q comme définie dans l’énoncé de la propo-
sition; soit le courant

TQ,n =
1

dn
[C1

S1,n ∪ C2
S2,n] =:

1

dn
[CQ,n].

Il ne suffit de le considérer que pour les cubes Q ∈ Q tels que Q∩Ω′ 6= ∅.
Par construction CQ,n est une courbe holomorphe à bord, dont le bord
est inclus dans ∂Q et comme pour i = 1, 2,

d−1
n [Cn] − TQ,n ≤ d−1

n [Cn] − T i
Si,n,
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on en déduit
〈

d−1
n [Cn] − TQ,n, π

∗
1ω1 + π∗

2ω1

〉

≤ 2Cr2;

il est par ailleurs à noter que π∗
1ω1 + π∗

2ω1 est une forme Kählerienne.

Il reste à voir qu’une sous suite de TQ,n converge vers un courant TQ,
uniformément laminaire dans chaque Q ∈ Q. Soit Q ∈ Q, décomposons
CQ,n ∩Q en union disjointe

CQ,n ∩Q = (C1
S1,n ∩Q) ∪

[

(C2
S2,n ∩Q)\(C1

S1,n ∩Q)
]

,

ainsi que TQ,n := TQ,n|Q = T 1
Q,n + T 2

Q,n selon cette décomposition.

Toutes les courbes de T 1
Q,n sont des restrictions à Q de sous variétés

de π−1
1 (s1)∩Ω, de volume majoré, et qui sont des graphes pour π1. Ainsi

une valeur d’adhérence d’une suite de composantes de T 1
Q,n est un sous

ensemble analytique de Q qui est soit restriction d’un graphe pour π1

soit inclus dans une fibre de π1.
On en déduit que les valeurs d’adhérence de T 1

Q,n sont des courants
uniformément laminaires. En effet soit V une limite d’une suite de com-
posantes de T 1

Q,nj
. On déduit de la discussion précédente que V est

lisse. Fixons x ∈ V et τ une petite transversale à V en x. Toutes les
composantes de T 1

Q,nj
coupant τ pour nj assez grand sont des graphes

au dessus d’un voisinage de x dans V car les composantes sont disjointes
(lemme d’Hurwitz). De plus la masse transverse est majorée car d−1

n [Cn]
est de masse bornée. On conclut en utilisant des arguments usuels: voir
par exemple [Du1, Proposition 3.4] ou [BS5].

On fait le même raisonnement pour T 2
Q,n, et on considère une valeur

d’adhérence TQ = T 1
Q+T 2

Q. Si x ∈ Supp(T 1
Q)∩Supp(T 2

Q), et ∆1, ∆2, sont

les disques correspondants passant par x, alors ∆1 = ∆2. En effet si x
était un point isolé de ∆1 ∩∆2, les disques approximants respectifs ∆1

nj

et ∆2
nj

des T i
Q,nj

devraient se couper, ce qui est impossible puisque ces

disques sont des bonnes composantes de Cn. Ceci montre que TQ est
uniformément laminaire.

Preuve du Théoreme 4.2: Soit ν la mesure T1∧T2, nous supposerons que
‖ν‖ ≤ 1 dans Ω. Nous allons construire une suite croissante de mesures
d’intersection géométrique νQ ≤ ν telles que M(ν − νQ) → 0 quand le
pas de la subdivision tend vers 0.

On dispose pour k = 1, 2 de subdivisions —dans le cas de courants
fortement approximables dans P2 on peut choisir une subdivision com-
mune aux deux courants— en 4-cubes affines Qk de taille comparable
à r (vues comme restrictions à Ω de subdivisions de C2) telles que les
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conclusions de la proposition précédente soient satisfaites pour Tk. Étant
donné que les subdivisions S en carrés de taille r ne sont pas fixées, pour
Zk ∈ C

2, ceci vaut également pour les subdivisions Zk +Qk. Sans perte
de généralité on écrira dorénavant Ω pour Ω′.

Posons Q = Qk pour k valant 1 ou 2, et QZ la subdivision translatée
Q + Z. Si Z est dans le réseau L(Q) des sommets de Q, alors QZ = Q.
Le nombre de cubes rencontrant Ω est CardΩ(QZ) ≤ C0/r

4, où C0 est
indépendante de Z.

Soit un nombre réel λ < 1, et pour Q ∈ Q, soit Qλ l’homothétique
de Q de rapport λ par rapport à son centre. Le volume de Lebesgue
Leb(Qλ) est λ4 Leb(Q). Soit Qλ := ∪Q∈QQ

λ, (Qλ)c := C
2\Qλ,

Leb(Ω ∩ (Qλ)c) ≤ CardΩ(Q)(1 − λ4) Leb(Q) ≤ C(1 − λ4).

Lemme 4.5. Il existe Z ∈ C
2 tel que ν(Ω ∩ (Qλ

Z)c) < 2(1− λ4).

Preuve: Le lemme est une conséquence simple de l’invariance de la mesu-
re de Lebesgue par translation et du théorème de Fubini. Par périodicité
il suffit de considérer Z ∈ Q pour un certain Q ∈ Q. On a

∫

Q

ν(Ω ∩ (Qλ
Z)c)

dLeb(Z)

Leb(Q)
=

∫

Q

∫

Ω

1Z+(Qλ)c(y) dν(y)
dLeb(Z)

Leb(Q)

et y ∈ Z + (Qλ)c si et seulement si Z ∈ y− (Qλ)c. Donc 1Z+(Qλ)c(y) =
1y−(Qλ)c(Z). L’intégrale précédente vaut donc

∫

Ω

(
∫

Q

1y−(Qλ)c(Z)
dLeb(Z)

Leb(Q)

)

dν(y)

=

∫

Ω

1

Leb(Q)
Leb((y − (Qλ)c) ∩Q) dν(y),

et pour tout y ∈ C2, Leb((y − (Qλ)c) ∩ Q) = Leb(Q\Qλ) = (1 −
λ4) Leb(Q), par invariance par translation de la mesure de Lebesgue
sur le tore C2/L(Q). D’où

∫

Q

ν(Ω ∩ (Qλ
Z)c)

dLeb(Z)

Leb(Q)
≤ (1 − λ4)

et le lemme est démontré.

On fixe donc Z1 et Z2 tels que la conclusion du lemme soit respective-
ment satisfaite pour Q1 et Q2, et par abus de notation, on renomme Qk

la subdivision translatée Zk + Qk. On applique la Proposition 4.4 aux
courants Tk, et ainsi on obtient des courants Tk,Qk ≤ Tk, uniformément

laminaires dans chaque Q ∈ Qk, et tels que M(Tk − Tk,Qk ) ≤ Cr2.
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Considérons la subdivision Q=Q1∧Q2 formée desQ1∩Q2, (Q1, Q2) ∈
Q1 × Q2. Soient Q ∈ Q et Tk,Q = Tk,Qk |Q; Tk,Q ≤ Tk donc le pro-
duit T1,Q ∧ T2,Q est admissible dans Q (les Tk,Q sont en fait à po-
tentiel continu d’après [BLS, Lemme 8.2]), et est géométrique par le
Théorème 3.1. Soit

νQ = T1,Q ∧ T2,Q =
∑

Q∈Q

T1,Q ∧ T2,Q =
∑

Q∈Q

T1,Q∧̇T2,Q;

on a νQ ≤ ν et il reste à estimer M(ν − νQ).

On pose pour λ < 1,

Qλ =
⋃

(Q1,Q2)∈Q1×Q2

(Q1)λ ∩ (Q2)λ,

(on peut avoirQ1∩Q2 6= ∅ et (Q1)λ∩(Q2)λ = ∅). La masse se décompose
alors en

MΩ(ν − νQ) = MΩ∩Qλ(ν − νQ) + MΩ∩(Qλ)c(ν − νQ).

Le deuxième terme est majoré par 4(1−λ4) d’après le lemme précédent.
On fixe λ tel que 2(1 − λ4) < ε/2 et il reste à majorer MΩ∩Qλ(ν − νQ).

Soit Q ∈ Q, alors

T1 ∧ T2 − T1,Q ∧ T2,Q = (T1 − T1,Q) ∧ T2 + T1,Q ∧ (T2 − T2,Q)

≤ (T1 − T1,Q) ∧ T2 + T1 ∧ (T2 − T2,Q).

Par symétrie il suffit de considérer le premier terme. Soit u2 un potentiel
de T2 dans Ω; on va construire une fonction Q dont la restriction à
chaque Q est une fonction plateau, χ|Q ∈ C∞

0 (Q), χ ≥ 0, χ = 1 au
voisinage de Qλ, et ‖ddcχ‖L∞ = O(1/r2).

Dans un carré de taille r dans C on construit aisément une telle fonc-
tion, avec ‖dχ0‖L∞ ≤ C/(1 − λ)2r2. D’où par translation une fonc-
tion χ0 ayant les propriétés souhaitées dans une subdivision en carrés de
taille r dans C. Si maintenant πi, i = 1, . . . , 4, sont les quatre projec-
tions linéaires correspondant aux deux subdivisions Q1 et Q2, il suffit
de poser

χ = χ0 ◦ π1 · · ·χ0 ◦ π4.

Le paramètre λ étant fixé, ‖ddcχ‖L∞ = O
( 1

r2

)

. Par ailleurs

MQλ((T1−T1,Q)∧T2) ≤

∫

χ(T1−T1,Q)∧T2) =

∫

u2dd
cχ∧(T1−T1,Q),
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et si cQ est un point dans Q, on remarque que
∫

u2dd
cχ ∧ (T1 − T1,Q) =

∫

(u2 − u2(cQ))ddcχ ∧ (T1 − T1,Q).

Donc
∫

u2dd
cχ ∧ (T1 − T1,Q) ≤ Cω(u2, r)M(T1 − T1,Q) ‖ddcχ‖L∞

≤ Cω(u2, r)
1

r2
M(T1 − T1,Q),

où ω(u2, r) est le module de continuité de u2 de rayon r. En prenant la
somme sur Q ∈ Q, et en utilisant (7) on obtient

∑

Q∈Q

MQλ((T1 − T1,Q) ∧ T2) ≤ Cω(u2, r),

soit
MΩ∩Qλ(ν − νQ) ≤ C(ω(u1, r) + ω(u2, r)).

Donc si r est suffisamment petit, MΩ(ν − νQ) < ε.
En reproduisant inductivement le même procédé dans chaque Q ∈ Q,

on obtient bien une suite croissante de mesures νQ.

Remarque 4.6. On déduit de la preuve que si l’un de T1 ou T2, par
exemple T1, est uniformément laminaire, alors les termes correspondant
à (T1 − T1,Q) sont nuls. En particulier dans ce cas l’hypothèse de po-
tentiel continu pour T2 est inutile. Nous avons donc montré le résutat
suivant: si T1 est un courant uniformément laminaire et à potentiel con-
tinu dans Ω, et T2 est un courant fortement approximable quelconque,
alors l’intersection T1 ∧ T2 est géométrique dans Ω.

Remarque 4.7. La preuve donne une estimation explicite de la masse
de ν − νQ. Pour le choix 1− λ = (ω(u1, r) + ω(u2, r))

1/3 on obtient une
majoration de M(ν − νQ) en (ω(u1, r) + ω(u2, r))

1/3.

Références

[BLS] E. Bedford, M. Lyubich et J. Smillie, Polynomial diffeomor-
phisms of C2. IV. The measure of maximal entropy and laminar
currents, Invent. Math. 112(1) (1993), 77–125.

[BS5] E. Bedford et J. Smillie, Polynomial diffeomorphisms of C2.
V. Critical points and Lyapunov exponents, J. Geom. Anal. 8(3)
(1998), 349–383.

[Ca] S. Cantat, Dynamique des automorphismes des surfaces K3,
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[FS] J. E. Fornæss et N. Sibony, Oka’s inequality for currents and

applications, Math. Ann. 301(3) (1995), 399–419.
[RS] D. Ruelle et D. Sullivan, Currents, flows and diffeomor-

phisms, Topology 14(4) (1975), 319–327.
[Si] N. Sibony, Dynamique des applications rationnelles de Pk,
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Synthèses 8, Soc. Math. France, Paris, 1999, pp. 97–185.

[Su] D. Sullivan, Cycles for the dynamical study of foliated manifolds
and complex manifolds, Invent. Math. 36 (1976), 225–255.

[T] M. Tsuji, “Potential theory in modern function theory”, Maruzen
Co., Ltd., Tokyo, 1959.
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