SOME NON-AMENABLE GROUPS

Aditi Kar and Graham A. Niblo

Abstract: We generalise a result of R. Thomas to establish the non-vanishing of the first ℓ^2 Betti number for a class of finitely generated groups.

2010 Mathematics Subject Classification: 20J06.

Key words: finitely generated groups, orbifolds, cohomology, Euler characteristic.

In this note we give the following generalisation of a result of Richard Thomas [8].

Theorem 1. Let G be a finitely generated group given by the presentation
\[\langle x_1, \ldots, x_d : u_1^{m_1}, \ldots, u_r^{m_r} \rangle \]
such that each relator u_i has order m_i in G.

1. If G is finite then \(1 - d + \sum_{i=1}^{r} \frac{1}{m_i} > 0 \) and \(|G| \geq \frac{1}{1 - d + \sum_{i=1}^{r} \frac{1}{m_i}} \).
2. If the first ℓ^2 Betti number $\beta^2_1(G)$ of G is zero, then
\[1 - d + \sum_{i=1}^{r} \frac{1}{m_i} \geq 0. \]

In particular, the case when all the exponents m_i in the presentation are equal to 1 yields the well known observation that when the first ℓ^2 Betti number is zero the deficiency of the presentation $d - r$ must be at most 1. The vanishing of the first ℓ^2 Betti number of a group G holds for example if G is finite, if it satisfies Kazhdan’s property (T) or if it admits an infinite normal amenable subgroup (in particular if it is infinite amenable). We refer to [4] for other interesting examples. We obtain as a corollary:

Corollary 2. Let G be a finitely generated group given by the presentation
\[\langle x_1, \ldots, x_d : u_1^{m_1}, \ldots, u_r^{m_r} \rangle \]

Research partially supported by EPSRC grant EP/F031947/1.
such that each relator \(u_i \) has order \(m_i \) in \(G \). If \(d > 1 + \sum_{i=1}^{r} \frac{1}{m_i} \), then \(G \) is infinite, does not satisfy Kazhdan’s property \((T)\) and has no amenable infinite normal subgroups.

Thomas established the inequality in (1) above by providing a simple but elegant computation of the dimension of the \(\mathbb{F}_2 \)-vector space of 1-cycles of the cellular chain complex of the Cayley graph of \(G \) (Thomas refers to this space as the cycle space of \(\Gamma \).) If \(\Gamma \) has \(d \) edges and \(v \) vertices then the dimension of this vector space is \(d - v + 1 \). An alternative approach, yielding information about the classical first Betti number of \(G \) and its finite index subgroups is explored by Allcock in [1].

We generalise this idea to give the additional inequality in (2) above by using elementary observations about the \(\ell^2 \) Betti numbers \(\beta_i^2 \) of the orbihedral presentation 2-complex of \(\Gamma \). For an introduction to \(\ell^2 \) Betti numbers, we refer the reader to [3]. The first \(\ell^2 \) Betti number vanishes for all finite groups. Cheeger and Gromov have shown that if a group \(G \) is amenable then \(\beta_1^2(G) = 0 \) [2, Theorem 0.2]. More generally, \(\beta_1^2(G) \) is zero for any group \(G \) which contains an infinite normal amenable subgroup.

Remark 3. Theorem 1 can be derived from deeper results of Peterson and Thom; in particular, Equation (3) yields the inequality \(\beta_1^2(G) \geq \frac{1}{|G|} + d - 1 - \sum_{i \in I} \frac{1}{m_i} \) from [7]. Here, \(|G| \) denotes the size of \(G \) and \(\frac{1}{|G|} \) is understood to be zero when \(G \) is infinite.

Finitely generated but not finitely presented groups. Lück has defined \(\ell^2 \) Betti numbers for any countable discrete group. The notion agrees with the cellular \(\ell^2 \) Betti numbers for finitely presented groups and the basic properties including a generalised Euler-Poincaré formula for \(G \)-CW complexes may be found in Chapter 6 of [6]. Working in this context and arguing as in the proof of Theorem 1, we obtain the following generalisation.

Theorem 4. Suppose a group \(G \) is given by the presentation

\[
G = \langle x_1, \ldots, x_d : u_i^{m_i}, \ i \in I \rangle
\]

where \(I \) is a countable set and each relator \(u_i \) has order \(m_i \) in \(G \). If \(\sum_{i \in I} \frac{1}{m_i} \) converges then \(\beta_1^2(G) \geq \frac{1}{|G|} + d - 1 - \sum_{i \in I} \frac{1}{m_i} \). In particular if \(\beta_1^2(G) = 0 \) then \(\sum_{i \in I} \frac{1}{m_i} - d + 1 \geq 0 \).

Before we embark on the proof of Theorem 1, we need a short lemma which says that the orbihedral Euler characteristic of a \(G \)-CW complex \(Y \) may be computed from its \(\ell^2 \) Betti numbers. The lemma is well known and may be found in [6].
Lemma 5 ([6, Theorem 6.80]). If G acts on a connected CW complex \tilde{Y} with finite quotient Y such that stabilisers of cells are finite, then the ℓ^2-Euler characteristic of Y is equal to the orbihedral Euler characteristic of Y. More precisely, if for each i, Σ_i is a choice of representatives for the orbits of i-cells in \tilde{Y} and the stabiliser of a cell σ in G is written G_σ, then

$$
\sum_i (-1)^i \beta_i^2(Y) = \sum_i (-1)^i \sum_{\sigma \in \Sigma_i} \frac{1}{|G_\sigma|}.
$$

We now proceed with the proof of Theorem 1.

Proof of Theorem 1: Let G be a group given by the presentation $\langle x_1, \ldots, x_d : u_{i_1}^{m_{i_1}}, \ldots, u_{i_r}^{m_{i_r}} \rangle$ where each relator u_i has order m_i in G. The orbihedral presentation 2-complex of G, which we will denote by P, has one vertex and d edges forming a bouquet of d circles. Identifying each of the circles with one of the generators x_i we identify the fundamental group of this bouquet with the free group on $\{x_1, \ldots, x_d\}$. Attached to this are r discs, D_1, \ldots, D_r. For each $i = 1, \ldots, r$, the disc D_i is endowed with a cone point of cone angle $\frac{2\pi}{m_i}$ and its boundary is attached by a degree 1 map along the loop in the bouquet of circles corresponding to the element u_i.

Attaching the corresponding stabilisers to cells we obtain, in the language of Haefliger [5], a developable complex of groups, meaning that the orbihedral universal cover X of P exists. In fact, X has a simple description in terms of the Cayley graph C of G. The 1-skeleton of the orbihedral universal cover is the Cayley graph of G with respect to the generating set $\{x_1, \ldots, x_d\}$, while the 2-skeleton is obtained from the 2-skeleton of the topological universal cover of the presentation 2-complex by collapsing stacks of relator discs having common boundaries. Specifically, the relator $u_i^{m_i}$ corresponds to a loop γ_i in P bounding a disc and there is a unique lift $\tilde{\gamma}_i$ of γ_i based at the identity vertex in C. In the topological universal cover of the presentation 2-complex there are additional copies of this disc (glued along the same loop) based at the elements $u_i, \ldots, u_i^{m_i-1}$ and the action of the subgroup $\langle u_i \rangle$ permutes these discs so that each has trivial stabiliser. In contrast, these copies are identified in the orbihedral cover to give a single disc and it is preserved by the element u_i. The hypothesis that u_i has order m_i controls the order of the cell stabiliser.

We now apply the identity in (1) to our complex X. The action of G on the vertices and the edges of X is both free and transitive. On the other hand, by hypothesis, the stabiliser of a lift of a 2-cell D_i has
order m_i. Hence, $\beta_0^2(\mathcal{P}) - \beta_1^2(\mathcal{P}) + \beta_2^2(\mathcal{P}) = 1 - d + \sum_i \frac{1}{m_i}$. We also know that $\beta_0^2(\mathcal{P}) = \frac{1}{|G|}$ where $\frac{1}{|G|}$ is understood to be zero when G is infinite. Therefore,

$$
\frac{1}{|G|} - \beta_1^2(\mathcal{P}) + \beta_2^2(\mathcal{P}) = 1 - d + \sum_i \frac{1}{m_i}.
$$

Finally we remark that the first ℓ^2 Betti number of the group G may be computed as the first ℓ^2 Betti number of the orbihedral presentation complex used above. By definition, $\beta_1^2(G)$ is the von Neumann dimension of the first ℓ^2 homology group of Y with coefficients in the von-Neumann algebra of G, where Y is the universal cover of the (topological) presentation 2 complex for G. Since both X and Y are simply connected we deduce from Theorem 6.54(3) of [6] that $\beta_1^2(G) = \beta_1^2(\mathcal{P})$. Therefore, Equation (2) becomes

$$
\frac{1}{|G|} - \beta_1^2(G) + \beta_2^2(\mathcal{P}) = 1 - d + \sum_i \frac{1}{m_i}.
$$

Now assume that $\beta_1^2(G) = 0$. Since $\beta_2^2(\mathcal{P}) \geq 0$, we get the identity we are looking for, namely

$$
1 - d + \sum_{i=1}^r \frac{1}{m_i} \geq \frac{1}{|G|}.
$$

In particular, if G is finite, then the ℓ^2 cohomology of G is just the group cohomology with real coefficients, and this vanishes so we obtain Thomas’s result that $1 - d + \sum_{i=1}^r \frac{1}{m_i} > 0$ and $|G| \geq \frac{1}{1-d+\sum_{i=1}^r \frac{1}{m_i}}$.

On the other hand, if G is infinite and its first ℓ^2 Betti number is zero, in particular if G is an infinite amenable group, then we obtain the inequality $1 - d + \sum_{i=1}^r \frac{1}{m_i} \geq 0$, as required.

\[\square\]

References

School of Mathematics
University of Southampton
Southampton, SO17 1BJ
UK

E-mail address: A.Kar@soton.ac.uk

E-mail address: G.A.Niblo@soton.ac.uk

Primera versió rebuda el 28 de març de 2011,
darrera versió rebuda el 9 de novembre de 2011.