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ON THE VALUE-DISTRIBUTION OF EPSTEIN

ZETA-FUNCTIONS

Jörn Steuding

Abstract

We investigate the value-distribution of Epstein zeta-func-
tions ζ(s;Q), where Q is a positive definite quadratic form in
n variables. We prove an asymptotic formula for the number of
c-values, i.e., the roots of the equation ζ(s;Q) = c, where c is
any fixed complex number. Moreover, we show that, in general,
these c-values are asymmetrically distributed with respect to the
critical line Re s = n

4
. This complements previous results on the

zero-distribution [30].

1. Introduction and examples

In the beginning of the twentieth century, Paul Epstein [12] intro-
duced zeta-functions associated with quadratic forms. These so-called
Epstein zeta-functions are interesting analytical objects which play a
central role in algebraic number theory, the theory of modular forms
(see Siegel’s monograph [26]), and, recently, in chemistry and physics
(see [3] and [11]).

Let Q be a positive definite n × n matrix with integer entries and
write Q[x] = xtQx for the associated quadratic form. The Epstein
zeta-function attached to Q is given by

ζ(s;Q) =
∑

06=x∈Zn

Q[x]−s;

this Dirichlet series converges absolutely for Re s > n
2 , and uniformly in

any compact subset. ζ(s;Q) has an analytic continuation throughout
the complex plane, except for a simple pole at s = n

2 . The Epstein
zeta-function satisfies a functional equation of the Riemann-type:

(1) π−sΓ(s)ζ(s;Q) = (detQ)−
1
2 πs−n

2 Γ
(

n
2 − s

)

ζ
(

n
2 − s;Q−1

)

.
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If Q is unimodular, i.e., if Q ∈ SLn(Z), then ζ(s;Q) = ζ(s;Q−1), and the
Epstein zeta-function is symmetric. In analogy to the case of the Rie-
mann zeta-function, we call the vertical line Re s = n

4 , passing through
the point of symmetry of the functional equation, the critical line (it
should be noted that some authors call the lines Re s = 1

2 and Re s = n−1
2

critical). Equation (1) implies the vanishing of ζ(s;Q) at the so-called
trivial zeros s = −m, m ∈ N; all other zeros are said to be nontrivial
and are denoted by ρ = β + iγ. As in the case of the Riemann zeta-
function, very little is known about the distribution of the nontrivial
zeros of Epstein zeta-functions.

We start with some examples. Denote by 1n the n-dimensional unit
matrix. Then

(2) ζ(s;11) = 2ζ(2s) and ζ(s;12) = 4ζ(s)L(s; χ),

where ζ(s) is the Riemann zeta-function and L(s; χ) is the Dirichlet
L-function to the non-principal character χ mod 4; it should be noted
that ζ(s;12) is the Dedekind zeta-function of the Gaussian field Q(i).
Moreover,

ζ(s;14) = 8(1 − 22−s)ζ(s)ζ(s − 1),(3)

ζ(s;S8) = 240 · 2−sζ(s)ζ(s − 3),(4)

where S8 is the matrix

S8 =

(

2 · 14 A
−A 2 · 14

)

with A :=









0 1 1 1
−1 0 −1 1
−1 1 0 −1
−1 −1 1 0









.

A completely different example is given by

(5) ζ(s;L24) = 65 520
691 {ζ(s)ζ(s − 11) − L(s; ∆)},

where L(s; ∆) :=
∑∞

m=1 τ(m)m−s is the L-function attached to Ra-
manujan’s τ -function, given by

∆(q) =

∞
∑

m=1

τ(m)qm = q
∏

m=1

(1 − qm)24

with q := exp(2πiτ) and τ from the upper half-plane, and L24 is the
matrix related to the Leech lattice defined by

L24 =

(

4 · 112 B − 2 · 112

Bt − 2 · 112 4 · 112

)

, where B :=

(

0 et

−e C

)

,
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e := (1, . . . , 1)t, C :=
((

k−ℓ
11

))

1≤k,ℓ≤11
, and

(

·
11

)

is the Legendre sym-

bol mod11 (this construction of the Leech lattice is due to McKay
(cf. [6], resp. [19]). Assuming the truth of the Riemann hypothesis
for ζ(s) and L(s, χ) (i.e., all nontrivial zeros lie on the line Re s = 1

2 ), all

nontrivial zeros of the functions in (2) lie on the critical lines Re s = 1
4

and Re s = 1
2 , respectively; unconditionally, we know that a positive pro-

portion of the nontrivial zeros of ζ(s;Q) lie on these critical lines which
follows from the same fact for the Riemann zeta-function ζ(s) (see [31])
and Formula (6) below. However, the distribution of zeros of the other
examples is rather different. Example (4) is expected to have all its non-
trivial zeros on the lines Re s = 1

2 and Re s = 7
2 while Example (3) is

expected to have most of its zeros on the lines Re s = 1
2 and Re s = 3

2
(again by the Riemann hypothesis), but, in the latter example, infinitely
many lie on Re s = 2. In both examples there are no zeros on the respec-
tive critical lines since all nontrivial zeros of ζ(s) lie inside the critical
strip 0 < Re s < 1 (see again [31]). Nothing definite is known about the
distribution of zeros of the function (5).

Epstein zeta-functions associated with binary quadratic forms are
somehow special. For n = 2 the functions ζ(s;Q) and ζ(s;Q−1) are
equal up to a constant factor, which gives the functional equation (1) a
pleasant form. The zero-distribution of these Epstein zeta-functions was
first studied by Potter and Titchmarsh [24]. They proved that infinitely
many zeros lie on the critical line Re s = 1

2 . Bateman and Grosswald [1]
showed that Epstein zeta-functions attached to positive definite qua-
dratic forms ax2 + bxy + cy2 with discriminant ∆ := b2−4ac have a real
zero between 1

2 and 1 if

k :=

√

|∆|
2a

> 7.00556;

in fact, this result was announced by Chowla and Selberg [5] but they
never published a proof. Deuring [8] and Stark [27] showed that all
zeros of these Epstein zeta-functions in the rectangle −1 < Re s < 2,
|Im s| ≤ 2k lie on the critical line Re s = 1

2 and are simple with the
exception of two real zeros between 0 and 1, provided k is sufficiently
large. The Epstein zeta-function associated with binary quadratic forms
either have an Euler product representation or are a linear combination
of Hecke L-functions for ideal class characters, depending on the class
number of the underlying quadratic form being equal to or larger than 1.
Hejhal [15] and Bombieri and Hejhal [2] proved for the latter Epstein
zeta-functions that almost all zeros lie on the critical line subject to
the truth of the Generalized Riemann hypothesis —more precisely, the
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Riemann hypothesis for Hecke L-functions— in combination with an
unproved but widely believed conjecture on the spacing of consecutive
zeros of these Hecke L-functions. Davenport and Heilbronn [7] proved
that ζ(s;Q) has an infinitude of zeros in the half-plane of absolute con-
vergence Re s > 1 if the class number is greater than 1. For Epstein
zeta-functions attached to certain quadratic forms of rank n = 4, Fu-
jii [14] obtained similar results as for binary quadratic forms.

2. Statement of the main results

This paper can be regarded as sequel to [30]. In this paper we have
shown that the mean-value of the real parts of the nontrivial zeros of the
Epstein zeta-function is equal to the point of symmetry of the functional
equation, that is the abscissa of the critical line Re s = n

4 . Nevertheless,
we have also shown that a generic Epstein zeta-function associated with
quadratic forms in more than two variables has an asymmetric zero-
distribution. Before we can put these results in a precise form, we have
to introduce some further notation. Let N(T ;Q) count the number of
nontrivial zeros ρ = β + iγ of ζ(s;Q) with |γ| ≤ T . Denote by mj(Q) the
jth minimum of the values of the quadratic form Q[x] for 0 6= x ∈ Zn,
i.e.,

m1(Q) = min{m ∈ N | ∃ x : Q[x] = m},
mj+1(Q) = min{m ∈ N | m > mj(Q), ∃ x : Q[x] = m} for j ∈ N.

Finally, let N(Q) count the number of x ∈ Zn for which Q[x] = m1(Q)
and, for m ∈ N, define r(m;Q) = ♯{x ∈ Zn : Q[x] = m}. Then

Theorem 0. As T → ∞,

(6) N(T ;Q) =
2T

π
log

T

πe
√

m1(Q)m1(Q−1)
+ O(log T ),

and

(7)
∑

|γ|≤T

(

β − n
4

)

=
T

π
log

(

(detQ)−
1
2
N(Q−1)

N(Q)

(

m1(Q)

m1(Q−1)

)
n

4

)

+O(log T ).

Equation (6) is a Riemann-von Mangoldt formula for Epstein zeta-
functions (and it appears in slightly different form in the papers of
Bombieri and Hejhal [2], Stark [27], and others). The asymptotic for-
mula (7) measures asymmetries in the zero-distribution with respect to
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the critical line. If the quantity

Σ(Q) := log

(

(detQ)−
1
2
N(Q−1)

N(Q)

(

m1(Q)

m1(Q−1)

)
n

4

)

is not equal to 0, then ζ(s;Q) has infinitely many zeros off the critical
line Re s = n

4 . The Examples (2)–(5) all have Σ(Q) ≡ 0; however, the
generic example has an asymmetric distribution of nontrivial zeros. If
compared with the total number of zeros, the possible asymmetries are
small. The combination of both asymptotic formulae of the theorem
above leads to

1

N(T ;Q)

∑

|γ|≤T

β =
n

4
+ O

(

1

log T

)

,

and thus the mean-value of the real parts of the nontrivial zeros of ζ(s; Q)
exists and is equal to n

4 . In this paper we are concerned with the value-
distribution of Epstein zeta-functions in general, not necessarily with the
distribution of the zeros.

Let c be any complex number. Levinson [21] proved that all but

O
(

T log T
log log T

)

of the roots of ζ(s) = c in T < Im s < 2T lie in

∣

∣Re s − 1
2

∣

∣ <
(log log T )2

log T
.

Thus, the c-values of the zeta-function are clustered around the critical
line Re s = 1

2 . In particular, it follows from Levinson’s result that classic
estimates for the number N(σ, T ) of zeros of ζ(s) in the region Re s > α
and 0 < Im s ≤ T of the form N(σ, T ) = O(T ) for fixed σ > 1

2 do not
indicate the truth of the Riemann hypothesis (as it is written in [10]);
nevertheless, such density theorems (and their refinements) play a central
role in the theory of zeta-functions. On behalf of (2), the Riemann zeta-
function is a special example of an Epstein zeta-function. It is natural
to ask whether the clustering of c-values is also true for Epstein zeta-
functions.

Let c be a fixed complex number. The c-values of ζ(s;Q) are the roots
of the equation

ζ(s;Q) = c,

which we denote by ρc = βc + iγc. We shall show that the distribution
of the c-values is quite similar to the distribution of zeros as indicated
by Theorem 0. For this purpose let Nc(σ, T ;Q) count the number of
c-values of ζ(s;Q) with βc > σ and 0 < γc ≤ T . Here we have to add
the condition on the real part to be bounded below in order to exclude
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an infinity of c-values lying close to the negative real axis (this will be
explained in Section 4). Our first theorem gives an asymptotic formula
for the counting function Nc(σ, T ;Q) of the c-values as well as one for
sums measuring asymmetries in their distribution with respect to the
critical line.

Theorem 1. Let c be any complex number. Then, for any σ < 0,
as T → ∞,

Nc(σ, T ;Q) =
T

π
log

T

πe
√

µ(c,Q)m1(Q−1)
+ O(log T ),(8)

∑

T<γc≤2T

(

βc − n
4

)

=
T

π
log

ν(c,Q)N(Q−1)√
detQm1(Q−1)

n

4

+ O(log T ),(9)

where

(10) µ(c,Q) :=



























1 if c 6∈ {0, N(Q)}, m1(Q) = 1

or c 6= 0, m1(Q) > 1,

m1(Q) if c = 0,

m2(Q) if c = N(Q), m1(Q) = 1,

and

(11) ν(c,Q) :=































































1

|N(Q) − c| if c 6∈ {0, N(Q)}, m1(Q) = 1,

1

|c| if c 6= 0, m1(Q) > 1,

m1(Q)
n

4

N(Q)
if c = 0,

m2(Q)
n

4

r(m2(Q))
if c = N(Q), m1(Q) = 1.

It is interesting to see that, in general, the c-values are asymmetrically
distributed with respect to the critical line. However, there exist some
cases with

∑
(

βc − n
4

)

≡ 0; e.g., if m1(Q) = 1, then all c 6∈ {0, N(Q)}
lying on the circle

|c − N(Q)| =
N(Q−1)√

detQm1(Q−1)
n

4

.

We can also recover from this theorem part of the results on the distri-
bution of c-values of Euler products obtained in [28], [29], for example,
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by (2) those for ζ(s) and the Dedekind zeta-function of Q(i). More-
over, we may deduce that the number of 1-values ρ1 = β1 + iγ1 of ζ(s)
with β1 > 0 and 0 < γ1 ≤ T is equal to

T

2π
log

T

2πe
+ O(log T ),

and that they are symmetrically distributed with respect to the critical
line; this case was not considered in [28], [29]. Note that the value-
distribution in the lower half-plane is reflected by

(12) ζ(s;Q) = ζ(s;Q).

Besides Theorem 1, we shall obtain information about the distribution
of c-values to the left and to the right of the critical line. Define the
counting functions (according multiplicities)

N+
c (σ, T ;Q) = ♯{ρc : T < γc ≤ 2T, βc > σ},

N−
c (σ, T ;Q) = ♯{ρc : T < γc ≤ 2T, βc ≤ σ}.

Further let Nc(T,Q) count the number of all c-values with T < γc ≤ 2T ,
i.e.,

Nc(T ;Q) = N+
c (σ, T ;Q) + N−

c (σ, T ;Q).

Here we do not have to add a lower bound for the real parts since there
do not exist c-values with βc < 0 and γc ≥ T as T → ∞.

Theorem 2. Let c be any complex number and b > max
{

1
4 , n−1

2

}

fixed.
Then, as T → ∞,

(13)
∑

βc>b
T<γc≤2T

(βc − b) ≪ T.

Moreover, for fixed 0 < σ < n
4 and any ǫ > 0,

(14) N+
c

(

max
{

1
4 , n−1

2

}

+ ǫ, T ;Q
)

≪ T,

and

(15) N−
c (σ, T ;Q) ≤







n − 2 + ǫ

2n − 2 − 4σ
Nc(T ;Q) if n ≥ 2,

O(T ) if n = 1.

First, we shall discuss the quality of the estimate (14). Voronin [32]
(see also [18]) has shown that Epstein zeta-functions of rank 2 and class
number greater than 1 have ≫ T many zeros in any rectangle Re s > α,
0 < Im s ≤ T , where α ∈

(

1
2 , 1
)

is fixed, as T → ∞; his proof relies on
the universality of these Epstein zeta-functions. This complements the
result of Davenport and Heilbronn mentioned in the previous section.
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Furthermore, it shows that the bound is sharp for rank n = 2. Another
example of this type of rank n = 4 is given by (3). Also the range for b
is sharp as it follows from the latter example and from the results of
Bombieri and Hejhal [2], [15] for rank n = 2.

We are neither able to prove a generalization of Levinson’s aforemen-
tioned result on the clustering of c-values of ζ(s) nor to generalize the
results of Bombieri and Hejhal on the localization of almost all nontrivial
zeros on the critical line. Equation (15) with σ = n

2 −max
{

1
4 , n−1

2

}

− ǫ
implies

N−
c

(

n
2 − max

{

1
4 , n−1

2

}

− ǫ, T ;Q
)

≤ 1
2Nc(T ;Q).

In conjunction with (14) we obtain

♯
{

ρc = βc + iγc | n
2 − max

{

1
4 , n−1

2

}

−ǫ < βc ≤ max
{

1
4 , n−1

2

}

+ ǫ, T ≤ γc ≤ 2T
}

≥ 1
2Nc(T ;Q).

Besides, we get clustering around the critical line Re s = n
4 for n = 1, 2;

however, this cannot hold for n > 2 in general as it follows from the ex-
amples in (3) and (4). We conjecture that almost all c-values (including
zeros) lie in or close to the strip 1

2 ≤Re s≤ n−1
2 if n > 2. We conclude

this discussion with another interesting, related result in this direction:
Siegel [25] proved for n ≥ 12 and Q belonging to the genus of 1n that the
number of zeros in 2 ≤ Re s ≤ n

2 −2, 0 < Im s ≤ T is T
π log 2+O(1); fur-

thermore, almost all zeros do not lie in the neighborhood of the critical
line Re s = n

4 . In conjunction with (14) we can sharpen Siegel’s estimate
for this special example slightly: almost all zeros of ζ(s;1n) with n ≥ 12
lie in the strips 0 ≤ Re s < 2 and n

2 − 2 < Re s ≤ n−1
2 + ǫ for any ǫ > 0.

The results can be generalized to rational quadratic forms simply by
multiplication with the least common multiple of the denominators of all
coefficients. However, it seems to be difficult to study quadratic forms
which are not proportional to a rational form by the same methods.

3. The mean-square and other preliminaries

We start with some growth estimates. We can rewrite the functional
equation (1) as

(16) ζ(s;Q) = Ξ(s;Q)ζ
(

n
2 − s;Q−1

)

,

where

(17) Ξ(s;Q) := (detQ)−
1
2 π2s− n

2

Γ(n
2 − s)

Γ(s)
.
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In the sequel we shall write the complex variable, as it is tradition,
as s = σ + it with σ, t ∈ R and

√
−1. By Stirling’s formula,

(18) |Ξ(σ + it;Q)| = (detQ)−
1
2

(

π

|t|

)2σ−n

2
(

1 + O
(

|t|−1
))

for |t| ≥ 1 and bounded σ. Hence, an application of the Phragmén-
Lindelöf principle yields

(19) ζ(σ + it;Q) ≪ |t|max{n

2
−σ,0}+ǫ

as |t| → ∞, where the implicit constant depends only on Q; here and in
the sequel ǫ denotes an arbitrary small positive constant, not necessarily
the same at each appearance. This estimate shows that ζ(s;Q) is a
function of finite order.

However, we can show a bit more. Chandrasekharan and Narasim-
han [4] obtained an approximate functional equation for a quite general
class of zeta-functions. It is not difficult to deduce from their general
result:

Lemma 3. We have

ζ(s;Q) =
∑

06=x∈Z

Q[x]≤t/π

Q[x]−s+Ξ(s;Q)
∑

06=x∈Z

Q[x]≤t/π

Q−1[x]s−
n

2 +O
(

t
n

2
−σ−1 log t

)

uniformly in s for n
4 − 1

2

[

n+1
2

]

≤ σ ≤ B and t ≥ 2, where B is any fixed
positive constant and [x] denotes, as usual, the largest integer less than
or equal to x.

Landau’s Tauberian theorem (see [20]) yields

(20)
∑

0 6=x∈Z

Q[x]≤X

Q[x]1−
n

2 ∼ π
n

2

Γ(n
2 )
√

detQX,

where the constant factor on the right hand side is the residue of ζ(s;Q)
at s = n

2 . This together with Lemma 3 and (18) lead to the estimate

ζ
(

n
4 + it

)

≪ t
n

4

as t → ∞, which is a slight improvement upon (19) on the critical
line Re s = n

4 . For certain classes of quadratic forms Fomenko [13]
obtained sharper bounds.

Following the lines of Chandrasekharan and Narasimhan [4] one can
deduce from Lemma 3
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Lemma 4. Let n ≥ 2. For fixed σ > n−1
2 , as T → ∞,

∫ T

1

|ζ(σ + it;Q)|2 dt = T
∞
∑

m=1

r(m)2

m2σ
+ O

(

T max{n+1

2
−σ,0}+ǫ

)

,

where r(m) := r(m;Q).

We leave out the proof since this mean-square estimate follows im-
mediately from a far more general result due to Kanemitsu et al. [17].
To see this note for the number of representations of an integer m by a
quadratic form Q[x] the estimate

r(m;Q) ≪ m
n

2
−1

as m → ∞ (see [9] and [16]); the latter estimate is stronger than (20).
Example (4) shows that the range for σ in Lemma 4 cannot be ex-

tended since
∫ T

1

∣

∣ζ
(

7
2 + it;S8

)∣

∣

2
dt ≫

∫ T

1

∣

∣ζ
(

1
2 + it

)∣

∣

2
dt ≍ T log T

by a classic result of Hardy and Littlewood (see, for example, [18]) and
the rough estimate |ζ(σ + it)| > exp

(

− 2
3ζ(σ)

)

, valid for σ > 1.
For the excluded case n = 1, we note the classic mean-square formula

∫ T

1

|ζ(σ + it)|2 dt = ζ(2σ)T + O
(

T max{n+1

2
−σ,0}+ǫ

)

,

valid for σ > 1
2 (see [31]). This implies for (2) an asymptotic formula of

this type for the range σ > 1
4 ; namely,

(21)

∫ T

1

|ζ(σ + it;11)|2 dt = 4ζ(4σ)T + O
(

T max{1−σ,0}+ǫ
)

.

The proof of Theorem 1 relies on a method of Levinson [21] and, in
particular, an application of Littlewood’s lemma which relates the zeros
of an analytic function f(s) with a contour integral over log f(s).

Lemma 5 (Littlewood). Let a > b and let f(s) be analytic on R :=
{s ∈ C : b ≤ Re s ≤ a, |Im s| ≤ T }. Suppose that f(s) does not vanish
on the right edge σ = a of R. Let R′ be R minus the union of the
horizontal cuts from the zeros of f in R to the left edge of R, and choose
a single-valued branch of log f(s) in the interior of R′. Denote by ν(σ, T )
the number of zeros ρ = β + iγ of f(s) inside the rectangle with β > σ
including zeros with γ = T but not those with γ = −T . Then

∫

∂R

log f(s) ds = −2πi

∫ a

b

ν(σ, T ) dσ.
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We give a sketch of the simple proof. Cauchy’s theorem implies
∫

∂R′
log f(s) ds = 0, and so the left-hand side of the formula of the

lemma,
∫

∂R, is minus the sum of the integrals around the paths hug-
ging the cuts. Since the function log f(s) jumps by 2πi across each
cut (assuming for simplicity that the zeros of f in R are simple and
have different height; the general case is no harder), the quantity

∫

∂R is
−2πi times the total length of the cuts, which is the right-hand side of
the formula in the lemma. For more details we refer to Titchmarsh [31,
§9.9], or Littlewood’s original paper [22].

4. Application of Levinson’s method

Levinson introduced his method in order to prove his result on the
c-values of ζ(s), mentioned in Section 2. The case of Epstein zeta-func-
tions is by far more technical than the one of Riemann’s zeta-function.
For our purpose, we define, for c 6= 0,

ℓ1(s,Q) =
ζ(s;Q) − c

N(Q) − c
for c 6= N(Q),

ℓ2(s,Q) =
m2(Q)s

r(m2(Q))
{ζ(s;Q) − c} for c = N(Q)

if m(Q) = 1, and

ℓ3(s,Q) =
1

c
{c − ζ(s;Q)}

if m(Q) > 1. Moreover, for c = 0, let

ℓ4(s,Q) =
m1(Q)s

N(Q)
ζ(s;Q).

Note that all functions ℓj(s;Q) have a Dirichlet series expansion for σ> n
2 ,

and satisfy the estimate

(22) ℓj(s,Q) = 1 + λ−s + O(Λ−σ)

as σ → ∞, where λ, Λ are constants satisfying 1 < λ < Λ, depending
only on Q and c; to see this note that N(Q) = r(m1(Q)) and

(23) ζ(s;Q) =
N(Q)

m1(Q)s
+

r(m2(Q))

m2(Q)s
+ higher terms.
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Further, notice that the zeros of any ℓj(s,Q) correspond exactly to the
c-values of ζ(s;Q) (counting multiplicities). In order to treat all cases
simultaneously, let

ℓ(s,Q) = αβs{ζ(s;Q) − c}

stand for any of the functions ℓj(s,Q) with real constants α = α(c,Q),
β = β(c,Q), corresponding to the above cases.

In the sequel we suppose that n ≥ 2; the case of n = 1 is covered
by Levinson’s results mentioned in Section 2; however, it can be treated
similarly (the main difference is that the quadratic mean asymptotics
from Lemma 4 have to be replaced by (21)).

We start with the proof of (13) of Theorem 2. In view of (22) there
exists a positive real number A depending on c such that all real parts
of the roots of ℓ(s;Q) and of ℓ(s;Q−1) (i.e., the real parts of the c-values
of ζ(s;Q) and of ζ(s;Q−1)) satisfy βc < A; such a zero-free region exists
since, by (22), ℓ(s;Q) tends to 1 as σ → ∞. We apply Littlewood’s
Lemma 5 to the function f(s) :=

(

s − n
2

)

ℓ(s;Q); note that f(s) is an
entire function (since we have removed the simple pole of ζ(s;Q) at s = n

2
by multiplying with s − n

2 ) and that its zeros exactly correspond to
the zeros of ℓ(s;Q), resp. the c-values of ζ(s;Q). Further, let a be a
parameter with a > max{A+1, b}. Then Littlewood’s Lemma 5, applied
to the rectangle R with vertices a + iT , a + 2iT , b + iT , b + 2iT , gives

(24)

∫

∂R

log
((

s − n
2

)

ℓ(s;Q)
)

ds = −2πi

∫ a

b

ν(σ, T ) dσ.

First, we shall remove the factor s − n
2 . Applying Littlewood’s lemma

once again, we get

∫

∂R

log
(

s − n
2

)

ds = −2πi
(

n
2 + b

)

,

and so the contribution of the factor s − n
2 in (24) is bounded. Hence,

(24) holds for ℓ(s;Q) in place of f(s) after adding an error term O(1).
Since

(25)

∫ a

b

ν(σ, T ) dσ =
∑

βc>b
T<γ≤2T

∫ βc

b

dσ =
∑

βc>b
T<γc≤2T

(βc − b),



Value-Distribution of Epstein Zeta-Functions 233

and this quantity is a real number, we get

2π
∑

βc>b
T<γc≤2T

(βc − b) + O(1) =

∫ 2T

T

log |ℓ(b + it,Q)| dt

−
∫ 2T

T

log |ℓ(a + it,Q)| dt

−
∫ a

b

arg ℓ(σ + iT,Q) dσ

+

∫ a

b

arg ℓ(σ + 2iT,Q) dσ

=

4
∑

j=1

Ij ,

(26)

say. We start with the vertical integrals. Obviously,

(27) I1 =

∫ 2T

T

log |ζ(b + it;Q) − c| dt + T log |αβb|.

Note that

|ζ(b + it;Q) − c|2 ≤ 2
(

ζ(b + it;Q)|2 + |c|2
)

.

Thus, we get by applying Jensen’s inequality

I1 ≤ T log

(

1

T

∫ 2T

T

|ζ(b + it;Q)|2 dt

)

+ O(T ).

By Lemma 4, this is ≪ T for b > n−1
2 . Next we consider I2. In view

of (22) we find, for sufficiently large a > n
2 ,

(28) I2 ≪ Re

∫ 2T

T

log(1+λ−a−it+O(Λ−a) dt ≪ Re

∫ 2T

T

λ−a−it dt ≪ 1.

It remains to estimate the horizontal integrals I3, I4. Suppose that
Re ℓ(σ + iT,Q) has N zeros for b ≤ σ ≤ a. Then divide [b, a] into at
most N + 1 subintervals in each of which Re ℓ(σ + iT,Q) is of constant
sign. Then

(29) |arg ℓ(σ + iT,Q)| ≤ (N + 1)π.

To estimate N let

g(z) =
1

2

(

ℓ(z + iT,Q) + ℓ(z + iT,Q)
)

.
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Then we have g(σ) = Re ℓ(σ+iT,Q). Let R = a−b and choose T so large
that T > 2R. Now, Im(z + iT ) > 0 for |z − a| < T . Thus ℓ(z + iT,Q),
and hence g(z) is analytic for |z − a| < T . Let n(r) denote the number
of zeros of g(z) in |z − a| ≤ r. Obviously, we have

∫ 2R

0

n(r)

r
dr ≥ n(R)

∫ 2R

R

dr

r
= n(R) log 2.

With Jensen’s formula (see for example [31, §3.61]),

(30)

∫ 2R

0

n(r)

r
dr =

1

2π

∫ 2π

0

log
∣

∣g
(

a + 2Reiθ
)∣

∣ dθ − log |g(a)|,

we deduce

n(R) ≤ 1

2π log 2

∫ 2π

0

log
∣

∣g
(

a + 2Reiθ
)∣

∣ dθ − log |g(a)|
log 2

.

By (22) it follows that log |g(a)| is bounded. By (19), in any vertical
strip of bounded width,

ζ(s;Q) ≪ |t|B
with a certain positive constant B. Obviously, the same estimate holds
for g(z) (at least with a slightly larger constant B). Thus, the integral
above is ≪ log T , and n(R) ≪ log T . Since the interval (b, a) is contained
in the disc |z − a| ≤ R, the number N is less than or equal to n(R).
Therefore, with (29), we get

|I4| ≤
∫ a

b

|arg ℓ(σ + iT,Q)| dσ ≪ log T.

Obviously, I3 can be bounded in the same way. Collecting all estimates,
we obtain (13).

Our next aim is to show (14). Let σ > n−1
2 and fix b ∈

(

n−1
2 , σ

)

.
Then

N+
c (σ, T ;Q) ≤ 1

σ − b

∑

βc>σ
T<γc≤2T

(βc − b).

Thus, (13) implies (14).
Next we prove Theorem 1. Here we have to include most of the

c-values into our observations. First, we note that there exist positive
constants C0, T0, depending only on Q and c, such that there are no
c-values of ζ(s;Q) in the region σ < −C0, t ≥ T0. In fact, it is a simple
consequence of (16), (19), and (22) that

(31) ζ(s;Q) ≫ t
n

2
−σ

for sufficiently small σ < 0 and sufficiently large t.
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Now assume that b < −C0 − 1 and t ≥ T ≥ T0 + 1. Then, by (31),

ζ(b + it;Q) − c = ζ(b + it;Q)

(

1 − c

ζ(b + it;Q)

)

= ζ(b + it;Q)
(

1 + O
(

T−C0−
n

2

))

.

Thus, by (16),

log |ζ(b + it;Q) − c| = log |Ξ(b + it;Q)|

+ log
∣

∣ζ
(

n
2 − b − it;Q−1

)∣

∣+ O
(

T−C0−
n

2

)

.

In view of (18)

log |Ξ(b + it,Q)| = − 1
2 log(detQ) +

(

n
2 − 2b

)

log t
π + O

(

T−1
)

.

Now (27) gives

I1 = T

(

log |αβb| − 1

2
log(detQ)

)

+
(n

2
− 2b

)

∫ 2T

T

log
t

π
dt

+

∫ 2T

T

log
∣

∣ζ
(

n
2 − b − it;Q−1

)∣

∣ dt + O(log T ).

The first integral on the right hand side is easily calculated by elementary
means. For the second one note that (23) implies

ζ(s;Q−1) =
N(Q−1)

m1(Q−1)s

(

1 + λ−s + O
(

Λ−σ
))

for some constants λ, Λ with m1(Q−1) < λ < Λ, depending only on Q−1,
as σ → ∞. Hence,
∫ 2T

T

log
∣

∣ζ
(

n
2 − b − it;Q

)∣

∣ dt

=

∫ 2T

T

(

log N(Q−1)+
(

b − n
2

)

log m1(Q−1)+log |1+(λ
n

2
−b−it+o(1))|

)

dt

= T
(

log N(Q−1) +
(

b − n
2

)

log m1(Q−1)
)

+ O(1)

for sufficiently small b < 0. Thus we get

I1 =
(

n
2 − 2b

)

T log
4T

πe
√

m1(Q−1)|β|

+ T log

(

|α|N(Q−1)√
detQ

( |β|
m1(Q−1)

)
n

4

)

+ O(log T ).



236 J. Steuding

By (26) and with the foregoing estimates for the Ij ’s we obtain

∑

T<γc≤2T

(βc − b) =
(

n
4 − b

) T

π
log

4T

πe
√

m1(Q−1)|β|

+
T

π
log

(

|α|N(Q−1)√
detQ

( |β|
m1(Q−1)

)
n

4

)

+ O(log T ).

We can rewrite the sum over the c-values as follows

(32)
∑

βc

(βc − b) =
(

n
4 − b

)

∑

βc

1 +
∑

βc

(

βc − n
4

)

.

The first sum on the right counts the number of c-values and the second
one measures the distances of the c-values from the critical line. Thus,
we obtain

Nc(T ;Q) =
T

π
log

4T

πe
√

m1(Q−1)|β|
+ O(log T ),

and

∑

T<γc≤2T

(

βc − n
4

)

=
T

π
log

(

|α|N(Q−1)√
detQ

( |β|
m1(Q−1)

)
n

4

)

+ O(log T ),

with α and β corresponding to ℓ = ℓj. To be more specific, we obtain

Nc(T ;Q) =
T

π
log

4T

πe
√

µ(c,Q)m1(Q−1)
+ O(log T ),(33)

∑

T<γc≤2T

(

βc − n
4

)

=
T

π
log

ν(c,Q)N(Q−1)√
detQm1(Q−1)

n

4

+ O(log T ),

where the quantities µ(c;Q) and ν(c;Q) are defined by (10) and (11),
respectively.

The distribution of the c-values close to the real axis is quite regu-
larly. It can be shown that there is always a c-value in a neighborhood of
any trivial zero of ζ(s;Q) with sufficiently large negative real part, and
with finitely many exceptions there are no other in the left half-plane.
The main ingredients for the proof are Rouché’s theorem, Stirling’s for-
mula (18), and, for the second claim, estimate (31). Consequently, the
number of these c-values having real part in [−R, 0) is asymptotically R.
Thus the contribution of these c-values is bounded. On the other side,
by (22), the behavior nearby the positive real axis is very regularly.



Value-Distribution of Epstein Zeta-Functions 237

Using Corollary (10) with 2−nT for n ∈ N instead of T and adding
up, we get, for fixed σ ≤ 0,

Nc(σ, T ;Q) =

∞
∑

n=1

Nc(σ, 2−nT )

=
T

π

(

log
T

πe
√

µ(c,Q)m1(Q−1)

∞
∑

n=1

1

2n
+

∞
∑

n=1

log 4−n log 2

2n

)

+ O(log T ).

The appearing infinite series are easily evaluated by 1 and 0, respectively.
Hence, this summation removes the factor 4 in the logarithmic term, and
we obtain (8). Formula (9) follows by the same argument. Theorem 1 is
proved.

It remains to show (15). For this aim let 0 < σ ≤ n−1
2 + ǫ and b be a

parameter. We decompose
∑

βc

T<γc≤2T

(βc−b) =
∑

βc≤σ
T<γc≤2T

(βc−b)+
∑

σ<βc≤
n−1

2
+ǫ

T<γc≤2T

(βc−b)+
∑

c> n−1

2
+ǫ

T<γc≤2T

(βc−b).

The first sum on the right is equal to
∑

βc≤σ
T<γc≤2T

(

n−1
2 + ǫ − b + βc − n−1

2 − ǫ
)

=
∑

βc≤σ
T<γc≤2T

(

βc − n−1
2 − ǫ

)

+
(

n−1
2 + ǫ − b

)

∑

βc≤σ
T<γc≤2T

1

≤ −
(

n−1
2 + ǫ − σ

)

∑

βc≤σ
T<γc≤2T

1 +
(

n−1
2 + ǫ − b

)

∑

βc≤σ
T<γc≤2T

1

since βc ≤ σ. For the second sum we have
∑

σ<βc≤
n−1

2
+ǫ

T<γc≤2T

(βc − b) ≤
(

n−1
2 + ǫ − b

)

∑

σ<βc≤
n−1

2
+ǫ

T<γc≤2T

1.

Finally, we note for the third sum
∑

βc> n−1

2
+ǫ

T<γc≤2T

(βc−b) =
∑

βc> n−1

2
+ǫ

T<γc≤2T

(

βc −
(

n−1
2 + ǫ

))

+
(

n−1
2 + ǫ − b

)

∑

βc> n−1

2
+ǫ

T<γc≤2T

1,
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where the first sum on the right is ≪ T by (13). Hence,

(

n−1
2 + ǫ − σ

)

∑

βc≤σ
T<γc≤2T

1 ≤
(

n−1
2 + ǫ − b

)

∑

βc≤σ
T<γc≤2T

1+
(

n−1
2 + ǫ − b

)

∑

σ<βc≤
n−1

2
+ǫ

T<γc≤2T

1+
(

n−1
2 + ǫ − b

)

∑

βc> n−1

2
+ǫ

T<γc≤2T

1 −
∑

βc

T<γc≤2T

(βc − b) + O(T ) ≤
(

n−1
2 + ǫ − b

)

∑

βc

T<γc≤2T

1 −
∑

βc

T<γc≤2T

(βc − b) + O(T ).

In view of (32) we deduce, for sufficiently small b,

N−
c (σ, T ;Q) ≤

n
4 − 1

2 + ǫ
n−1

2 + ǫ − σ
Nc(T ;Q) + O(T ).

Taking into account (33) we get (15); it should be noted that this esti-
mate is trivial for σ ≥ n

4 . This finishes the proof of Theorem 2.

5. Nevanlinna theory

We conclude with an application of Theorem 1 to Nevanlinna theory.
This theory was introduced by Rolf Nevanlinna in the 1920’s to tackle
the value-distribution of meromorphic functions in general. First, we
recall some basic facts which, for example, can be found in Nevanlinna’s
monograph [23, Chapters VI and IX].

Let f be a meromorphic function and denote the number of poles
of f(s) in |s| < r by n(f,∞, r) (counting multiplicities). The number of
c-values of f is given by

n(f, c, r) = n

(

1

f − c
,∞, r

)

.

Then the integrated counting function is given by

N(f, c, r) =

∫ r

0

(n(f, c, ρ) − n(f, c, 0))
dρ

ρ
+ n(f, c, 0) log r.
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The proximity function is defined by

m(f, r) =
1

2π

∫ 2π

0

log+ |f(r exp(iθ))| dθ,

and

m(f, c, r) = m

(

1

f − c
, r

)

,

where log+ x := max(0, log x). The function m(f, c, r) indicates how
close f(s) is to the c-values on the circle |s| = r. The characteristic
function of f is defined by

T(f, r) = N(f,∞, r) + m(f, r).

Furthermore, let

T(f, c, r) = N(f, c, r) + m(f, c, r).

The first main theorem in Nevanlinna theory states that T(f, c, r) differs
from the characteristic function by a bounded quantity:

Lemma 6. Let f be a meromorphic function and let c be any complex
number. Then

T(f, c, r) = T(f, r) + O(1).

The characteristic function T(f, r) encodes interesting information
about the analytic behaviour of f . The quantity

δ(f, c) := 1 − lim sup
r→∞

N(f, c, r)

T(f, r)

is called the deficiency of the value c of f . This deficiency is positive
only if there are relatively few c-values.

Only recently Ye [33] computed the Nevanlinna functions for the Rie-
mann zeta-function. This was extended by the author [28], [29] to func-
tions in the Selberg class. As an application of our previous results we
shall extend these results to Epstein zeta-functions.

Firstly, let σ0 > n
2 be fixed. We write s = r exp(iθ), so σ = r cos θ. It

is easily seen that, for σ > σ0,

1

2π

∫

{θ∈[0,2π]:r cos θ>σ0}

log+ |ζ(r exp(iθ);Q)| dθ ≪ 1.

Further, in view of Theorem 1,

1

2π

∫

{θ∈[0,2π]|n

2
−σ0≤r cos θ≤σ0}

log+ |ζ(r exp(iθ);Q)| dθ ≪ log r
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for n
2 − σ0 ≤ σ ≤ σ0; note that the Lebesgue measure of the set

{

θ ∈ [0, 2π] | σ = r cos θ ∈
[

n
2 − σ0, σ

]}

is bounded by O
(

1
r

)

. Finally, we have for σ ≤ n
2 − σ0 by the functional

equation in the form (16)

log+ |ζ(r exp(iθ);Q)| ≤ log+
∣

∣Γ
(

n
2 − r exp(iθ)

)∣

∣

+ log+ |Γ(r exp(iθ))| + O(r).

Now we shall use Ye’s decomposition of the Gamma-function. For any
z = r exp(iθ), there is an integer n0 with n0 < r ≤ n0 + 1 such that

1

Γ(z)
= F1(z)F2(z) with F1(z) := z

(

γz −
2n0
∑

n=1

z

n

)

,

where γ is the Euler-Mascheroni constant, and F2(z) is an entire function
with m(F2, r) ≪ r. The order of growth of Γ(z) is ruled by the order of
growth of F1(z). Ye computed

log |F1(z)| = −r log r cos θ + O(r).

This leads to

1

2π

∫

{θ∈[0,2π]|r cos θ<1−σ0}

log+ |Γ
(

n
2 − r exp(iθ)

)

| dθ

≤ 1

2π

∫ π

2

−π

2

r log r cos θ dθ + O(r) =
r

π
log r + O(r),

and, similarly,

1

2π

∫

{θ∈[0,2π]|r cos θ< n

2
−σ0}

log+ |Γ(r exp(iθ))| dθ ≤ r

π
log r + O(r).

Thus we get

1

2π

∫

{θ∈[0,2π]|r cos θ< n

2
−σ0}

log+ |ζ(r exp(iθ);Q)| dθ ≤ r

π
log r + O(r).

Adding the estimates for the other cases we obtain for the proximity
function of ζ(s;Q), which we shall abbreviate by ζ in the sequel, now
easily

m(ζ, r) ≤ 2r

π
log r + O(r).

Since ζ(s;Q) is regular except for at most a pole at s = n
2 ,

(34) N(ζ,∞, r) ≪
∫ r

1

dρ

ρ
= log r.
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Thus we get

(35) T(ζ, r) ≤ 2r

π
log r + O(r).

It follows from Theorem 1, Equation (12), and the fact that the contri-
bution of the trivial zeros of modulus less than r is O(r), that

(36) N(ζ, 0, r) =
2r

π
log r + O(r).

The first main theorem, Lemma 6, implies

N(ζ, 0, r) ≤ T(ζ, 0, r) = T(ζ, r) + O(1)

= N(ζ,∞, r) + m(ζ, r) + O(r).

In view of (35) and (36) we get an asymptotic formula for the charac-
teristic function:

Theorem 7. As r → ∞,

T(ζ, r) =
2r

π
log r + O(r).

We deduce from this and (34) for the deficiency value of infinity

δ(ζ,∞) = 1 − lim sup
r→∞

N(ζ,∞, r)

T(ζ, r)
= 1,

as expected. In view of Theorem 1 the deficiency values for c 6= ∞ are
equal to 0.

We conclude with a description of the analytic behavior of Epstein
zeta-functions in terms of the notion of finite order. A positive func-
tion t(r) is said to be of finite order λ if

lim sup
r→∞

log t(r)

log r
= λ;

t(r) is of maximum, mean or minimum type of order λ if the upper limit

lim sup
r→∞

t(r)

rλ

is infinite, finite and positive, or zero. A meromorphic function is de-
fined to be of the same order and the same type as its characteristic
function T(r, f). Thus, by Theorem 7, we get

Corollary 8. Every Epstein zeta-function is of order one and maximum
type.
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