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COUNTING COLORINGS ON VARIETIES

Fernando Rodŕıguez-Villegas

Abstract

We present a combinatorial mechanism for counting certain ob-
jects associated to a variety over a finite field. The basic example
is that of counting conjugacy classes of the general linear group.
We discuss how the method applies to counting these and also to
counting unipotent matrices and pairs of commuting matrices.

1. Setup

1.1. Introduction. The goal of this note is to present a combinato-
rial mechanism for counting certain objects associated to a variety X
defined over a finite field. The basic example, discussed in Section 2.2,
is that of counting conjugacy classes in GLn(Fq), where X = Gm (the
multiplicative group).

We give four different forms of the main formula (which is somewhat
reminiscent of Pólya’s theory of counting). The principle that emerges
is that in a given setup the counting generating functions for X = • (a
point), X = Ga (the additive group) and X = Gm are related to one
another in a simple way. Often one of the cases will be significantly
easier to compute than the others yielding a closed formula for all three
generating functions. For example, in Section 3 we describe how one can
go from counting all matrices in Mn(Fq), corresponding to X = Ga, to
counting unipotent matrices in Mn(Fq), corresponding to X = •.

None of the special cases considered here are really new; the point
is, instead, to stress the main combinatorial principle. For more general
applications (to quiver and character varieties) we refer the reader to [5]
and [4].
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1.2. The zeta function of X. Let Fq be a finite field with q elements.

Fix an algebraic closure Fq of Fq. For each r ∈ N let Fqr be the unique

subfield of Fq of cardinality qr. Let Frobq ∈ Gal(Fq/Fq) be the Frobenius
automorphism x 7→ xq. Then Fqr is the fixed field of Frobr

q.
Let X be an algebraic variety defined over Fq. For each r ∈ N let

Nr(X) := #X(Fqr). The zeta function of X is defined as

(1) Z(X, T ) := exp





∑

r≥1

Nr(X)
T r

r



 .

Let Ñd(X) be the number of Frobenius orbits in X(Fq) of size d. Then

(2) Nr(X) =
∑

d|r

d Ñd(X).

We can write the zeta funcion as an Euler product

(3) Z(X, T ) =
∏

d≥1

(1 − T d)−Ñd(X).

1.3. Colorings on X. We consider the following general setup. Let
C be a set, whose members we call colors, and

(4) | · | : C −→ Z≥0

a function called degree such that

(1) there are finitely many colors of a given degree;
(2) there is a unique color 0 ∈ C of degree 0.

A coloring on X is a map

(5) Λ: X(Fq) −→ C.

The degree of Λ is defined as

(6) |Λ| :=
∑

x∈X(Fq)

|Λ(x)|.

We will only consider colorings of finite degree, so that Λ(x) = 0 for all
but finitely many x. We let the Frobenius automorphism act on colorings
via

(7) ΛFrobq(x) := Λ(Frobq(x))

and say Λ is defined over Fqr if Λ is fixed by Frobr
q. In this case we will

write: Λ is a coloring of X/Fqr .
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Given a pair (d, λ), with d ∈ N and λ ∈ C a non-zero color, we
define its multiplicity md,λ in a coloring Λ of X/Fq to be the number of

Frobenius orbits {x} in X(Fq) of degree d with Λ(x) = λ. Note that

(8) |Λ| =
∑

d≥1,λ6=0

md,λ d|λ|.

We call the combinatorial data {md,λ} of multiplicities the type of Λ and
denote it τ(Λ).

Example 1. Let C = Z≥0 with degree function |n| = n. Then a coloring
is an effective 0-cycle on X . The actions of Frobenius are compatible
hence Λ is defined over Fqr if and only if the corresponding 0-cycle is.

Example 2. If X = Gm and C = P is the set of all partitions of non-
negative integers with |λ| = λ1 + λ2 + · · · if λ = λ1 ≥ λ2 ≥ · · · then
colorings of degree n are in one-to-one correspondence with conjugacy
classes in GLn(Fq) by the Jordan decomposition theorem. Indeed, to
each coloring Λ we may associate the direct sum of Jordan blocks with

eigenvalue x ∈ F
⋆

q and size λi, where Λ(x) = λ1 ≥ λ2 ≥ · · · . This
correspondence preserves the action of Frobenius and therefore colorings
defined over Fqr are in bijection to conjugacy classes of GLn(Fqr ).

Similar statements hold for X = Ga with colorings corresponding to
conjugacy classes in Mn(Fq) instead.

We need one more ingredient. Let R = Z[[t1, . . . , tN ]][t−1
1 , . . . , t−1

N ]
be the ring of Laurent series with integer coefficients in the variables
t1, . . . , tN . We let

(9) W : C −→ R

be a function called weight satisfying W (0) = 1.
We define the weight of a coloring Λ on X/Fq as

(10) W (Λ) :=
∏

{x}

W (Λ(x))(td(x)),

where {x} runs through the Frobenius orbits in X(Fq), d(x) = #{x} is
the degree of x (the size of its Frobenius orbit) and td := td1 · · · t

d
N . Note

that W (Λ) only depends on the type τ(Λ):

(11) W (Λ) =
∏

d≥1,λ6=0

W (λ)(td)md,λ .

We say that W is homogeneous if for each λ ∈ C we have that W (λ) ∈
R is homogeneous of degree |λ|. In this case W (Λ) is also homogeneous
of degree |Λ|.
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1.4. Coloring zeta function of X. Given the coloring data C =
(C, | · |, W (·)) we define the coloring zeta function of X as the formal
power series in R[[T ]]

(12) ZC(X, t, T ) :=
∑

Λ

W (Λ)T |Λ|,

where the sum runs over all colorings of X/Fq. If X = • (a point) then
the coloring zeta function simply reduces to

(13) ZC(•, t, T ) :=
∑

λ∈C

W (λ)T |λ|.

Example 3. In the standard setup C = (Z≥0, | · |, 1), ZC(X, T ) is just
the usual zeta function Z(X, T ). In particular, if X = • then

ZC(•, T ) =
∑

n≥0

T n = (1 − T )−1.

Example 4. In the partition setup C = (P , | · |, 1) and if X = • then

ZC(•, T ) =
∑

λ∈P

T |λ| =
∏

d≥1

(1 − T d)−1.

2. Main formula

2.1. First form. This form of the main formula is similar to the Euler
product (3) for the usual zeta function (to which it reduces to in the
standard setup).

Theorem 1. The following identity of generating functions holds

(14) ZC(X, t, T ) =
∏

d≥1

ZC(•, td, T d)Ñd .

Proof: Write ZC(•, t, T ) = 1 + z(T ). For N ∈ N we have

ZC(•, t, T )N = 1 +
∑

m≥1

N(N − 1) · · · (N − m + 1)
z(T )m

m!

by the binomial theorem. On the other hand by the multinomial theorem

z(T )m

m!
=

∑

mλ

∏

λ6=0

W (λ)mλ

mλ!
T mλ|λ|
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summed over all sequences of non-negative integers mλ with
∑

λ6=0 mλ =
m. Putting these two identities together we get that the coefficient of T n

on the right hand side of (14) equals

∑

md,λ

∏

d≥1, λ6=0

Ñd(Ñd − 1) · · · (Ñd − md + 1)
W (λ)(td)md,λ

md,λ!

summed over all md,λ sequences of non-zero integers satisfying

n =
∑

d≥1, λ6=0

md,λ d|λ|,

where md :=
∑

λ6=0 md,λ.

On the other hand to give a coloring of X/Fq with multiplicites md,λ

we need to pick md =
∑

λ6=0 md,λ Frobenius orbits of size d and color md,λ

of them with color λ 6= 0. There are
(

Ñd

md

)

ways of picking the orbits and

md!/
∏

λ6=0 md,λ! ways to color them in this way and the weight of Λ

is W (Λ) =
∏

d≥1, λ6=0 W (λ)(td)md,λ . It follows that the coefficients of T n

on both sides of (14) agree.

2.2. Second form.

Theorem 2. The following identity of generating functions holds

(15) ZC(X, t, T ) =
∏

m∈ZN , d≥1

Z(X, tmT d)vd,m

where the exponents vd,m are defined by the formal identity

(16) ZC(•, t, T ) =
∏

m∈ZN , d≥1

(1 − tmT d)−vd,m .

Proof: Taking logarithms of both sides of (14) we get

log ZC(X, t, T ) =
∑

d≥1

Ñd log ZC(•, td, T d).

By Möbius inversion of (2)

Ñd =
1

d

∑

e|d

µ(e)Nd/e.

Taking logarithm of both sides of (16) we get

log ZC(•, t, T ) = −
∑

m∈ZN , d≥1

vd,m log(1 − tmT d).
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On the other hand,

T = −
∑

r≥1

µ(r) log(1 − T r)

and hence

log ZC(X, t, T ) = −
∑

r,s≥1

1

rs
µ(r)Ns

∑

m∈ZN , d≥1

vd,m log(1 − tmsrT dsr)

=
∑

s≥1

1

s
Ns

∑

m∈ZN , d≥1

vd,mtsmT sd

=
∑

m∈ZN , d≥1

vd,m log Z(X, tmT d)

proving our claim.

Remark. It is easy to see by induction that the vd,m in (16) are integers
uniquely determined by ZC(•, t, T ).

Example 5. In the partition setup C = (P , | · |, 1) with X = Gm we
have

ZC(Gm, T ) =
∑

n≥0

CnT n,

where Cn is the number of conjugacy classes in GLn(Fq) (see Example 2);
by (15) this equals

(17)
∏

n≥1

(

1 − T n

1 − qT n

)

as Z(Gm, T ) = (1 − T )/(1 − qT ). See [1], [3], [6].
Similarly, if we take X = Ga then we get the expression

(18)
∏

n≥1

(1 − qT n)−1

for the generating funtion for the conjugacy classes in Mn(Fq) instead.

2.3. Third form. This form of the expression for the coloring zeta
function is a simple variant of the second form (15) but it is convenient
to state it separately.

Let

(19) ZC(u, t, T ) :=
∏

m∈ZN , d≥1

(1 − u tmT d)−vd,m

where u is another formal variable and vd,m is as in (16).
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Theorem 3. Let

(20) Z(X, T ) =
∏

i

(1 − xiT )−ni ,

for some xi ∈ C and ni ∈ Z. Then with the above notation we have

(21) ZC(X, t, T ) =
∏

i

ZC(xi, t, T )ni .

Example 6. In the standard setup ZC(•, T ) = (1 − T )−1 so that
ZC(u, T ) = (1 − uT )−1 and (21) is simply a restatement of (20).

Remark. It is known by the work of Dwork that Z(X, T ) is a rational
function of T of the form (20).

2.4. Fourth form. Recall that R = Z[[t1, . . . , tN ]][t−1
1 , . . . , t−1

N ] is the
ring of Laurent series in variables t1, . . . , tN with integer coefficients.
Given Z ∈ 1 + TR[[T ]] we define, following Getzler [2]

(22) Log(Z) :=
∑

d≥1, m∈ZN

vd,mtmT d ∈ R[[T ]],

where

Z =
∏

m∈ZN , d≥1

(1 − tmT d)−vd,m ,

as in (16).
In this section we assume that X is a polynomial count variety; i.e.

Nr(X) = NX(qr), r ∈ N,

for some fixed polynomial NX ∈ Z[q]. We also assume that one of
the variables in R is q. To simplify the notation we relabel the vari-
ables as q, t1, . . . , tN and the exponents as i ∈ Z for q and m ∈ ZN

for t1, . . . , tN . For example, with this relabeling (19) becomes

(23) ZC(u, t, T ) =
∏

i∈Z, m∈ZN , d≥1

(1 − u qitmT d)−vd,i,m .

Theorem 4. The following identity holds

(24) Log(ZC(X, t, T )) = NX(q) Log(ZC(•, t, T )).

Proof: The claim is a simple consequence of the third form (21) of our
main formula. If NX(q) =

∑

j njq
j then

Z(X, T ) =
∏

j

(1 − qjT )−nj .
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Hence by (21)

ZC(X, t, T ) =
∏

j∈Z

ZC(qj , t, T )nj

=
∏

i,j∈Z, m∈ZN , d≥1

(1 − qi+jtmT d)−njvd,i,m

=
∏

k∈Z, m∈ZN , d≥1

(1 − qktmT d)−
P

i+j=k njvd,i,m .

Hence

Log(ZC(X, t, T )) =
∑

k∈Z, m∈ZN , d≥1

∑

i+j=k

njvd,i,mqktmT d

which equals the right hand side of (24).

3. Applications

3.1. Unipotent matrices. We consider the coloring data C = P with
the usual degree function | · | but with a non-trivial weight function. For
all results and concepts related to partitions our reference will be [7],
whose notation we will follow.

Let X = Ga and Λ a coloring of X/Fq corresponding to a conjugacy
class c in Mn(Fq). The centralizer zc of c in Gn := GLn(Fq) has order [7]

∏

{x}

aΛ(x)(q
d(x)),

where, as before, {x} runs through the Frobenius orbits, d(x) is the size
of {x} and where for λ ∈ P

(25) aλ(q) := q|λ|+2n(λ)bλ(q−1),

with

n(λ) :=
∑

i≥1

(i − 1)λi(26)

bλ(q) :=
∏

i≥1

φmi(λ)(q)(27)

φm(q) := (1 − q)(1 − q2) · · · (1 − qm)(28)

and, finally, mi(λ) is the multiplicity of i in λ.
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It follows that if we define our weight function as

W (λ) := aλ(q)−1 ∈ R

where R = Z[[q]][q−1] then

(29) W (Λ) =
1

|zc|
.

Consequently, if we now take X = Gm then
∑

Λ/Fq, |Λ|=n

W (Λ) = 1

and therefore

(30) ZC(Gm, q, T ) =
∑

n≥0

T n = (1 − T )−1.

Applying (24) to this situation we find that

(31) ZC(•, q, T ) =
∏

n≥0

(1 − qnT ),

since NGm
= q − 1 and (q − 1)−1 = −(1 + q + q2 + · · · ); since NGa

= q
by (24) we also have the identity

(32) ZC(Ga, q, T ) =
∏

n≥1

(1 − qnT ).

On the other hand, for X = Ga we have

∑

Λ/Fq, |Λ|=n

W (Λ) =
|Mn(Fq)|

|Gn|
=

q
1
2n(n+1)

(qn − 1)(qn−1 − 1) · · · (q − 1)

and we have therefore proved the following identity of Euler

(33)
∑

n≥0

q
1
2n(n+1)T n

(qn − 1)(qn−1 − 1) · · · (q − 1)
=

∏

n≥1

(1 − qnT ).

If, instead, X = • we obtain
∑

|λ|=n

1

aλ(q)
=

un

|Gn|
,

where un is the number of unipotent matrices in Gn. Combining (31)
with Euler’s identity (33) with T replaced by T/q we find

un

|Gn|
=

q
1
2n(n+1)−n

(qn − 1)(qn−1 − 1) · · · (q − 1)
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we deduce the known result un = qn2−n (see [8] for a general result on
the number of unipotent elements in linear algebraic groups over finite
fields).

3.2. Commuting pairs of matrices. We now consider a weight func-
tion arising from the centralizer algebra ZA of a matrix A ∈ Mn(Fq). It
is known that

dimFq
(ZA) =

∑

{x}

d(x)〈Λ(x), Λ(x)〉

where for a partition λ we define 〈λ, λ〉 := |λ| + 2n(λ).
Since |ZA| only depends on the conjugacy class [A] of A, we can count

ordered pairs of commuting matrices in Mn(Fq) as follows

γn := #{A, B ∈ Mn(Fq) | AB = BA} =
∑

[A]

#[A] |ZA|,

where [A] runs through the conjugacy classes in Mn(Fq). Hence if we
define

W (λ) :=
q〈λ,λ〉

aλ(q)

then

W (Λ) =
#[A]

|Gn|
|ZA|,

where [A] corresponds to the coloring Λ on Ga/Fq, and therefore

γn = |Gn|
∑

Λ

W (Λ).

Consequently,

(34) ZC(Ga, q, T ) =
∑

n≥0

γn

|Gn|
T n.
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On the other hand,

ZC(•, q, T ) =
∑

λ

q〈λ,λ〉

aλ(q)
T |λ|

=
∑

λ

T |λ|

bλ(q−1)

=
∏

i≥1

∑

mi≥0

T imi

φmi
(q−1)

=
∏

i,n≥1

(1 − qnT i)

using Euler’s identity (33). Applying (21) we recover (in an equivalent
form) a result of Feit and Fine [1]

(35)
∑

n≥0

γn

|Gn|
T n =

∏

i,n≥1

(1 − qn+1T i).

Similarly, we obtain
∑

n≥0

γ′
n

|Gn|
T n = ZC(Gm, q, T ),

where

γ′
n := #{A ∈ GLn(Fq), B ∈ Mn(Fq) | AB = BA}.

Again by (21) we find

ZC(Gm, q, T ) =
∏

i,n≥1

(

1 − qn+1T i

1 − qnT i

)

=
∏

i≥1

(1 − qT i)−1.

We now recognize this generating series as (18) and conclude that
γ′

n/|Gn| is the number of conjugacy classes in Mn(Fq). This, in fact,
can be proved directly by a simple application of Burnside’s lemma
to GLn(Fq) acting on Mn(Fq) by conjugation. By our main combi-
natorial principle, this means that we can run the argument backwards
and prove (35) starting from (18).
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