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SUR L’INTERSECTION DES COURANTS LAMINAIRES

ROMAIN DUJARDIN

Abstract

We try to find a geometric interpretation of the wedge product
of positive closed laminar currents in C2. We say such a wedge
product is geometric if it is given by intersecting the disks filling
up the currents.

Uniformly laminar currents do always intersect geometrically in
this sense. We also introduce a class of “strongly approximable”
laminar currents, natural from the dynamical point of view, and
prove that such currents intersect geometrically provided they
have continuous potentials.

1. Introduction

Une motivation pour 1’étude du produit extérieur des courants posi-
tifs fermés au cours des années 70 était de donner un nouveau point de
vue sur l'intersection des ensembles analytiques. Il apparait que dans
le cas de courants d’intégration sur des diviseurs, 'intersection pluripo-
tentialiste et I'intersection algébro-géométrique coincident. Ce sont des
raisons analogues qui ont poussé E. Bedford, M. Lyubich et J. Smillie
(voir [BLS, pp. 79-80]) & introduire les courants laminaires, et & étudier
leur intersection potentialiste sous un angle géométrique, s’appuyant en
cela sur une construction de D. Ruelle et D. Sullivan [RS]. 1l y est
effectivement montré que dans le cas des automorphismes polynomiaux
de C2, les courants dynamiques stable et instable ont une structure lami-
naire et que leur produit extérieur admet une interprétation géométrique;
la preuve repose de fagon essentielle sur la théorie de Pesin des systemes
dynamiques non uniformément hyperboliques. Ce résultat d’intersection
géométrique est utilisé pour montrer que les points périodiques de type
selle sont situés dans le support de la mesure d’entropie maximale et
engendrent des intersections homoclines.
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Nous allons étudier ces questions sous un angle plus systématique, et
retrouver ces résultats dans un cadre indépendant de toute dynamique.
Ceci fournit en contrepartie une preuve des résultats de [BLS] men-
tionnés ci-dessus, qui n’utilise pas la théorie de Pesin.

Rappelons qu’un courant positif fermé de bidegré (1,1) dans un ou-
vert Q@ C C2 est dit uniformément laminaire s’il est localement un
courant d’intégration sur une lamination transversalement mesurée et
laminaire 8’1l est localement défini comme intégrale directe d’'une famille
de disques compatibles (voir la Section 2 pour plus de détails). On dira
que le produit extérieur de deux courants laminaires est géométrique s’il
est décrit par les intersections des disques constituant ces courants, avec
la convention que l'intersection d’un disque avec lui méme est nulle. En
particulier ’auto-intersection d’un courant laminaire est géométrique si
et seulement si elle est nulle.

On ne considerera que des courants diffus, la théorie de 'intersection
des courants d’intégration étant bien comprise, et tout courant positif
fermé se décomposant d’apres le théoreme de semi-continuité de Siu en
une somme de courants d’intégration et d’un courant ne chargeant pas
les sous ensembles analytiques (voir [Del]).

Nous montrons a la Section 3 que le produit extérieur des courants uni-
formément laminaires est toujours géométrique —pourvu qu’il soit défini.
Des exemples simples montrent qu’il n’est pas raisonnable d’espérer un
résultat aussi général pour les courants laminaires. Les courants dy-
namiques apparaissant en dynamique des automorphismes polynomiaux
de C? (et plus généralement, des applications birationnelles) ont toute-
fois une propriété supplémentaire: ils sont limites de suites de diviseurs
rationnels ﬁ[C’n] de topologie controlée. Nous dirons de ces courants
qu'ils sont fortement approzimables (voir la Section 4 pour une définition
formelle). Notre résultat principal est le suivant:

Théoréme. Soient Ty et Ty des courants laminaires fortement appro-
ximables dans 2, de potentiel continu. Alors le produit extérieur Ty ATy
est géométrique dans €.

Un corollaire de ce théoreme est que tous les courants laminaires ne
sont pas fortement approximables: il est aisé de trouver des exemples
de courants laminaires de potentiel continu satisfaisant T'AT > 0. Ceci
suggere que la classe des courants laminaires fortement approximables
exhibe des propriétés intéressantes. Nous prévoyons de les étudier plus
avant dans un article a venir.
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Le plan de l'article est le suivant. Nous rappelons dans le premier
paragraphe quelques faits concernant les courants laminaires et leur in-
tersection. A la Section 3 nous étudions l'intersection des courants uni-
formément laminaires, et & la Section 4 celle des courants fortement
approximables.

Cet article est issu de la thése de doctorat [Du3] de auteur.

2. Définitions et quelques exemples

Nous commencgons par rappeler brievement les diverses notions de
laminarité [BLS], [Ca], [Dul], [Du3] pour les courants positifs fermés.
On fixe un ouvert 2 C C2. T étant un courant positif, on notera Supp(7’)
son support, M(T') sa masse, et |T| sa mesure trace. La notation D
désigne le disque unité dans C.

Définition 2.1.

i) Le courant T" est uniformément laminaire si pour tout = € Supp(7),
il existe des ouverts V. O U 3> x, tels que V soit biholomorphe
au bidisque D? et dans la carte correspondante de V, T|y soit
Iintégrale directe d’une famille de courants d’intégration sur des
graphes disjoints dans D2, plus précisément:

11 existe une mesure finie p sur {0} x D et une famille de graphes
disjoints (I'y) dans D? tels que (0,a) € Ty, et

(1) Ty = /{0} D[Fa N U] du(a).

ii) Le courant T est laminaire dans (2 s’il existe une suite d’ouverts Q'C
Q tels que || T|| (992") =0 et une suite croissante de courants (7'%);>0,
T* uniformément laminaire dans ¢, telles que
lim 7" =T.
11— 00
Un courant uniformément laminaire est un cycle feuilleté sur une
lamination par surfaces de Riemann, plongée et munie d’une mesure
transverse invariante. On montre facilement (en utilisant [BLS]) que T
est laminaire au sens de la Définition 2.1 si et seulement s’il est faible-
ment laminaire au sens de [BLS], c’est & dire que T' s’écrit localement
comme intégrale d’une famille mesurée de disques holomorphes compa-
tibles, i.e. on a la représentation

2) T = /A (D] dys(a),
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ou deux disques s’intersectant ont un ouvert en commun. Dans les cas
que nous considérerons par la suite, QF = Q\0Q; ou Q; est une subdi-
vision de © & un ensemble de ||T|| mesure nulle pres. Il est important
de noter que la représentation d’un courant laminaire —comme limite
croissante ou intégrale d’'une famille de disques— n’est jamais unique
puisqu’il est toujours possible de la modifier sur un ensemble de |||
mesure nulle. On dira qu'un courant est diffus s’il ne charge aucun sous
ensemble analytique.

Soient Ty et To deux courants positifs fermés dans 2. Supposons
que le courant 77 admette un potentiel u; dans 2, i.e. T3 = ddu; ou
dd® = %85. On dira que le produit extérieur 77 A T est admissible si
up € Li (| T2]]). Ceci ne dépend clairement pas du choix de u;. On
définit alors le produit extérieur 73 A T par la formule usuelle

T1 A T2 = ddc(ung)

qui est une mesure positive de masse localement finie. N. Sibony a
montré (voir [Du3]) que le produit extérieur ainsi défini est symétrique
—autrement dit T} A T» admissible implique T5 A T7 admissible et T7 A
T, = T5 AN'T1— et satisfait un théoreme de convergence décroissante.
On voit également que si T] < Ty et T4 < Ty sont des courants positifs
fermés alors

(3) Ty ATy admissible = T A Ty admissible et T/ ATy < Ty A Tb.

En effet on peut localement choisir un potentiel u; de T; (resp. u; de T}),
i=1,2, tels que u} > u,.

Cette notion nous semble bien adaptée au produit extérieur des cou-
rants (uniformément) laminaires, notamment parce qu’elle est stable par
restriction du domaine. On aurait cependant pu également adopter la
condition d’admissibilité de [F'S], qui satisfait également la relation (3).

Etant donnés deux disques holomorphes A; et As, définissons la
mesure [A; N Ag] comme la somme des masses de Dirac aux points
d’intersection de A; et As, comptés sans multiplicité (celle ci n’a pas
d’influence sur l'intersection des courants diffus, et on aurait tout autant
pu la compter) si ceux-ci sont isolés, [A; N Az] = 0 si les deux disques
ont un ouvert en commun.

Si Ty et T sont des courants uniformément laminaires diffus, s’écri-
vant dans 'ouvert U sous la forme

nz/ Asa]dui(a), i=1,2,

i
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(ou les A;, sont des sous variétés de U), et admettant un produit
extérieur, on définit la mesure d’intersection géométrique dans U comme

T ATy = / (A1 N Asy] dps (a) dus (b),
A1 ><.A2

(en particulier TYAT; = 0) et on dira que l'intersection de T7 et T est
géométrique dans U si Ty A Ty = TiAT,. Nous verrons a la section
suivante que c’est en fait toujours le cas.

Soient maintenant des courants laminaires fermés diffus T et T5 ad-
mettant un produit extérieur. T; et To admettent des représentations
comme limites croissantes T}, = lim 7}, avec T} uniformément laminaire
dans };; nous dirons que ces représentations sont compatibles si pour
tout i, 9N est de ||T;|| mesure nulle, j,k € {1,2}. On dira que le pro-
duit extérieur de T3 et Th est géométrique s’il existe des représentations
de T} et T comme limites croissantes comme & la Définition 2.1 telles
que la suite des mesures d’intersection géométrique TiAT4 (définie dans
Q) N Q%) croisse vers Ty A Tp. En particulier Pauto-intersection d’un
courant laminaire est géométrique si et seulement si elle est nulle.

En termes de représentation comme intégrales de disques comme
en (2), l'intersection est géométrique si et seulement si on a 1’égalité

T1 A TQ == / [Dtll n Dg] dﬂl (a) d,LLQ (b)
.Al ><.A2

Nous appellerons mesure d’intersection géométrique, le membre de droite
de cette égalité, ou de fagon équivalente la limite croissante des mesures
TiATS.

On voit que la mesure d’intersection géométrique est tres sensible
a la représentation des courants. En particulier si 77 A Ty est sin-
guliere par rapport a ||T1|| et ||T2]|, il est toujours possible de modifier
les représentations de maniere que la mesure d’intersection géométrique
associée soit nulle. Il est donc essentiel de pouvoir disposer de représen-
tations adaptées des courants laminaires. Ce sera une motivation pour
Iintroduction des courants fortement approximables (Définition 4.1 ci-
apres).

Les exemples suivants illustrent la difficulté de l'interprétation géo-
métrique de l'intersection des courants laminaires généraux.

Exemple 2.2. Cet exemple est une manifestation du phénomene évoqué
ci dessus. Soit X un compact non polaire et de mesure nulle dans D,
et p une mesure & potentiel continu portée par X. Soient T" et T
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deux courants respectivement de supports horizontal et vertical dans D2,
définis par

h w w) et TV = 2zt x 2).
T ——jCJE>x{ Y du(w) et T t[;Hf} D] dyu(z)

Bien entendu le produit 7" ATV = 1 ® p est géométrique. Cependant,
si on subdivise chacun des {z} x (D\X) et (D\X) x {w} en une réunion
de disques disjoints, on obtient des représentations de 7" et T¥ comme
courants laminaires et la mesure d’intersection géométrique associée est
nulle, puisque les disques ainsi construits ne se coupent pas.

De méme le courant T = T + T est laminaire, de potentiel continu
et TANT > 0. Cette auto-intersection n’est donc pas géométrique, et
illustre le fait que des disques subordonnés au courant s’intersectent;
ceci n’est pas le cas dans ’exemple suivant.

Exemple 2.3. J.-P. Demailly [De2] a introduit le courant positif fermé
dans C?

T = dd® max(log™ |z|,log™ |w|)

qui se décompose de la fagon suivante:
7= [ () xDjaxg) + [ Dx (Y axe)+ [ Vilaxs)
51 51 st

oll A est la mesure de Lebesgue sur le cercle unité S*', et V= {(z7 w)eC?,
z = ew, |z| > 1}. Le courant T est donc un courant laminaire, fermé,
et de potentiel continu. Le courant 7' se prolonge par ailleurs comme
courant positif fermé de potentiel continu dans le plan projectif P2. On
montre aisément que 7' AT > 0 est la mesure de Lebesgue sur le tore
unité. Cette auto-intersection n’est donc pas géométrique.

Exemple 2.4. L’auto-intersection (au sens de la théorie du pluripoten-
tiel) d’'un courant laminaire ne provient pas nécessairement de l'inter-
section géométrique des disques ou de leurs prolongements, comme le
montre ’exemple suivant. Soit un ensemble de Cantor de dimension < 1
dans le plan et Gk sa fonction de Green. On suppose que Gk est con-
tinue, et on a Gg = 0 sur K, Gxg > 0 hors de K. Soit G(z,w) =
max(Gk(z), Gk (w)), on a

Supp(dd°G) C {Gk(z) = Gx(w) > 0} U (K x K).
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Comme dim(K x K) < 2, K x K n’est pas chargé par dd°G; de plus
I’hypersurface

{Gr(2) = Gk (w) > 0} = {Gr(2) — Gk (w) = 0} \(K x K)

est Levi-plate, donc feuilletée par des courbes analytiques. On en déduit
que le courant dd°G est laminaire, uniformément dans le complémentaire
de K x K par le théoreme de support de J.-P. Demailly [Del]. De plus
(dd°G)? est une mesure de probabilité portée par K x K car G est la
fonction de Green pluricomplexe de K x K.

Il est possible de choisir K de telle sorte que les courbes feuilletant
{GKk(z) = Gx(w) > 0} ne se prolongent pas a travers K (& lexception
de la droite (z = w)). Soit un point (zg,wp) de K x K et un disque
holomorphe local A 3 (zp,wp), que 'on pourra supposer étre un graphe
A = {(¢,9(¢)),¢ €U} au dessus de la premiére coordonnée, tel que
A\(K x K) C {Gk(z) = Gg(w) > 0}.

On a alors ¢(z9) = wg et sur U\K, Gk (z) = Gr(p(z)), relation qui
par continuité s’étend a U. Quitte a se restreindre a un sous ouvert
de U on peut supposer que ¢ n’a pas de points critiques. Il suffit donc
de trouver un tel compact K n’ayant pas d’automorphismes conformes
locaux, auquel cas cette relation implique ¢ = id. On modifie pour
cela la construction de l’ensemble de Cantor triadique usuel de facon
que la dimension de Hausdorff locale de K soit une fonction strictement
croissante sur K C [0,1]. Par [T, §II1.16], on peut faire en sorte que la
fonction de Green G g soit continue. O

3. Courants uniformément laminaires

Nous montrons dans cette section que le produit extérieur des courants
uniformément laminaires est géométrique des qu’il est bien défini. Nous
donnons par ailleurs un critere simple assurant I’admissibilité du pro-
duit extérieur dans ce cadre. Le cas du produit de deux courants uni-
formément laminaires dont I'un est a potentiel continu est traité dans le
Lemme 8.3 de [BLS]: leur preuve est facilement étendue au cas général
puisqu’elle n’utilise qu’un argument de convergence monotone.

Théoréme 3.1. Soient Ty et Ty des courants uniformément laminaires
diffus, tels que le produit extérieur Ty ATy soit admissible. Alors l'inter-
section Th N1y est géométrique.

En particulier si 73 A T est un produit extérieur admissible, alors
Ty ATy =0.



114 R. DUJARDIN

Corollaire 3.2. Soient Ty et Ty des courants laminaires, munis de re-
présentations (compatibles) comme limites croissantes, comme a la Défi-
nition 2.1, T =1lim;_, T,i, k=1,2, et tels que le produit extérieur Th NTs
soit admissible. Alors la mesure d’intersection géométrique v de T7 et
Ty est dominée par Ty AN Ts. En particulier v est de masse localement

finie.

Preuve du Corollaire 3.2: Rappelons que les représentations comme li-
mite croissantes sont compatibles si les bords des ouverts £2* ne sont pas
chargés par les courants. Soit

v =T{ATi

QiNQ;

la mesure d’intersection géométrique des courants uniformément lami-
naires 17 et 15. Dans ), on a T}, = T} + R}, k = 1,2, et donc dans
QNQ%ona

TyAT, =T} ANTi+ T} ARy + R AT: + R AR,

ol tous les produits extérieurs sont admissibles d’apres la relation (3).
D’apres le théoreme on a l'égalité v* = T7 A T3, et donc v* < 11 A Th.
La mesure d’intersection géométrique étant la limite croissante des v* on
conclut. O

Preuve du Théoréme 3.1: Soit x € Supp(T1)NSupp(T>), il suffit de mon-
trer le résultat au voisinage de x. Soient respectivement £; et Lo les
laminations sous-jacentes a 77 et T>. Fixons un ouvert V' > z biholo-
morphe & un bidisque, tel que la feuille L (x) passant par x soit un graphe
au dessus de la premiere coordonnée dans V. Alors pour un voisinage V'
de z, et pour tout y € V', L1(y’) est un graphe dans V. Ainsi on peut
écrire Ty = T1 + T, dans V ou T est le courant uniformément lami-
naire formé des feuilles de T3 rencontrant V’'. T} est fermé dans V et
Ti|ly = T{|lys. Le produit extérieur T A Ty est admissible et il suffit
donc de montrer qu’il est géométrique. Sans perte de généralité on écrit
dorénavant Ty pour T7.

Dans des coordonnées adaptées dans V on a un potentiel pour 73 de
la forme

= / log |y — ()| diur (a),

et puisque u; € L1(||T2||), pour presque tout a, log |y — ¥q(z)| € L (||T2)),
c’est & dire que pour le graphe I, correspondant, le produit [T's] A T5 est
admissible. Montrons qu’il est géométrique.

Fixons un nouveau systéeme de coordonnées (z,w) telles que le
graphe I', (maintenant fixé) ait pour nouvelle équation {w = 0}. Alors
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pour A générique, quitte a réduire encore une fois V et V', les feuilles
de Ly intersectant V' sont des graphes au dessus de {w = 0} dans le
systéme de coordonnées (z + Aw, w) = (¢, w).

On écrit Ty = [j3[Dy] dpa(b) dans V. Notons tout d’abord que si pour
un certain Dy il y a un point d’intersection non transverse dans I'; N
Dy, il sera perturbé en k points d’intersection transverses en changeant
légerement b [BLS, Lemme 6.4]. Ceci signifie que quitte & retirer une
quantité au plus dénombrable de parametres b € B (ce qui ne change
pas T puisque la mesure po est diffuse) on peut supposer toutes les
intersections transverses.

On suit maintenant [BLS, Lemme 8.3]. On écrit ’équation de Dy
sous la forme w = }(¢) et on a

Ny,
log [w — @u(Q)] = > _log|¢ = pj| + hs(C)

j=1
ou hp est harmonique. Soient
Br={b€ B, [ho|lp~ < R, Ny < R},

et ugp = IBR log |w — ¢p(¢)| dua(b). On peut supposer que tous les
logarithmes sont négatifs. Quand R — oo, Bgr croit vers B et us g
décroit vers us. D’apres le théoréme de convergence monotone (stan-
dard) ug p[l'a] — u2[l's] et donc dd®us g A [I'g] = ddug A [T'y]. Par
ailleurs le produit extérieur dd®ug, pA[[',] est géométrique car le théoréeme
de Fubini s’applique et l'intersection pluripotentaliste de deux courbes
est géométrique. O

Il est alors naturel de se poser la question suivante: sous quelles con-
ditions le produit extérieur de deux courants uniformément laminaires
est il admissible? 11 est aisé de construire des exemples de courants uni-
formémement laminaires d’auto-intersection non admissible. C’est en
effet le cas pour un courant d’intégration sur une courbe: dans des coor-
données (z,w) adaptées la courbe a pour équation {z = 0} et le courant
associé a pour potentiel log|z|. Pour obtenir des exemples diffus, il suf-
fit de considérer des courants de la forme [[z = a]du(a) ou p est une
mesure d’énergie infinie (i.e. [udy = —oco, u étant un potentiel de ).
En considérant une seconde mesure pus > 0 telle que fud,ug = —o0,
on obtient un exemple de deux courants distincts dont on ne peut pas
prendre le produit extérieur.

La proposition suivante dit que ces exemples sont essentiellement les
seuls.
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Proposition 3.3. Soient Th et Ty des courants uniformément laminaires
diffus. Supposons que les feuilles des laminations sous jacentes L1 et Lo
ne se coupent qu’en des points isolés. Alors le produit extérieur Th N\ Ts
est localement admissible.

Avant de commencer la preuve, rappelons une situation géométrique
simple dans laquelle le produit extérieur de deux courants est admissible:
c’est le cas si Q C C? est un ouvert borné pseudoconvexe et T}, Ty sont
des courants positifs fermés tels que Supp i N SuppT> € ) (voir par
exemple [Del], [FS]).

Preuve: Soit x € Supp i N Supp T5; nous allons montrer qu’il y a un
voisinage de x dans lequel le produit extérieur T3 A T est admissible.
Soient respectivement L1 (y) et L2 (y) les feuilles des laminations associées
a Ty et Ty passant par y. Soit V' 3 x tel que Lg(x) NV, k = 1,2 soient
des sous variétés de V et Li(x) N La(z) NV = {z}. Alors pour V' 5
suffisamment petit, on a

(4) U Liy) nLa(y) € V.
yeVv’

Comme dans la preuve du théoréme précédent, on écrit T; = T + T/,
ou T} est le courant subordonné & T; formé des feuilles issues de V'; en
particulier T7|y+ = T;|y/. La propriété (4) assure que le produit 77 A T3
est admissible dans V. O

4. Courants fortement approximables

On a vu a la Section 2 que la représentation des courants laminaires
pose probléme en vue de l'interprétation géométrique de leur produit
extérieur. Ces problemes peuvent étre surmontés si on dispose d’une
suite de courbes holomorphes convergeant vers le courant de maniere
controlée. C’est le cas pour les courants adhérents aux courbes entieres
injectives [BLS], [Cal, et pour les limites de certaines suites de diviseurs
rationnels [Dul]. Rappelons que ceci entraine la laminarité des courants
invariants par les applications birationnelles de P2. Nous ne savons pas
cependant si les courants laminaires construits par H. de Thélin [dT]
—qui donne un critere local de laminarité— satisfont la Définition 4.1
ci-dessous. Rappelons quelques éléments des constructions présentées
dans ces travaux.

Soit © un ouvert de C2. On considére une suite de sous ensembles ana-
lytiques, éventuellement a bord, définis dans un voisinage de €2, d’aire d,,
tendant vers l'infini, et tels que d;;[C,,] — T. On veut obtenir les dis-
ques de T' comme graphes pour une projection linéaire 7. Soit L une
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base de la projection orthogonale a la direction de 7; pour une subdi-
vision Q de L en carrés de taille r, on dira qu'une composante connexe
de 77HQ) N Cp, Q € Q, est bonne si c’est un graphe au dessus de Q,
mauvaise sinon. On retirera également en général un certain nombre de
bonnes composantes afin d’assurer une propriété de compacité (critere de
Montel ou borne sur I’aire). Dans les situations mentionnées plus haut,
on a un contrdle en O(d,) du nombre total de mauvaises composantes,
comptées avec multiplicité. Ainsi ces courants satisfont la Définition 4.1
ci-dessous.

Dans la suite, nous considererons des subdivisions en carrés de taille 7,
images par une isométrie affine de la subdivision standard

U {zeCir<Rz) <(G+Dr kr<S(2) < (k+1)r};
(4,k)€Z?

on omettra en général la mention de la base L de projection. On
notera w; la restriction & L de la forme Kihlerienne standard de C2,
et la notation C' désignera une “constante”, pouvant varier de ligne en
ligne, mais toujours indépendamment de n et r.

Définition 4.1. Soit T un courant positif fermé dans Q. T est forte-
ment approximable s’il existe une suite (C},) de sous ensembles analy-
tiques définis dans un voisinage de €2, éventuellement a bord, telles que
d;[C,] — T, au moins deux projections linéaires 7, et une constante C,
telles que si Q est une subdivision en carrés de taille 7, et T'g ,, désigne le
courant formé des bonnes composantes de C, au dessus de Q, normalisé

par d,, on ait I'estimation
(5) (d;'[Cy) — Tom, m*wi) < Cr.

Un courant satisfaisant cette définition est laminaire (nous en re-
donnerons une preuve ci apres a la Proposition 4.4). Les courants lami-
naires construits dans 'article [Dul] vérifient cette définition dans tout
ouvert de P?; nous les dirons “fortement approximables dans P?”. Les
courants adhérents aux courbes entieres injectives [BLS], [Ca], de méme
que les courants invariants des applications d’allure Hénon [Du2] sont
également fortement approximables.

On a le théoreme d’intersection géométrique (local) suivant.

Théoréme 4.2. Soient Ty et Ty des courants fortement approximables
dans €, de potentiel continu. Alors le produit extérieur Ty N Ty est
géométrique dans €.
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On pourra noter que le théoreme est également valable lorsqu’il existe
un ouvert Q' C  dans lequel les courants T7 et T5 sont de potentiel
continu et la masse de Th A Ta|gs soit totale dans . Ceci s’applique
par exemple si 17 et T sont de potentiel borné, continu hors d’un fermé
pluripolaire, ou encore si les potentiels de T et T sont continus hors d’un
nombre fini de points ou 'un au plus des T; admet un nombre de Lelong
—une situation analogue apparait naturellement dans la dynamique de
certaines applications birationnelles [Di2]—.

Corollaire 4.3. Soit T' un courant fortement approximable dans €2, et
de potentiel continu. Alors T AT = 0 dans Q. En particulier il existe
des courants laminaires qui ne sont pas fortement approzimables.

En effet nous avons donné a la Section 2 des exemples de courants
laminaires de potentiel continu et d’auto-intersection strictement pos-
itive. On sait par ailleurs qu'un courant positif fermé de P? tel que
T AT soit admissible est d’auto-intersection strictement positive pour
des raisons homologiques [F'S]. On déduit en particulier de ce corollaire
que les courants laminaires de potentiel continu dans P2 —c’est le cas
en particulier pour I’Exemple de Demailly 2.3— ne peuvent pas étre
fortement approximables.

Une autre conséquence du corollaire est le fait que pour le courant de
Green Tt d’un automorphisme polynomial de C2, qui est de potentiel
continu dans C2, I'auto-intersection 7T A T+ est concentrée au point
d’indétermination It. Cet exemple montre également qu'une hypothese
sur le potentiel des courants est nécessaire dans le Théoreme 4.2. Le
courant considéré ici admet un nombre de Lelong strictement positif au
point 1.

De maniere plus générale, 'auto-intersection géométrique d’'un cou-
rant laminaire est par définition toujours nulle, donc si T' est un courant
laminaire de P2 tel que T AT soit admissible, ce produit, qui est de masse
strictement positive, n’est jamais géométrique. Il serait intéressant d’en
comprendre la structure.

Comme évoqué dans 'Introduction, le Théoréeme 4.2 donne une ap-
proche relativement directe pour certaines propriétés fines des automor-
phismes polynomiaux de C2. Nous renvoyons au panorama de N. Si-
bony [Si] pour un exposé de leurs principales propriétés. Soit par exem-
ple f un automorphisme de Hénon de C2, et p un point périodique de
type selle, que nous supposerons fixe sans perte de généralité. Alors
les variétés stable et instable globales W*(p) et W*(p) sont des immer-
sions injectives de C dans C2. On peut associer & de telles immersions
des “courants d’intégration” fermés, qui sont des limites de courants
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d’intégration sur de grands disques, et sont laminaires d’apres [BLS].
De plus leur structure laminaire est “limite” de celle des grands disques
approximants. Si T est associé & W?(p) et normalisé, alors Supp(7®) C
K*. D’aprés un théoréme de Fornsess-Sibony, ceci implique T¢ = T+.
On obtient de fagon analogue T* = T~ pour un courant d’intégration
sur la variété instable. Comme T et T~ sont de potentiel continu et
Tt AT~ > 0, le Théoréme 4.2 s’applique et force les variétés stable et
instable & se couper (transversalement). Ceci a des conséquences dy-
namiques (théoréeme homocline de Smale): par exemple p est accumulé
par des points selles. Plus généralement ceci permet de retrouver directe-
ment tous les résultats du § 9 de [BLS]. La méme méthode s’applique
au cas des applications birationnelles (trés régulieres) telles que les en-
sembles d’indétermination de f et f~! soient dans I’ensemble de Fatou
(“completely separating” selon la terminologie de J. Diller [Dil, §6]).

Le Théoréeme 4.2 peut étre également utilisé comme résultat de con-
vergence dans des situations ou la théore du pluripotentiel est délicate
d’emploi. Nous illustrons ceci sur un exemple. Soit f un automor-
phisme polynomial de C2, L et L’ deux droites complexes de C2, évitant
les points d’indétermination. On a

(6) (ML) = T et (f7)°[E] = T,

On montre facilement & ’aide du théoreme qu’on a la caractérisation
suivante de la mesure p =TT AT ™:

Les méthodes usuelles de théorie du pluripotentiel ne permettent pas
de démontrer un tel résultat & partir de (6). Il est & noter que T.-
C. Dinh et N. Sibony ont récemment obtenu des résultats de convergence
analogue pour une vaste classe d’applications biméromorphes en toute
dimension [DiS].

Le reste de cette section sera consacré a la preuve du Théoreme 4.2.
Nous commengons par montrer une version quantitative de la Défini-
tion 2.1. Certains arguments peuvent étre simplifiés dans le cas des
courants fortement approximables dans P2, cependant nous préférons
donner le résultat dans toute sa généralité. Le théoreme étant local on
pourra supposer que {2 est une boule.
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Proposition 4.4. Soit T un courant laminaire fortement approzimable
dans Q. Fizons ) € Q. Alors pour des projections linéaires distinctes
w1, w2 comme & la Définition 4.1 et pour toutes subdivisions S1, So de C
en carrés de taille r,

Q = {m " (s1) Ny (s2), (51,52) € St x Sa}

est une subdivision d’un voisinage de ' en 4-cubes affines et il existe un
courant Tog < T, uniformément laminaire dans chaque Q € Q, tel que

(7) Mg/ (T — Tg) < Cr?,
ot ¢, C sont indépendants de r (Mg désigne la masse restreinte a ).

Preuve: La preuve est similaire & celle de la Proposition 3.4 de [Dul],
la différence étant que 1'on doit controler la masse simultanément dans
deux directions. Un point délicat vient de ce qu’on n’a pas de controle
sur les bonnes composantes a 'extérieur de ().

Soient une suite (C,,) ainsi que deux projections satisfaisant les hy-
potheses de la Définition 4.1. Quitte & réduire légerement €2, on sup-
posera que les courants d,,1[C,] y sont de masse uniformément bornée.
Considérons deux subdivisions S; de taille r et formons les courants T‘éhn
en retirant & d;; *[C},] les mauvaises composantes relatives a m; et S;, ainsi
que les bonnes composantes dont la restriction a €2 est de grand volume.
Le nombre de ces composantes est majoré par O(d,,), car la masse de
d; Y[Cy] est O(d,,) dans Q. Ainsi Pestimée (5) est satisfaite:

(d'[Cn]) = T§, o mjwr) < Cr?, i=1,2.

n

Pour i = 1,2, le courant Téln est le courant d’intégration sur une courbe
& bord (non connexe), dont le bord est inclus dans 7; '(9S;),

Ts,n= d_[CSi,n]'

Considérons la subdivision Q comme définie dans 1’énoncé de la propo-
sition; soit le courant

1
Ton = T

Il ne suffit de le considérer que pour les cubes Q € Q tels que QN # (.
Par construction Cg ,, est une courbe holomorphe a bord, dont le bord
est inclus dans 0Q et comme pour i = 1,2,

dy M [Cn] = Ton < d; M [Cn] = TS,

n

1
[Cé'l,n U Cg%g,n] = d_[CQ,n]
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on en déduit
(dy[Cn) = To py miwr + myw) < 2077
il est par ailleurs a noter que mjw; + msw est une forme Kéhlerienne.

Il reste a voir qu’une sous suite de Tg ,, converge vers un courant T,
uniformément laminaire dans chaque @ € Q. Soit Q) € Q, décomposons
Co.n NQ en union disjointe

CQ,n ne = (Cél,n N Q) U [(ng,n N Q)\(Cél,n N Q)] )

ainsi que Tg ,, :=Tonlo = qug,n + Tf?’n selon cette décomposition.

Toutes les courbes de qug,n sont des restrictions a @) de sous variétés
de 77 (s1)NQ, de volume majoré, et qui sont des graphes pour 7. Ainsi
une valeur d’adhérence d’une suite de composantes de Té,n est un sous
ensemble analytique de @) qui est soit restriction d’'un graphe pour m;
soit inclus dans une fibre de 7.

On en déduit que les valeurs d’adhérence de T, én sont des courants
uniformément laminaires. En effet soit V' une limite d’une suite de com-
posantes de T, énj On déduit de la discussion précédente que V est
lisse. Fixons x € V et 7 une petite transversale & V en x. Toutes les
composantes de TCl?m coupant 7 pour n; assez grand sont des graphes
au dessus d’un voisinage de x dans V car les composantes sont disjointes
(lemme d’Hurwitz). De plus la masse transverse est majorée car d,,1[C,,]
est de masse bornée. On conclut en utilisant des arguments usuels: voir
par exemple [Dul, Proposition 3.4] ou [BS5].

On fait le méme raisonnement pour Tan, et on considere une valeur
d’adhérence Tg = TA+T5. Siz € Supp(T})NSupp(T3), et A', A?, sont
les disques correspondants passant par x, alors A’ = A2, En effet si x
était un point isolé de A’ N A?, les disques approximants respectifs A,
et A7 des Té)m devraient se couper, ce qui est impossible puisque ces
disques sont des bonnes composantes de C,,. Ceci montre que Ty est
uniformément laminaire. O

Preuve du Théoreme 4.2: Soit v la mesure T7 ATs, nous supposerons que
lv]] <1 dans . Nous allons construire une suite croissante de mesures
d’intersection géométrique vg < v telles que M(v — vg) — 0 quand le
pas de la subdivision tend vers 0.

On dispose pour k = 1, 2 de subdivisions —dans le cas de courants
fortement approximables dans P? on peut choisir une subdivision com-
mune aux deux courants— en 4-cubes affines QF de taille comparable
a r (vues comme restrictions & Q de subdivisions de C?) telles que les
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conclusions de la proposition précédente soient satisfaites pour Tj. Etant
donné que les subdivisions S en carrés de taille r ne sont pas fixées, pour
7y, € C2, ceci vaut également pour les subdivisions Zj, + QF. Sans perte
de généralité on écrira dorénavant 2 pour €'.

Posons Q = QF pour k valant 1 ou 2, et @z la subdivision translatée
Q+ Z. Si Z est dans le réseau L(Q) des sommets de Q, alors Qz = Q.
Le nombre de cubes rencontrant  est Cardg(Qz) < Co/r%, ou Cy est
indépendante de Z.

Soit un nombre réel A < 1, et pour Q € Q, soit @* ’homothétique
de @ de rapport A par rapport a son centre. Le volume de Lebesgue

Leb(Q?) est A* Leb(Q). Soit Q* := Ugeo@?, (Q1)¢ := C*\ Q*,
Leb(Q N (Q)°) < Cardg(Q)(1 — M) Leb(Q) < C(1 — \%).
Lemme 4.5. Il existe Z € C? tel que v(Q2N (Q%)°) < 2(1 — A%).

Preuve: Le lemme est une conséquence simple de I'invariance de la mesu-
re de Lebesgue par translation et du théoreme de Fubini. Par périodicité
il suffit de considérer Z € ) pour un certain Q € Q. On a

dLeb dLeb(Z)
/avmn(Qz) / / L W T gy

et y € Z + (Q*)° si et seulement si Z € y — (Q*)¢. Donc 1,100 (y) =
1,_(0»(Z). L'intégrale précédente vaut donc

/Q </51y—<gx>c(2)%lzg))) dv(y)
eb

1 (&
| Loy WP — (@) N @) dvy),

et pour tout y € C2, Leb((y — (Q")°) N Q) = Leb(Q\Q*) = (1 —

A1) Leb(Q), par invariance par translation de la mesure de Lebesgue
sur le tore C2/L(Q). D’ou
dLeb(Z)

A\¢
/6 VRN (@) T

et le lemme est démontré. O

< (1=

On fixe donc Z; et Z5 tels que la conclusion du lemme soit respective-
ment satisfaite pour Q' et Q2, et par abus de notation, on renomme Q¥
la subdivision translatée Zj 4+ Q*. On applique la Proposition 4.4 aux
courants T}, et ainsi on obtient des courants T, gr < T}, uniformément
laminaires dans chaque Q € Q¥ et tels que M(T}, — Ty.or) < Cr.
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Considérons la subdivision Q= Q'AQ? formée des Q'NQ?, (Q1,Q?) €
Q! x Q% Soient Q € Q et Ty = Ty orlo; Tho < Tk donc le pro-
duit Th,9 A Tz est admissible dans @ (les Ty o sont en fait & po-
tentiel continu d’apres [BLS, Lemme 8.2]), et est géométrique par le
Théoreme 3.1. Soit

vg=Ti g NI g = Z TioNTrg = Z TLQ/\TZQ;
QeQ QeQ

on a vg < v et il reste & estimer M(v — vg).

On pose pour A < 1,
= U @rn@
(R',Q*)eQtxQ?
(on peut avoir Q1NQ2 # B et (Q1)*N(Q*)* = (). Lamasse se décompose
alors en

MQ(V — Z/Q) = MQOQA (l/ — VQ) + MQO(QA)C (V — VQ).

Le deuxiéme terme est majoré par 4(1 — \*) d’apres le lemme précédent.
On fixe A tel que 2(1 — A1) < /2 et il reste & majorer Monox (v — vg).
Soit Q € Q, alors

Ty NTs — TLQ AN TQﬁQ = (Tl — TLQ) NTo + TLQ AN (TQ — Tng)
<M —Tig) N+ T A (Te —To.qg).

Par symétrie il suffit de considérer le premier terme. Soit us un potentiel
de T5 dans €2; on va construire une fonction @ dont la restriction a
chaque @ est une fonction plateau, x|g € C°(Q), x > 0, x = 1 au
voisinage de Q*, et ||dd°x| ;- = O(1/r?).

Dans un carré de taille r dans C on construit aisément une telle fonc-
tion, avec [|dxoll ~ < C/(1 — A)*r?. D’ou par translation une fonc-
tion xo ayant les propriétés souhaitées dans une subdivision en carrés de
taille r dans C. Si maintenant 7;, ¢ = 1,...,4, sont les quatre projec-
tions linéaires correspondant aux deux subdivisions Q! et QZ?, il suffit
de poser

X:XOO7T1---X007T4.

1
Le parametre A étant fixé, ||dd°x| e = O(—Q) Par ailleurs
r

MQA((TlfTLQ)/\TQ) S /X(TlfTLQ)/\TQ) :/Ugddc)(/\(TlfTLQ),
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et si cg est un point dans @), on remarque que

/UQdch AN (Tl — T17Q) = /(UQ — UQ(CQ))ddCX AN (Tl — TLQ)'
Donc

/UQddCX A\ (Tl - Tl,Q) < Cw(ug,r)M(Tl — T17Q) ||Cldcx||LOO

1
< Cw(ug,r)r—QM(ﬂ - T1,0),

olt w(ue, ) est le module de continuité de us de rayon r. En prenant la
somme sur Q € Q, et en utilisant (7) on obtient

> Mo ((Ty = Trq) ATy) < Cw(uy, ),
QEQ
soit
Mqnor (v —vg) < Clw(ur, r) + w(us,r)).
Donc si 7 est suffisamment petit, Mq(v — vg) < €.
En reproduisant inductivement le méme procédé dans chaque Q € Q,
on obtient bien une suite croissante de mesures vg. (]

Remarque 4.6. On déduit de la preuve que si I'un de 7y ou 75, par
exemple 77, est uniformément laminaire, alors les termes correspondant
a (Th — Th,@) sont nuls. En particulier dans ce cas I'hypothese de po-
tentiel continu pour 75 est inutile. Nous avons donc montré le résutat
suivant: si 77 est un courant uniformément laminaire et a potentiel con-
tinu dans €, et T5 est un courant fortement approximable quelconque,
alors 'intersection T7 A T5 est géométrique dans €.

Remarque 4.7. La preuve donne une estimation explicite de la masse
de v — vg. Pour le choix 1 — A = (w(uy,7) + w(uz,7))/? on obtient une
majoration de M(v — vg) en (w(ug,) 4+ wlug,r))/3.
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