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TRACE FUNCTIONS AND GALOIS INVARIANT

p-ADIC MEASURES

Marian Vâjâitu and Alexandru Zaharescu

Abstract

Let p be a prime number, Qp the field of p-adic numbers, Qp a

fixed algebraic closure of Qp, and Cp the completion of Qp with re-

spect to the p-adic valuation. We study trace functions associated
to p-adic measures defined on compact subsets of Cp which are in-
variant under the action of the Galois group G = Galcont(Cp/Qp).

1. Introduction

Let p be a prime number, Qp the field of p-adic numbers, Qp a fixed

algebraic closure of Qp, and Cp the completion of Qp with respect to the
p-adic valuation. The notion of a trace function associated to an element
T from Cp was introduced and investigated in [APZ3]. If T is algebraic

over Qp, and L is a finite field extension of Qp contained in Qp such that
T lies in L, then the p-adic number

(1) Tr T :=
TrL/Qp

(T )

[L : Qp]

depends on T only, and not on L. The significance of Tr T is that of
the average value of the conjugates of T over Qp. This idea of taking the
average value rather than the sum of conjugates, may also be applied,
as shown in [APZ3], to a rich class of elements T from Cp which are
transcendental over Qp. Given an element T of Cp, one takes its Galois
orbit C(T ) = {σ(T ) : σ ∈ Galcont(Cp/Qp)}, which is a compact subset of
Cp, and one considers the p-adic Haar distribution πT defined on C(T ).
Then, by analogy with the case when T is algebraic and Tr T is given
by the average value of the conjugates of T over Qp, one defines Tr T
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for a general T ∈ Cp by the equality

(2) Tr T =

∫

C(T )

xdπT (x),

provided that the integral on the right side of (2) is well defined. This
is the case, for example, when the distribution πT is bounded, that
is, when πT is a measure. The integral is also well defined when T is a
Lipschitzian element, in the sense of [APZ3]. The trace function F (T, z)
is defined by

(3) F (T, z) =

∫

C(T )

1

1 − zx
dπT (x),

for all those z ∈ Cp for which the integral is well defined. In the present
paper we introduce and study some natural generalizations of the above
objects. Let G denote the group of continuous automorphisms of Cp over
Qp. A compact subset M of Cp is G-invariant provided that σ(x) ∈ M
for any x ∈ M and σ ∈ G. If M is a G-invariant compact subset of
Cp and µ is a distribution on M with values in Qp, we say that µ is
G-invariant if µ(B) = µ(σ(B)) for any ball B and any σ ∈ G. By a
probability measure (or distribution) we mean a measure (respectively
distribution) µ on M for which µ(M) = 1. If M is a G-invariant compact
subset of Cp and µ is a G-invariant probability distribution on M , we
define the trace of µ by the formula

(4) Tr µ =

∫

M

xdµ(x),

provided that the integral on the right side of (4) is well defined. We
further associate a trace function F (µ, z) to µ by letting

(5) F (µ, z) =

∫

M

1

1 − zx
dµ(x),

for all z in Cp for which the integral is well defined. This is an ana-
lytic object that embodies a significant amount of algebraic data. For
instance, recall that by Galois theory in Cp (see [T], [S], [A]), closed
subgroups of G are in one-to-one correspondence with the closed sub-
fields of Cp. If E is a closed subfield of Cp on which the trace map Tr
is defined and continuous, and if T is a generating element of E over Qp

(see [IZ], [APZ1], [APZ2]), then the trace map on the entire field E
is determined by the Taylor series expansion F (T, z) =

∑∞
n=0 Tr T n zn.

Naturally, if M and µ are G-invariant, one would like to be able to use
the action of the Galois group G to express and compute the above in-
tegrals. We achieve this goal in Theorems 1 and 2 from Section 4 below.
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2. Preliminaries

Let M be a compact subset of Cp, and let Ω(M) be the set of all
open compact subsets of M . By a distribution on M we mean a map
µ : Ω(M) → Cp that is finitely additive. If the set {µ(B) : B ∈ Ω(M)} is
bounded in Cp, µ is said to be a measure. Denote by G = Galcont(Cp/Qp)
the group of all continuous automorphisms of Cp over Qp. Any T ∈ Cp

has a G-orbit C(T ) = {σ(T ) : σ ∈ G}, which is a compact subset of
Cp. Denote by N(T, ε) the number of open balls of Cp of radius ε,
any two disjoint, which cover C(T ). If ε < ε′ then N(T, ε′) divides
N(T, ε). An element T ∈ Cp is called Lipschitzian if limε→0

ε
|N(T,ε)| = 0,

where | | stands for the p-adic absolute value of the integer N(T, ε).
A compact subset M of Cp is G-invariant provided that σ(x) ∈ M for
any x ∈ M and σ ∈ G. If M is a G-invariant compact subset of Cp,
given a distribution µ : Ω(M) → Cp, we say that µ is G-invariant if
µ(D) = µ(σ(D)) for any D ∈ Ω(M) and any σ ∈ G. If µ(M) = 1 we
call µ a probability distribution on M . For any T ∈ Cp, the p-adic Haar
distribution πT : Ω(C(T )) → Qp is the unique probability distribution
on C(T ) with values in Qp which is G-invariant. For more details and
more general types of p-adic spaces and measures see [Man], [Ka], [Ko],
[Vi]. Any continuous function f : M → Cp is integrable with respect to
any measure µ on M , where the notion of integrability is defined as
usual in terms of Riemann sums (see [Ko] the case M = C(T ), with
T ∈ Cp Lipschitzian, any Lipschitzian function f : C(T ) → Cp, is inte-
grable (see [APZ3]).

3. The case M = ∪
r
j=1

C(Tj)

In this section we briefly discuss the case when M is a finite union
of distinct Galois orbits, M = C(T1) ∪ · · · ∪ C(Tr) say. Our first ob-
jective is to obtain a characterization of all the G-invariant probability
distributions on M with values in Qp in terms of the Haar distribu-
tions πT1

, . . . , πTr
defined on the Galois orbits C(T1), . . . , C(Tr). Let

µ : Ω(M) → Qp be finitely additive, satisfying µ(M) = 1, and G-invari-
ant. Write any D ∈ Ω(M) as D = D1∪· · ·∪Dr, where Dj = D∩C(Tj).
Clearly each Dj belongs to Ω(M). Thus µ(D) =

∑r
j=1 µ(Dj). Let

α1, . . . , αr ∈ Qp be given by

(6) µ(C(Tj)) = αj , j = 1, . . . , r.

Note that

(7) α1 + · · · + αr = 1.
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Also,

(8) µ(D) =

r∑

j=1

αjπTj
(Dj) =

r∑

j=1

αjπTj
(D ∩ C(Tj))

for any D ∈ Ω(M). This expresses µ in terms of πT1
, . . . , πTr

. Con-
versely, for any α1, . . . , αr of Qp satisfying (7), formula (8) defines a
G-invariant probability distribution on M . If πT1

, . . . , πTr
are bounded,

so is µ. Then any continuous function f : M → Cp is integrable with
respect to µ, and

(9)

∫

M

fdµ =
r∑

j=1

αj

∫

C(Tj)

fdπTj
.

The equality (9) also holds if T1, . . . , Tr are Lipschitzian, provided f is
Lipschitzian. Applying (9) with f(x) = x gives a formula for the trace
of µ. Similarly, (9) and (5) give an expression for the trace function
associated to µ. We collect the results in the following proposition.

Proposition 1. Let M = ∪r
j=1C(Tj) with T1, . . . , Tr Lipschitzian ele-

ments of Cp for which the Galois orbits C(T1), . . . , C(Tr) are distinct.
Let µ be a G-invariant probability on M with values in Qp, and let
α1, . . . , αr be given by (6). Then (i) Tr µ is well defined, and satis-
fies the equality

Tr µ =

r∑

j=1

αjTr Tj.

(ii) The trace series F (µ, Z) is well defined, and is given by

F (µ, Z) =

r∑

j=1

αjF (Tj, Z).

As a consequence, it follows by [APZ3] that under the hypothesis
from Proposition 1, the function z 7→ F (µ, z) is well defined and rigid
analytic on P1(Cp)\{u ∈ P1(Cp) : 1

u ∈ M} (see also [E], [Ko], [Kr], [B]).
This is its maximal domain of rigid analyticity if α1, . . . , αr are nonzero.
Returning to (9), we may view its right side as an iterated integral, if
we introduce an appropriate measure on the finite set T = {T1, . . . , Tr}.
Specifically, for any T ∈ Cp, denote by νT the normalized Dirac measure
on Cp concentrated at T . Next, with α1, . . . , αr given by (6), consider
the measure ν on T defined as the linear combination

(10) ν =

r∑

j=1

αjνTj
.
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Thus
∫
T

gdν =
∑r

j=1 αjg(Tj) for any g : T → Cp. If now f and g are re-

lated by g(T ) =
∫

C(T ) f(y)dπT (y), then
∫
T g(T )dν(T ) =

∑r
j=1 αjg(Tj),

provided the two sides are well defined. We deduce that

(11)

∫

T

∫

C(T )

f(y)dπT (y)dν(T ) =

r∑

j=1

αj

∫

C(Tj)

f(y)dπTj
(y),

which, to simplify the notation, we also write as

(12)

∫

T

∫

C(T )

fdπT dν =

r∑

j=1

αj

∫

C(Tj)

fdπTj
.

Applying (12) to the function f from (9) gives
∫

M fdµ as an iterated
integral. We state the result in the following proposition.

Proposition 2. Let M = ∪r
j=1C(Tj) with T1, . . . , Tr Lipschitzian ele-

ments of Cp for which the Galois orbits C(T1), . . . , C(Tr) are distinct.
Let µ be a G-invariant probability distribution on M with values in Qp,
and define the measure ν on T = {T1, . . . , Tr} by (10) and (6). Then,
for any Lipschitzian function f : M → Cp,

(13)

∫

M

fdµ =

∫

T

∫

C(T )

fdπT dν.

Corollary 1. Let M , µ, T and ν be as in Proposition 2. Then

(i) Tr µ =

∫

T

Tr Tdν(T ),

and

(ii) F (µ, z) =

∫

T

F (T, z)dν(T ),(14)

for any z ∈ P1(Cp) for which both sides of (14) are well defined.

4. The general case

Proposition 2 above expresses the integral
∫

M fdµ as an iterated in-
tegral. We achieved this result by an ad-hoc construction, which made
use of a set T that is not intrinsically needed in our problem. We took
advantage of the initial appearance of the elements T1, . . . , Tr in the
definition of the set M , but they do not have any special significance
to the problem, and the set T may be replaced by any set of the form
{σ1(T1), . . . , σr(Tr)}, with σ1, . . . , σr ∈ G. Thus, rather than to insist
that T be a subset of Cp, it is more natural to define this set to be a set
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of Galois orbits. On Cp we have a natural equivalence relation: two ele-
ments T1 and T2 of Cp are equivalent if and only if there exists σ ∈ G such

that T2 = σ(T1). Denote by Ĉp the set of equivalence classes. Thus an el-

ement t of Ĉp is a Galois orbit. Let Ψ: Cp → Ĉp the canonical map, which

sends each element of Cp to its Galois orbit. On Ĉp we introduce a dis-
tance function d, by d(t1, t2) = inf{|x − y| : x ∈ Ψ−1(t1), y ∈ Ψ−1(t2)}.

We state some of the basic properties of Ĉp and its compact opens in
the following lemma.

Lemma 1. With the above notations, Ĉp is a complete ultrametric space,

and the map Ψ: Cp → Ĉp is 1-Lipschitzian. Moreover, for any D∈Ω(M)

and E ∈ Ω(M̂), we have Ψ(D) ∈ Ω(M̂) and Ψ−1(E) ∈ Ω(M).

To any G-invariant probability distribution µ on M with values in Qp

we now associate a probability distribution µ̂ on M̂ by µ̂(E)=µ(Ψ−1(E)),

for any E ∈ Ω(M̂). If E ∈ Ω(M̂) is written as a disjoint union E =

E1∪E2∪· · ·∪Em, with E1, . . . , Em ∈ Ω(M̂), then µ̂(E) = µ(Ψ−1(E)) =∑m
i=1 µ(Ψ−1(Ei)) =

∑m
i=1 µ̂(Ei), so µ̂ is finitely additive. Also, µ̂(M̂) =

µ(M) = 1, so µ̂ is a probability distribution on M̂ . We claim that
the map from the set of G-invariant probability distributions on M

with values in Qp to the set of probability distributions on M̂ with
values in Qp, given by µ 7→ µ̂, is bijective. We first show that this
map is injective. Assume that µ1 6= µ2 and µ̂1 = µ̂2. Choose D in
Ω(M) for which µ1(D) 6= µ2(D). Write D as a disjoint union of closed
balls in M , D = B1 ∪ B2 ∪ · · · ∪ Bn. Then

∑n
i=1 µ1(Bi) = µ1(D) 6=

µ2(D) =
∑n

i=1 µ2(Bi). Choose a Bi for which µ1(Bi) 6= µ2(Bi). One
has µ1(Ψ

−1(Ψ(Bi))) = µ̂1(Ψ(Bi)) = µ̂2(Ψ(Bi)) = µ2(Ψ
−1(Ψ(Bi))). Let

σ1, . . . , σN ∈ G be such that Ψ−1(Ψ(Bi)) = ∪N
j=1σj(Bi), with σj(Bi) dis-

joint. Then
∑N

j=1 µ1(σj(Bi)) = µ1(Ψ
−1(Ψ(Bi))) = µ2(Ψ

−1(Ψ(Bi))) =
∑N

j=1 µ2(σj(Bi)). Since µ1 and µ2 are G-invariant,
∑N

j=1 µ1(σj(Bi)) =

Nµ1(Bi), and
∑N

j=1 µ2(σj(Bi)) = Nµ2(Bi). Hence µ1(Bi) = µ2(Bi),

and we obtain a contradiction. This shows that the map µ 7→ µ̂ is in-
jective. The surjectivity is proved by similar reasonings. We collect the
results in the following theorem.

Theorem 1. Let M be a G-invariant compact subset of Cp. Then the
G-invariant probability distributions on M with values in Qp are in one-

to-one correspondence with the probability distributions on M̂ with values
in Qp, via the map µ 7→ µ̂.
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We note that µ̂ may be bounded even if µ is not bounded. For in-
stance, if M is a finite union of Galois orbits, then µ̂ is bounded, re-
gardless of whether µ is bounded or not. Note also that even if µ and
µ̂ are both bounded, we might not be able to obtain (13). For instance,
if M = ∪r

j=1C(Tj), with πTj
bounded for all j with the exception of

j = 1, then any G-invariant probability distribution µ on M with values
in Qp for which the corresponding α1 defined as in (6) vanishes, will be
bounded. In that case the left side of (13) will be well defined, for any
continuous function f : M → Cp. On the other hand, depending on f
and πT1

, the right side of (13) might be undefined, as the inner integral
in (13) may be undefined at the point T = T1. In what follows we will
avoid such situations by restricting to the case when µ̂ and the Haar
distributions πTj

are bounded.
We return to the more general case of a G-invariant compact subset

M of Cp and make the following assumption: there exists a positive
real number A, depending on M , such that for any T ∈ M and any
D ∈ Ω(C(T )), one has

(15) |πT (D)| ≤ A.

Here the absolute value on the left side of (15) is the p-adic absolute value
on Qp. The condition, in other words, says that the Haar distributions
πT , with T ∈ M , are uniformly bounded. We remark that, although M is
compact, it is not enough to assume that each πT with T in M is bounded
in order to conclude that these distributions are uniformly bounded.
As an example, choose a sequence (αn)n∈N of algebraic elements over
Qp, which is convergent to an algebraic element α, and such that the
exponent of p in the degree deg αn of αn over Qp tends to infinity as
n → ∞. Set M = C(α) ∪ ∪n∈NC(αn). Then M is compact and G-
invariant. Also, πα and παn

are bounded. On the other hand, for any
point U in C(αn), παn

({U}) = 1
deg αn

. Since the exponent of p in deg αn

tends to infinity as n → ∞, the Haar distributions are not uniformly
bounded.

We now return to the case of a general G-invariant compact set M for
which the Haar distributions πT , with T in M , are uniformly bounded.
Let µ be a G-invariant probability distribution on M for which µ̂ is
bounded. Then µ will also be bounded. We are interested to see whether

an analogue of formula (13) still holds in this generality. For any t ∈ M̂
we denote by Ct the Galois orbit in Cp which defines t, and by πt the
Haar distribution on Ct. Let f : M → Cp, f continuous. The analogue
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of (13) reads

(16)

∫

M

fdµ =

∫

cM

∫

Ct

fdπtdµ̂.

Since f is continuous and µ is bounded, the left side of (16) is well

defined. On the right side of (16), the outer integral, over M̂ , is with

respect to the variable t. For each fixed t ∈ M̂ , the inner integral is well
defined, as one integrates on Ct the restriction of f , which is continuous
with respect to πt, which is bounded. In order to show that the right
side of (16) is well defined, it will be enough to prove that the function

defined on M̂ by t 7→
∫

Ct
fdπt is continuous. Then, since µ̂ is bounded,

the outer integral, and then also the entire right side of (16) will be well
defined.

To show that the above function is continuous, fix t0 ∈ M̂ . We need
to show that

∫
Ct

fdπt →
∫

Ct0

fdπt0 , as t → t0. Fix ε > 0. Since f is

continuous and M compact, from uniform continuity, there is a δ > 0
such that, for any x, y ∈ M with |y − x| ≤ δ, one has |f(y) − f(x)| ≤ ε.

Let t in M̂ with d(t, t0) < δ. Write M as a disjoint union of closed
balls of radius δ. Some of them intersect Ct0 . Denote these balls by
B1, B2, . . . , BN . Since d(t, t0) < δ, each ball Bj , with 1 ≤ j ≤ N , has a
nonempty intersection with Ct. Let xj ∈ Ct0 ∩Bj and yj ∈ Ct ∩Bj , for
j = 1, 2, . . . , N .

Let S1 =
∑N

j=1 f(xj)πt0 (Ct0 ∩ Bj) and S2 =
∑N

j=1 f(yj)πt(Ct ∩ Bj).

The sums S1 and S2 are Riemann sums for the integrals
∫

Ct0

fdπt0 and

respectively
∫

Ct
fdπt. We need to show that these two integrals are close

to each other, provided that ε is small enough, and for this it is enough
to show that S1 and S2 are close to these integrals, and that S1 and S2

are close to each other. The balls Bj being conjugate, πt0(Ct0 ∩ Bj) =

πt(Ct ∩ Bj) = 1
N , hence S1 = 1

N

∑N
j=1 f(xj), and S2 = 1

N

∑N
j=1 f(yj).

Therefore, |S1−S2| =
∣∣∣ 1
N

∑N
j=1(f(xj)−f(yj))

∣∣∣ ≤ 1
|N | max1≤j≤N |f(xj)−

f(yj)|. Here xj , yj ∈ Bj , |xj − yj | ≤ δ, so |f(xj) − f(yj)| ≤ ε, and
consequently |S1 − S2| ≤

ε
|N | . By (15), the p-power in N is bounded in

terms of M only. It follows that

(17) |S1 − S2| → 0, as ε → 0.

Next, with ε and δ fixed, take a small δ′ > 0 and write each closed
ball Bj of radius δ as a disjoint union of closed balls of radius δ′, Bj =
∪r

i=1Bji. The balls Bj being conjugate, each of them is a disjoint union of
the same number r of closed balls of radius δ′. For any j ∈ {1, . . . , N},
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out of the r balls Bji, 1 ≤ i ≤ r , the same number of them, r′ say,
have a nonempty intersection with Ct0 . After redenoting the balls if
necessary, assume that the balls which intersect Ct0 are Bji, 1 ≤ i ≤ r′,
1 ≤ j ≤ N . Choose xji in Bji ∩ Ct0 , and consider the Riemann sum

S′
1 =

∑N
j=1

∑r′

i=1 f(xji)πt0(Bji ∩ Ct0).

Let δ′ be small enough so that for any choice of xji,
∣∣∣S′

1−
∫

Ct0

fdπt0

∣∣∣< ε.

The sets Bji ∩ Ct0 are conjugate, and S′
1 = 1

Nr′

∑N
j=1

∑r′

i=1 f(xji). By

our assumptions,
∣∣∣πt0(Bji∩Ct0)

∣∣∣ =
∣∣∣ 1
Nr′

∣∣∣ is bounded by a number which

depends on M only. Using the fact that |f(xj) − f(xji)| ≤ ε, since

xj , xji ∈ Bj for all i and j, we have |S1−S′
1| ≤

∣∣∣ 1
Nr′

∣∣∣max 1≤N
1≤i≤r′

∣∣∣f(xj)−

f(xji)
∣∣∣ ≤

∣∣∣ 1
Nr′

∣∣∣ε, so |S1 − S′
1| → 0, as ε → 0. We deduce that

(18) S1 →

∫

Ct0

fdπt0 , as ε → 0,

regardless of the choice of the parameters appearing in the definition
of S1. Similarly,

(19)
∣∣∣S2 −

∫

Ct

fdπt

∣∣∣ → 0, as ε → 0.

By (17), (18), and (19), we conclude that
∫

Ct
fdπt →

∫
Ct0

fdπt0 , as

t → t0, which proves the continuity of the map t 7→
∫

Ct
fdπt.

It remains to show that the two sides of formula (16) are equal. We
first reduce to the case of step functions. Fix a continuous function
f : M → Cp. By the uniform continuity of f , for any ε > 0, there is a
δ > 0 such that |f(x)−f(y)| ≤ ε for any x, y ∈ M with |x−y| ≤ δ. Write
M as a disjoint union of closed balls of radius δ, M = ∪m

j=1Bj . Choose zj

in Bj , and let g =
∑m

j=1 f(zj)χBj
, where χBj

denotes the characteristic

function of the ball Bj . Denote h = f−g. Then |h(z)| = |f(z)−g(z)| ≤ ε,
for any z ∈ M . It follows that for any Riemann sum S associated with

the integral
∫

M hdµ, S =
∑L

i=1 h(xi)µ(Di), where D1, . . . , DL ∈ Ω(M)
form a partition of M , and xi ∈ Di for 1 ≤ i ≤ L, one has

(20) |S| ≤ max
1≤i≤L

|h(xi)µ(Di)| ≤ εA(µ),

where A(µ) = supD∈Ω(M) |µ(D)| < ∞. By applying (20) to a sequence

of Riemann sums converging to
∫

M hdµ, we obtain

(21)
∣∣∣
∫

M

hdµ
∣∣∣ ≤ εA(µ).
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Similarly, the sup norm of h on Ct, with t ∈ M̂ , is bounded by ε, and∣∣ ∫
Ct

hdπt

∣∣≤εA(πt), whereA(πt)=supD∈Ω(M) |πt(D)|. Define H: M̂ →Cp

by H(t) :=
∫

Ct
hdπt. Then sup

t∈cM
|H(t)| ≤ ε sup

t∈cM
A(πt). By our

assumption supt∈cM A(πt) < ∞. We find as before that

(22)
∣∣∣
∫

cM

∫

Ct

hdπtdµ̂
∣∣∣ =

∣∣∣
∫

cM

H(t)dµ̂
∣∣∣ ≤ εA(µ̂) sup

t∈cM

A(πt),

where A(µ̂) = sup
D∈Ω(cM)

|µ̂(D)| < ∞. Assuming that (16) holds for all

the step functions defined on M , we have

(23)

∫

M

gdµ =

∫

cM

∫

Ct

gdπtdµ̂.

Combining (21), (22) and (23) we derive the inequality

∣∣∣
∫

M

fdµ −

∫

cM

∫

Ct

fdπtdµ̂
∣∣∣ ≤ ε max

{
A(µ), A(µ̂) sup

t∈cM

A(πt)
}
.

We now let ε → 0 and conclude that formula (16) holds true for f .
So we are done provided we show that formula (16) holds true for step
functions. Clearly both sides of (16) are linear operators. Therefore it is
enough to prove (16) in the particular case when f is the characteristic
functions of a closed ball B in M . In this case, the left side of (16)
reduces to

(24)

∫

M

χBdµ = µ(B),

while the right side of (16) equals

(25)

∫

cM

∫

Ct

χBdπtdµ̂ =

∫

cM

πt(B ∩ Ct)dµ̂.

Let us denote E = Ψ(B). We know that

(26) µ̂(E) = µ(Ψ−1(E)) = µ(Ψ−1(Ψ(B))).

We also know that Ψ−1(Ψ(B)) can be written as a finite disjoint union
of closed balls of the form

(27) Ψ−1(Ψ(B)) = ∪N
i=1σi(B),

where σ1, σ2, . . . , σN ∈ G. By (24), (26) and (27) we obtain

(28)

∫

M

χBdµ = µ(B) =
1

N
µ(Ψ−1(Ψ(B))) =

1

N
µ̂(E).
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On the other hand, it is easy to see that πt(B ∩ Ct) = 1
N for any t ∈ E,

while for t ∈ M̂ \ E one has πt(B ∩ Ct) = 0. Combining this with (25)
we find that

(29)

∫

cM

∫

Ct

χBdπtdµ̂ =

∫

cM

πt(B ∩ Ct)dµ̂ =

∫

E

1

N
dµ̂ =

1

N
µ̂(E).

Finally, by (28) and (29) we see that formula (16) holds true for χB. We
collect the results in the following theorem.

Theorem 2. Let M be a G-invariant compact subset of Cp and let µ be
a G-invariant probability distribution on M with values in Qp. Assume

that µ̂ is bounded, and that the Haar distributions πt, with t ∈ M̂ , are
uniformly bounded. Then for any continuous function f : M → Cp,

∫

M

fdµ =

∫

cM

∫

Ct

fdπtdµ̂.

As a corollary we obtain an expression for the trace of µ and the trace
function associated to µ in terms of the trace Tr t and respectively the

trace function F (t, z) associated to the Galois orbits Ct, with t in M̂ .

Corollary 2. Let M and µ be as in the statement of Theorem 2. Then

(i) Tr µ =

∫

cM

Tr tdµ̂,

and

(ii) F (µ, z) =

∫

cM

F (t, z)dµ̂,(30)

for any z ∈ P1(Cp) for which both sides of (30) are well defined.
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