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OPTIMAL SOBOLEV EMBEDDINGS ON R
n

Jan Vyb́ıral

Abstract
We study Sobolev-type embeddings involving rearrangement-in-
variant norms. In particular, we focus on the question when such
embeddings are optimal. We concentrate on the case when the
functions involved are defined on R

n. This subject has been stud-
ied before, but only on bounded domains. We first establish the
equivalence of the Sobolev embedding to a new type of inequality
involving two integral operators. Next, we show this inequality
to be equivalent to the boundedness of a certain Hardy opera-
tor on a specific new type of cone of positive functions. This
Hardy operator is then used to provide optimal domain and range
rearrangement-invariant norm in the embedding inequality. Fi-
nally, the limiting case of the Sobolev embedding on R

n is studied
in detail.

1. Introduction

Embeddings of spaces of smooth functions into other spaces of inte-
grable functions form an important field of study in the theory of function
spaces. Consider, for example, the classical Sobolev inequality [13] on
bounded domains Ω in R

n, n ≥ 2. This states that, given 1 < p < n and
setting q = np/(n − p),

(1.1)
◦

Wp
1(Ω) →֒ Lq(Ω) for 1 < p < n.

(Here Lq(Ω) is the classical Lebesgue space, W 1
p (Ω) denotes the usual

Sobolev space,
◦

Wp
1(Ω) the closure of C∞

0 (Ω) in W 1
p (Ω) and →֒ denotes

a continuous embedding.)
Now, (1.1) is the so-called sublimiting case of the Sobolev embedding

(since p is strictly less than the dimension of Ω). The limiting case p = n
is of crucial importance and great interest. Standard examples show that
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although np/(n−p) tends to infinity as p approaches n from the left, we
may not replace the Lq-norm on the right side of (1.1) by the L∞-norm.

It has been proved in many situations that the scale of Lebesgue
spaces, although of primary interest, is not rich enough to describe all
the important situations. Especially in limiting situations things can
be very delicate and we have to consider finer scales of function spaces.
It turns out to be very rewarding to study Sobolev-type embeddings
in a broader context of general rearrangement-invariant spaces. These
involve Lebesgue spaces, but also Lorentz and Orlicz spaces together
with their numerous mutations, and more.

On bounded domains, a comprehensive study of Sobolev-type inequal-
ities involving rearrangement-invariant function spaces has been carried
out in [5].

In this paper, we study (1.1) with Ω replaced by the entire R
n. In such

situation, the techniques which have been successfully used for bounded
domains do not work. We develop a new method suitable to deal with
such problems.

Let us now briefly outline our approach. Let ̺R and ̺D be rearrange-
ment-invariant Banach function norms on (0,∞) (precise definitions will
be given in Section 2). Our aim is to study the embedding

(1.2) W 1
̺D

(Rn) →֒ L̺R(Rn),

with

(1.3) L̺R(Rn) =
{
u ∈ L1

loc(R
n) : ||u|L̺R(Rn)|| = ̺R(u∗) < ∞

}

and

(1.4) W 1
̺D

(Rn)=
{
u∈L1

loc(R
n) : ||u|W 1

̺D
(Rn)||=̺D(u∗)+̺D(|∇u|∗)<∞

}
,

where u∗ is the non-increasing rearrangement of u.
The embedding (1.2) is then equivalent to

(1.5) ̺R(u∗) ≤ c[̺D(u∗) + ̺D(|∇u|∗)], u ∈ W 1
̺D

(Rn).

The inequality (1.5) is the main subject of our study. Let us mention
that a similar question in the frame of Bessel potential spaces was studied
recently in [9].

We are interested in two main questions:

1. Suppose that the ‘range’ norm ̺R is given. We want to find the op-
timal (that is, essentially smallest) norm ̺D for which (1.5) holds.
The optimality means that if (1.5) holds with ̺D replaced by
some other rearrangement-invariant norm σ, then there exists a
constant C > 0 such that ̺D(u∗) ≤ Cσ(u∗) for all functions
u ∈ L1

loc(R
n).
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2. Suppose that the ‘domain’ norm ̺D is given. We would like to
construct the corresponding optimal ‘range’ norm ̺R. This means
that the ̺R will be the essentially largest rearrangement-invariant
norm for which (1.5) holds.

In Section 3, we reduce (1.5) to a certain new type of inequality involv-
ing two different Hardy-type operators. Similar inequalities appeared
recently in [3], but in a completely different context. In Section 4 we
prove another equivalent version of (1.5), namely inequality (4.4), which
connects certain specific Hardy operator with an interesting cone of pos-
itive functions. The delicate interplay between this operator on the one
side and the cone on the other side plays a crucial role in the subsequent
sections, and is of independent interest. Especially, we emphasise that
knowledge of both of these notions is indispensable in most of the results
yet to come. We refer to Lemma 5.1 and Lemma 6.1 for details. The ac-
tion of Hardy operators on cones of positive functions was very recently
studied in [11] and [12] in a different context. It seems to be a very
promising subject of study which opens interesting new directions of re-
search and which might provide new ways how to approach to various
difficult problems.

In Sections 5 and 6 we find optimal domain and optimal range spaces
for (1.2) under two rather restrictive conditions (5.2) and (6.10). In
Section 7 we show that these conditions are satisfied in sub-limiting
cases and give a complete answer in these situations.

In order to be able to give definitive answer in the limiting case as
well, we have to develop a yet finer method. This is done in Section 8,
where the limiting case is investigated in detail.

A crucial step is provided by Lemmas 5.1 and 6.1. The rather tech-
nical proofs of these results are given in the Appendix. These lemmas
play a substantial role in our approach as they describe the wonderful
interplay between the Hardy operator (4.6) and the convex cone (4.5).

In [14] we studied the inequality

̺R(u∗) ≤ c̺D(|∇u|∗), u ∈ W 1
̺D

(Rn),

which corresponds to one part of (1.5). As we shall see, the study of (1.5)
requires several new techniques to be developed.

Throughout the paper, c stands for a positive constant, not necessar-
ily the same at each occurrence. Sometimes we abbreviate the inequal-
ity A ≤ c B to A . B. The same applies to symbols “&” and “≈”.
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2. Rearrangement-invariant norms

We denote by M(Rn) the set of real-valued Lebesgue-measurable func-
tions on R

n finite almost everywhere and by M+(Rn) the class of non-
negative functions in M(Rn). Finally, M+(0,∞, ↓) denotes the set of all
non-increasing functions from M+(0,∞). Given f ∈ M(Rn) we define
its non-increasing rearrangement by

(2.1) f∗(t) = inf{λ > 0 : |{|f(x)| > λ}| ≤ t}, 0 < t < ∞.

For a set A ⊂ R
n we denote by |A| its Lebesgue measure. A detailed

treatment of rearrangements may be found in [1]. Furthermore, we set

(2.2) f∗∗(t) =
1

t

∫ t

0

f∗(s) ds, 0 < t < ∞.

We point out two important properties, namely

(2.3) (f + g)∗(t) ≤ f∗

(
t

2

)

+ g∗
(

t

2

)

, 0 < t < ∞,

and

(2.4) (f + g)∗∗(t) ≤ f∗∗(t) + g∗∗(t), 0 < t < ∞, f, g ∈ M(Rn).

We briefly recall some basic aspects of the theory of Banach function
norms. For details, see [1].

Definition 2.1. A functional ̺ : M+(0,∞) → [0,∞] is called a Banach
function norm on (0,∞) if, for all f , g, fn (n = 1, 2, . . . ) in M+(0,∞),
for all constants a ≥ 0 and for all measurable subsets E of (0,∞), it
satisfies the following axioms

(A1) ̺(f) = 0 if and only if f = 0 a.e.;

̺(af) = a̺(f);

̺(f + g) ≤ ̺(f) + ̺(g);

(A2) if 0 ≤ g ≤ f a.e. then ̺(g) ≤ ̺(f);

(A3) if 0 ≤ fn ↑ f a.e. then ̺(fn) ↑ ̺(f);

(A4) if |E| < ∞ then ̺(χE) < ∞;

(A5) if |E| < ∞ then

∫

E

f ≤ CE̺(f)

with some constant 0 < CE < ∞, depending on ̺ and E but independent
of f .

If, in addition, ̺(f) = ̺(f∗), we say that ̺ is rearrangement-invari-
ant (r.i.) Banach function norm. We often use the notions norm and
r.i. norm to shorten the notation.
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Definition 2.2. The dilation operator Es, 0 < s < ∞, is defined by

(2.5) (Esf)(t) = f(st), 0 < t < ∞, f ∈ M(0,∞).

The dual of a norm ̺ is the functional

(2.6) ̺′(g) = sup
h:̺(h)=1

∫ ∞

0

g(t)h(t) dt, g, h ∈ M+(0,∞).

Theorem 2.3 (G. H. Hardy, J. E. Littlewood). If f, g ∈ M(Rn), then

(2.7)

∫

Rn

|f(x)g(x)| dx ≤

∫ ∞

0

f∗(s)g∗(s) ds.

Theorem 2.4 (G. G. Lorentz, W. A. J. Luxemburg). Let ̺ be a Banach
function norm. Then

(2.8) ̺′′ = ̺.

Theorem 2.5 (G. H. Hardy, J. E. Littlewood, G. Pólya). Let ̺ be an
r.i. norm on (0,∞) and let f1, f2 ∈ M(Rn) satisfy

∫ t

0

f∗
1 (s) ds ≤

∫ t

0

f∗
2 (s) ds, s > 0.

Then

̺(f∗
1 ) ≤ ̺(f∗

2 ).

Lemma 2.6 (Hardy’s Lemma). Let f1 and f2 be non-negative measur-
able functions on (0,∞) and suppose

∫ t

0

f1(s) ds ≤

∫ t

0

f2(s) ds

for all t > 0. Let h ∈ M+(0,∞, ↓). Then

∫ ∞

0

f1(s)h(s) ds ≤

∫ ∞

0

f2(s)h(s) ds.

If 1 ≤ p ≤ ∞, we define

̺p(g) = ||g||p :=







(∫

Rn |g(x)|p dx
)1/p

if 1 ≤ p < ∞,

ess supx∈Rn |g(x)| if p = ∞.
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3. Reduction to Hardy operators

In this section we present the first step in the study of (1.5), namely
a reduction of (1.5) to the boundedness of certain Hardy operators.

Theorem 3.1. Let ̺D, ̺R be two r.i. Banach function norms on (0,∞).
Then the inequality

(3.1) ̺R(u∗) ≤ c[̺D(u∗) + ̺D(|∇u|∗)], u ∈ W 1
̺D

(Rn),

holds if and only if there is a constant K > 0 such that

(3.2) ̺R

(∫ ∞

t

f(s)s1/n−1 ds

)

≤ K̺D

(

f(t) +

∫ ∞

t

f(s)s1/n−1 ds

)

for all f ∈ M+(0,∞).

Proof: Step 1. Let us suppose that (3.1) holds and that a function
f ∈ M+(0,∞) is given. We define a new function u by

u(x) =

∫ ∞

ωn|x|n
f(t)t1/n−1 dt, x ∈ R

n,

where ωn is the volume of unit ball in R
n. We may assume, that u(x) is

finite a.e. (otherwise both sides of (3.2) are identically infinite and there
is nothing to prove). Considering level sets of u we obtain

u∗(t) =

∫ ∞

t

f(s)s1/n−1 ds,

|(∇u)(x)| = nω1/n
n f(ωn|x|

n),

|(∇u)|∗(t) = nω1/n
n f∗(t).

We point out, that if u 6∈ W 1
̺D

(Rn), then (3.1) holds trivially. Therefore
we may apply (3.1) and obtain

̺R

(∫ ∞

t

f(s)s1/n−1 ds

)

=̺R(u∗(t))≤c

[

̺D(f)+̺D

(∫ ∞

t

f(s)s1/n−1 ds

)]

,

which is equivalent to (3.2).

Step 2. Let us now assume that (3.2) is true and u ∈ W 1
̺D

(Rn) with
compact support is given. First note that

(3.3) u∗(t) = −

∫ ∞

t

du∗(s)

ds
ds.



Optimal Sobolev Embeddings on R
n 23

Next, we recall the following generalization of the Pólya-Szegö principle
from [4, (4.3)]:

(3.4)

∫ t

0

[

−s1−1/n du∗

ds

]∗

(s) ds ≤ c

∫ t

0

|∇u|∗(s) ds,

which holds for every t > 0 and every weakly differentiable function u
such that (∇u) ∈ L1(Rn) + L∞(Rn) and

|{x ∈ R
n : |u(x)| > s}| < ∞ for all s > 0.

As ∇u ∈ L̺D (Rn) ⊂ L1(Rn) + L∞(Rn) and u has compact support,
these assumptions are satisfied and (3.4) applies to u.

Using Theorem of Hardy, Littlewood and Pólya (Theorem 2.5) on (3.4)
we obtain

(3.5) ̺D

(

−s1−1/n du∗(s)

ds

)

≤ ̺D(|(∇u)|∗(t)).

We combine our assumption with these observations and use (3.3), (3.2)

with f = s1−1/n du∗(s)
ds and (3.5) to obtain

̺R(u∗(t)) = ̺R

(

−

∫ ∞

t

du∗(s)

ds
ds

)

≤ c

[

̺D

(

−

∫ ∞

t

du∗(s)

ds
ds

)

+ ̺D

(

−s1−1/n du∗(s)

ds

)]

≤ c [̺D(u∗(t)) + ̺D(|∇u|∗(t))] .

Hence, (3.1) holds for every u ∈ W 1
̺D

(Rn) with compact support. For a

general u ∈ W 1
̺D

(Rn) we define

un = uϕn, ϕn(x) =







1 if |x| < n,

n + 1 − |x| if n ≤ |x| ≤ n + 1,

0 if |x| > n + 1.

We apply (3.1) to un and use

|un(x)| ≤ |u(x)|, |(∇un)(x)| ≤ c[|(∇u)(x)| + |u(x)|], x∈R
n, n∈N.

This leads to

(3.6) ̺R(u∗
n) ≤ c[̺D(u∗

n) + ̺D(|∇un|
∗)] ≤ c[̺D(u∗) + ̺D(|∇u|∗)].

The monotone convergence of |un| to |u| and axiom (A3) show that the
left side of (3.6) tends to ̺R(u) as n tends to infinity.
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4. Another equivalent version of (1.5)

The inequality (3.2) obtained in Theorem 3.1 is still not suitable for
further investigation. Therefore we will derive another equivalent version
of (3.1). In (3.2) we substitute

(4.1) g(t) = f(t) +

∫ ∞

t

f(s)s1/n−1 ds, f ∈ M+(0,∞), t > 0.

We shall need also the inverse substitution. Namely, if g is defined
by (4.1), then

(4.2) f(t) = g(t) − ent1/n

∫ ∞

t

g(s)s1/n−1e−ns1/n

ds for a.e. t > 0.

If f is differentiable, then it may be proven by differentiation of (4.1).
For a general f we observe, that the equation (4.1) has only one solu-
tion f for a fixed g ∈ M+(0,∞). And a direct computation shows that
it is given by (4.2).

Finally, we sum up (4.1) and (4.2) and obtain

(4.3)

∫ ∞

t

f(s)s1/n−1 ds=ent1/n

∫ ∞

t

g(u)u1/n−1e−nu1/n

du for a.e. t>0.

This substitution can now be used to reformulate (3.1).

Theorem 4.1. Let ̺D, ̺R be two r.i. Banach function norms on (0,∞).
Then, (3.1) is equivalent to

(4.4) ̺R

(

ent1/n

∫ ∞

t

g(u)u1/n−1e−nu1/n

du

)

≤ c̺D(g) for all g ∈ G,

where G is the new class of functions, defined by

G =

{

g ∈ M+(0,∞) : there is a function f ∈ M+(0,∞) such that

g(t) = f(t) +

∫ ∞

t

f(s)s1/n−1 ds for all t > 0

}

=

{

g ∈ M+(0,∞) : g(t) − ent1/n

∫ ∞

t

g(s)s1/n−1e−ns1/n

ds ≥ 0

for all t > 0

}

.

(4.5)

Proof: The assertion follows immediately from Theorem 3.1, (4.2) and
(4.3).
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Hence the inequality (3.1) is equivalent to the boundedness of the
Hardy-type operator

(4.6) (Gg)(u) = enu1/n

∫ ∞

u

g(s)s1/n−1e−ns1/n

ds, u > 0

on the set G. Using this notation, we may rewrite (4.3). If g is defined
by (4.1), we have Gg(t) =

∫∞

t
f(s)s1/n−1 ds. Furthermore, the set G is

the image of the positive cone M+(0,∞) under the operator

f → f(t) +

∫ ∞

t

f(s)s1/n−1 ds.

Before we proceed any further, we shall derive some basic properties
of the class G.

Remark 4.2. (i) G contains all non-negative non-increasing functions.
To see this, note that for all g ∈ M+(0,∞, ↓)

(4.7) g(t) − ent1/n

∫ ∞

t

g(s)s1/n−1e−ns1/n

ds

≥ g(t)

{

1 − ent1/n

∫ ∞

t

s1/n−1e−ns1/n

ds

}

= 0.

(ii) For every g from G, Gg is non-increasing. Indeed, let g ∈ G and
let f be defined by (4.2), then

(4.8) (Gg)′(t)=

[

ent1/n

∫ ∞

t

g(u)u1/n−1e−nu1/n

du

]′

= −t1/n−1f(t) ≤ 0.

(iii) The set G is a convex cone, that is, for every α, β > 0 and
g1, g2 ∈ G, we have αg1 + βα2 ∈ G. The proof of this statement is
trivial.

Remark 4.3. (i) To show some applications, we prove that W 1,p(Rn) →֒

L
np

n−p ,p(Rn) for 1 ≤ p < n. In this case, we have ̺R(f) = ||f∗(t)t−1/n||p
and ̺D(f) = ||f ||p. Using Remark 4.2 (ii) and the boundedness of
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classical Hardy operators on Lp, we get for every function g ∈ G that

̺R(Gg) = ||t−1/n(Gg)∗(t)||p

=

∥
∥
∥
∥
t−1/nent1/n

∫ ∞

t

g(u)u1/n−1e−nu1/n

du

∥
∥
∥
∥

p

≤

∥
∥
∥
∥
t−1/n

∫ ∞

t

g(u)u1/n−1 du

∥
∥
∥
∥

p

≤ c||t−1/ng(t)t1/n||p = c||g||p = c̺D(g).

(ii) Another application of the obtained results is the embedding
W 1(Ln,1)(Rn) →֒ L∞(Rn). In this case

̺R(Gg) = sup
t>0

(Gg)(t) = (Gg)(0) =

∫ ∞

0

g(u)u1/n−1e−nu1/n

du

≤

∫ ∞

0

g(u)u1/n−1 du ≤

∫ ∞

0

g∗(u)u1/n−1 du = ̺D(g)

for every function g ∈ G. Now we used Remark 4.2 (ii) and Theorem 2.3.

(iii) Both these applications recover well-known results. They demon-
strate some important aspects of this method. First, the second basic
property of the class G (c.f. Remark 4.2 (ii)) lies in the roots of every
Sobolev embedding. Second, the boundedness of Hardy operators plays
a crucial role in this theory.

(iv) We haven’t used the property (4.7) yet. It will play a crucial role
in the study of optimality of obtained results.

5. Optimal domain space

In this section we are going to solve one of the main problems stated
in the Introduction. We shall construct the optimal domain norm ̺D to
a given range norm ̺R.

We start with a crucial lemma describing one important property of
the class G which shall be useful later on. We postpone its proof to
Appendix.
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Lemma 5.1. The inequality

(5.1)

∫ ∞

t

g(u)u1/n−1e−nu1/n

du≤c

∫ ∞

t

g∗∗(u)u1/n−1e−nu1/n

du, t≥0,

holds for every g ∈ G with c independent of g.

Now we may solve the problem of the optimal domain space.

Theorem 5.2. Let the norm ̺R satisfy

(5.2) ̺R (G(g∗∗)) ≤ c̺R (G(g∗)) , g ∈ M+(0,∞).

Then the optimal domain norm ̺D corresponding to ̺R in the sense
described in the Introduction is defined by

(5.3) ̺D(g) := ̺R (G(g∗∗)) , g ∈ M+(0,∞).

Proof: First, we point out that the functional ̺D defined by (5.3) is
a norm. The axioms (A1)–(A3) are trivially satisfied. To prove (A4)
for ̺D, we fix a set E ⊂ (0,∞) with |E| < ∞. Then we get Gχ∗

E(t) ≤
χ(0,|E|)(t) for every t > 0, and using (5.2) and (A4) for ̺R, we get

̺D(χE) = ̺R(Gχ∗∗
E ) ≤ c̺R(Gχ∗

E) ≤ c̺R(χ(0,|E|)) < ∞.

To verify (A5) for ̺D, we fix also a set E ⊂ (0,∞) with |E| = a < ∞
and use (A5) for ̺R. Consequently,

̺D(g) = ̺R(Gg∗∗) ≥ c

∫ a/2

0

(Gg∗∗)(t) dt

≥ c

∫ a/2

0

ent1/n

∫ a

a/2

g∗∗(s)s1/n−1e−ns1/n

ds dt

≥ c g∗∗(a)

∫ a/2

0

ent1/n

dt

∫ a

a/2

s1/n−1e−ns1/n

ds

≥ cE

∫ a

0

g∗(s) ds ≥ cE

∫

E

g.

Now we have to verify that (4.4) really holds. Let us fix a g ∈ G.
Then, by (5.1) and (5.3),

̺R

(

ent1/n

∫ ∞

t

g(u)u1/n−1e−nu1/n

du

)

≤ c̺R

(

ent1/n

∫ ∞

t

g∗∗(u)u1/n−1e−nu1/n

du

)

= c̺D(g).
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Finally, we have to show that ̺D is optimal. Let us suppose that
(4.4) holds with some other r.i. norm σ instead of ̺D. We want to show
that ̺D(g) ≤ cσ(g) for every function g ∈ M+(0,∞). Using (5.2) and
the first property of the class G from Remark 4.2, namely that g∗ ∈ G
for every function g ≥ 0, we get

̺D(g) = ̺R

(

ent1/n

∫ ∞

t

g∗∗(u)u1/n−1e−nu1/n

du

)

≤ c̺R

(

ent1/n

∫ ∞

t

g∗(u)u1/n−1e−nu1/n

du

)

≤ cσ(g∗) = cσ(g).

6. Optimal range space

In this section we solve the converse problem. Namely, the norm ̺D

is now considered to be fixed and we are searching for the optimal ̺R.
First of all we shall introduce some notation.

We recall (4.6) and define

(Gg)(t)=ent1/n

∫ ∞

t

g(s)s1/n−1e−ns1/n

ds, g∈M+(0,∞), t>0,(6.1)

(Hh)(t)= t1/n−1e−nt1/n

∫ t

0

h(s)ens1/n

ds, h∈M+(0,∞), t>0,(6.2)

E(s)=e−ns1/n

∫ s

0

enu1/n

du, s>0.(6.3)

The operators G and H are dual in the sense that

(6.4)

∫ ∞

0

h(t)Gg(t) dt =

∫ ∞

0

g(u)Hh(u) du for all g, h ∈ M+(0,∞).

As in [5], we would like to use duality to define ̺R. Using the notation
introduced above, we can rewrite (4.4) as

(6.5) sup
g∈G

̺R(Gg)

̺D(g)
< ∞.
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We may employ the duality in the following way:

sup
g∈G

̺R(Gg)

̺D(g)
= sup

g∈G,h∈M+(0,∞,↓)

∫∞

0 (Gg)(t)h(t) dt

̺D(g)̺′R(h)

= sup
g∈G,h∈M+(0,∞,↓)

∫∞

0 (Hh)(t)g(t) dt

̺D(g)̺′R(h)
.

We have used Remark 4.2 (ii), (6.4) and the so-called resonance of the
measure space ((0,∞), dx). We refer to [1, Chapter 2, Definition 2.3 and
Chapter 2, Theorem 2.7] for details.

Let us now suppose for a moment that extending the supremum over
all g ∈ M+(0,∞) gives an equivalent quantity. Then we could continue
the calculation

sup
g∈G

̺R(Gg)

̺D(g)
≈ sup

g∈M+(0,∞),h∈M+(0,∞,↓)

∫∞

0
(Hh)(t)g(t) dt

̺D(g)̺′R(h)

= sup
h∈M+(0,∞,↓)

̺′D(Hh)

̺′R(h)
,

(6.6)

and the inequality (4.4) would be equivalent to

(6.7) ̺′D(Hh) ≤ c̺′R(h), h ∈ M+(0,∞, ↓).

A sufficient condition that would enable us to extend the supremum is
given in the following lemma. We postpone its proof to Appendix.

Lemma 6.1. Assume that the r.i. norm ̺D satisfies

(6.8) ̺D

(∫ ∞

s

f(u)
E(u)

u
u1/n−1 du

)

≤ c̺D(f), f ∈ M+(0,∞).

Then

(6.9) sup
g∈G

∫∞

0
(Hh)(t)g(t) dt

̺D(g)
≈ sup

g∈M+(0,∞)

∫∞

0
(Hh)(t)g(t) dt

̺D(g)

for all h ∈ M+(0,∞, ↓).

The constants of equivalence do not depend on the choice of
h ∈ M+(0,∞, ↓).

As we shall see, the condition (6.8) is satisfied in all important ex-
amples, including the limiting Sobolev embedding. Equipped with this
tool, we can now easily solve our problem.
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Theorem 6.2. Assume that the r.i. norm ̺D satisfies (6.8) and that its
dual norm ̺′D satisfies

(6.10) ̺′D(H(h∗∗)) ≤ c̺′D(H(h∗)), h ∈ M+(0,∞).

Then the optimal range norm in (4.4) associated to ̺D is given as a
dual norm to ̺′D(H(f∗∗)). Or, equivalently, the dual of the optimal
range norm can be described by ̺′R(f) := ̺′D(H(f∗∗)).

Proof: According to Lemma 6.1 and the calculation above, (4.4) is equiv-
alent to (6.7). But for our choice of ̺′R this inequality is trivially true.

To prove the optimality, suppose, again, that there is another
r.i. norm σ, such that (6.7) is true when we substitute its dual norm σ′

in place of ̺′R. Then,

σ′(f) = σ′(f∗) ≥ c̺′D(H(f∗)) ≥ c̺′D(H(f∗∗)) = c̺′R(f),

for all f ∈ M+(0,∞),

proving the optimality of ̺R.
Finally, we have to prove that the functional ̺(f) = ̺′D(H(f∗∗)) is a

norm. Again, the axioms (A1)–(A3) are trivially satisfied. Using (6.10),
Hardy’s Lemma 2.6 and axiom (A4) for ̺′D, we get also (A4) for ̺.
(A5) follows from the same axiom for ̺′D.

7. The study of (5.2) and (6.10)

In this section we derive sufficient conditions for (6.8) and (6.10). In
general, we follow the idea of [5, Theorem 4.4]. First of all, for every
function f ∈ M+(0,∞), we define the dilation operator E by

(Esf)(t) = f(st), t > 0, s > 0.

It is well known, [1, Chapter 3, Proposition 5.11], that, for every
r.i. norm ̺ on M+(0,∞) and every s > 0, the operator Es satisfies

̺(Esf) ≤ c̺(f), f ∈ M+(0,∞).

The smallest possible constant c in this inequality (which depends of
course on s) is denoted by h̺(s). Hence

h̺(s) = sup
f 6≡0

̺(Esf)

̺(f)
.

Now we are ready to prove the following result.

Theorem 7.1. If a rearrangement-invariant norm ̺R satisfies
∫ 1

0
s−1/nh̺R(s) ds < ∞, then it also satisfies (5.2).
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Proof: Step 1. Let us suppose that the positive real numbers s, t, y
satisfy st < y and 0 < s < 1. Then t1/n < (y/s)1/n and, consequently,

ent1/n−n(y/s)1/n

≤
[

ent1/n−n(y/s)1/n
]s1/n

= en(st)1/n−ny1/n

.

So, for every function f ∈ M+(0,∞), we obtain

ent1/n

∫ ∞

st

f∗(y)y1/n−1e−n(y/s)1/n

dy≤en(st)1/n

∫ ∞

st

f∗(y)y1/n−1e−ny1/n

dy.

Step 2. We may now come to the proof of the theorem. Fix a
function g ∈ M+(0,∞), with ̺′R(g) = 1. Then we use several times
Fubini’s Theorem, a change of variables, and inequality from Step 1 and
obtain

∫ ∞

0

g∗(t)Gf∗∗(t) dt

=

∫ ∞

0

g∗(t)ent1/n

∫ ∞

t

f∗∗(s)s1/n−1e−ns1/n

ds dt

=

∫ ∞

0

s1/n−1e−ns1/n

∫ s

0

g∗(u)enu1/n

du

∫ 1

0

f∗(st) dt ds

=

∫ 1

0

∫ ∞

0

f∗(st)s1/n−1e−ns1/n

∫ s

0

g∗(u)enu1/n

du ds dt

=

∫ 1

0

∫ ∞

0

g∗(u)enu1/n

∫ ∞

u

f∗(st)s1/n−1e−ns1/n

ds du dt

=

∫ 1

0

t−1/n

∫ ∞

0

g∗(u)enu1/n

∫ ∞

tu

f∗(y)y1/n−1e−n(y/t)1/n

dy du dt

=

∫ 1

0

s−1/n

∫ ∞

0

g∗(t)ent1/n

∫ ∞

st

f∗(y)y1/n−1e−n(y/s)1/n

dy dt ds

≤

∫ 1

0

s−1/n

∫ ∞

0

g∗(t)en(st)1/n

∫ ∞

st

f∗(y)y1/n−1e−ny1/n

dy dt ds

=

∫ 1

0

s−1/n

∫ ∞

0

g∗(t)(Gf∗)(st) dt ds.
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Taking a supremum over g, we obtain that the left-hand side of (5.2)
can be estimated from above by

sup
g≥0:̺′

R(g)=1

∫ 1

0

s−1/n

∫ ∞

0

g∗(t)(Gf∗)(st) dt ds

=

∫ 1

0

s−1/n̺R((Gf∗)(s·)) ds

≤

∫ 1

0

s−1/nh̺R(s)̺R(Gf∗) ds

=

(∫ 1

0

s−1/nh̺R(s) ds

)

̺R(Gf∗).

An analogous result can be obtained also for (6.10). The proof is
omitted as it uses the same ideas as the preceding one.

Theorem 7.2. If an r.i. norm σ satisfies
∫ 1

0
s−1/nhσ(s) ds < ∞ then it

satisfies also (6.10) with ̺′D replaced by σ.

We will now present some applications of our results.

Example 7.3. Let

̺R(f) = ̺∞(f) = ess sup
x∈Rn

|f(x)|.

Then h̺R(s) = 1 and, according to Theorem 7.1, (5.2) is satisfied and
the optimal domain norm is given by

̺D(f) ≈ sup
t>0

(Gf∗)(t) =

∫ ∞

0

f∗(s)s1/n−1e−ns1/n

ds, f ∈ M(Rn).

This norm is essentially smaller than ̺n,1(f) =
∫∞

0 t1/n−1f∗(t) dt, hence
this result improves the second example from Remark 4.3. Now, an easy
calculation shows that

̺D(f) ≈ f∗(1) +

∫ 1

0

f∗(t)t1/n−1 dt

≈ ̺∞(f∗χ(1,∞)) + ̺n,1(f
∗χ(0,1)), f ∈ M(Rn).

Example 7.4. Let

̺D(f) = ̺1(f) =

∫

Rn

|f(x)| dx.
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In that case, ̺′D = ̺∞, whence h̺′

D
(s) = 1. So, by Theorem 7.2, (6.10) is

satisfied. It is a simple exercise to verify (6.8). Using Theorem 6.2, the
optimal range norm can be described as the dual norm to

σ(f) = ̺∞(Hf∗) = ̺∞

(

t1/n−1e−nt1/n

∫ t

0

f∗(s)ens1/n

ds

)

.

To simplify

̺R(g) = σ′(g) = sup
f :̺∞(Hf∗)≤1

∫ ∞

0

f∗(t)g∗(t) dt,

we take f(t) = t−1/nχ(0,1)(t) + χ(1,∞)(t). Calculation shows that then
Hf∗ is bounded on (0,∞). This choice leads to

̺R(g) &

∫ 1

0

g∗(t)t−1/n dt +

∫ ∞

1

g∗(t) dt.

To prove the converse estimate, take f ∈ M+(0,∞, ↓) bounded and
g ∈ M+(0,∞, ↓) bounded, with bounded support and differentiable.
Then a direct calculation using only integration by parts and Fubini’s
Theorem shows that

∫ ∞

0

f∗(t)g∗(t) dt =

∫ ∞

0

t1/n−1e−nt1/n

∫ t

0

f∗(s)ens1/n

ds

×

[

g∗(t) − t1−1/n dg∗

dt
(t)

]

dt

≤ ̺∞(Hf∗)

∫ ∞

0

[

g∗(t) − t1−1/n dg∗

dt
(t)

]

dt

. ̺∞(Hf∗)

[∫ 1

0

g∗(t)t−1/n dt +

∫ ∞

1

g∗(t) dt

]

.

(7.1)

If f ∈ M+(0,∞, ↓) is not bounded, it may be approximated by a mono-
tone sequence of bounded fn ր f , fn ∈ M+(0,∞, ↓). This procedure
shows that (7.1) holds for every f ∈ M+(0,∞, ↓) and g as above. Finally,
every g ∈ M+(0,∞, ↓) may also be approximated by bounded differen-
tiable functions gn ր g, gn ∈ M+(0,∞, ↓) with bounded supports. This
provides (7.1) for all f, g ∈ M+(0,∞, ↓).

Hence,

̺R(g) = sup
f :̺∞(Hf∗)≤1

∫ ∞

0

f∗(t)g∗(t) dt ≈

∫ 1

0

g∗(t)t−1/n dt+

∫ ∞

1

g∗(t) dt.
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8. The limiting embedding

In this section we consider the case of limiting Sobolev embedding,

where ̺D is set to be ̺D(f) = ̺n(f) =
(∫

Rn

|f(x)|n dx
)1/n

. In that case,

̺′D(f) = ̺n′(f), where n′ is the conjugated exponent to n,

namely 1
n + 1

n′
= 1. Direct calculation shows that h̺′

D
(s) = s−1/n′

and
∫ 1

0 s−1/nh̺′

D
(s) ds = ∞. Moreover, standard examples (h(s) =

1
s| log s|2 χ(0,1/2)(s)) show that (6.10) is not satisfied.

To include this important case into the frame of our work, we will
develop a finer theory of optimal range space. This is described in the
following assertion.

Theorem 8.1. Let ̺D be a given r.i. norm such that (6.8) holds and

(8.1) ̺′D(Hχ(0,1)) < ∞.

Set

σ(h) = ̺′D(Hh∗), h ∈ M+(0,∞).

Then,

(8.2) ̺R := σ′

is an r.i. norm which satisfies (4.4) and which is optimal for (4.4).

Proof: Step 1. We will prove that ̺R is an r.i. norm. The axioms (A2)
and (A3) are easy to verify. Let us assume that ̺R(f) = 0 for some
f ∈ M+(0,∞). Then

(8.3) 0 = ̺R(f) = sup
σ(g)=1

∫ ∞

0

f(t)g(t) dt.

According to (8.1), σ(χE) is finite for every measurable set E ⊂ (0,∞)
with |E| < ∞. Together with (8.3), this implies that

∫

E f = 0 for
every such set E and, consequently, f = 0 almost everywhere, which
proves (A1).

To verify (A5), take a set E ⊂ (0,∞) with |E| < ∞. Then, for every
f ∈ M+(0,∞),

̺R(f) = sup
σ(h) 6=0

∫
fh

σ(h)
≥

∫
fχE

σ(χE)
= cE

∫

E

f.

The axiom (A4) is an easy consequence of (8.2) and the estimate

(8.4) σ(g) ≥ cE

∫ |E|

0

g∗(u) du, g ∈ M+(0,∞).
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To prove (8.4), we use Fubini’s Theorem

σ(g) = ̺′D(Hg∗) = ̺′D

(

t1/n−1e−nt1/n

∫ t

0

g∗(u)enu1/n

du

)

≥

∫ 2|E|

0 t1/n−1e−nt1/n ∫ t

0 g∗(u)enu1/n

du dt

̺D(χ(0,2|E|))

= c

∫ 2|E|

0

g∗(u)enu1/n

∫ 2|E|

u

t1/n−1e−nt1/n

dt du

≥ cE

∫ |E|

0

g∗(u) du.

Step 2. We show that ̺R and ̺D satisfy (4.4). As in Section 6, we
obtain

sup
g∈G

̺R(Gg)

̺D(g)
= sup

g∈G

σ′(Gg)

̺D(g)
= sup

g∈G,h∈M+(0,∞,↓)

∫∞

0
(Gg)(t)h(t) dt

̺D(g)σ(h)

= sup
g∈G,h∈M+(0,∞,↓)

∫∞

0 (Hh)(t)g(t) dt

̺D(g)σ(h)
.

(8.5)

Together with Lemma 6.1, this yields

sup
g∈G

̺R(Gg)

̺D(g)
= sup

h∈M+(0,∞,↓)

1

σ(h)
sup
g∈G

∫∞

0
(Hh)(t)g(t) dt

̺D(g)

≈ sup
h∈M+(0,∞,↓)

1

σ(h)
sup

g∈M+(0,∞)

∫∞

0
(Hh)(t)g(t) dt

̺D(g)

= sup
h∈M+(0,∞,↓)

̺′D(Hh∗)

σ(h)
= 1.

Step 3. Finally, we prove the optimality of ̺R. Let the r.i. norms ν
and ̺D satisfy (4.4) with ν instead of ̺R, that is,

sup
g∈G

ν(Gg)

̺D(g)
< ∞.
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Then, proceeding as above,

∞ > sup
g∈G

ν(Gg)

̺D(g)
= sup

g∈G,h∈M+(0,∞,↓)

∫∞

0 (Gg)(t)h(t) dt

̺D(g)ν′(h)

≈ sup
h∈M+(0,∞,↓)

̺′D(Hh∗)

ν′(h)
.

Hence, for every h ∈ M+(0,∞),

σ(h) = ̺′D(Hh∗) ≤ c ν′(h).

Consequently,

ν(f) = ν′′(f) ≤ c σ′(f) = c ̺R(f) for all f ∈ M+(0,∞).

Let us apply Theorem 8.1 to the limiting Sobolev embeddings with

̺D(f) = ̺n(f) =

(∫ ∞

0

|f∗(t)|n dt

)1/n

or

̺D(f) = ̺n,1(f) =

∫ ∞

0

t1/n−1f∗(t) dt,

respectively. Direct calculation shows that (8.1) is satisfied in both these
cases.

To verify (6.8), we point out that

(8.6) E(s) ≈

{

s for s ∈ (0, 1],

s1−1/n for s ∈ (1,∞).

Hence, Fubini’s Theorem, (8.6) and Lemma 2.6 imply that

̺n,1

(∫ ∞

t

f(u)
E(u)

u
u1/n−1 du

)

= n

∫ ∞

0

f(u)
E(u)

u
u1/n−1u1/n du

≤ c

∫ ∞

0

t1/n−1f(t) dt ≤ c

∫ ∞

0

t1/n−1f∗(t) dt = c̺n,1(f).

When ̺D = ̺n, (6.8) is a consequence of Hardy’s inequality. We re-
fer to [8] for details. So, in both the cases, Theorem 8.1 is applicable
and gives the optimal range norm. The result is presented in the next
theorem.
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Theorem 8.2. Let ̺D = ̺n. Then, the optimal range norm, ̺R, satis-
fies

(8.7) ̺R(f) ≈ ̺n(f) + λ(f∗χ(0,1)),

where

λ(g) :=

(∫ 1

0

(
g∗(t)

log( e
t )

)n
dt

t

) 1
n

, g ∈ M(0, 1).

Proof: We first recall that for ̺D = ̺n, both (6.8) and (8.1) are satisfied.
Thus, by Theorem 8.1,

̺′R(h) ≈ ̺n′(Hh∗) = ̺n′

(

t1/n−1e−nt1/n

∫ t

0

h∗(s)ens1/n

ds

)

≈ ̺n′

(

χ(0,1)(t)t
1/n−1e−nt1/n

∫ t

0

h∗(s)ens1/n

ds

)

+ ̺n′

(

χ(1,∞)(t)t
1/n−1e−nt1/n

∫ t

0

h∗(s)ens1/n

ds

)

=: I + II.

Since

e−n ≤ en(s1/n−t1/n) ≤ 1 for 0 ≤ s ≤ t ≤ 1,

we obtain

I ≈ ̺n′

(

χ(0,1)(t)t
1/n−1

∫ t

0

h∗(s) ds

)

=

(
∫ 1

0

(∫ t

0

h∗(s) ds

)n′

dt

t

) 1

n′

.

As for II, we use monotonicity of h∗, (6.3) and (8.6) to get

II =

(
∫ ∞

1

(∫ t

0

h∗(s)ens1/n

ds

)n′

e−nn′t1/n dt

t

) 1

n′

≥

(
∫ ∞

1

h∗(t)n′

(

e−nt1/n

∫ t

0

ens1/n

ds

)n′

dt

t

) 1

n′

≈

(∫ ∞

1

h∗(t)n′

(

t1−1/n
)n′

dt

t

) 1

n′

=

(∫ ∞

1

h∗(t)n′

dt

) 1

n′

.
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Conversely, by the weighted Hardy inequality (cf. [8]),

II ≈

(
∫ ∞

1

(∫ 1

0

h∗(s)ens1/n

ds

)n′

e−nn′t1/n dt

t

) 1

n′

+

(
∫ ∞

1

(∫ t

1

h∗(s)ens1/n

ds

)n′

e−nn′t1/n dt

t

) 1

n′

≤ c

[
∫ 1

0

h∗(s) ds +

(∫ ∞

1

h∗(t)n′

dt

) 1

n′

]

≤ c





(
∫ 1

0

(∫ t

0

h∗(s) ds

)n′

dt

t

) 1

n′

+

(∫ ∞

1

h∗(t)n′

dt

) 1

n′



 .

Altogether,

̺′R(g) ≈

(
∫ 1

0

(∫ t

0

h∗(s) ds

)n′

dt

t
+

∫ ∞

1

h∗(t)n′

dt

) 1

n′

.

Now, set

ν(g) :=

(∫ ∞

0

g∗(t)nv(t) dt

) 1
n

,

where

v(t) =

{

t−1
(
log e

t

)−n
, t ∈ (0, 1),

1, t ∈ (1,∞).

Then, by [10, Theorem 4], ν is an r.i. norm. More precisely, it is a special
case of a classical Lorentz norm whose Köthe dual has been characterised
in [10, Theorem 1]. Thus,

ν′(f) ≈






∫ ∞

0

(∫ t

0

f∗(s) ds

)n′

v(t)
(∫ t

0
v(s) ds

)n′
dt






1

n′

≈ ̺′R(f),

as an easy calculation shows.
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Finally, since both ν and ̺R are r.i. norms, it follows from the Prin-
ciple of Duality (2.8) that

̺R ≈ ν,

as desired.

Remark 8.3. We note that λ from Theorem 8.2 is the well-known norm
discovered in various contexts independently by Maz’ja [7], Hansson [6]
and Brézis-Wainger [2].

Appendix A. Proofs of lemmas

As we have promised, we deliver here the proofs of Lemma 5.1 and
Lemma 6.1.

Proof of Lemma 5.1: We fix g ∈ G and t ≥ 0. Then, according to (4.5),
there is a function f ≥ 0 such that (4.1) holds. Thus the left-hand side
of (5.1) can be rewritten as

∫ ∞

t

(

f(u) +

∫ ∞

u

f(s)s1/n−1 ds

)

u1/n−1e−nu1/n

du

=

∫ ∞

t

f(u)u1/n−1e−nu1/n

du

+

∫ ∞

t

f(s)s1/n−1

∫ s

t

u1/n−1e−nu1/n

du ds

= e−nt1/n

∫ ∞

t

f(s)s1/n−1 ds.

(A.1)

The right-hand side of (5.1) is more complicated. Using (2.4), (4.1)
and Fubini’s Theorem, we get

g∗∗(u) ≈ f∗∗(u) +

(∫ ∞

t

f(s)s1/n−1 ds

)∗∗

(u)

= f∗∗(u) +

∫ ∞

u

f(s)s1/n−1 ds +
1

u

∫ u

0

f(s)s1/n ds.

(A.2)
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We insert the formula (A.2) in (5.1) and use Fubini’s Theorem to
arrive at

∫ ∞

t

g∗∗(u)u1/n−1e−nu1/n

du

≈

∫ ∞

t

f∗∗(u)u1/n−1e−nu1/n

du

︸ ︷︷ ︸

I

+

∫ ∞

t

(∫ ∞

u

f(s)s1/n−1 ds

)

u1/n−1e−nu1/n

du

︸ ︷︷ ︸

II

+

∫ ∞

t

(∫ u

0

f(s)s1/n−1 ds

)

u1/n−2e−nu1/n

du

︸ ︷︷ ︸

III

.

Each of these three integrals can be further estimated. We start with
the second one:

II = e−nt1/n

∫ ∞

t

f(s)s1/n−1 ds −

∫ ∞

t

f(s)s1/n−1e−ns1/n

ds.

To deal with integrals I and III, we use the notation

h(s) :=
∫∞

s
u1/n−2e−nu1/n

du. Then, by Fubini’s Theorem,

I ≥

∫ ∞

t

1

u

(∫ u

t

f(s) ds

)

u1/n−1e−nu1/n

du =

∫ ∞

t

f(s)h(s) ds

and

III ≥

∫ ∞

t

∫ u

t

f(s)s1/n dsu1/n−2e−nu1/n

du =

∫ ∞

t

f(s)s1/nh(s) ds.

The last three estimates give us

I + II + III ≥

∫ ∞

t

f(s)h(s)(s1/n + 1) ds + e−nt1/n

∫ ∞

t

f(s)s1/n−1 ds

−

∫ ∞

t

f(s)s1/n−1e−ns1/n

ds.

This estimate and (A.1) imply that it is enough to prove that
∫ ∞

t

f(s)h(s)(s1/n + 1) ds ≥

∫ ∞

t

f(s)s1/n−1e−ns1/n

ds.

But the last inequality is a trivial consequence of the pointwise estimate

h(s)(s1/n + 1) ≥ s1/n−1e−ns1/n

, s > 0,

which may be proved by direct calculation.
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Proof of Lemma 6.1: As G ⊂ M+(0,∞), the estimate “.” in (6.9) fol-
lows immediately. To prove the reverse one, take a h ∈ M+(0,∞, ↓).

Moreover, if f ∈ M+(0,∞), we put f̃(s) = f(s)E(s)
s for all s > 0, where

E is defined by (6.3), and g(t) = f̃(t) +
∫∞

t
f̃(s)s1/n−1 ds, t > 0. We

claim, that the following two conditions are satisfied:

I. ̺D(g) ≤ c̺D(f),

II.
∫∞

0 (Hh)(t)g(t) dt ≥ c
∫∞

0 (Hh)(t)f(t) dt.

Indeed, to prove I, we use the fact that s−1E(s) ≤ 1 for all s > 0. We
get (c.f. (8.6) and (6.8))

̺D(g) = ̺D

(

f(s)
E(s)

s
+

∫ ∞

s

f(u)
E(u)

u
u1/n−1 du

)

≤ ̺D

(

f(s)
E(s)

s

)

+ ̺D

(∫ ∞

s

f(u)
E(u)

u
u1/n−1 du

)

≤ ̺D(f) + c̺D(f) = c̺D(f),

where we used (6.8).
The proof of II is more complicated. The left-hand side of the condi-

tion II can be simplified by

∫ ∞

0

(Hh)(t)g(t) dt =

∫ ∞

0

(Gg)(t)h(t) dt

=

∫ ∞

0

h(t)

(∫ ∞

t

f̃(s)s1/n−1 ds

)

dt

and the right-hand side by

∫ ∞

0

(Hh)(t)f(t) =

∫ ∞

0

f(u)u1/n−1e−nu1/n

(∫ u

0

h(t)ent1/n

dt

)

du

=

∫ ∞

0

h(t)

(

ent1/n

∫ ∞

t

f(u)u1/n−1e−nu1/n

du

)

dt.

By Hardy’s Lemma 2.6, the result will follow if we show that, for
all ξ > 0 and for all f ∈ M+(0,∞),

(A.3)

∫ ξ

0

∫ ∞

t

f̃(s)s1/n−1 ds dt ≥

∫ ξ

0

ent1/n

∫ ∞

t

f(u)u1/n−1e−nu1/n

du dt.
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Using Fubini’s Theorem, we can rewrite the right-hand side of (A.3) as

(A.4)

∫ ξ

0

f(s)s1/n−1e−ns1/n

(∫ s

0

ent1/n

dt

)

ds

+

∫ ∞

ξ

f(s)s1/n−1e−ns1/n

ds

∫ ξ

0

ent1/n

dt,

and the left-hand side of (A.3) as

(A.5)

∫ ξ

0

f̃(s)s1/n ds + ξ

∫ ∞

ξ

f̃(s)s1/n−1 ds

=

∫ ξ

0

f(s)s1/n−1E(s) ds + ξ

∫ ∞

ξ

f(s)s1/n−2E(s) ds.

The first integral in the last sum in (A.5) is equal to the first integral
in (A.4). So, we shall deal with the second integrals. We shall use the
following observation

1

s

∫ s

0

enu1/n

du ≥
1

ξ

∫ ξ

0

enu1/n

du, s > ξ,

and finish the proof by

ξ

∫ ∞

ξ

f(s)s1/n−2E(s) ds = ξ

∫ ∞

ξ

f(s)s1/n−2e−ns1/n

∫ s

0

enu1/n

du ds

≥ ξ

∫ ∞

ξ

f(s)s1/n−1e−ns1/n 1

ξ

∫ ξ

0

enu1/n

du ds

=

∫ ∞

ξ

f(s)s1/n−1e−ns1/n

ds

∫ ξ

0

enu1/n

du.
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