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ASYMPTOTIC ISOPERIMETRY OF BALLS IN METRIC

MEASURE SPACES

Romain Tessera

Abstract
In this paper, we study the asymptotic behavior of the volume of
spheres in metric measure spaces. We first introduce a general set-
ting adapted to the study of asymptotic isoperimetry in a general
class of metric measure spaces. Let A be a family of subsets of
a metric measure space (X, d, µ), with finite, unbounded volume.
For t > 0, we define

I
↓
A

(t) = inf
A∈A, µ(A)≥t

µ(∂A).

We say that A is asymptotically isoperimetric if ∀ t > 0

I
↓
A(t) ≤ CI(Ct),

where I is the profile of X. We show that there exist graphs
with uniform polynomial growth whose balls are not asymptoti-
cally isoperimetric and we discuss the stability of related proper-
ties under quasi-isometries. Finally, we study the asymptotically
isoperimetric properties of connected subsets in a metric measure
space. In particular, we build graphs with uniform polynomial
growth whose connected subsets are not asymptotically isoperi-
metric.

1. Introduction

The study of large scale isoperimetry on metric measure spaces has
proven to be a fundamental tool in various fields ranging from geomet-
ric group theory [6], [10] to analysis and probabilities on graphs and
manifolds [1], [2]. One of the targets of this paper is to find a sim-
ple setting adapted to the large scale study of isoperimetric properties.
This includes some general assumptions on metric measure spaces, a
convenient notion of “large scale” boundary of a subset, and a family of
maps preserving the large scale isoperimetric properties. There are two
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kinds of questions concerning isoperimetry [11]: what is the isoperimet-
ric profile? What are the subsets that optimize the isoperimetric profile?
Here, we will formulate similar questions in a large scale setting: we will
not be interested in the exact values of the isoperimetric profile but in
its asymptotic behavior and we will consider sequences of subsets that
optimize “asymptotically” the isoperimetric profile. Dealing with gen-
eral metric measure spaces, the family of balls seems to be a natural
candidate for optimizing asymptotically the isoperimetric profile. Nev-
ertheless, we will see that even under apparently strong assumptions on
the space X , this is not always the case. Let us be more precise.

1.1. Boundary of a subset and isoperimetric profile.

Let (X, d, µ) be a metric measure space. Let us denote B(x, r) the
closed ball of center x and radius r. We suppose that the measure µ is
Borel, supported on X and σ-finite. For any measurable subset A of X ,
any h > 0, write

Ah = {x ∈ X, d(x, A) ≤ h},

and

∂hA = Ah ∩ (Ac)h.

Let us call ∂hA the h-boundary of A, and ∂hB(x, r) the h-sphere of
center x and radius r.

Definition 1.1. Let us call the h-profile the nondecreasing function
defined on R+ by

Ih(t) = inf
µ(A)≥t

µ(∂hA),

where A ranges over all µ-measurable subsets of X with finite measure.

This definition of large-scale boundary has the following advantage:
under some weak properties on the metric measure space X , we will see
in Section 3.1 that in some sense, the boundary of a subset A ⊂ X has a
thickness “uniformly comparable to h”. This will be play a crucial role
in the proof of the invariance of “asymptotic isoperimetric properties”
under large-scale equivalence (see Section 1.3).

1.2. Lower/upper profile restricted to a family of subsets.

Let (X, d, µ) be a metric measure space. In order to study isoperi-
metric properties of a family of (measurable) subsets of X with finite,
unbounded volumes, it is useful to introduce the following notions
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Definition 1.2. Let A be a family of subsets of X with finite, un-
bounded volumes. We call lower (resp. upper) h-profile restricted to A
the nondecreasing function I↓h,A defined by

I↓h,A(t) = inf
µ(A)≥t, A∈A

µ(∂hA)

(resp. I↑h,A(t) = supµ(A)≤t, A∈A µ(∂hA)).

Definition 1.3. Consider two monotone functions f and g : R+ → R+.
Say that f ≈ g if there exist some constants Ci such that C1f(C2t) ≤
g(t) ≤ C3f(C4t) for all t ∈ R+.

The asymptotic behavior of a monotone function R+ → R+ may be
defined as its equivalence class modulo ≈.

We get a natural order relation on the set of equivalence classes mod-
ulo ≈ of monotone functions defined on R+ by setting

(f � g) ⇔ (∃ C1, C2 > 0, ∀ t > 0, f(t) ≤ C1g(C2t)).

We say that the familyA is asymptotically isoperimetric (resp. strongly
asymptotically isoperimetric) if for all A ∈ A

I↓h,A � Ih

(resp. I↑h,A � Ih).

Remark 1.4. Note that asymptotically isoperimetric means that for any t
we can always choose an optimal set among those of A whose measure
is larger than t whereas strongly asymptotically isoperimetric means
that every set of A is optimal (but the family (µ(A))A∈A may be lacu-
nar). In almost all cases we will consider, the family (µ(A))A∈A will not
be lacunar, and strong asymptotic isoperimetry will imply asymptotic
isoperimetry.

1.3. Large scale study.

Let us recall the definition of a quasi-isometry (which is also some-
times called rough isometry).

Definition 1.5. Let (X, d) and (X ′, d′) be two metric spaces. One says
that X and X ′ are quasi-isometric if there is a function f from X to X ′

with the following properties.

(a) There exists C1 > 0 such that [f(X)]C1
= X ′.

(b) There exists C2 ≥ 1 such that, for all x, y ∈ X ,

C−1
2 d(x, y) − C2 ≤ d′(f(x), f(y)) ≤ C2d(x, y) + C2.
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Example 1.6. Let G be a finitely generated group and let S1 and S2

two finite symmetric generating sets of G. Then it is very simple to
see that the identity map G → G induces a quasi-isometry between
the Cayley graphs (G, S1) and (G, S2). At the beginning of the 80’s,
M. Gromov (see [6]) initiated the study of finitely generated groups up
to quasi-isometry.

Example 1.7. The universal cover of a compact Riemannian manifold
is quasi-isometric to every Cayley graph of the covering group (see [6]
and [12]).

Note that the notion of quasi-isometry is purely metric. So, when we
look for quasi-isometry invariant properties of metric measure spaces, we
are led to assume some uniformity properties on the volume of balls. This
is the reason why, for instance, this notion is well adapted to geometric
group theory. But since we want to deal with more general spaces,
we will define a more restrictive class of maps. Those maps will be
asked to preserve locally the volume of balls. On the other hand, we
want local properties to be stable under bilipschitz fluctuations of the
metric. Precisely, let (X, d, µ) be a metric measure space and let d′ be
another metric on X such that d/d′ and d′/d are bounded. The following
definition (see [1]) prevents wild changes of the volume of balls with
bounded radii under the identity map between (X, d, µ) and (X, d′, µ).

Definition 1.8. Let us say that (X, d, µ) is doubling at fixed radius, or
has property (DV )loc if for all r > 0, there exists Cr > 0 such that, for
all x ∈ X

µ(B(x, 2r)) ≤ Crµ(B(x, r)).

Remark 1.9. Note that property (DV )loc is local in r but uniform in x.

Example 1.10. Bounded degree graphs or Riemanniann manifolds with
Ricci curvature bounded from below satisfy (DV )loc.

The following notion was introduced by Kanai [8] (see also [1]).

Definition 1.11. Let (X, d, µ) and (X ′, d′, µ′) be two metric measure
spaces with property (DV )loc. Let us say that X and X ′ are large scale
equivalent (we can easily check that it is an equivalence relation) if there
is a function f from X to X ′ with the following properties: there exist
some constants C1 > 0, C2 ≥ 1, C3 ≥ 1 such that
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(a) f is a quasi-isometry of constants C1 and C2;

(b) for all x ∈ X

C−1
3 µ(B(x, 1)) ≤ µ′(B(f(x), 1)) ≤ C3µ(B(x, 1)).

Focusing our attention on balls of radius 1 may not seem very natural.
Nevertheless, this is not a serious issue since property (DV )loc allows to
make no distinction between balls of radius 1 and balls of radius C for
any constant C > 0.

Remark 1.12. Note that for graphs with bounded degree (equipped with
the counting measure), or Riemannian manifolds with bounded Ricci
curvature (equipped with the Riemannian measure), quasi-isometries are
automatically large-scale equivalences.

1.4. Volume of balls and growth function.

Let (X, d, µ) be a metric measure space. The equivalence class mod-
ulo ≈ of µ(B(x, r)) does not depend on x. We call it the volume growth
of X and we write it V (r). We have the following easy fact (see [1]).

Proposition 1.13. The volume growth is invariant under large-scale
equivalence (among (DV )loc spaces).

Definition 1.14. Let X be a metric measure space. We say that X is
doubling if there exists a constant C > 0 such that, ∀ x ∈ X and ∀ r ≥ 0

(1.1) µ(B(x, 2r)) ≤ Cµ(B(x, r)).

We will call this property (DV ).

Remark 1.15. It is easy to see that (DV ) is invariant under large scale
equivalence between (DV )loc spaces. To be more general, we could define
an asymptotic doubling condition (DV )∞, restricting (1.1) to balls of ra-
dius more than a constant (depending on the space). Property (DV )∞
is also stable under large-scale equivalence between (DV )loc spaces and
has the advantage to focus on large scale properties only. Actually, in
every situation met in this paper, the assumption (DV ) can be replaced
by (DV )∞ + (DV )loc (note that they are equivalent for graphs). Never-
theless, for the sake of simplicity, we will leave this generalization aside.

Example 1.16. A crucial class of doubling spaces is the class of spaces
with polynomial growth: we say that a metric measure space has (strict)
polynomial growth of degree d if there exists a constant C ≥ 1 such that,
∀ x ∈ X and ∀ r ≥ 1

C−1rd ≤ µ(B(x, r)) ≤ Crd.
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Gromov proved [5] that if a finitely generated group G satisfies

µ(B(1, r)) ≤ Crd

for some constant C > 0, then it has polynomial growth with integer
degree. Another very interesting class of examples are fractals as for in-
stance, the (unbounded) Sierpinski gasket or more generally, polygaskets
(see [4], [13]).

2. Organization of the paper

In the next section, we present a setting adapted to the study of
asymptotic isoperimetry in general metric measure spaces. The main
interest of this setting is that the “asymptotic isoperimetric properties”
are invariant under large-scale equivalence. In particular, it will imply
that if X is a (DV )loc and uniformly connected space (see next section),
then the class modulo ≈ of Ih will not depend any more on h provided
h is large enough. For that reason, we will simply denote I instead of Ih.
Then, we introduce a notion of weak geodesicity which is invariant under
Hausdorff equivalence (see Section 3.2) but not under quasi-isometry.
We call it property (M) since it can be formulated in terms of existence
of some “monotone” geodesic chains between any pair of points. This
property plays a crucial role when we want to obtain upper bounds for
the volume of spheres (see [14]). It will also appear as a natural condition
for some properties discussed in this paper.

Here are the two main problems concerning isoperimetry in metric
measure spaces: first, determining the asymptotic behavior of the pro-
file; second, finding families of subsets that optimize the profile. The
asymptotic behavior of I is more or less related to volume growth (see [2]
and [9] for the case of finitely generated groups). In the setting of groups,
the two problems have been solved for Lie groups (and for polycyclic
groups) in [10] and [2] and for a wide class of groups constructed by
wreath products in [3]. It seems very difficult (and probably desperate)
to get general statements for graphs with bounded degree without any
regularity assumption (like doubling property or homogeneity). On the
other hand, let us emphasize the fact that doubling condition appears
as a crucial assumption in many fields of analysis. So in this article, we
will deal essentially with doubling metric measure spaces. Without any
specific assumption on the space, balls seem to be natural candidates for
being isoperimetric subsets, especially when the space is doubling (see
Corollary 4.4).

One could naively think that thanks to Theorem 3.10, a property like
asymptotic isoperimetry of balls is stable under large-scale equivalence.
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Unfortunately, it is not the case: this is essentially due to the fact that
the image of a ball under a quasi-isometry is quite far from being a ball.
Namely, in order to apply Theorem 3.10, one would need the existence
of some C > 0 such that

(2.1) B(f(x), r − C) ⊂ [f(B(x, r))]C ⊂ B(f(x), r + C)

∀ x ∈ X, ∀ r > 0.

This condition is satisfied if f is a Hausdorff1 equivalence. But if f is only
a quasi-isometry, one cannot expect better than the following inclusions

(2.2) B(f(x), C−1r − C) ⊂ [f(B(x, r))]C ⊂ B(f(x), Cr + C)

∀ x ∈ X, ∀ r > 0.

Let us introduce some terminology. First, let us write B for the family
of all closed balls of X .

Definition 2.1. Let X be a metric measure space.

• We say that X is (IB) if balls are asymptotically isoperimetric,
i.e. if

I↓B � I.

Otherwise, we will say that X is (NIB).
• We say that X is strongly-(IB) if balls are strongly asymptoti-

cally isoperimetric, i.e. if

I↑B � I.

• Finally, we say that a metric measure space is stably-(IB)
(resp. stably-(NIB)) if every space with2 Property (M) that is large
scale equivalent to X is (IB) (resp. (NIB)).

Definition 2.2. We say that a space (X, d, µ) satisfies a strong (isoperi-
metric) inequality —or that X has a strong profile— if I � id /φ where
φ is the equivalence class modulo ≈ of the function

t → inf{r, µ(B(x, r) ≥ t}.

1See Section 3.2 for a definition.
2Property (M) is an abreviation for “monotone geodesic property” which is slightly
weaker than being geodesic, see Definition 3.15.
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We will show that every doubling space satisfying a strong isoperi-
metric inequality satisfies (IB). This actually implies that such a space
satisfies stably-(IB). In particular, any compactly generated, locally com-
pact group of polynomial growth satisfies (IB). In contrast, apart from
the Abelian case [14], it is still unknown whether such a group G satisfies
strongly-(IB) or not, or, in other words, if we have µ(Kn+1

rKn) ≈ nd−1

where K is a compact generating set of G and µ is a Haar measure on G.
Conversely, we will show that every strongly-(IB) doubling space sat-

isfies a strong isoperimetric inequality. On the other hand, we will see
that the strong isoperimetric inequality does not imply strongly-(IB),
even if the volume growth is linear (V (r) ≈ r).

To see that strongly-(IB) is not stable under large scale equivalence,
even among graphs with polynomial growth, we shall construct a graph
quasi-isometric to Z2 whose volume of spheres is not dominated by
rlog 3/ log 2 (where r is the radius). Note that this can be compared with
the following result (see [14, Theorem 1]).

Theorem 2.3 ([14]). Let X be a metric measure space with proper-
ties (M) and (DV ) (for instance, a graph or a complete Riemannian
manifold with the doubling property). There exists δ > 0 and a con-
stant C > 0 such that, ∀ x ∈ X and ∀ r > 0

µ (B(x, r + 1) r B(x, r)) ≤ Cr−δµ(B(x, r)).

In particular, the ratio µ(∂Bx,r(x))/µ(B(x, r)) tends to 0 uniformly in x
when r goes to infinity.

When the profile is not strong, we will see that many situations can
happen. All the counterexamples built in the corresponding section will
be graphs of polynomial growth.

The case of a bounded profile is quite specific.3 Indeed, in that case,
and under some hypothesis on X (including graphs and manifolds with
bounded geometry), we will prove that if (Pn)n∈N is an asymptotically
isoperimetric sequence of connected subsets of X , one can find a con-
stant C ≥ 1 and ∀ n ∈ N, some xn ∈ X , rn > 0 such that

B(xn, rn) ⊂ Pn ⊂ B(xn, Crn).

Note that here, we don’t ask X to be doubling.

3Note that there exist infinite self-similar graphs such as the unbounded Serpinsky
gasket [13], with polynomial growth and with bounded asymptotic isoperimetric
profile.
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Nevertheless, we will see that there exist graphs with polynomial
growth (with unbounded profile) such that no asymptotically isoperi-
metric family has this property. In particular, those graphs are sta-
bly-(NIB).

To be complete, we also build graphs with polynomial growth,
bounded profile and satisfying stably-(NIB).

Concerning the stability under large-scale equivalence, we will see
that even among graphs with polynomial growth, with bounded or un-
bounded profile, property (IB) is not stable under large-scale equivalence
(in the case of graphs equipped with the counting measure, a large-scale
equivalence is simply a quasi-isometry).

Finally, we shall examine isoperimetric properties of connected sub-
sets.

Definition 2.4. Let us say that a subset A is (metrically) connected
if for any partition A = A1 ⊔ A2 such that ∂A1 ∩ ∂A2 = ∅, either A1

or A2 is empty.

Clearly, since balls of a (M)-space are connected, the strong isoperi-
metric inequality implies that connected sets are asymptotically isoperi-
metric (see also Theorem 6.1).

On the other hand, we will show that there exist graphs with poly-
nomial growth whose connected subsets are not asymptotically isoperi-
metric: namely there exists an increasing sequence of integers (Nn) such
that to optimize (asymptotically) the isoperimetric profile at these val-
ues, one has to take a sequence of subsets with an number of connected
components that tends to infinity and such that the distance between
these connected components also tends to infinity.

Remark 2.5. Note that all our conterexamples are far from being ho-
mogeneous. So many of the properties discussed in this paper should
also be discussed in a more restrictive class of spaces such as spaces with
fractal properties.

3. Isoperimetry at infinity: a general setting

3.1. Isoperimetric at a given scale.

The purpose of this section is to find some minimal conditions under
which “isoperimetric properties at infinity” are invariant under large-
scale equivalence. In the introduction, namely in Section 1.1, we justified
our definition of the boundary by the fact that we want it to have a
uniform thickness. Nevertheless, it is not suffisant to our purpose: we
will also need a discrete connectivity property. Indeed, let X be a graph;



324 R. Tessera

if h = 1/2, then every subset of X has a trivial boundary, so that all the
isoperimetric properties of X are trivial.

Definition 3.1. Let X be a metric space and fix b > 0. Let us call a
b-chain of length n from x to y, a finite sequence x0 = x, . . . , xn = y
such that d(xi, xi+1) ≤ b.

The following definition can be used to study the isoperimetry at a
given scale, although we will only use it “large-scale version” in this
paper.

Definition 3.2.
Scaled version: Let b > 0 and E1 ≫ b. Let us say that X is uniformly
b-connected at scale ≤ E1 if there exists a constant E2 ≥ E1 such that
for every couple x, y ∈ X such that d(x, y) ≤ E1, there exists a b-chain
from x to y totally included in B(x, E2).

Large-scale version: If, for all E1 ≫ b, X is uniformly b-connected at
scale ≤ E1, then we say that X is uniformly b-connected (or merely
uniformly connected).

Remark 3.3. Note that in the scaled version, the space X is allowed to
have a proper nonempty subset A such that d(A, Ac) > E1: in this case
X is not b-connected at all.

Invariance under quasi-isometry. Note that if X is uniformly b-con-
nected at scale ≤ E1 and if f : X → X ′ is a quasi-isometry of con-
stants C1 and C2, then X ′ is uniformly C2b + C1-connected at scale ≤
E1/C2 − C1. In particular, if X is uniformly b-connected, then X ′ is
uniformly (C2b + C1)-connected.

Remark 3.4. Let us write db(x, y) for the b-distance from x to y, that
is, the minimal length of a b-chain between x and y (note that if every
couple of points of X can be joined by a b-chain, then db is a pseudo-
metric on X).

If there4 exists C > 0 such that, for all x, y ∈ X , one has db(x, y) ≤
Cd(x, y) + C, then in particular, X is uniformly b-connected.

Example 3.5. A graph and a Riemannian manifold are respectively
uniformly 1-connected and uniformly b-connected for all b > 0.

4Such a space is often called b-quasi-geodesic.
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Proposition 3.6. Let X be a uniformly b-connected space at scale ≤ E1.
Let h be such that h ≥ 2b.

(i) For every subset A of X and every x ∈ Ac such that d(x, A) < E1

(resp. x ∈ A such that d(x, Ac) < E1), there exists a point z ∈ ∂hA
at distance ≤ E2 of x such that

B(z, b) ⊂ ∂hA.

(ii) If, moreover, X is (DV )loc and h ≪ E1, then there exists a con-
stant C′ ≥ 1 such that, for every subset A, there exists a fam-
ily (B(yi, b))i included in ∂hA, such that, for all i 6= j, d(yi, yj) ≥
E2 and such that

∑

i

µ(B(yi, b)) ≤ µ(∂hA) ≤ C′
∑

i

µ(B(yi, b)).

(iii) The h-boundary measure of a subset of a (DV )loc, uniformly b-con-
nected space does not depend on h up to a multiplicative constant,
provided E1 ≫ h ≥ 2b.

Proof: Let x ∈ Ac such that d(x, A) < E1 and let y ∈ A be such that
d(x, y) ≤ E1. We know from the hypothesis that there exists a finite
chain x0 = x, x1, . . . , xn = y satisfying

• xn ∈ A,
• d(x, xi) ≤ E2 for all i,
• for all 1 ≤ i ≤ n, d(xi−1, xi) ≤ b.

Since x ∈ Ac and y ∈ A, there exists j≤n such that xj−1∈Ac and xj ∈A.
Clearly, xj ∈ Ab ∩ [Ac]b = ∂bA. But since [∂bA]b ⊂ ∂2bA ⊂ ∂hA, the
ball B(xj , b) is included in ∂hA, which proves the first assertion.

Let us show the second assertion. Consider a maximal family of dis-
joint balls (B(xi, 2E2))i∈I with centers xi ∈ ∂hA. Then (B(xi, 5E2))i∈I

forms a covering of ∂hA.
Using the first assertion and the fact that h ≪ E1, one sees that

each B(xi, 2E2) contains a ball B(yi, b) included in ∂hA. It is clear that
the balls B(yi, 10E2) form a covering of ∂hA and that the balls (B(yi, b)
are disjoint. But, by property (DV )loc, there exists C′ ≥ 1, depending
on b and E2, such that, for all i ∈ I

µ(B(yi, 10E2)) ≤ C′µ(B(yi, b)).

We deduce
∑

i

µ(B(yi, b)) ≤ µ(∂hA) ≤ C′
∑

i

µ(B(yi, b))

which proves (ii). The assertion (iii) now follows from (ii).
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Remark 3.7. This proposition gives conditions to study isoperimetry
at scale between b and E1, i.e. choosing h far from those two bounds.
Thus, we will always assume that this condition holds and we will simply
write ∂A instead of ∂hA. Otherwise, problems may happen. We talked
about what can occur if h < b at the beginning of this section. Now,
let us give an idea of what can happen if h > E1. Consider a metric
measure space X such that X = ∪i∈IXi where the Xi are subsets such
that d(Xi, Xj) ≥ E1 whenever i 6= j and such that µ(Xi) is finite for
every i ∈ I but not bounded. Note that for h < E1 the boundary of
every Xi is empty so that the family (Xi)i∈I is trivially asymptotically
isoperimetric. But this can change dramatically if h > E1 because the
boundary of Xi can meet many Xj ’s for j 6= i.

Remark 3.8. If we replace uniformly b-connected at scale ≤ E1 by uni-
formly b-connected, then the proposition gives a setting adapted to
the study of large scale isoperimetry. Namely, it says that for a uni-
formly b-connected, (DV )loc space, the choice of h does not matter,
provided h ≥ 2b.

Corollary 3.9. Let X be a (DV )loc, uniformly b-connected space. If
h, h′ ≥ 2b, we have

Ih ≈ Ih′ .

So, from now on, we will simply call “profile” (instead of h-profile)
the equivalence class modulo ≈ of Ih. Note that the same holds for

restricted profiles I↓h,A, and I↑h,A that we will simply denote I↓A and I↑A
(where A is a family of subsets of X).

The following theorem shows that a large-scale equivalence f with
controlled constants essentially preserves all isoperimetric properties.

Theorem 3.10. Let f (X, d, µ) → (X ′, d′, µ′) be a large-scale equiva-
lence (with constants C1, C2 and C3) where X (resp. X ′) is (DV )loc

and uniformly b-connected at scale ≤ E1 (resp. uniformly b′-connected
at scale ≤ E′

1). We suppose also that E1 and E′
1 are far larger than C1,

C2, C2b and C2(b
′ +C1). Then, there exists a constant K ≥ 1 such that,

for any subset A of finite measure

µ′(∂[f(A)]C1) ≤ Kµ(∂A).

Proof: Let us start with a lemma.

Lemma 3.11. Let X be a (DV )loc space and fix some α > 0. Then there
exists a constant c > 0 such that, for all family (B(xi, α))i∈I of disjoint
balls of X, there is a subset J of I such that ∀ j ∈ J , the balls B(xj , 2α)



Asymptotic Isoperimetry of Balls 327

are still disjoint, and such that

∑

j∈J

µ(B(xj , 2α)) ≥ c
∑

i∈I

µ(B(xi, α)).

Proof: Let us consider a maximal subset J of I such that (B(xj , 2α))j∈J

forms a family of disjoint balls. Then, by maximality, we get

⋃

i∈I

B(xi, α) ⊂
⋃

j∈J

B(xj , 4α).

We conclude thanks to property (DV )loc.

To fix ideas, take h = 2b and h′ = 2b′. Assertion (ii) of Proposi-
tion 3.6 implies that there exists a family of balls (B(yi, b

′))i included
in ∂[f(A)]C1 such that, for all i 6= j, d(yi, yj) ≥ E′

2 and such that

∑

i

µ(B(yi, b
′)) ≤ µ(∂h[f(A)]C1) ≤ C′

∑

i

µ(B(yi, b
′)).

By the lemma, and up to changing the constant C′, one can even
suppose that d(yi, yj) ≫ C2E2 for i 6= j.

For all i, let xi be a element of X such that d(f(xi), yi) ≤ C1. The
points xi are then at distance ≫ E2 to one another. Moreover, since
yi is both at distance ≤ 2b + C1 of f(A) and of f(Ac), xi is both at
distance ≪ E1 of A and of Ac. So, by the assertion (i) of the propo-
sition, there exists a ball B(zi, b) included in ∂A ∩ B(xi, E2). Since
balls B(xi, E2) are disjoint, so are the B(zi, b). The theorem then fol-
lows from property (DV )loc and from property of “almost-conservation”
of the volume (property (b)) of large-scale equivalence.

Remark 3.12. Note that in the case of graphs, the condition h ≥ 2 can
be relaxed to h ≥ 1 (the proposition and the theorem stay true and their
proofs are unchanged).

Corollary 3.13. Under the hypotheses of the theorem, we have

(i) if the family (Ai)i∈I is asymptotically isoperimetric, then so is
(f(Ai)b)i∈I ;

(ii) if I and I ′ are the profiles of X and X ′ respectively, we get I ≈ I ′.

The corollary results immediately from the theorem and the following
proposition.
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Proposition 3.14. Let f be a large-scale equivalence between two
(DV )loc spaces X and X ′. Then for every subset A of X, there exists
C ≥ 1 such that

µ(A) ≤ Cµ′([f(A)]C1).

Proof: Consider a maximal family of disjoint balls (B(yi, C1))i∈I whose
centers belong to f(A). These balls are clearly included in [f(A)]C1 .
By property (DV )loc, the total volume of these balls, and therefore
µ′([f(A)]C1), are comparable to the sum of the volumes of balls
B(xi, 3C1)i∈I that form a covering of [f(A)]C1 . The preimages of these
balls thus cover A. But, for each i, f−1(B(yi, 3C1)) is contained in a
ball of radius 3C1C2 + C2 and of center xi where xi ∈ f−1({yi}). By
property (DV )loc and property of almost-conservation of the measure of
small balls (property (b)) of f , the measure of this ball is comparable to
that of B(yi, 3C1). So we are done.

Finally, let us mention that if we suppose that X and X ′ are uniformly
connected and satisfy the (DV )loc condition, then Theorem 3.10 and its
corollary hold for any large-scale equivalence f .

3.2. Property (M): monotone geodesicity.

Let us introduce a natural (but quite strong) property of geodesicity.

Definition 3.15. Let us say that (X, d) has property (M) if there exists
C ≥ 1 such that, ∀ x ∈ X , ∀ r > 0 and ∀ y ∈ B(x, r + 1), we have
d(y, B(x, r)) ≤ C.

Remark 3.16. Let (X, d) be a (M) metric space. Then X has “monotone
geodesics” (this is why we call this property (M)): i.e. there exists C ≥ 1
such that, for all x, y ∈ X , there exists a finite chain x0 =x, x1, . . . , xn =y
such that ∀ 0 ≤ i < n,

d(xi, xi+1) ≤ C;

and

d(xi, x) ≤ d(xi+1, x) − 1.

Consequently, ∀ r, k > 0, ∀ y ∈ B(x, r + k), we have

d(y, B(x, r)) ≤ Ck.

These two properties are actually trivially equivalent to property (M).

Recall (see [7, p. 2]) that two metric spaces X and Y are said Haus-
dorff equivalent

X ∼Hau Y
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if there exists a (larger) metric space Z such that X and Y are contained
in Z and such that

sup
x∈X

d(x, Y ) < ∞

and

sup
y∈Y

d(y, X) < ∞.

Remark 3.17. It is easy to see that property (M) is invariant under
Hausdorff equivalence. But on the other hand, property (M) is unstable
under quasi-isometry. To construct a counterexample, one can quasi-
isometrically embed R+ into R2 such that the image, equipped with the
induced metric does not have property (M): consider a curve starting
from 0 and containing for every k ∈ N a half-circle of radius 2k. So
it is strictly stronger than quasi-geodesic property [7, p. 7], which is
invariant under quasi-isometry: X is quasi-geodesic if there exist two
constants d > 0 and λ > 0 such that for all (x, y) ∈ X2 there exists a
finite chain of points of X

x = x0, . . . , xn = y,

such that

d(xi−1, xi) ≤ d, i = 1, . . . , n,

and
n

∑

i=1

d(xi−1, xi) ≤ λd(x, y).

Example 3.18. A geodesic space has property (M), in particular graphs
and complete Riemannian manifolds have property (M). A discretisation
(i.e. a discrete net) of a Riemannian manifold X has property (M) for
the induced distance.

Remark 3.19. Note that in general, if X is a metric measure space, we
have

∂1/2B(x, r + 1/2) ⊂ B(r + 1) \ B(x, r).

Moreover, if X has property (M), then, we have

B(x, r + 1) \ B(x, r) ⊂ ∂CB(x, r + 1).

Note that this is not true in general, even for quasi-geodesic spaces.
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4. Link between isoperimetry of balls and strong
isoperimetric inequality

4.1. Strong isoperimetric inequality implies (IB).

The spaces we will consider from now on will be (DV )loc and uni-
formly 1-connected. Let us write ∂A = ∂2A for any subset A of a metric
space X (note that these conventions are motivated by Proposition 3.6).

Let X be a metric measure space. Let V be a nondecreasing function
belonging to the volume growth class (for instance V (r) = µ(B(x, r)) for
a x ∈ X). Write φ(t) = inf{r, V (r) ≥ t} for the “right inverse” function
of V . Remark that if f and g are nondecreasing functions R+ → R+,
then f ≈ g if and only if their right inverses are equivalent. In particular,
the equivalence class of φ is invariant under large-scale equivalence.

Definition 4.1. Let us call a strong isoperimetric inequality the follow-
ing kind of isoperimetric inequality

∀ A ⊂ X, |∂A| ≥ C−1|A|/φ(C|A|).
Remark that this is equivalent to

I � id /φ.

Therefore, if X satisfies a strong isoperimetric inequality, we will say
that it has a strong profile.

Example 4.2. If X has polynomial growth of degree d, we have φ(t) ≈
t1/d. So X has a strong profile if and only if

I � (id)
d−1

d .

Write, for all x ∈ X and for all 0 < r < r′

Cr,r′(x) = B(x, r′) \ B(x, r).

Proposition 4.3. Let X be a doubling space (here, no other hypothesis
is required). There exists a constant C ≥ 1 such that

∀ x ∈ X, ∀ r ≥ 1, inf
r≤r′≤2r

µ(Cr′−1,r′) ≤ Cµ(B(x, r))/r.

Proof: Clearly, it suffices to prove the proposition when r = n is a posi-
tive integer. First, note that

∪2n
k=n(B(x, k) r B(x, k − 1)) ⊂ B(x, 2n).

So, we have

µ(B(x, 2n)) ≥ n inf
n≤k≤2n

µ(B(x, k) \ B(x, k − 1)).

We conclude by doubling property.
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Corollary 4.4. Let X be a uniformly connected doubling space. Then
we have

I↓B � id /φ.

Namely, there exists a constant C ≥ 1 such that

∀ x ∈ X, ∀ r > 0, inf
r′≥r

µ (∂B(x, r′)) ≤ Cµ(B(x, r))/r.

Proof: This follows from Remark 3.19.

Corollary 4.5. Let X be a uniformly connected doubling space satisfying
a strong isoperimetric inequality. Then, X is stably-(IB).

Proof: It follows from Corollary 4.4 and from Corollary 3.13.

Remark 4.6. Varopoulos [15] showed that the strong isoperimetric in-
equality is satisfied by any group of polynomial growth. Coulhon and
Saloff-Coste [2] then proved it for any unimodular compactly generated
locally compact group with a simple and elegant demonstration. We
have the following corollary.

Corollary 4.7. A Cayley graph of a group of polynomial growth is
stably-(IB).

4.2. The strong isoperimetric inequality does not imply strong-
ly-(IB).

Note that this will result from the example shown in Section 4.3. Let
us present here a counterexample with linear growth.

For every integer n, we consider the following finite rooted tree Gn:
first take the standard binary tree of depth n. Then stretch it as fol-
lows: replace each edge connecting a k − 1’th generation vertex to a

k’th generation vertex by a (graph) interval of length 22n−k

. Then con-
sider the graph G′

n obtained by taking two copies of Gn and identifying
the vertices of last generation of the first copy with those of the second
copy. Write rn and r′n for the two vertices of G′

n corresponding to the
respective roots of the two copies of Gn. Finally, glue “linearly” the G′

n

together identifying r′n with rn+1, for all n: it defines a graph X .

Let us show that X has linear growth (i.e. polynomial growth of de-
gree 1). Thus I ≈ 1, and since the boundary volume of balls is clearly not

bounded, we do not have I↑B � I. In particular, X is not strongly-(IB).
Since X is infinite, it is enough to show that there exists a con-

stant C > 0 such that

(4.1) |B(x, r)| ≤ Cr
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for every vertex x of X . But it is clear that among the balls of radius r,
those which are centered in points of n’th generation of a Gn for n large
enough are of maximal volume. Let us take such an x. Remark that for
∑k

j=0 22j ≤ r ≤ ∑k+1
j=0 22j

, we have

|B(x, r)| ≤ 2

∣

∣

∣

∣

∣

∣

B



x,
k

∑

j=0

22j





∣

∣

∣

∣

∣

∣

+ 2



r −
k

∑

j=0

22j



 .

So it is enough to show (4.1) for r =
∑k

j=0 22j

. We have

µ



B



x,

k
∑

j=0

22j







 =

k
∑

j=0

2.2j .22k−j ≤ 4.22k

.

Which proves (4.1) with C = 8.

Remark 4.8. This example and that of Section 4.3 show in particular
that the strong isoperimetric inequality does not imply (even in linear
growth case) strongly-(IB).

4.3. Instability of strongly-(IB) under quasi-isometry.

Theorem 4.9. We can find a graph, quasi-isometric to Z2 (resp. a
Riemannian manifold M bi-Lipschitz equivalent to R2) whose volume of
spheres is not dominated by rlog 3/ log 2 (where r is the radius).

Remark 4.10. The restriction to dimension 2 is not essential, but was
made to simplify the exposition (actually, we merely need the dimension
to be greater or equal to 2).

Proof: The general idea of the construction is to get a sequence of spheres
which look like finitely iterated Von Koch curves. First, we will build
a graph with weighted edges. Actually, this graph will be simply the
standard Cayley graph of Z2, and the edges will have lengths equal to 1
except for some selected edges which will have length equal to a small,
but fixed positive number.

First step of the construction: Let us define a sequence (Ak) of dis-
joint subtrees of Z2 (which is identified to its usual Cayley graph). Let
(e1, e2) be the canonical basis of Z2 and denote S = {±e1,±e2}. For
every k ≥ 1, let ak = (22k, 0) be the root of the tree Ak and define Ak

by

(4.2) x ∈ Ak ⇔ x = ak + 2kε0(x) + 2k−1ε1(x) + · · ·
· · · + 2k−i(x)εi(x)(x) + r(x)εi(x)+1(x)
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where

– 0 ≤ i(x) ≤ k − 1,

– εj(x) belongs to S for every 0 ≤ j ≤ i(x) + 1 and is such that
εj+1(x) 6= −εj(x) (for j ≤ i(x)),

– r(x) ≤ 2k−i(x)−1 − 1.

It is easy to see that Ak is a subtree of Z2 and that the above decom-
position of x is unique. In particular, we can consider its intrinsic graph
metric dAk

: let Sk be the sphere of center ak and of radius 2k+1 − 1 for
this metric. Clearly, |Sk| ≥ 3k−1.

Second step of the construction: We define a graph Y with weighted
edges as follows: Y is the usual Cayley graph of Z2; all edges of Y have
length 1 but those belonging to A = ∪kAk which have length equal
to 1/100. The measure on Y is the countable measure and the distance
between two vertices v and w is the minimal length of a chain joining v
to w, the length of a chain being the sum of the weights of its edges.
Clearly, as a metric measure space, Y is large-scale equivalent to Z2.

For every k ≥ 2, consider the sphere S(ak, rk) = B(ak, rk + 1) r

B(ak, rk) of Y , where rk = (2k+1 − 1)/100.

Claim 4.11. We have Sk ⊂ S(ak, rk), so that

µ(S(ak, rk)) ≥ 3k−1 ≥ r
log 3/ log 2
k .

Proof: Note that the claim looks almost obvious on a drawing. Never-
theless, for the sake of completeness, we give a combinatorial proof. Let
us show that a geodesic chain in the tree Ak is also a minimizing geo-
desic chain in Y . Applying this to a geodesic chain between ak and any
element of Sk (which is of length rk in Y ), we have that Sk ⊂ S(ak, rk),
so we are done.

So let x be a vertex of Ak. By (4.2), we have

x = ak + 2kε0(x) + 2k−1ε1(x) + · · · + 2k−i(x)εi(x)(x) + r(x)εi(x)+1(x).

Let us show by recurrence on dY (ak, x) (which takes discrete values) that

dY (ak, x) = dAk
(ak, x)/100

= (2k + · · · + 2k−i(x) + r(x))/100

=
2k+1(1 − 2−i(x)−1 + r(x))

100
.

If x=ak, there is nothing to prove. Consider c=(c(0)=x, c(2),. . . ,c(m)=
ak) a minimal geodesic chain in Y between ak and x. Clearly, it suffices
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to prove that c ⊂ Ak. Suppose the contrary. Let t be the largest
positive integer such that c(t) belongs to Ak and c(t + 1) does not.
Let l be the smallest positive integer such that c(t + l) ∈ Ak, so that
(c(t + 1), . . . , c(t + l − 1)) is entirely outside of Ak. By recurrence, the
chain (c(t + l), . . . , c(m)) is in Ak. Thus we have

dY (x, ak) = dAk
(x, c(t))/10 + |c(t) − c(t + l)|Z2 + dAk

(c(t + l), ak)/100.

Since c is a minimal chain, we also have

dY (c(t), ak) = |c(t) − c(t + l)|Z2 + dAk
(c(t + l), ak)/100.

The following lemma applied to u = c(t) and v = c(t + l) implies that
t = t + l which is a contradiction since it means that c is included
in Ak.

Lemma 4.12. Let u and v be in Ak. We have

|u − v|Z2 ≥ (dAk
(u, ak) − dAk

(v, ak))/50.

Proof: We can of course assume that dAk
(u, ak) ≥ dAk

(v, ak). Let u =
u1 + u2 and v = v1 + v2 with

u1 = 2kε0(u) + · · · + 2k−i(v)εi(v)(u)

and

v1 = 2kε0(v) + · · · + 2k−i(v)εi(v)(v).

Note that by construction,

dAk
(u1, ak) = dAk

(v1, ak)

and since Ak is a tree,

(4.3) dAk
(u, ak) − dAk

(v, ak) = dAk
(u2, ak) − dAk

(v2, ak) ≤ 2k−i(v)+2.

On the other hand, we have

|u − v|Z2 ≥ ||u1 − v|Z2 − |u2 − v|Z2 |.
First, assume that u1 6= v1. Then, by (4.2), the projection of u1 − v1

along e1 or e2 is not zero and belongs to 2k−i(v)N. Moreover, using the
fact that εj+1(u) 6= −εj(u)) for every j, the same projection of u2 − v2

is (in Z2-norm) less than

2.(2k−i(v)−2+2k−i(v)−4+· · ·=2k−i(v)−1(1+1/4+1/42+· · · )≤2/3.2k−i(v).

Thus,

|u − v|Z2 ≥ 2k−i(v)/3.

So we are done.
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Now, assume that u1 = v1. If i(u) = i(v) or if i(u) ≤ i(v) + 1 and
εi(v)+1(u) = ±εi(v)+1(v), then we have trivially

|u − v|Z2 = (dAk
(u, ak) − dAk

(v, ak)).

Otherwise, we have

u − v = u2 − v2

= (2k−i(v)−1 − r(v))εi(v)+1(u)

+ 2k−i(v)−2εi(v)+2(u) + · · · + r(u)εi(u)+1.

So, projecting this in the direction of εi(v)+2(u), and since εi(v)+3(u) 6=
−εi(v)+2(u), we obtain

|u − v|Z2 = |u2 − v2|Z2

≥ 2k−i(v)−2 − (2k−i(v)−4 + · · · + 2k−i(u) + r(u))

≥ 2k−i(v)−2 − 2k−i(v)−3 = 2k−i(v)−3.

Together with (4.3), we get

|u − v|Z2 ≥ 32(dAk
(u, ak) − dAk

(v, ak))

which proves the lemma.

Clearly, Y is quasi-isometric to Z2. It is not difficult (and left to the
reader) to see that we can adapt the construction to obtain a graph.

Now, let us explain briefly how we can adapt the construction to
obtain a Riemannian manifold bi-Lipschitz equivalent to R2. First, we
embed Z2 into R2 in the standard way, so that Ak is now a subtree of R2.
Let Ã be the 1/100-neighborhood of A in R2. Let f be a nonnegative

function defined on R2 such that 1 − f is supported by Ã, f ≥ a and
f(x) = a for all x ∈ A. Finally, define a new metric on R2 multiplying
the Euclidean one by f .

4.4. Strongly-(IB) implies the strong isoperimetric inequality.

The converse to Proposition 4.5 is clearly false (see the examples of
the next section). However, one has

Proposition 4.13. Let X be a doubling (M)-space. Suppose moreover
that there exists x ∈ X such that the family of balls of center x is strongly
asymptotically isoperimetric. Then we have

I↓B � id /φ.

In particular, X satisfies a strong isoperimetric inequality.
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Proof: Since (B(x, r))r forms an asymptotically isoperimetric family, it
is enough to show that there exists c > 0 such that

µ(∂B(x, r)) ≥ c
µ(B(x, r))

r
.

But, let us recall that property (M) implies that there exists C > 0
such that, for all r > 0

µ(Cr,r+1(x)) ≤ Cµ(∂1B(x, r)).

Since (B(x, r))r forms an asymptotically isoperimetric family, there ex-
ists C′ ≥ 1, such that, for all r′ < r

µ(∂B(x, r′)) ≤ C′µ(∂B(x, r)).

Using these two remarks, we get

µ(B(x, r)) ≤ CC′rµ(∂B(x, r)).

So we are done.

5. What can happen if the profile is not strong

All the metric measure spaces built in this section will be graphs with
polynomial growth. For simplicity, we write |A| for the cardinal of a
finite subset A of a graph.

5.1. Bounded profile: connected isoperimetric sets are “con-
trolled” by balls.

We will say that a subset A of a metric space is metrically connected
(we will merely say “connected” from now on) if there does not exist any
nontrivial partition of A = A1 ⊔ A2 with d(A1, A2) ≥ 10.

Let X be a uniformly 1/2-connected space, with bounded profile,
and such that the measures of balls of radius 1/2 are larger than a
constant a > 0. Actually, we can ignore nonconnected sets. Indeed if
(An) is an isoperimetric family, then the An have a bounded number
of connected components: otherwise, by Proposition 1.13, the boundary
of An would not be bounded (because the distinct connected components
have disjoint 1-boundaries each one containing a ball of radius 1/2). It
suffices to replace An by its connected component of maximal volume.
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Claim 5.1. Let (X, d, µ) be a (DV )loc, uniformly 1/2-connected space
such that the measure of balls of radius 1/2 is more than a > 0 and
whose profile I is bounded. Then, if (An) is an isoperimetric sequence
of connected subsets of X, there exist a constant C > 0, some xn ∈ X
and some rn > 0 such that

∀ n, B(xn, rn) ⊂ An ⊂ B(xn, Crn).

Proof: To fix ideas, let us assume that ∂A = ∂1A (for all A ⊂ X). Let
yn be a point of An and write dn = supy∈∂An

d(yn, y). Let r ≤ dn be
such that Cr,r+1(yn) intersects nontrivially ∂An (recall that Cr,r′(x) =
B(x, r′)\B(x, r)). Then, by Proposition 3.6, there exists a constant C≥1
such that Cr−C,r+C(yn)∩∂An contains a ball of radius 1/2 and therefore
has measure ≥ a. Consequently, if δn = sup{r′−r; Cr,r′(yn)∩∂An = ∅},
then

(5.1) µ(∂An) ≥ dn

2Cδn
a.

Since the boundary of An has bounded measure, there exists a con-
stant c > 0 and, for all n, two positive reals r′n and r”n such that
r”n − r′n ≥ cdn and Cr′

n,r”n
∩ ∂A = ∅.

Write sn = (r′n +r”n)/2. Since An is connected, Csn−10,sn+10(x)∩An

is nonempty. But then, if xn ∈ Csn−10,sn+10(x) ∩ An, we get

B

(

xn,
r”n − r′n

2
− 10

)

⊂ An.

On the other hand

(5.2) An ⊂ B(xn, 2dn).

Write rn = cdn/2− 10. The claim follows from (5.1) and from (5.2).

5.2. Stably-(NIB) graphs with unbounded profile and where
isoperimetric families can never be “controlled” by families of
balls.

Theorem 5.2. For every integer d ≥ 2, there exists a graph X of polyno-
mial growth of degree d, with unbounded profile, satisfying stably-(NIB)
and such that, for all isoperimetric sequences (An), it is impossible to
find sequences of balls Bn = B(xn, rn) and B′

n = B(x′
n, r′n) of comparable

radii (i.e. such that r′n/rn is bounded) such that

Bn ⊂ An ⊂ B′
n, ∀ n.
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Consider the graph X obtained from Zd deleting some edges. Con-
sider, in the axis Z.e1, the intervals (In) of length [

√
n] and at distance 2n

from one another. Consider the sequence (An) of full parallelepiped de-
fined by the equations x1 ∈ In and |xi| ≤ n/2 for i ≥ 2.

Then consider a partition of the boundary (in Zd) of An in (d−1)-di-
mensional cubes ak

n whose edges have length approximatively
√

n. Re-
move all the edges that connect An to its complement but those con-
nected to the “center” of ak

n (here, the center of ak
n is a point of Zd we

choose at distance ≤ 2 from the “true center” in Rn of the convex hull
of ak

n). We thus obtain a connected graph X . Note that the An are such
that

|An| ≈ nd−1
√

n

and

|∂XAn| ≈
|∂ZdAn|
|a0

n|
≈ nd−1/(

√
n)d−1 = (

√
n)d−1.

Write A for the union of Ai and Ac for its complement in X .

Claim 5.3. The growth in X is polynomial of degree d.

Proof: It will follow from the strong profile of balls.

Claim 5.4. The profile of X is not strong.

Proof: Let us consider the An. If the profile was strong, the sequence

un = |An|

|∂An|
d

d−1
would be bounded. But there exists a constant c > 0

such that

un ≥ cnd−1√n/(
√

n)d = cn
d−1
2 → ∞.

Claim 5.5. Let R be a unbounded subset of R+ and let (Pr)r∈R be a
family of subsets such that there exist two constants C ≥ 1 and a > 0
such that

∀ r > 0, ∃ xr ∈ X, B(xr , r/C) ⊂ [Pr ]a ⊂ B(xr , Cr).

Then there exists a constant c′ such that

∀ r > 0, µ(∂Pr) ≥ c′µ(Pr)
d−1

d .

The following lemma and its proof will be useful in all examples that
we will expose in the following sections. Write Ac for the complement
of A (in X or, which is actually the same in Zd).
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Lemma 5.6. The profile of Ac (or of A′c) is strong. That means I(t) ≈
t

d−1
d .

Proof of the lemma: First of all, it is enough to consider only connected
subsets P of Ac. Indeed, if P has many connected components P1, . . . , Pk,

then, by subadditivity of the function φ : t → t
d−1

d , if the Pi verify
|∂Pi| ≥ cφ(|Pi|), then so do P .

Note that Ac embeds into X and into Zd. The idea consists in com-
paring the profile of Ac to that of Zd. First of all, let us assume that
a connected subset P of Ac —seen in X— intersects the boundary of
many An. Then, as |An| is negligible compared to the distance between
the An when n goes to infinity, the set of points of ∂ZdP at distance 1
of A has negligible volume compared to |∂P |. Thus, if |P | and n are
large enough, we get

|∂AcP | ≥ 1

2
|∂ZdP |.

So it is enough to consider subsets meeting only one An. But the
complement of a convex polyhedra of Zd has trivially the same profile
(up to a constant) as Zd. So we are done.

Proof of the Claim 5.5: Let (Pr) be a family of subsets of X satisfying
the condition of the proposition. We have to show that ∀ r, |∂Pr| ≥
c′|Pr|

d−1
d . If P ⊂ Ac, the claim is a direct consequence of the lemma.

Suppose that P meets some An and that r ≥ 100C
√

n. Then we have
already seen (in the proof of Lemma 5.6) that if many An intersect Pr,
the cardinal of the intersection of this Pr with A are negligible compared
to its boundary provided n and |Pr| are large enough. We can thus

suppose that Pr meets only one An. Furthermore, since r ≥ 100
√

(n),
there is some x′ in B(xr, r/C) such that

B(x′, r/10C) ∈ B(xr, r/C) ∩ Ac.

Then, observe that since B(x′, r/10C) ⊂ [Pr]a, there is a B(x′, r/10C) ⊂
[Pr]a, there is a constant c > 0 such that

(5.3) |Pr ∩ B(x′, r/C)| ≥ c|B(x′, r/C)|.
It follows that the intersection of Pr with Ac has volume ≥ c′|Pr| where
c̄ is a constant depending only on C and a. So by Lemma 5.6, we have

|∂XPr| ≥ |∂Ac(Pr ∩ Ac)| ≥ c|Pr|
d−1

d .

We then have to study the case r ≤ 100C
√

n. We can assume that
xr ∈ An (otherwise, we conclude with Lemma 5.6). Let π be the or-
thogonal projection on the hyperplane x2 = 0. Then for n large enough,
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Cr is smaller than n/2. Consequently, since Pr ∈ B(xr, Cr), every point
of π(Pr) has at least one antecedent in the boundary of Pr. So, we have

|∂XPr| ≥ |π(Pr)|.
Moreover, note that π(B(xr , r/C)) = B(π(xr), r/C) (note that this ball
lies in Zd−1). On the other hand, since the projection is 1-Lipschitz, we
get

π([Pr]a) ⊂ [π(Pr)]a,

so

B(π(xr), r/C) ⊂ [π(Pr)]a.

Similarly to (5.3), we have

|π(Pr) ∩ B(π(xr), r/C| ≥ c|B(π(xr), r/C)|.
So, finally, we have

|∂XPr| ≥ c′rd−1

so we are done.

Corollary 5.7. In every space isometric at infinity to X, the volume of
spheres ≈ rd−1. In particular, they are not asymptotically isoperimetric.

Proof of the corollary: Let f : X ′ → X a large-scale equivalence between
two metric measure spaces X ′ and X and take y ∈ X ′. It comes

B

(

f(y),
r

C2
− C1

)

⊂ B([f(B(y, r))]C1 ) ⊂ B(f(y), C2r + C1).

The corollary follows from Claim 5.5 and from Theorem 3.10.

5.3. Graphs stably-(NIB) with bounded profile.

Theorem 5.8. For any integer d ≥ 2, one can find a graph of polynomial
growth of degree d, with bounded profile, and which is stably-(NIB).

The construction follows the same lines as in the previous section.
Consider in Zd, a sequence (Cn) of subsets defined by

Cn = B(xn, n) ∪ B(x′
n, n)

where xn = (2n+1, n− logn, 0, . . . , 0) and x′
n = (2n+1, log n−n, 0, . . . , 0).

We disconnect Cn from the rest everywhere but in the axis Z.e1.
Let Y be the corresponding graph. Cn looks like a ball (of Zd) “con-
stricted” at the equator. Indeed, every point of Cn belonging to the
hyperplane {x2 = 0} is at distance at most log n from the boundary
(in Y ) of Cn. This is the property that will prevent Cn from being
“deformed” into a ball. Write C = ∪nCn.
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Lemma 5.9. The graph Cc has a strong profile.

Proof: The demonstration is essentially the same as for Lemma 5.6.

Claim 5.10. The growth in the graph X is polynomial of degree d.

Proof: We have to show that there exists a constant c > 0 such that,
∀ x, r, |B(x, r)| ≥ crd (the converse inequality following from the fact
that X embeds in Zd). Thanks to Lemma 5.9, we can suppose that B is
included in a Cn0 so that its radius is ≤ n0.

The conclusion follows then from the next trivial fact: in Zd, if r ≤
n0, the volume of the intersection of a ball of radius n0 with a ball of
radius r ≤ n0 and of center belonging to the first ball is ≥ 2−d|B(x, r)| ≥
2−10drd. Indeed, the worst case is when x is in a “corner” of the ball.
So we are done.

Claim 5.11. If Y ′ is a (M)-space which is isometric at the infinity to Y ,
then its balls are not asymptotically isoperimetric.

Proof: The demonstration results from the following lemma and Propo-
sition 1.13.

Lemma 5.12. Let P be an asymptotically isoperimetric family of con-
nected subsets of X. Then there exists a constant C ≥ 1 such that, for
all P ∈ P of measure > C, there exists n such that |P △ Cn| ≤ C.

Proof: Since the profile of Cc is strong, it is clear that for |P | large
enough, P ∩Cc must be bounded. We then have to show that if (Pn) is
a sequence of subsets such that for all n, Pn ⊂ Cn and such that |Pn|
and |Cn\Pn| tends to infinity, then |∂Pn| also tends to infinity. Suppose,
for instance that |Pn| ≤ |Cn \ Pn|. But Theorem 3.10 makes clear that
this problem in Zd is equivalent to the similar problem in Rd: that is,
replacing Cn with its convex hull C̃n in Rd. Since the C̃n are homothetic
copies of C̃1, by homogeneity, we only have to show that the profile I(t)

of C̃1 is ≥ ct
d−1

d for 0 < t < |C̃1|/2, which is a known fact (see [11]).

Let us finish the demonstration of Claim 5.11. We now have to show
that the sets Cn cannot be —up to a set of bounded measure— inverse
images of balls by some large-scale equivalence. So let (X ′, d, µ) be a
(M)-space and let f : X → X ′ be a large-scale equivalence.

Let us consider two points of Cn of respectively maximum and min-
imum x2. The distance of each of these points to Cc is ≥ n/2 and yet,
every 1-chain joining them must pass through Cn ∩ {x2 = 0} whose
points are at distance ≤ 2 logn from Cc. But this is impossible for a ball
in a (M)-space. Indeed, in a ball B = B(o, R) with R ≥ N , if a point x
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is at distance cN from the boundary, then the points belonging to a
ball centered in x and of radius cN/2 are at distance at least cN/2 from
the boundary of B. But this ball intersects the ball centered in o and
of radius R − cN/2. Moreover, by property (M), there exists a 1-chain
joining x to o and staying in B(o, R − cN/2), so at a distance of the
order of N from boundary of B.

5.4. The instability of (IB) under quasi-isometry between
graphs of polynomial growth.

Theorem 5.13. Let d be an integer ≥ 2. There exists two graphs X
and X ′ quasi-isometric, of polynomial growth of degree d and with
bounded or unbounded profile, such that X satisfies (IB) but not X ′.

Like in the examples of the two previous sections, we will build a
graph X removing some edges from Zd: for n ∈ N, let An be the ball
of radius n whose center belongs to the axis Z.e1 in such a chain that
An+1 is at distance 2n from An. We then remove all the edges of the
boundary of An but those belonging to the line Z.e1. We write A for the
union of An. The graph X ′ is obtained from X by taking its image by
the linear map fixing the first coordinate and acting on the orthogonal
as an homothetic transformation of ratio 4 (it is clear that it is a quasi-
isometry). More precisely, we replace each edge of X parallel to the first
axis, by a chain of length 2 also parallel to the first axis. Write A′ for
the image of A.

Remark 5.14. In the previous example, the profile is bounded. Nev-
ertheless, one can slightly modify the construction in order to get an
unbounded profile: for instance, removing only edges of the boundary
of An at distance ≥ log n from the axis Z.e1 (instead of those which are
outside of this axis).

Claim 5.15. The graphs X and X ′ have polynomial growth of degree d.

As these graphs are subgraphs of Zd, their volume growths are less
than the one of Zd. The converse inequality will follow from the fact
that in X ′, the profile restricted to balls is strong and from the fact that
X and X ′ are quasi-isometric.

Claim 5.16. In X, the balls are asymptotically isoperimetric.

Proof: It is clear by construction that the An are balls and that their
boundaries have bounded volume.

Claim 5.17. In X ′, the profile restricted to balls is strong I↓B(t) ≈ t
d−1

d .
In particular, X ′ is not (IB).
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Proof: Remark that Lemma 5.6 stays true in this context. Let B =
B(x, r) be a ball of the graph X ′. We have to show that there exists a
constant c > 0 such that

|∂B| ≥ c|B| d−1
d .

According to Lemma 5.6, we can assume that B ⊂ A. Thus, there
exists n0 such that B ⊂ An0 .

Let us embed Zd into Rd. Let us replace the discrete polyhedron An

and B by their convex hulls Ãn and B̃ in Rd. Let X̃ be the space
obtained removing from Rd (Euclidean) the points of the Euclidean

boundary of Ãn (for all n) but the two ones belonging to the axis R.e1

(resp. those at distance ≤ log n of the axe) for the case of bounded pro-

file (resp. for the case of unbounded profile). Let us equip X̃ —seen
as a subset of Rd— with Lebesgue measure and with the geodesic met-
ric d(x, y) = infγ l(γ) with γ taking values in the set of arcs joining x

to y in X̃ , l(γ) being the Euclidean length of γ.

The embedding j of X into X̃ we obtain like this is clearly a large-scale
equivalence.

For simplicity, we will write |A| for the (Lebesgue) measure of a sub-

set A of X̃ . On the other hand, note that ∂10B̃ contains [j(B(x, r))]1 \
[j(B(x, r−2))]1, which by Proposition 3.6 has same measure (up to mul-

tiplicative constant) as ∂B. The same holds for B̃ and B. Moreover,

since B̃ and An0 are convex polyhedra, it is clear that the 10-boundary

of B̃ has same measure (up to multiplicative constants) as its Euclidean

boundary (whose measure is the limit when h → 0 of |∂hB̃|/h). Write

|∂euclB̃| = lim
h→0

|∂hB̃|/h.

Consequently, it is enough to show that there exists c > 0 such that

|∂euclB̃| ≥ c|B̃| d−1
d .

Note that by homogeneity, the quantity

Q =
1

rd−1
|∂euclB̃|

only depends on the ratio n/r. Fix n = n0. For r small enough (let us

say ≤ rc for some rc > 0), B̃ never meets two parallel faces: Q stays
larger than a constant > 0 (i.e. profile of a 1/2d−1’th of space of Rd). By
compactness, it follows that Q reaches its minimum when x and r vary
under the conditions rc ≤ r ≤ n0/2. On the other hand, as B̃ is strictly

included in Ãn0 , this minimum has to be > 0. The ratio Q is therefore
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larger than a constant c′ > 0. finally, there is a constant c > 0 such that

|∂euclB̃| ≥ c′rd−1 ≥ c|B| d−1
d .

So we are done.

6. Asymptotic isoperimetry of connected subsets

Let X be a metric measure space. Set ∂A = ∂1A and assume that
X is uniformly 1/2-connected (see Section 3.1). Recall that we say that
a subset A of X is connected if there does not exist a nontrivial parti-
tion A = A1 ⊔ A2 with

∂A1 ∩ ∂A2 = ∅.
Write C for the set of connected subsets of finite measure of X .

Theorem 6.1. (i) Let X be such that the measures of balls of ra-
dius 1/2 are bounded below by a > 0. Suppose that I(t) = o(t).
Then there exists a positive and increasing sequence (tn) tending

to infinity such that I↓C(tn) = I(tn).
(ii) Assume that X is a doubling (M)-space and has a strong profile.

Then I↓C ≈ I.
(iii) Let d be an integer ≥ 2. There exists a graph X of polynomial

growth of degree d and a increasing sequence of integers (sn) such

that I(sn) = o(I↓C (sn)).

Proof: Note that (ii) follows from Corollary 4.5 and from the fact that
property (M) implies that balls are connected.

Let us show the first assertion of the theorem. Suppose that there

exists T > 0 such that ∀ t ≥ T , I(t) < I↓C(t). We will show that it
implies that

(6.1) I(t) ≥ a
t

T
.

Write tm for the upper bound of the set of t such that ∀ s ≤ t, one
has I(s) ≥ a s

T . Since I is nondecreasing, if tm is finite, then it is a
maximum.

Remark that tm ≥ T since the boundary of every nonempty subset
of X contains a ball of radius 1/2 (see Proposition 3.6) and therefore has
measure ≥ a.

Suppose by contradiction that tm is finite. By definition of tm, for
all s > tm there exists a subset A such that

µ(A) ≥ s
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and
µ(∂A) < as/T.

Moreover, since tm ≥ T , we can suppose that

µ(∂A) < I↓C(s)

(in particular, A is not connected).
It follows that there exists a smallest positive integer k such that there

exist tm ≤ s ≤ tm+T/2 and a subset A of measure ≥ s, with k connected

components and whose boundary has measure < min{I↓C(s), sa/T}. Let
A be such a subset. Note that k ≥ 2. Thus, we have

A = A1 ⊔ A2

with d(A1, A2) ≥ 10.
Since k is minimal, one has, for i = 1, 2

µ(Ai) < tm.

Indeed, if for instance, one has µ(A1) ≥ tm, then since the boundary
of A2 has measure ≥ a, one would have

µ(∂A1) ≤ (tm + T/2)
a

T
− a =

tma

T
− a/2 <

tma

T
.

Therefore, as I↓C(tm) ≥ I(tm) ≥ tma/T , one would also have

µ(∂A1) < I↓C(tm).

But then, by minimality of k, A1 should have at least k connected com-
ponents, which is a contradiction since it has strictly less components
than A.

But, by definition of tm, this implies that

µ(∂A) = µ(∂A1) + µ(∂A2)

≥ µ(A1)a

T
+

µ(A2)a

T

=
µ(A)a

T
which is a contradiction.

In order to show the second assertion of the theorem, we proceed
as in the previous sections: we start from the graph Zd, and then
we remove some edges. Let us consider the following family of cubes
(Cm

n )0≤m≤n−1, n∈N∗ of Zd: the Cm
n are Euclidean cubes of edges’

length 22n

whose centers are disposed along the axis Z.e1 as follows:
Cm+1

n is the image of Cm
n by the translation of vector n22n

.e1 and Cn−1
n
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and C1
n+1 are at distance (n + 1)22(n+1)

to one another. To build the
graph X , we remove all the edges joining Cm

n to the rest of the graph
but those which have a vertex belonging to the Euclidean cube cm

n of

dimension d − 1 of the boundary of Cm
n , of volume 2n2

and centered in
one of the two intersection points of Cm

n with the axis Z.e1. Write C for
the union of cubes Cm

n .

Claim 6.2. The growth in X is polynomial of degree d.

Proof: Let B = B(x, r) be a ball. Let us prove that |B| ≥ 2−100drd. If
the center of B doesn’t belong to any Cm

n , it is clear. Suppose therefore
that x ∈ Cm0

n0
for integers n0 and m0 < n0. Write Dn0 for the diameter

of Cm0
n0

. If r ≥ 3Dn0 , then B contains B(y, r/2) with y belonging to
no Cm

n . So we are brought back to the previous case. In the other case,
the conclusion follows from the following trivial fact: in Zd, if r ≤ n, the
volume of the intersection of a cube C of edges’ length equal to n with
a ball of radius r ≤ n and of center x ∈ C is ≥ 2−d|B(x, r)| ≥ 2−10drd.
Indeed, the worst case is when x is a corner of the cube.

Claim 6.3. Take sn = n22n

. Then I(sn) = o(I↓C (sn)).

Proof: Let us consider the set Cn = ∪mCm
n . Its volume is equal to sn

and its boundary has volume equal n2n2

. On the other hand, let n1 be
an integer and let P be a connected subset of volume ≥ Nn1 . We want

to show that |∂P | ≥ c2(n1+1)2 , for a constant c > 0, which is clearly
enough to conclude.

Thanks to the following lemma, the only remaining case to consider
is when P meets a cube Cm

n . But, because of the large distance between
two such cubes, we can assume that P meets only one of these cubes,
say Cm0

n0
.

Lemma 6.4. The profile of the graph Cc is strong (i.e. ≈ t
d−1

d ).

(Same demonstration as for Lemma 5.6.)

If |P ∩ Cc| ≥ |P |/2, then the lemma applied to P ∩ Cc allows to
conclude. Suppose therefore that |P ∩ C| ≥ |P |/2. This implies in
particular that n0 ≥ n1 + 1. We then remark that |∂(P ∩ Cm0

n0
)| ≤

|∂P |. Indeed, let π be the orthogonal projection onto the hyperplane
containing cm0

n0
, then every point of cm0

n0
∩ P admits un antecedent by π

belonging to the boundary of P . So we can assume that P ⊂ Cm0
n0

. If
|P | ≤ 3/2|Cm0

n0
|, then there exists c > 0 such that

(6.2) |∂P | ≥ c|P | d−1
d



Asymptotic Isoperimetry of Balls 347

(isoperimetry in the full Euclidean cube: see [11]). Otherwise, assume
that |P | ≥ 3/2|Cm0

n0
| and write Q = Cm0

n0
\ P .

• If the volume of Q is ≥ Dn0/2 where Dn0 is the diameter of Cm0
n0

,
then (6.2) applied to Q implies that

|∂Q| ≥ c2(d−1)2n0/d ≥ c22n0−1 ≥ c2n2
0 = c2(n1+1)2 .

But, the boundary of Q is —up to points belonging to cm0
n0

(whose

cardinal is negligible compared to c22n0−1

)— equal to the boundary
volume of P . So we are done.

• If |Q| ≤ Dn0/2, then every point of cm0
n0

has preimages in ∂P

by the projector π. But |cm0
n0

| = 2n2
0 = 2(n1+1)2 , which ends the

demonstration.
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Université de Cergy-Pontoise
Site de Saint Martin
2, avenue Adolphe Chauvin
95302 Cergy-Pontoise Cedex
France
E-mail address: tessera@clipper.ens.fr
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