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MULTIFRACTIONAL PROCESSES WITH RANDOM
EXPONENT

Antoine Ayache and Murad S. Taqqu

Abstract
Multifractional Processes with Random Exponent (MPRE) are
obtained by replacing the Hurst parameter of Fractional Brownian
Motion (FBM) with a stochastic process. This process need not

be independent of the white noise generating the FBM. MPREs
can be conveniently represented as random wavelet series. We will
use this type of representation to study their Hölder regularity and

their self-similarity.

1. Introduction

Fractional Brownian Motion (FBM) with Hurst parameter H ∈ (0, 1),
will be denoted {BH(t)}t∈[0,1]. It is well known that, up to a multi-
plicative constant which only depends on H, BH(t) can be represented
through the Wiener integral

(1.1) BH(t) =
∫

R

(
(t− x)H−1/2

+ − (−x)H−1/2
+

)
dW (x),

where u+ = max(u, 0), which is called the moving-average representa-
tion of FBM. The measure W is Gaussian and independently scattered.
Another well-known integral representation of FBM is its harmonizable
representation,

(1.2) BH(t) =
∫

R

eitξ − 1
iξ|ξ|H−1/2

dŴ (ξ).
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The random measures dW and dŴ satisfy a Parseval type relation,
namely for any function f ∈ L2(R) one has almost surely,

(1.3)
∫

R
f(x) dW (x) =

∫
R
f̂(ξ) dŴ (ξ),

where

(1.4) f̂(ξ) =
∫

R
e−iξ.xf(x) dx

is the Fourier transform of f . The complex-valued random measure dŴ
can therefore be viewed as the Fourier transform of the real-valued ran-
dom measure dW . Observe that dŴ is completely determined by the
Relation (1.3).

FBM was introduced in 1940 by Kolmogorov as a way to generate
Gaussian “spirals” in Hilbert space [9] and it was made popular by
Mandelbrot and Van Ness [12] in 1968. This process has turned out
to be very useful in both theory and applications. It has been used to
model phenomena in hydrology, economics, finance, physics and telecom-
munications. For example, Leland, Taqqu, Willinger and Wilson have
provided experimental evidence that computer traffic data exhibit long
range dependence [10] and since then FBM has been applied with some
success as a model in telecommunications (see for instance [15]). The
monograph of Doukhan, Oppenheim and Taqqu [6] offers a systematic
treatment of FBM, as well as an overview of different areas of applica-
tions.

One of the main interests of the FBM in modeling is that its Hölder
regularity can be prescribed via its Hurst parameter. Actually, αFBM (t),
the pointwise Hölder exponent of the FBM at any point t, satisfies almost
surely

(1.5) αFBM (t, ω) = H,

and βFBM (J), its uniform Hölder exponent over an arbitrary non-degen-
erate interval J , satisfies almost surely

(1.6) βFBM (J, ω) = H.

The higher the Hölder exponents, the smoother the process.
The exponents α and β are defined as follows. Let {X(t)}t∈T be

a random field with continuous and nowhere differentiable trajectories,
defined over a rectangle T of Rd (that is a set of the form

∏d
k=1[γk, δk]).

The local Hölder regularity of {X(t)}t∈T in a neighbourhood of each
point t can be measured through its pointwise Hölder exponent, namely
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the stochastic process {αX(t)}t∈T defined for every t and ω as,

(1.7) αX(t, ω) = sup
{
α, lim sup

h→0

|X(t+ h, ω)−X(t, ω)|
|h|α

= 0
}
.

The global Hölder regularity of {X(t)}t∈T over a non-degenerate rectan-
gle J ⊂ T can be measured through its uniform Hölder exponent over J ,
namely the random variable βX(J) defined for every ω as

(1.8) βX(J, ω) = sup
{
β, sup

s,s′∈J

|X(s, ω)−X(s′, ω)|
|s− s′|β

<∞
}
.

Observe that one always has

(1.9) βX(J, ω) ≤ inf
t∈J

αX(t, ω).

The pointwise and uniform Hölder exponents of the FBM are con-
stant, since they do not depend on the location (i.e. the point t or the
interval J) nor ω. This may be undesirable in some situations. For
example, FBM is not well adapted to the modeling of non-homogenous
materials. Or consider the field of image synthesis: FBM has been fre-
quently used for generating artificial mountains [4], but one obtains in
this way mountains whose irregularity is the same everywhere. This is
not realistic, since it does not take into account erosion or other mete-
orological phenomena which smooth some parts of the mountains more
than others. The Multifractional Brownian Motion (MBM) has been in-
troduced, independently in [16] and [5], to overcome such limitations of
the FBM. Recall that this Gaussian process can be obtained by substitut-
ing to the Hurst parameter of the FBM, a function H(·) with values in an
arbitrary compact interval [a, b] ⊂ (0, 1). Because of the Relation (1.3)
this substitution can be made in the integrals (1.1) or (1.2). Thus the
MBM {BH(t)(t)}t∈[0,1] has the following integral representations:

(1.10) BH(t)(t) =
∫

R

(
(t− s)H(t)−1/2

+ − (−s)H(t)−1/2
+

)
dW (s)

and

(1.11) BH(t)(t) =
∫

R

eitξ − 1
iξ|ξ|H(t)−1/2

dŴ (ξ).

As in the case of FBM, these representations are respectively called the
moving average and the harmonizable representation of the MBM. It
has been shown in [16] and in [5], that when βH([0, 1]), the uniform
Hölder exponent over the interval [0, 1] of the function H(·), satisfies the
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condition,

(1.12) sup
t∈[0,1]

H(t) < βH([0, 1]),

then the Hölder regularity of the MBM can be prescribed via H(·).
Namely, the pointwise Hölder exponent of the MBM at any point t,
satisfies almost surely,

(1.13) αMBM (t, ω) = H(t),

and the uniform Hölder exponent of the MBM over any non-degenerate
interval J ⊂ [0, 1] verifies almost surely,

(1.14) βMBM (J, ω) = inf
t∈J

H(t).

Papanicolaou and Sølna [14] have observed that the deterministic func-
tional parameter H(·) of the MBM can be replaced by a stochastic pro-
cess {S(t)}t∈[0,1]. They suppose, for example, that {S(t)}t∈[0,1] is a
stationary process with smooth paths and decaying correlation function
that is independent on the white noise, i.e. the Wiener process {W (x)}x∈R
which appears for example in Relation (1.1) (see [14, Subsection 4.1,
p. 484]). We will call such extensions of the MBM, Multifractional Pro-
cesses with Random Exponent (MPRE). To define an MPRE we need
the following ingredients:

• {BH(t)}(t,H)∈[0,1]×[a,b], a Gaussian field with integral representa-
tions (1.1) and (1.2). Contrarily to FBM this field depends both
on t and H. It is defined over [0, 1] × [a, b] where [a, b] ⊂ (0, 1) is
an arbitrary fixed compact interval.

• {S(t)}t∈[0,1], a stochastic process with values in [a, b].

Convention. We suppose throughout this paper that 0 < a < b < 1.

Definition 1.1. The Multifractional Process with Random Exponent
(MPRE) with parameter {S(t)}t∈[0,1] is the stochastic process {Z(t)}t∈[0,1]

defined as follows: any trajectory t 7→ Z(t, ω) is the composition of the
function f1 : [0, 1] → [0, 1]× [a, b], t 7→ (t, S(t, ω)) and f2 : [0, 1]× [a, b] →
R, (t,H) 7→ BH(t, ω). Thus, for any t ∈ [0, 1] and ω, one has

(1.15) Z(t, ω) = f2(f1(t)) = BS(t,ω)(t, ω).

Observe that we do not necessarily suppose that the stochastic pa-
rameter {S(t)}t∈[0,1] in the MPRE is independent of the white noise W
in (1.10), nor that it is stationary. When {S(t)}t∈[0,1] is independent on
the white noise W , the main results on MBM can be extended readily
to the MPRE. The more general case, where it can be dependent on
the white noise, is more tricky. Actually, in that case, for any non-zero
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fixed t, the process {(t − s)S(t,ω)−1/2
+ − (−s)S(t,ω)−1/2

+ }s∈R (which de-
pends on the variable s) is no longer adapted to the natural filtration
of {W (s)}s∈R and the MPRE cannot therefore be represented as a usual
Itô integral. On the other hand, it is possible to adopt the approach of
Definition 1.1 because S(t, ω) does not involve the variable s. By using
the series representation (2.3) for BH(t), we will, in fact, be working
only with sums.

The paper is organized as follows. In Section 2, we introduce a wavelet
decomposition of the field {BH(t)}(t,H)∈[0,1]×[a,b] and give some proper-
ties of this field that will simplify the study of MPREs. Using this
wavelet decomposition, we show in Section 3, that the pointwise and
uniform Hölder exponents of the MPRE can be prescribed by its ran-
dom parameter {S(t)}t∈[0,1]. Finally, in Section 4, we give sufficient
conditions for the MPRE to be self-similar (in the sense of marginal
distributions) or have stationary increments.

A word about notation. We will be using non-random as well as
random constants. To ease the distinction, we use small letters (e.g. c)
to denote non-random constants and capital letters (e.g. C = C(ω))
to denote random constants. Moreover, for the sake of simplicity, the
stochastic processes considered here are real-valued and often defined
on the interval [0, 1]. Our results remain true when the interval [0, 1] is
replaced by a compact cube of Rd.

2. Some useful properties of the random field
{BH(t)}(t,H)∈[0,1]×[a,b]

We obtain, in this section, some properties of the field
{BH(t)}(t,H)∈[0,1]×[a,b] that will simplify the study of the MPRE
{Z(t)}t∈[0,1]. Recall that {BH(t)}(t,H)∈[0,1]×[a,b] and {Z(t)}t∈[0,1] are
related through Relation (1.15).

We first provide a wavelet decomposition of the field
{BH(t)}(t,H)∈[0,1]×[a,b]. Let {ψj,k(x)}(j,k)∈Z2 be a Lemarié-Meyer wavelet
basis of the Hilbert space L2(R). Recall that such basis has the following
properties.

(P1) The functions ψj,k are generated by dilations and translations of a
unique function ψ called a mother wavelet. Namely, for every j ∈ Z,
k ∈ Z and x ∈ R, one has

(2.1) ψj,k(x) = 2j/2ψ(2jx− k),
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or equivalently ψ̂j,k, the Fourier transform of ψj,k, satisfies for ev-
ery ξ ∈ R,

(2.2) ψ̂j,k(ξ) = 2−j/2e−ik2
−jξψ̂(2−jξ).

In addition, the functions ψj,k, and consequently the functions ψ̂j,k,
belong to the Schwartz class S(R). Recall that S(R) is the space
of all infinitely differentiable functions u whose derivatives u(n) of
any order n ≥ 0 satisfy for all integer m,

lim
|t|→∞

tmu(n)(t) = 0.

Observe that the tails of u(n) decrease faster than any polynomial.

(P2) For any integers j and k the support of ψ̂j,k is contained in the

domain
{
ξ ∈ R, 2j+1π

3 ≤ |ξ| ≤ 2j+3π
3

}
.

(P3) Up to a multiplicative factor 1/
√

2π that we will neglect,
{ψ̂j,k(−ξ)}(j,k)∈Z2 forms an orthonormal basis of L2(R).

To obtain a random wavelets series representation of the field
{BH(t)}(t,H)∈[0,1]×[a,b], one fixes (t,H) ∈ [0, 1]×[a, b], and decomposes its
kernel, namely the function f̂ : ξ 7→ eitξ−1

iξ|ξ|H−1/2 in the basis {ψ̂j,k(−ξ)}j,k∈Z.

Then one applies the integral
∫

R f̂(·) dŴ to this decomposition. Since,
this integral is an isometry from the Hilbert space L2(R) into the Hilbert
space L2(Ω) of the square integrable and mean-zero random variables,
one obtains, in view of (1.2), that for every (t,H) ∈ [0, 1]× [a, b],

(2.3) BH(t) =
∑
j∈Z

∑
k∈Z

aj,k(t,H)εj,k,

where {εj,k}j,k∈Z is a sequence of N (0, 1) Gaussian random variables and
where the non-random coefficients aj,k(t,H) are given by

(2.4) aj,k(t,H) =
∫

R

eitξ − 1
iξ|ξ|H−1/2

ψ̂j,k(ξ) dξ.

We will show later that the series (2.3) is, with probability 1, uniformly
convergent in (t,H). If we define, for every (x,H) ∈ R × [a, b], the
function

(2.5) Ψ(x,H) =
∫

R
eixξ

ψ̂(ξ)
iξ|ξ|H−1/2

dξ,

then by setting η = 2−jξ in the integral (2.4) and using (2.2), one gets

(2.6) aj,k(t,H) = 2−jH(Ψ(2jt− k,H)−Ψ(−k,H)).



Multifractional Processes 465

Observe that the integral (2.5) converges since ψ̂ belongs to S(R) and
vanishes in a neighbourhood of the origin. We now give some useful
properties of the function Ψ.

Lemma 2.1. Ψ is a C∞ function over R×[a, b] and its partial derivatives
of any order are localized in the variable x uniformly in the variable H.
As a consequence, for all integers m and n there is a constant c > 0 (that
only depends on m, n, a and b) such that for every (x,H) ∈ R × [a, b]
one has,

(2.7)
∣∣∣∣ ∂m+n

(∂x)m(∂H)n
Ψ(x,H)

∣∣∣∣ ≤ c(2 + |x|)−2.

Proof: First we will suppose that x ≥ 0. Let K be the integrand in (2.5),
namely the function defined for any (x,H, ξ) ∈ R+ × [a, b] × R, as

K(x,H, ξ) = eixξ
bψ(ξ)

iξ|ξ|H−1/2 . K is an infinitely differentiable function
in (x,H), whose partial derivatives of any order are bounded uniformly
in (x,H) by a ξ integrable function. It follows that for every integers m,
n and (x,H) ∈ R+ × [a, b], one has

∂m+n

(∂x)m(∂H)n
Ψ(x,H) =

∫
R

∂m+n

(∂x)m(∂H)n
K(x,H, ξ) dξ,

which implies that∣∣∣∣ ∂m+n

(∂x)m(∂H)n
Ψ(x,H)

∣∣∣∣ =
∣∣∣∣∣
∫

R
ei(2+x)ξ

φ̂(ξ)
iξ|ξ|H−1/2

dξ

∣∣∣∣∣ ,
where φ̂ is the function of S(R) defined for every real ξ by φ̂(ξ) =
e−i2ξξm(log |ξ|)nψ̂(ξ). Then integrating twice by parts, one obtains that∣∣∣∣∣
∫

R
ei(2+x)ξ

φ̂(ξ)
iξ|ξ|H−1/2

dξ

∣∣∣∣∣ ≤ (2 + x)−2

∫
R

(
|φ̂′′(ξ)|
|ξ|H+1/2

+(2H + 1)
|φ̂′(ξ)|
|ξ|H+3/2

+ (H + 1/2)(H + 3/2)
|φ̂(ξ)|
|ξ|H+5/2

)
dξ

≤ c(2 + x)−2,

where the constant c=5
(∫

R

(∑2
p=0 |̂φ(2−p)(ξ)|

(
1

|ξ|a+1/2+p + 1
|ξ|b+1/2+p

)))
dξ.

The case where x < 0 can be treated similarly.
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Let {ḂH(t)}(t,H)∈R×[a,b] and {B̈H(t)}(t,H)∈R×[a,b] be respectively the
low frequency and the high frequency components of the wavelet rep-
resentation of {BH(t)}(t,H)∈R×[a,b]. These fields are defined for every
(t,H) ∈ R× [a, b] as,

ḂH(t) =
−1∑

j=−∞

∑
k∈Z

2−jHεj,k(Ψ(2jt− k,H)−Ψ(−k,H))

=
∞∑
j=1

∑
k∈Z

2jHε−j,k(Ψ(2−jt− k,H)−Ψ(−k,H)),

(2.8)

and

(2.9) B̈H(t) =
∞∑
j=0

∑
k∈Z

2−jHεj,k(Ψ(2jt− k,H)−Ψ(−k,H)).

Clearly, one has

(2.10) BH(t) = ḂH(t) + B̈H(t).

We now provide some properties of {ḂH(t)}(t,H)∈R×[a,b] and
{B̈H(t)}(t,H)∈R×[a,b]. The proofs of the following propositions will be
given at the end of this section.

Proposition 2.1. The trajectories of the field {ḂH(t)}(t,H)∈R×[a,b] are
with probability 1, C∞ functions over R× [a, b].

Proposition 2.2. There is an event Ω∗1 of probability 1, satisfying the
following properties:

(a) For any ω ∈ Ω∗1, the function (t,H) 7→ B̈H(t, ω) is continuous
over [0, 1]× [a, b].

(b) For all ω ∈ Ω∗1 and all reals m and M such that a ≤ m ≤ M ≤ b,
the uniform Hölder exponent of the function (t,H) 7→ B̈H(t, ω)
over the rectangle [0, 1]×[m,M ] is equal to m (see Relation (1.8) for
the definition of this exponent). This means that for any arbitrarily
small ε > 0, there is a random variable C1 > 0 (which only depends
on m, M and ε) such that the inequality

(2.11) |B̈H′(t′, ω)− B̈H′′(t′′, ω)| ≤ C1(ω)(|t′ − t′′|+ |H ′ −H ′′|)m−ε,

holds for all ω ∈ Ω∗1, (t′,H ′) ∈ [0, 1] × [m,M ] and (t′′,H ′′) ∈
[0, 1]× [m,M ].
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(c) For all ω ∈ Ω∗1, the function H 7→ B̈H(t, ω) is Lipschitz over [a, b]
uniformly in t ∈ [0, 1]. More precisely, there is a random vari-
able C2 > 0 (which only depends on a and b) such that for all H ′ ∈
[a, b] and H ′′ ∈ [a, b] one has

(2.12) sup
t∈[0,1]

|B̈H′(t, ω)− B̈H′′(t, ω)| ≤ C2(ω)|H ′ −H ′′|.

The following theorem is a straightforward consequence of Proposi-
tions 2.1 and 2.2.

Theorem 2.1. Proposition 2.2 remains true when the high-frequency
field {B̈H(t)}(t,H)∈[0,1]×[a,b] is replaced by the field {BH(t)}(t,H)∈[0,1]×[a,b].

We now state two lemmas that we need in the proofs of Proposi-
tions 2.1 and 2.2. The first lemma follows from the Borel-Cantelli lemma
and one may refer to [13] or [3] for example for its proof. The second
lemma is a reformulation of a strong version of Kolmogorov-Centsǒv cri-
terion (see Chapter 2 of [8]). The proof of that lemma can be found in
e.g. [2].

Lemma 2.2. There is a random variable C3 > 0 with finite moments
of any order and there is an event Ω∗3 of probability 1, such that for
any ω ∈ Ω∗3, j ∈ Z and k ∈ Z one has

(2.13) |εj,k(ω)| ≤ C3(ω)
√

log(2 + |j|)
√

log(2 + |k|).

Lemma 2.3. Let {X(τ)}τ∈T be a Gaussian field with continuous trajec-
tories defined on a rectangle T of Rd (i.e. a set of the form

∏d
k=1[γk, δk]).

Suppose that for some constants µ ∈ (0, 1) and c4 > 0, the inequality

(2.14) E(|X(τ ′)−X(τ ′′)|2) ≤ c4|τ ′ − τ ′′|2µ,
holds for every τ ′, τ ′′ ∈ T , where | · | is an arbitrary norm on Rd. Then,
the uniform Hölder exponent over T of the field {X(τ)}τ∈T is almost
surely greater than µ. This means that there is Ω∗4, an event of proba-
bility 1, that only depends on T , such that for every ω ∈ Ω∗4 and every
arbitrarily small real ε > 0, the inequality

|X(τ ′, ω)−X(τ ′′, ω)| ≤ C4(ω)|τ ′ − τ ′′|µ−ε,
holds for all τ ′ ∈ T and τ ′′ ∈ T (observe that the random variable C4

only depends on ε).

Proof of Proposition 2.1: In view of Lemma 2.1, it is sufficient to show
that the series (2.8) and all the series obtained by differentiating it
term by term are, with probability 1, uniformly convergent in the vari-
able (t,H) on each compact set of the form [−d, d] × [a, b] where the
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real d > 0 is arbitrary. From now on we will suppose that ω ∈ Ω∗3 (the
probability 1 event introduced in Lemma 2.2) and to simplify our nota-
tions we will set d = 1 without loss of generality. Let us first study the
series

(2.15) An(t,H, ω) =
∞∑
j=1

∑
k∈Z

2jHε−j,k

×
(

∂n

(∂H)n
Ψ(2−jt− k,H)− ∂n

(∂H)n
Ψ(−k,H)

)
,

where the integer n ≥ 0 is arbitrary. Applying the Mean Value Theorem
one gets that for any integer j ≥ 1, k ∈ Z and (t,H) ∈ [−1, 1] × [a, b]
there is a real ν ∈ (−1, 1) (depending on j, k and (t,H)) such that

(2.16)
∂n

(∂H)n
Ψ(2−jt− k,H)− ∂n

(∂H)n
Ψ(−k,H)

= 2−jt
∂n+1

(∂x)(∂H)n
Ψ(ν − k,H).

Then it follows from Relations (2.7), (2.13), (2.15) and (2.16) that for
every (t,H) ∈ [−1, 1]× [a, b], one has

|An(t,H, ω)| ≤ c
∞∑
j=1

∑
k∈Z

2−j(1−H)
√

log(2 + j)
√

log(2 + |k|)
(1 + |k|)2

<∞,

where c > 0 is a constant that does not depend on (t,H). This proves
the uniform convergence of the series (2.15). Using a similar method one
can show that for any integer m ≥ 1 and n ≥ 0, the series

∞∑
j=1

∑
k∈Z

2−j(m−H)ε−j,k(ω)
∂m+n

(∂x)m(∂H)n
Ψ(2−jt− k,H)

is uniformly convergent.

Proof of Proposition 2.2: Let us first prove (a) and (c). Using techniques
similar to those of Section 3 of [3], it follows from the inequalities (2.7)
and (2.13) that for all ω ∈ Ω∗3 (the probability 1 event introduced in
Lemma 2.2) and any n ∈ {0, 1} the series

(2.17) Dn(t,H, ω) =
∞∑
j=0

∑
k∈Z

2−jHεj,k(ω)
∂n

(∂H)n
Ψ(2jt− k,H),

is uniformly convergent in (t,H) ∈ [0, 1] × [a, b]. Then as the general
term of this series is a continuous function in (t,H), it follows that the
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sum of this series, (t,H) 7→ Dn(t,H, ω) is itself a continuous function
over [0, 1]× [a, b]. Thus proves Part (a).

Part (c) can be obtained as follows. Applying the Mean Value The-
orem one gets that, for any t ∈ [0, 1], H ′,H ′′ ∈ [a, b], there is a real
ν ∈ (a, b) such that

B̈H′(t, ω)− B̈H′′(t, ω) =
(

∂

∂H

)
B̈ν(t, ω)(H ′ −H ′′)

and this inequality implies that

|B̈H′(t, ω)− B̈H′′(t, ω)| ≤ C2(ω)|H ′ −H ′′|

where the random variable C2 is defined for every ω as

C2(ω) = sup
(t,H)∈[0,1]×[a,b]

∣∣∣∣( ∂

∂H

)
B̈H(t, ω)

∣∣∣∣ = sup
(t,H)∈[0,1]×[a,b]

|D1(t,H, ω)|.

Observe that this random variable is almost surely finite because of the
continuity of the function (t,H) 7→ D1(t,H, ω) for almost all ω.

Let us now prove Part (b). It follows from Relations (2.8), (2.9),
(2.10), (1.2) and from the formula (u + v)2 ≤ 2(u2 + v2) that for any
(t′,H ′) ∈ [0, 1]× [m,M ] and (t′′,H ′′) ∈ [0, 1]× [m,M ] one has

E(|B̈H′(t′)−B̈H′′(t′′)|2) ≤ E(|BH′(t′)−BH′′(t′′)|2)

≤
∫

R

∣∣∣∣∣ eit
′ξ − 1

|ξ|H′+1/2
− eit

′′ξ − 1
|ξ|H′′+1/2

∣∣∣∣∣
2

dξ

≤ 2
∫

R

|ei(t′−t′′)ξ − 1|2

|ξ|2H′+1
dξ

+ 2
∫

R

|eit′′ξ − 1|2

|ξ|

(
1

|ξ|H′ −
1

|ξ|H′′

)2
dξ.

(2.18)

We shall now provide an upper bound of each integral in this last inequal-
ity. There is no restriction to suppose that t′ 6= t′′. Setting η = (t′− t′′)ξ
in the first integral and using the inequalities m ≤ H ′ ≤M , one obtains
that ∫

R

|ei(t′−t′′)ξ − 1|2

|ξ|2H′+1
dξ =

(∫
R

|eiη − 1|2

|η|2H′+1
dη

)
|t′ − t′′|2H

′

≤ c1|t′ − t′′|2m,

(2.19)
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where the constant c1 =
∫

R
|eiη−1|2
|η|2a+1 dη +

∫
R
|eiη−1|2
|η|2b+1 dη. Applying the

Mean Value Theorem to the function H 7→ |ξ|−H−1/2 = e−(H+1/2) log |ξ|

and using the inequalities m ≤ H ′ ≤M , m ≤ H ′′ ≤M and 0 ≤ t′′ ≤ 1,
one obtains that∫

R

|eit′′ξ − 1|2

|ξ|

(
1

|ξ|H′ −
1

|ξ|H′′

)2

dξ

≤ 2

(∫ +∞

1

|eit′′ξ − 1|2

ξ2a+1
(log ξ)2 dξ

+
∫ 1

0

|eit′′ξ − 1|2

ξ2b+1
(log ξ)2 dξ

)
|H ′ −H ′′|2

≤ c2|H ′ −H ′′|2

(2.20)

where the constant c2 = 8
∫ +∞
1

log2 ξ
ξ2a+1 dξ + 2

∫ 1

0
log2 ξ
ξ2b−1 dξ. It follows from

Lemma 2.3 that there is Ω∗4(m,M) an event of probability 1 (that de-
pends on m and M) such that for any ω ∈ Ω∗4(m,M), the uniform Hölder
exponent of the function (t,H) 7→ B̈H(t, ω) over the rectangle [0, 1] ×
[m,M ] is greater thanm. Finally, we set Ω∗1 = Ω∗3∩(∩(m,M)∈IΩ∗4(m,M))
with I = {(m,M) ∈ Q×Q; 0 < m < M < 1}.

3. On the global and the local regularity of the MPRE

We study in this section how the random parameter {S(t)}t∈[0,1] af-
fects the regularity of the MPRE {Z(t)}t∈[0,1]. First we will deal with
the continuity of {Z(t)}t∈[0,1], then we will determine its pointwise and
uniform Hölder exponent. Let χA denote the indicator function of the
set A.

Proposition 3.1. (a) If the trajectories of {S(t)}t∈[0,1] are continu-
ous then those of the MPRE {Z(t)}t∈[0,1] are continuous as well.

(b) Suppose that the process {S(t)}t∈[0,1] is for all t and ω of the form

(3.1) S(t, ω) =
n∑
k=1

gk(t)χAk
(ω),

where the functions gk are determinitic and the events Ak form
a partition of the probability space. Then the trajectories of the
MPRE {Z(t)}t∈[0,1] are continuous only when those of {S(t)}t∈[0,1]

are continuous. More precisely, if a function gk0 is discontinuous
at some point t0, then the trajectories of {Z(t)}t∈[0,1] are discon-
tinuous at t0 with probability P (Ak0).
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Proof: Since a trajectory t 7→ Z(t, ω) of the MPRE has been defined
as the composition of the functions f1 : t 7→ (t, S(t, ω)), f2 : (t,H) 7→
BH(t, ω), to prove (a) it is sufficient to show that these functions are
continuous. The continuity of f1 follows from that of t 7→ S(t, ω) and
the continuity of f2 follows from Theorem 2.1.

Let us now prove (b). The function gk0 being bounded and discon-
tinuous at t0, there is a sequence (xn) converging to t0 and such that
lim
n→∞

gk0(xn) 6= gk0(t0). Set y0 = gk0(t0) and y1 = lim
n→∞

gk0(xn). As

for any ω ∈ Ak0 and t ∈ [0, 1], Z(t, ω) = Bgk0 (t)(t), it follows from the
continuity of the function (t,H) 7→ BH(t, ω) at (t0, y1) that for almost
all w ∈ Ak0 ,

(3.2) lim
n→∞

Z(xn, ω) = lim
n→∞

Bgk0 (xn)(xn, ω) = By1(t0, ω).

Since By0(t0) − By1(t0) is a non-degenerate Gaussian random variable,
it can vanish only on a negligible event and therefore one has for almost
all ω ∈ Ak0 ,

(3.3) Z(t0, ω) = By0(t0, ω) 6= By1(t0, ω).

Relations (3.2) and (3.3) imply that with probability P (Ak0) the func-
tion t 7→ Z(t, ω) is discontinuous at t0.

As in the case of MBM (see Relation (1.12)), in order to be able to
determine the Hölder regularity of the MPRE one needs to impose a
technical condition on βS([0, 1]), the uniform Hölder exponent over [0, 1]
of its parameter {S(t)}t∈[0,1]. We suppose that with probability 1:

(C) sup
t∈[0,1]

S(t, ω) < βS([0, 1], ω).

The following theorems describe the Hölder regularity of the MPRE.

Theorem 3.1. Let {Z(t)}t∈[0,1] be an MPRE whose parameter {S(t)}t∈[0,1]

satisfies the condition (C). Then {αZ(t)}t∈(0,1), the pointwise Hölder ex-
ponent of {Z(t)}t∈(0,1) (see Relation (1.7) for the definition of this expo-
nent), can be characterized via {S(t)}t∈(0,1). Namely for any t0 ∈ (0, 1)
one has almost surely

(3.4) αZ(t0, ω) = S(t0, ω).
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Theorem 3.2. Let {Z(t)}t∈[0,1] be an MPRE whose parameter {S(t)}t∈[0,1]

satisfies the condition (C). Then βZ(J), the uniform Hölder exponent
of {Z(t)}t∈[0,1] over an arbitrary non-degenerate interval J ⊂ [0, 1] (see
Relation (1.8) for the definition of this exponent), can be characterized
via {S(t)}t∈[0,1]. Namely, one has almost surely

(3.5) βZ(J, ω) = inf
t∈J

S(t, ω).

To prove Theorems 3.1 and 3.2 we need the following lemma.

Lemma 3.1. Let {Z(t)}t∈[0,1] be an MPRE whose parameter {S(t)}t∈[0,1]

satisfies the condition (C). Then βZ(J), the uniform Hölder exponent
of {Z(t)}t∈[0,1] over an arbitrary non-degenerate interval J ⊂ [0, 1], sat-
isfies almost surely

(3.6) inf
t∈J

S(t, ω) ≤ βZ(J, ω).

To prove Lemma 3.1 we need some preliminary results.

Definition 3.1. The processes {Ż(t)}t∈[0,1] and {Z̈(t)}t∈[0,1] will be
respectively the low and high frequency components of the MPRE of
parameter {S(t)}t∈[0,1]. They are defined as {Z(t)}t∈[0,1] but by re-
placing the field {BH(t)}(t,H)∈[0,1]×[a,b] respectively by its low and high
frequency components, namely the fields {ḂH(t)}(t,H)∈[0,1]×[a,b] and
{B̈H(t)}(t,H)∈[0,1]×[a,b] that have been introduced in (2.8) and (2.9).

Remark 3.1. {Ż(t)}t∈[0,1] is more regular than {S(t)}t∈[0,1]. Actually
the uniform Hölder exponents of these processes over [0, 1] satisfy almost
surely

(3.7) βS([0, 1]) ≤ βŻ([0, 1]).

Proof of Remark 3.1: It follows from Proposition 2.1 that (t,H) 7→
ḂH(t, ω) is with probability 1 a Lipschitz function over [0, 1] × [a, b].
Therefore one has for every arbitrarily small ε > 0, t′ ∈ [0, 1] and
t′′ ∈ [0, 1]

|Ż(t′, ω)− Ż(t′′, ω)| = |ḂS(t′,ω)(t, ω)− ḂS(t′′,ω)(t′′, ω)|

≤ C(ω)(|t′ − t′′|+ |S(t′, ω)− S(t′′, ω)|)

≤ C ′(ω)|t′ − t′′|βS([0,1],ω)−ε,

where the random variable C only depends on ε. This implies the in-
equality (3.7).
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Remark 3.2. To prove Lemma 3.1 and Theorems 3.1 and 3.2 one
can replace the process {Z(t)}t∈[0,1] by its high frequency component
{Z̈(t)}t∈[0,1].

Proof of Remark 3.2: Remark 3.2 follows from Remark 3.1 because for
every t ∈ [0, 1] one has Z(t) = Ż(t) + Z̈(t).

We can now prove Lemma 3.1.

Proof of Lemma 3.1: It follows from Remark 3.2 that we may replace
{Z(t)}t∈[0,1] by {Z̈(t)}t∈[0,1]. Suppose that ω ∈ Ω∗1, the event of prob-
ability 1, that has been introduced in Proposition 2.2 and let m(ω) =
inft∈J S(t, ω) and M(ω) = supt∈J S(t, ω). Setting H ′ = H ′′ = S(t′, ω)
in (2.11), we obtain that

(3.8) |B̈S(t′,ω)(t′, ω)− B̈S(t′,ω)(t′′, ω)| ≤ C1(ω)|t′ − t′′|m(ω)−ε,

where the real ε > 0 is arbitrarily small and C1 is a random variable that
depends on ε. Now setting H ′ = S(t′, ω) and H ′′ = S(t′′, ω) in (2.12),
we obtain

|B̈S(t′,ω)(t′′, ω)− B̈S(t′′,ω)(t′′, ω)| ≤ C2(ω)|S(t′, ω)− S(t′′, ω)|

≤ C ′2(ω)|t′ − t′′|βS([0,1],ω)−ε,
(3.9)

where βS([0, 1], ω) denotes the uniform Hölder exponent of the func-
tion t 7→ S(t, ω) over [0, 1]. Since we assumed that {S(t)}t∈[0,1] satisfies
the condition (C), one has

(3.10) m(ω) ≤ βS([0, 1], ω),

and therefore (3.9) continues to hold if one replaces βS by m(ω). The
inequalities (3.8) and (3.9) then imply

|Z̈(t′, ω)− Z̈(t′′, ω)| = |B̈S(t′,ω)(t′, ω)− B̈S(t′′,ω)(t′′, ω)|

≤ |B̈S(t′,ω)(t′, ω)− B̈S(t′,ω)(t′′, ω)|

+ |B̈S(t′,ω)(t′′, ω)− B̈S(t′′,ω)(t′′, ω)|

≤ C ′′2 (ω)|t′ − t′′|m(ω)−ε.

To prove Theorem 3.1 we need some additional results.
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Lemma 3.2. Fix t0 ∈ [0, 1] and ω ∈ Ω∗3, the event of probability 1
introduced in Lemma 2.2. Then the series

(3.11) T̈t0(t, ω) =
∞∑
j=0

∑
k∈Z

2−jS(t0,ω)εj,k(ω)Ψ(2jt− k, S(t0, ω)),

is uniformly convergent in t on every compact of R. In addition, there
is a random variable C5 > 0 such that for every t ∈ R and ω ∈ Ω∗3, one
has

(3.12) |T̈t0(t, ω)| ≤ C5(ω)
√

log(2 + |t|).

Proof of Lemma 3.2: To show that the series (3.11) is uniformly conver-
gent in t on every compact of R one uses the inequalities (2.7) and (2.13)
and the same techniques as in Section 3 in [3]. Let us now prove that
the inequality (3.12) holds. Using again the inequalities (2.7) and (2.13)
one obtains that for every t ∈ R

(3.13) |T̈t0(t, ω)| ≤ C(ω)
∞∑
j=0

2−jS(t0,ω) log1/2(2+j)
∑
k∈Z

log1/2(2 + |k|)
(2 + |2jt− k|)2

.

Let [2jt] denote the integer part of 2jt. Using the sub-additivity of
the function x 7→ log1/2(2 + x) (see Lemma 3.5 of [3]) and the inequal-
ity a+ b ≤ ab which holds for all reals a ≥ 2 and b ≥ 2, we have that∑

k∈Z

log1/2(2 + |k|)
(2 + |2jt− k|)2

≤
∑
k∈Z

log1/2(9 + |k + [2jt]|)
(2 + |2jt− [2jt]− k|)2

≤
∑
k∈Z

log1/2(9 + |k|)
(2 + |2jt− [2jt]− k|)2

+
∑
k∈Z

log1/2(9 + 2j)
(2 + |2jt− [2jt]− k|)2

+
∑
k∈Z

log1/2(9 + |t|)
(2 + |2jt− [2jt]− k|)2

≤ c′ log1/2(9 + 2j) log1/2(9 + |t|),

(3.14)

where the constant c′ = 2 supx∈[0,1]

(∑
k∈Z

log1/2(9+|k|)
(2+|x−k|)2

)
. Thus (3.12)

follows from (3.13) and (3.14).
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Lemma 3.3. Fix t0 ∈ (0, 1) and let {αT̈t0
(t)}t∈R and {αZ̈(t)}t∈(0,1) be

respectively the pointwise Hölder exponents of the processes {T̈t0(t)}t∈R
and {Z̈(t)}t∈(0,1). Then for any ω ∈ Ω∗1, the event with probability 1 that
has been introduced in Proposition 2.2, one has

(3.15) αZ̈(t0, ω) ≤ S(t0, ω) if and only if αT̈t0
(t0, ω) ≤ S(t0, ω).

Proof of Lemma 3.3: Since βS([0, 1]), the uniform Hölder exponent over
[0, 1] of the process {S(t)}t∈[0,1], satisfies the condition (C), it is sufficient
to prove that for any ω ∈ Ω∗1 and any α in the interval

(
0, βS([0, 1], ω)

)
one has

lim sup
h→0

|T̈t0(t0 + h, ω)− T̈t0(t0, ω)|
|h|α

= 0(3.16)

if and only if

lim sup
h→0

|Z̈(t0 + h, ω)− Z̈(t0, ω)|
|h|α

= 0.(3.17)

It follows from Definition 3.1 that for any t0 + h ∈ [0, 1], one has

|B̈S(t0,ω)(t0 + h, ω)− B̈S(t0,ω)(t0, ω)|

− |B̈S(t0+h,ω)(t0 + h, ω)−B̈S(t0,ω)(t0 + h, ω)|

≤ |Z̈(t0 + h, ω)− Z̈(t0, ω)|

≤ |B̈S(t0,ω)(t0 + h, ω)− B̈S(t0,ω)(t0, ω)|

+ |B̈S(t0+h,ω)(t0 + h, ω)−B̈S(t0,ω)(t0 + h, ω)|.

(3.18)

On the one hand, using the Relation (2.12) and the definition of the
uniform Hölder exponent we obtain that

|B̈S(t0+h,ω)(t0 + h, ω)− B̈S(t0,ω)(t0 + h, ω)|

≤ sup
t∈[0,1]

|B̈S(t0+h,ω)(t, ω)− B̈S(t0,ω)(t, ω)|

≤ C2(ω)|S(t0 + h, ω)− S(t0, ω)|

≤ C(ω)|h|βS([0,1],ω)−ε,

(3.19)

where the real ε > 0 is arbitrarily small. On the other hand, Rela-
tions (2.9) and (3.11) imply that

(3.20) |T̈t0(t0+h, ω)−T̈t0(t0, ω)| = |B̈S(t0,ω)(t0+h, ω)−B̈S(t0,ω)(t0, ω)|.
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Thus, it follows from (3.18), (3.19) and (3.20) that

|T̈t0(t0 + h, ω)− T̈t0(t0, ω)|

− C(ω)|h|βS([0,1],ω)−ε

≤ |Z̈(t0 + h, ω)− Z̈(t0, ω)|

≤ |T̈t0(t0 + h, ω)− T̈t0(t0, ω)|

+ C(ω)|h|βS([0,1],ω)−ε,

which proves that the Relations (3.16) and (3.17) are equivalent.

Lemma 3.4. Let Ψ̃ be a function defined for every (x,H) ∈ R × [a, b]
as

(3.21) Ψ̃(x,H) = i

∫
R
eixξξ|ξ|H−1/2ψ̂(ξ) dξ.

This function has the following properties:
(i) Ψ̃ is localized in the variable x uniformly in the variable H. More

precisely, there is a constant c > 0 (that only depends on a and b)
such that for any (x,H) ∈ R× [a, b] one has

(3.22) |Ψ̃(x,H)| ≤ c(2 + |x|)−2.

(ii) For any H ∈ [a, b], the first moment of the function Ψ̃(.,H) van-
ishes, that is,

(3.23)
∫

R
Ψ̃(x,H) dx = 0.

(iii) Let Ψ be the function introduced in (2.5). For any H ∈ [a, b], the
system of functions {2j/2Ψ(2jt − k,H); j ∈ N and k ∈ Z} and
{2j/2Ψ̃(2jt− k,H); j ∈ N and k ∈ Z} is biorthogonal. This means
that for any j ∈ N, j′ ∈ N, k ∈ Z and k′ ∈ Z, one has

(3.24) 2(j+j′)/2

∫
R

Ψ(2jt− k,H)Ψ̃(2j′t− k′,H) dt = δ(j, k; j′, k′),

where δ(j, k; j′, k′) = 1 if (j, k) = (j′, k′) and 0 otherwise.

Proof of Lemma 3.4: Part (i) can be shown as in Lemma 2.1. To prove
Parts (ii) and (iii) let us first observe that for every H ∈ [a, b] the
Fourier transforms of the functions x 7→ Ψ(x,H) and x 7→ Ψ̃(x,H)

are respectively the functions ξ 7→ bψ(ξ)
iξ|ξ|H−1/2 and ξ 7→ iξ|ξ|H−1/2ψ̂(ξ).

As ξ 7→ iξ|ξ|H−1/2ψ̂(ξ) vanishes in a neighbourhood of the origin one
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gets (ii). Part (iii) can be obtained as follows. Using Parseval Formula
we have that

2(j+j′)/2

∫
R

Ψ(2jt− k,H)Ψ̃(2j′t− k′,H) dt

= 2−(j+j′)/2

∫
R
e−i(k/2

j−k′/2j′ )ξ |2−j
′
ξ|H+1/2

|2−jξ|H+1/2
ψ̂(2−jξ)ψ̂(2−j′ξ) dξ

= 2(j−j′)(H+1/2) × 2−(j+j′)/2

∫
R
e−i(k/2

j−k′/2j′ )ξψ̂(2−jξ)ψ̂(2−j′ξ) dξ

= 2(j−j′)(H+1/2) × 2(j+j′)/2

∫
R
ψ(2jt− k)ψ(2j′t− k′) dt

= δ(j, k; j′, k′).

Observe that the last equality follows from the orthonormality of the
functions 2j/2ψ(2jt− k) (see the beginning of Section 2).

Now we are able to prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1: Since the function t 7→ S(t, ω) is continuous over
the interval [0, 1] with probability 1, there is, for any t0 ∈ (0, 1) and any
arbitrarily small ε > 0, an η > 0, such that

inf
t∈[t0−η,t0+η]

S(t, ω) ≥ S(t0, ω)− ε.

Lemma 3.1 and inequality (1.9) thus imply that almost surely

αZ(t0, ω) ≥ S(t0, ω)− ε.

Letting ε→ 0 we obtain that, with probability 1,

αZ(t0, ω) ≥ S(t0, ω).

Let us now show that, almost surely, αZ(t0, ω) ≤ S(t0, ω). It follows
from Remark 3.2 and Lemma 3.3 that one can prove instead

(3.25) αT̈t0
(t0, ω) ≤ S(t0, ω).

To establish this last inequality, suppose ad absurdum that there is a
non-negligible event A such that for any ω ∈ A one has

(3.26) αT̈t0
(t0, ω) > S(t0, ω).

We will use a method which allowed Jaffard [7] to obtain a wavelet
characterization of the pointwise Hölder exponent. Let Ω∗3 be the event
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of probability 1 that has been introduced in Lemma 2.2. Relations (3.12)
and (3.22) imply that for any j ∈ N, k ∈ Z and ω ∈ Ω∗3 ∩A, the integral

(3.27) Ij,k(ω) = 2j
∫

R
T̈t0(t, ω)Ψ̃(2jt− k, S(t0, ω)) dt,

is convergent and Relations (3.11) and (3.24) imply that

(3.28) Ij,k(ω) = 2−jS(t0,ω)εj,k(ω).

Choose η > 0 such that

(3.29) S(t0, ω) + η < min(αT̈t0
(t0, ω), 1).

Using the definition of the pointwise Hölder exponent, namely Rela-
tion (1.7) one obtains that for any |t− t0| small enough

(3.30) |T̈t0(t, ω)− T̈t0(t0, ω)| ≤ C(ω)|t− t0|S(t0,ω)+η

and thanks to Relation (3.12) this inequality remains true for any t ∈ R.
Then it follows from Relations (3.22), (3.23), (3.27) and (3.30) that for
any j ∈ N, k ∈ Z and ω ∈ Ω∗3 ∩A, one has

|Ij,k(ω)| = 2j
∣∣∣∣∫

R
(T̈t0(t, ω)− T̈t0(t0, ω))Ψ̃(2jt− k, S(t0, ω)) dt

∣∣∣∣
≤ 2j

∫
R
|T̈t0(t, ω)− T̈t0(t0, ω)||Ψ̃(2jt− k, S(t0, ω))| dt

≤ C ′(ω)2j
∫

R

|t− t0|S(t0,ω)+η

(2 + |2jt− k|)2
dt.

Setting u = 2jt− k in this last integral yields

|Ij,k(ω)| ≤ C ′(ω)
∫

R

|2−j(u+ k)− t0|S(t0,ω)+η

(2 + |u|)2
du.

Since |2−j(u+ k)− t0|S(t0,ω)+η ≤ |2−ju|S(t0,ω)+η + |t0 − 2−jk|S(t0,ω)+η,
one obtains

(3.31) |Ij,k(ω)| ≤ C ′′(ω)2−j(S(t0,ω)+η)(1 + |2jt0 − k|S(t0,ω)+η),

where C ′′(ω) = C ′(ω)
(∫

R
|u|S(t0,ω)+η

(2+|u|)2 du+
∫

R
du

(2+|u|)2

)
. Relations (3.28)

and (3.31) imply

(3.32) |εj,k(ω)| ≤ C ′′(ω)2−jη(1 + |2jt0 − k|S(t0,ω)+η),

for all ω ∈ Ω∗3 ∩ A, j ∈ N and k ∈ Z. Suppose now that n 7→ (jn, kn)
is a sequence with values in N × Z satisfying for all n ∈ N, jn ≥ n
and |2jnt0 − kn| ≤ 1. To simplify our notations we set εn = εjn,kn

for
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every n ∈ N. Observe that the inequality (3.32) entails that for all n ∈ N
and ω ∈ Ω∗3 ∩A,

(3.33) |εn(ω)| ≤ C ′′(ω)2−nη+1.

On the other hand, since for each n, εn is a standard random Gaussian
variable, one has P (|εn| ≥ 1) > 0 and thus

∑∞
n=0 P (|εn| ≥ 1) = ∞.

Since the random variables εn are independent, the Borel-Cantelli lemma
implies that there is Ω∗6, an event of probability 1, with the following
property: for any ω ∈ Ω∗6 there is a subsequence l 7→ nl such that for
every l,

(3.34) |εnl
(ω)| ≥ 1.

Taken together, Relations (3.33) and (3.34) imply that for any l ∈ N
and ω ∈ Ω∗3∩A∩Ω∗6 one has 1 ≤ C ′′(ω)2−nlη+1, which is a contradiction.

Proof of Theorem 3.2: This theorem follows from Theorem 3.1, Rela-
tion (1.9) and Lemma 3.1.

Proposition 3.2. If S is a non-degenerate random process, then the
resulting MPRE is a non-Gaussian stochastic process.

This follows from Theorem 3.1 and the following lemma.

Lemma 3.5. If {X(t)}t∈[0,1] is a Gaussian process with continuous and
nowhere differentiable trajectories, then αX(t), its pointwise Hölder ex-
ponent at an arbitrary t, is almost surely deterministic.

Proof of Lemma 3.5: Let 0 < s1 ≤ s2 be such that

(3.35) P (s1 ≤ αX(t)) > 0 and P (αX(t) ≤ s2) > 0,

and for k ∈ {1, 2}, let {Yt,k(u)}u∈[0,1] be the Gaussian process defined
as

(3.36) Yt,k(u) =


0, if u = t

X(u)−X(t)
|u− t|sk

, otherwise.

It follows from Relation (1.7) and the continuity of the process
{X(t)}t∈[0,1] that one has P (supu∈[0,1] |Yt,1(u)| < ∞) > 0 and
P (supu∈[0,1] |Yt,2(u)| = ∞) > 0. Then using Proposition 1, p. 211 of [11]
one gets that P (supu∈[0,1] |Yt,1(u)| <∞) = 1 and P (supu∈[0,1] |Yt,2(u)| =
∞) = 1. This means that P (s1 ≤ αX(t)) = 1 and P (αX(t) ≤ s2) = 1.
Set now

(3.37) h(t) = sup{s1 > 0; P (s1 ≤ αX(t)) = 1}.
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Then for every s2 > h(t) one has P (αX(t) ≤ s2) = 1 and hence

(3.38) h(t) = inf{s2; P (αX(t) ≤ s2) = 1}.

Relations (3.37) and (3.38) imply that with probability 1, αX(t) = h(t).

4. Self-similarity and stationarity of the increments of
some classes of MPRE

In this section, we give sufficient conditions for the MPRE to be self-
similar (in the sense of marginal distributions) or have stationary in-
crements. In the following theorem we suppose for convenience that the
MPRE is defined on the whole real line and not only on the interval [0, 1].

Theorem 4.1. Let {Z(t)}t∈R be an MPRE whose parameter {S(t)}t∈R
is a stationary stochastic process independent of the white noise. Then
{Z(t)}t∈R satisfies the following self-similarity property. For any re-
als a > 0 and t, one has

(4.1) Z(at)
(d1)= aS(t)Z(t),

where
(d1)= means equality of the marginal distributions.

To prove this theorem we use Auscher’s wavelet bases [1]. Namely,
wavelet bases with rational dilation factor that share the same properties
as Lemarié-Meyer wavelet bases. Auscher has shown in [1] that the
following result holds.

Lemma 4.1 (Auscher). Consider an arbitrary rational p/q > 1, where p
and q being relatively prime integers. Then there are functions
ψ1, . . . , ψp−q in S(R) whose Fourier transforms are compactly
supported and vanish in a neighbourhood of the origin, such that
{(p/q)j/2ψl((p/q)jx − kq); j, k ∈ Z, 1 ≤ l ≤ p − q} is an orthonor-
mal basis of L2(R).

We now introduce a wavelet decomposition with rational dilation
factor for the random field {BH(t)}(t,H)∈R×[a,b] and for the MPRE
{Z(t)}t∈R = {BS(t)(t)}t∈R.
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Proposition 4.1. Consider an arbitrary rational p/q > 1, where p and q
being relatively prime. Then the field {BH(t)}(t,H)∈R×[a,b] can be ex-
pressed as the random series

(4.2) BH(t, ω) =
p−q∑
l=1

∞∑
j=−∞

∞∑
k=−∞

(p/q)−jH

×
(
Ψl((p/q)jt− kq,H)−Ψl(−kq,H)

)
εl,j,k(ω),

where {εl,j,k} is a sequence of N (0, 1) Gaussian random variables and
where for every 1 ≤ l ≤ p− q and (x,H) ∈ R× [a, b]

(4.3) Ψl(x,H) =
∫

R
eixξ

ψ̂l(ξ)
iξ|ξ|H−1/2

dξ,

ψ1, . . . , ψp−q being Auscher mother wavelets that generate a basis of di-
lation factor p/q. Then Ψ1, . . . ,Ψp−q are C∞ functions over R × [a, b]
and their partial derivatives of any order are localized in x uniformly
in H. Thus the series (4.2) is with probability 1, uniformly convergent
in (t,H) on every compact of R× [a, b].

Proof of Proposition 4.1: This proposition can be proved by using the
same techniques as in Section 2.

Remark 4.1. The MPRE {Z(t)}t∈R with parameter {S(t)}t∈R can be
expressed as the random series

(4.4) Z(t, ω)=
p−q∑
l=1

∞∑
j=−∞

∞∑
k=−∞

(p/q)−jS(t,ω)

×
(
Ψl((p/q)jt−kq, S(t, ω))−Ψl(−kq, S(t, ω))

)
εl,j,k(ω),

which is, with probability 1, uniformly convergent in t on every compact
of R.

Proof of Remark 4.1: This remark is a straightforward consequence of
Definition 1.1 and Proposition 4.1.

Now we are able to prove Theorem 4.1.

Proof of Theorem 4.1: First we will suppose that a is a rational number
greater than 1. We therefore have a = p/q, p > q > 0 being relatively
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prime integers. As the stochastic process {S(t)}t∈R is stationary and
independent of the white noise it follows that for every x ∈ R,

(4.5) (S(x), Z(x))
(a.s)
= (S(x), BS(x)(x))

(d1)= (S(0), BS(0)(x)).

Then Relations (4.2), (4.4) and (4.5) imply that for every t ∈ R,

Z

(
p

q
t

)
(d1)= BS(0)

(
p

q
t

)
(a.s)
=

p−q∑
l=1

∑
j,k∈Z

(p/q)−jS(0)

×
(
Ψl((p/q)j+1t− kq, S(0))−Ψl(−kq, S(0))

)
εl,j,k

(a.s)
= (p/q)S(0)BS(0)(t)

(d1)= (p/q)S(t)BS(t)(t)
(a.s)
= (p/q)S(t)Z(t).

Now suppose that a is a positive rational number lower than 1. We
therefore have a = q/p, p > q > 0 being relatively prime integers. It
follows from Relations (4.2), (4.4) and (4.5) that for every t ∈ R,

Z

(
q

p
t

)
(d1)= BS(0)

(
q

p
t

)
(a.s)
=

p−q∑
l=1

∑
j,k∈Z

(p/q)−jS(0)

×
(
Ψl((p/q)j−1t− kq, S(0))−Ψl(−kq, S(0))

)
εl,j,k

(a.s)
= (q/p)S(0)BS(0)(t)

(d1)= (q/p)S(t)BS(t)(t)
(a.s)
= (q/p)S(t)Z(t).

Finally suppose that a is a positive irrational number. Let (an) be a
sequence of positive rationals converging to a. One has almost surely for
every real t,

aS(t)Z(t) = lim
n→∞

aS(t)
n Z(t)(4.6)

and

Z(at) = lim
n→∞

Z(ant),(4.7)
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because of the continuity of the process {Z(t)}t∈[0,1]. Since our previous
results imply that for every n,

(4.8) Z(ant)
(d1)= aS(t)

n Z(t),

it follows from (4.6), (4.7) and (4.8) that Z(at)
(d1)= aS(t)Z(t).

We now give a sufficient condition for the MPRE to have stationary
increments.

Theorem 4.2. Let {Z(t)}t∈[0,1] be an MPRE whose parameter S is a
random variable independent of the white noise. Then the increments
of {Z(t)}t∈[0,1] are stationary. Namely, for any t ∈ (0, 1), one has

(4.9) {Z(t+ h)− Z(t)}h∈[0,1−t]
(d)
= {Z(h)− Z(0)}h∈[0,1−t],

where
(d)
= means equality of the finite-dimensional distributions.

Proof of Theorem 4.2: Suppose first that the random variable S takes
a finite number of values α1, . . . , αn. Since for any i = 1, . . . , n, the
process {Bαi

(t)}t∈[0,1] has stationary increments and is independent of S,
it follows from Definition 1.1 that for any integer K ≥ 1, reals θ1, . . . , θK ,
t ∈ [0, 1], t+ hk ∈ [0, 1], k = 1, . . . ,K, and for any Borel set D,

P

[
K∑
k=1

(θk(Z(t+ hk)− Z(t)) ∈ D) ∩ (S = αi)

]

= P

[
K∑
k=1

(θk(Bαi
(t+ hk)−Bαi

(t)) ∈ D) ∩ (S = αi)

]

= P

[
K∑
k=1

θk(Bαi(t+ hk)−Bαi(t)) ∈ D

]
P (S = αi)

= P

[
K∑
k=1

θk(Bαi
(hk)−Bαi

(0)) ∈ D

]
P (S = αi)

= P

[
K∑
k=1

(θk(Bαi
(hk)−Bαi

(0)) ∈ D) ∩ (S = αi)

]

= P

[
K∑
k=1

(θk(Z(hk)− Z(0)) ∈ D) ∩ (S = αi)

]
.
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Since {(S = αi)}1≤i≤n partitions the probability space, we get

P

[
K∑
k=1

θk(Z(t+ hk)− Z(t)) ∈ D

]

= P

[
K∑
k=1

θk(Z(hk)− Z(0)) ∈ D

]
.

(4.10)

We want to show that Relation (4.9) holds for general S. Approximate S
by a sequence of random variables (Sn)n≥1 that take a finite number of
values and are independent of the white noise. For every n ≥ 1, define Sn
as

(4.11) Sn =
n∑
k=1

(
a+ k

(b− a)
n

)
χ

[a+(k−1)
(b−a)

n ,a+k
(b−a)

n )
(S) + χ{b}(S),

where χA denotes the indicator function of the set A. It is clear that the
sequence (Sn) converges to S almost surely. Let {Zn(t)}t∈[0,1] denote
the sequence of MPREs whose parameters are the random variables Sn.
It follows from Theorem 2.1 (and Relation (2.12)) that almost surely for
any t ∈ [0, 1],

|Z(t)−Zn(t)| = |BS(t)−BSn(t)| ≤ sup
x∈[0,1]

|BS(x)−BSn(x)| ≤ C|S−Sn|,

and hence

(4.12) lim
n→∞

Zn(t, ω) = Z(t, ω).

Finally, since for every integer n, t ∈ (0, 1), one has {Zn(t + h) −
Zn(t)}h∈[0,1−t]

(d)
= {Zn(h)−Zn(0)}h∈[0,1−t], Relation (4.12) implies that

{Z(t+ h)− Z(t)}h∈[0,1−t]
(d)
= {Z(h)− Z(0)}h∈[0,1−t].
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