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Abstract: In this article we study the family of BMOp spaces, p ≥ 1, in the general
context of metric measure spaces. We give a characterization theorem that allows to

describe all possible relations between these spaces considered as sets of functions.

Examples illustrating the obtained cases and some additional results related to the
John–Nirenberg inequality are also included.
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1. Introduction

BMO is a function space which traditionally occurs in the literature as
an object associated to the space Rd, d ≥ 1, equipped with the Euclidean
metric and Lebesgue measure. Roughly speaking, it contains functions
whose mean oscillation over a given cube Q ⊂ Rd is bounded uniformly
with respect to the choice of that cube. Although BMO was introduced
by John and Nirenberg in [8] in the context of partial differential equa-
tions, it is also a very useful tool in harmonic analysis. One reason is that
many of the operators considered there turn out to be bounded from L∞

to BMO even though they are not always bounded on L∞. This, in turn,
can often be used to prove the boundedness of such operators on Lp for
some p ∈ (1,∞) by using the interpolation theorem obtained by Feffer-
man and Stein in [6]. Another interesting thing concerns the fact that
BMO is dual to the Hardy space H1, which is of great use in harmonic
analysis. This result was first shown by Fefferman in [5]. Finally, BMO
functions are in close relation with other objects appearing in this field
such as Carleson measures, paraproducts, or commutator operators (see,
e.g., [2], [3], [4], and [7] for further considerations).
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It is well known that most of the theory mentioned above can be
developed in more general contexts that include metric measure spaces
with measures which are doubling. However, the situation changes signif-
icantly if we want a measure to be completely arbitrary. Namely, many
fundamental results obtained in the case of Lebesgue measure cannot be
easily adapted to the non-doubling setting. In particular, there is less
flexibility in using various covering lemmas in an effective way. Conse-
quently, we have examples showing that some of the classical theorems
fail to occur in certain non-doubling situations (see, e.g., [1] and [11]
for studying the weak type (1, 1) boundedness of the Hardy–Littlewood
maximal operator) while, in contrast, some theorems can be proved for
wider classes of spaces, usually requiring more complicated methods (see,
e.g., [10] and [12] where the boundedness of the Cauchy integral opera-
tor was studied).

Nevertheless, BMO spaces for non-doubling spaces were quite success-
fully studied by Mateu, Mattila, Nicolau, and Orobitg in [9]. Among
other things, the authors have shown that for many Borel measures
on Rd, not necessary doubling, it is possible to define BMO spaces in
such a way as to be able to use an interpolation argument analogous
to that obtained in [6]. On the other hand, a somewhat surprising fact
shown in [9] is that there exist measures on R2 for which the associ-
ated spaces BMO and BMOb defined with an aid of cubes and balls,
respectively, do not coincide. Another result, which will be mentioned
in this paper later on, is related to some untypical behavior of the fam-
ily of spaces BMOp

b , p ≥ 1, which occurs under certain conditions. In
summary, there are many examples in [9] which illustrate that in some
specific situations BMO spaces may have very unusual properties. This
idea also accompanies the present article.

The main motivation of this work is to study the spaces BMOp
b , p ≥ 1,

considered as sets of functions, in order to describe whether the natu-
ral inclusions between them are proper or not. Theorem 1, stated in
Section 2, gives the characterization of all the possible cases related to
this issue. Throughout the paper we deal with arbitrary metric measure
spaces and hence balls determined by metrics are used to define BMOp

b

spaces. From now on we omit the subscript b and write BMOp instead
of BMOp

b .

2. Main result

Let X = (X, ρ, µ) be a metric measure space, where ρ is a metric
and µ is a Borel measure such that the measure of each ball is finite and
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strictly positive. For a locally integrable function f and an open ball B
we denote the average value of f on B by

fB =
1

µ(B)

∫
B

f(x) dµ(x).

Then, for a parameter p ≥ 1, we introduce the space BMOp(X) as the
space consisting of f ’s satisfying

‖f‖∗,p := sup
B⊂X

(
1

µ(B)

∫
B

|f(x)− fB |p dµ(x)

)1/p

<∞,

where the supremum is taken over all balls contained in X. We keep
to the rule that two functions are identified if they differ by a constant.
With this additional assumption ‖·‖∗,p satisfies the norm properties and
thus BMOp(X) can be viewed as a Banach space (it is mathematical
folklore that BMOp(X) is complete in any setting). If p = 1, then we
will usually write BMO(X) or ‖f‖∗ instead of BMO1(X) or ‖f‖∗,1.

Recall that by using Hölder’s inequality, for 1 ≤ p1 < p2 <∞, we have
‖ · ‖∗,p1 ≤ ‖ · ‖∗,p2 and hence BMOp2(X) ⊂ BMOp1(X). Consequently,
if BMOp1(X) and BMOp2(X) coincide as sets, then the corresponding
norms are equivalent. In fact, this is the case when µ is doubling, that is,
µ(B(x, 2r)) ≤ Cµ(B(x, r)) with a constant C > 0 independent of x ∈ X
and r > 0. Indeed, one can obtain that all the spaces BMOp(X), p ≥ 1,
coincide by using the John–Nirenberg inequality which is true for spaces
with the doubling condition (see [9, Theorem A, p. 563], for example).
However, the John–Nirenberg inequality fails to occur in general. More-
over, in [9] the authors were able to construct a (non-doubling) space X
for which there exists f ∈BMO(X) such that f /∈ BMOp(X), p > 1. Here
we go further and describe precisely which types of relations between the
spaces BMOp(X), p ≥ 1, are possible to occur. Namely, we prove the
following.

Theorem 1. Let X = (X, ρ, µ) be a metric measure space. Then we
have one of the three possibilities:

(a) all the spaces BMOp(X), p ≥ 1, coincide,
(b) there exists p0 > 1 such that BMOp(X) coincides with BMO(X)

if p < p0 and BMOp1(X) ( BMOp2(X) for any 1 ≤ p1 < p2 <∞
if p2 ≥ p0,

(c) there exists p0 ≥ 1 such that BMOp(X) coincides with BMO(X)
if p ≤ p0 and BMOp1(X) ( BMOp2(X) for any 1 ≤ p1 < p2 <∞
if p2>p0.
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Conversely, for each of the cases described above and for any permis-
sible choice of p0 (while considering one of the last two cases) we can
construct X for which the associated spaces BMOp(X), p ≥ 1, realize the
desired properties.

The proof of Theorem 1 given below is based on certain results of a
rather technical nature which are proved later on.

3. Proof of Theorem 1

In this section we prove Theorem 1. To do this we use two ingredients
which we formulate here and prove in Sections 4 and 5, respectively. The
first one is the following.

Lemma 1. Let X=(X, ρ, µ) be a metric measure space. If BMOp1(X)(
BMOp2(X) for some 1 ≤ p1 < p2 < ∞, then for any α > 1 we have
BMOαp1(X) ( BMOαp2(X).

The second thing we need is to find a suitable family of spaces X for
which some specific relations between the associated spaces BMOp(X),
p ≥ 1, occur. The process of constructing such spaces is the most tech-
nical part of this article. We obtain two complementary propositions
stated below.

Proposition 1. Fix p0 > 1. There exists a space X such that BMOp(X)
coincides with BMO(X) if and only if p < p0.

Proposition 2. Fix p0 ≥ 1. There exists a space X such that BMOp(X)
coincides with BMO(X) if and only if p ≤ p0.

Now, Theorem 1 follows easily from the results mentioned above.

Proof of Theorem 1: Let X be a metric measure space. Denote

p0 = sup{p ∈ [1,∞) : BMOp(X) = BMO(X)}.
The case p0 = ∞ corresponds to (a). Thus, assuming p0 < ∞, we have
two possibilities: either BMOp0(X) coincides with BMO(X) or not. We
analyze only the first one, which corresponds to the case (c) from Theo-
rem 1 (the second one can be considered in a similar way). Obviously, we
have that p0 ≥ 1 and BMOp(X) coincides with BMO(X) for each p ≤ p0.
Now, take any 1 ≤ p1 < p2 < ∞ with p2 > p0. If p1 ≤ p0, then
BMOp1(X) ( BMOp2(X) holds by the definition of p0. On the other
hand, if p1 > p0, then there exists α > 1 such that p1/α ≤ p0 < p2/α.

Hence, for that α, we have BMOp1/α(X) ( BMOp2/α(X) and by using
Lemma 1 we conclude that BMOp1(X) ( BMOp2(X).



BMO Spaces for Nondoubling Metric Measure Spaces 107

The second part of Theorem 1 can be deduced by using the class of
spaces obtained in Propositions 1 and 2 which exhausts all the possibili-
ties associated with the cases (b) and (c). Since the case (a) can be simply
realized by any metric measure space satisfying the doubling condition,
we obtain the full characterization of all possible relations between the
spaces BMOp(X), p ≥ 1.

4. Proof of Lemma 1

This section is entirely devoted to the proof of Lemma 1. It is worth
mentioning here that it is possible to formulate the lemma in a more
general form than the one presented in the previous section. Namely,
the proof does not rely on the fact that balls were used to define the
spaces BMOp(X), p ≥ 1. Thus, the conclusion remains true if one con-
siders the spaces BMOp(X) introduced with an aid of an arbitrary base,
that is a fixed family of subsets of X, instead.

Proof of Lemma 1: Suppose that BMOp1(X) ( BMOp2(X) for some 1 ≤
p1 < p2 <∞ and fix α > 1. We begin with the simple observation that it
suffices to find a sequence {gN}∞N=1 satisfying ‖gN‖∗,αp1 ≤ C uniformly
in N and limN→∞ ‖gN‖∗,αp2 =∞.

Take f ∈ BMOp1(X) \ BMOp2(X) and write f = f1 + if2, where f1
and f2 are real-valued functions. Observe that at least one of the func-
tions fi, i ∈ {1, 2}, also lies in BMOp1(X) \ BMOp2(X). Therefore, we
can assume f to be real-valued.

Consider an arbitrary N ∈ N and choose a ball BN ⊂ X such that

(1)
1

µ(BN )

∫
BN

|f − fBN
|p2 dµ ≥ N.

Then take fN = f − fBN
and introduce gN by

gN (x) = sgn(fN (x)) · |fN (x)|1/α.
Our first goal is to show that ‖gN‖∗,αp1 ≤ C uniformly in N . It will

be convenient at this point to notice that we have

1

µ(B)

∫
B

|h− hB |p dµ ≤
1

µ(B)2

∫
B

∫
B

|h(x)− h(y)|p dµ(x) dµ(y)

≤ 2p

µ(B)

∫
B

|h− hB |p dµ,
(2)

for any p≥1, B ⊂ X, and h which is locally integrable. Take an arbitrary
ball B and note that (2) implies

(3)
1

µ(B)2

∫
B

∫
B

|fN (x)−fN (y)|p1 dµ(x) dµ(y)≤2p1‖fN‖p1∗,p1 =2p1‖f‖p1∗,p1 .
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We would like to obtain a similar estimate for gN and αp1 instead
of fN and p1, respectively. Take any two points x and y contained in B.
If gN (x) and gN (y) are of the same sign, then

|gN (x)− gN (y)|αp1 =
∣∣|fN (x)|1/α − |fN (y)|1/α

∣∣αp1 ≤ |fN (x)− fN (y)|p1 .

On the other hand, if, for instance, gN (x) > 0 and gN (y) ≤ 0, then we
obtain

|gN (x)− gN (y)|αp1 ≤ 2αp1(gN (x)αp1 + (−gN (y))αp1)

= 2αp1(fN (x)p1 + (−fN (y))p1)

≤ 2αp1 |fN (x)− fN (y)|p1 .

Combining (3) with the last two estimates gives

1

µ(B)2

∫
B

∫
B

|gN (x)− gN (y)|αp1 dµ(x) dµ(y) ≤ 2(1+α)p1‖f‖p1∗,p1 ,

which, by using (2) one more time, results in the desired inequality
‖gN‖∗,αp1 ≤ 21+α‖f‖∗,p1 .

Now, the only thing left to do is to estimate ‖gN‖∗,αp2 from below.
Namely, for a fixed M > 0 we take N satisfying

(4) 2−αp2N − 2αp2(M + 1)αp2 ≥M,

and show that

(5)
1

µ(BN )

∫
BN

|gN − (gN )BN
|αp2 dµ ≥M.

We consider two cases: |(gN )BN
| ≤ M + 1 and (gN )BN

< −M − 1. (In
the case (gN )BN

> M + 1 one can replace fN and gN by −fN and −gN ,
respectively.) If |(gN )BN

| ≤M + 1, then we use the following estimates:
for x ∈ BN such that |gN (x)| > 2(M + 1),

(6) |gN (x)− (gN )BN
|αp2 ≥ 2−αp2 |gN (x)|αp2 = 2−αp2 |fN (x)|p2 ,

and for x ∈ BN such that |gN (x)| ≤ 2(M + 1),

|gN (x)− (gN )BN
|αp2 ≥ 0 ≥ |gN (x)|αp2 − 2αp2(M + 1)αp2

= |fN (x)|p2 − 2αp2(M + 1)αp2 .
(7)
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Applying (1), (4), (6), and (7) we obtain∫
BN

|gN−(gN )BN
|αp2 dµ≥ 2−αp2

∫
BN

|fN |p2 dµ−2αp2(M+1)αp2µ(BN )

≥ (2−αp2N − 2αp2(M + 1)αp2)µ(BN )

≥Mµ(BN ).

(8)

In turn, if (gN )BN
< −M − 1, then, equivalently,∫

BN

(fN − gN ) dµ > (M + 1)µ(BN ).

Let UN = {x ∈ BN : gN (x) ≥ 1}. Observe that for any y ∈ BN \UN we
have fN (y)− gN (y) ≤ 1 and hence

(9)

∫
UN

(fN − gN ) dµ > Mµ(BN ).

Therefore, by using the definition of UN , the fact that (gN )BN
<0, and (9)

we get ∫
BN

|gN − (gN )BN
|αp2 dµ ≥

∫
UN

gαp2N dµ =

∫
UN

fp2N dµ

≥
∫
UN

(fN − gN ) dµ

> Mµ(BN ).

(10)

Finally, (5) is a consequence of (8) and (10).

5. Test spaces

In this section we present a simple method of constructing metric
measure spaces X = (X, ρ, | · |) with specific properties of the associated
spaces BMOp(X), p ≥ 1. Here | · | refers to the counting measure, which
is the only measure that will be considered in Sections 5 and 6. Before
reading the exact description of the constructed spaces, it may be helpful
to take a look at Figure 1 presented later on in this section.

We use the term test space for each X built in the following way. Let
M = {mn,i : i = 1, . . . , n, n ∈ N} be a fixed triangular matrix of positive
integers with m1,1 = 1. Define

X = XM = {xn,i,j : j = 0, . . . ,mn,i, i = 1, . . . , n, n ∈ N},
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where all elements xn,i,j are pairwise different. We denote by Sn,i the
branch Sn,i = {xn,i,0, xn,i,1, . . . , xn,i,mn,i

}. Later on we use also auxiliary

symbols Sn =
⋃n
i=1 Sn,i, Tn =

⋃n
k=1 Sk, and the function ∨ : X×X → N

defined by ∨(x, y) = min{n ∈ N : {x, y} ⊂ Tn}. We introduce the
metric ρ on X determining the distance between two different elements x
and y by the formula

ρ(x, y) =



n+ 1
2 if {x, y} = {xn,n,0, xn+1,1,0} for some n ∈ N,

n− 1
2i+1 if xn,i,0∈{x, y}⊂ Sn,i for some 1 ≤ i ≤ n, n ∈ N,

n− 1
2i+2 if {x, y} = {xn,i,0, xn,i+1,0}

for some 1 ≤ i ≤ n− 1, n ∈ N,

∨(x, y) otherwise.

At first glance, such a metric may look a little strange. However, its
main advantage lies in the arrangement of balls containing exactly two
points which we call pair of neighbors later on. Moreover, any ball
that cannot be covered by at least one of the sets Nx := {x} ∪ {y :
y is a neighbor of x}, x ∈ X, must be of the form Tn or Tn ∪ {xn+1,1,0}
for some n ≥ 2. These two properties make the associated BMOp(X)
spaces easier to deal with. Figure 1 shows a model of the space (X, ρ)
with particular emphasis on the fact that each two neighboring points
are connected by a solid line.

x1,1,0

x1,1,1 x1,1,m1,1

x2,1,0

x2,1,1 x2,1,m2,1

x2,2,0

x2,2,1 x2,2,m2,2

x3,1,0

x3,1,1 x3,1,m3,1

3
2

7
4

5
2

2
3

5
3

9
5

9
5

8
3

8
3

. . .

. . .

. . .

. . .

. . .

Figure 1.

Let us fix p0 > 1. Our intention is to choose the matrix M in such a
way as to obtain that BMOp(X) = BMO(X) if and only if p < p0. We
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construct M inductively. Namely, for each n ≥ 2, supposing that the
values mk,i, i = 1, . . . , k, k < n, have already been chosen, we take

(C1) mn,i =

⌊
bn

(n− i+ 1)p0
− bn

(n− i+ 2)p0

⌋
, i = 1, . . . , n,

where b·c is the floor function and bn is an even positive integer so large
that

(C2) |Tn−1| ≤ min

{⌊
bn

(n+ 1)p0
− bn

(n+ 2)p0

⌋
,
bn
n2p0

}
.

We need some auxiliary estimates. First, observe that from (C1), (C2),
and the fact that bn is even it follows that bn/2 ≤ |Tn| ≤ 2bn. Moreover,
for each i = 1, . . . , n, we have

(11)
|Sn,i|
|Tn|

≤ 4mn,i

bn
≤ 4

(
1

(n− i+ 1)p0
− 1

(n− i+ 2)p0

)
,

and

(12)
|Sn,i|
|Tn|

≥ mn,i

2bn
≥ 1

4

(
1

(n− i+ 1)p0
− 1

(n− i+ 2)p0

)
.

We are ready to prove Proposition 1.

Proof of Proposition 1: For fixed p0 > 1 we let X = (X, ρ, | · |) be the
test space with M defined by using (C1) and (C2).

First we show that for each 1 < p < p0 there exists Cp > 0 such
that ‖f‖∗,p ≤ Cp‖f‖∗ for every f ∈ BMO(X). Take f ∈ BMO(X) and
1 < p < p0. Without any loss of generality we can assume that ‖f‖∗ = 1.
Then we have |f(x)− f(y)| ≤ 2 whenever x and y are neighbors. Hence
for each B ⊂ X we have at least one of the two possibilities:

• B ⊂ Nx for some x ∈ X and then, by the triangle inequality,

max{|f(y)− f(z)| : y, z ∈ B} ≤ 4,

• B is of the form Tn or Tn ∪ {xn+1,1,0} for some n ≥ 2.

If B ⊂ Nx for some x ∈ X, then we obtain the trivial bound

(13)
1

|B|
∑
x∈B
|f(x)− fB |p ≤ 4p.

On the other hand, if B is of the form Tn or Tn∪{xn+1,1,0} for some n ≥
2, then we set E′l = {x ∈ B : |f(x)− f(xn,n,0)| > l} for l ∈ N. In each of
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the two cases, either {xn+1,1,0} ∈ B or not, and by using (C2) and (11),
we get the following estimates: for l = 1, . . . , n− 1,

(14)
|E′2l|
|B|

≤
|Tn−1 ∪

⋃n−l
i=1 Sn,i|

|Tn|
≤ 4

(l + 1)p0
,

for l = n, . . . , n2,

(15)
|E′2l|
|B|

≤ |Tn−1|
|Tn|

≤ 2

n2p0
,

and, finally, for l > n2,

(16) |E′2l| = 0.

Moreover, recall the well known fact that for any a ∈ C we have

(17)
∑
x∈B
|f(x)− fB |p ≤ 2p

∑
x∈B
|f(x)− a|p.

Therefore, by using (14), (15), (16), and (17) we obtain

1

|B|
∑
x∈B
|f(x)− fB |p ≤

2p

|B|
∑
x∈B
|f(x)− f(xn,n,1)|p

=
2p

|B|

∫ ∞
0

p λp−1|{x∈B : |f(x)−f(xn,n,1)|>λ}| dλ

≤ p 2p+1

|B|

∞∑
l=0

(2l + 2)p−1|E′2l|

= p 4p
∞∑
l=0

(l + 1)p−1 · |E′2l|
|B|

(18)

≤ p 4p

(
1 +

n−1∑
l=1

4 · (l + 1)p−1

(l + 1)p0
+ n2 · 2(2n2)p−1

n2p0

)

≤ p 4p

(
1 + 4

∞∑
l=1

lp−p0−1 + 2p

)
.
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The combination of (13) and (18) shows that

sup
B⊂X

1

|B|
∑
x∈B
|f(x)− fB |p ≤ Cpp ,

independently of f , ‖f‖∗ = 1, and B.
Now we prove that there exists g∈BMO(X) such that g /∈ BMOp0(X).

We start with a simple remark. Namely, for f such that |f(x)−f(y)| ≤ 2
for any neighboring points x and y and B of the form Tn or Tn ∪
{xn+1,1,0}, n ≥ 2, the average value of f over B does not differ too
much from f(xn,n,0). More precisely, by using (C2), (11), and the esti-
mate |Tn| ≥ bn/2 we get

|fB − f(xn,n,0)| ≤ 2 +
2

|B|

∞∑
l=1

|{x ∈ B : |f(x)− f(xn,n,0)| > 2l}|

≤ 2 +
2

|Tn|

(
n−1∑
l=1

∣∣∣Tn−1 ∪ n−l⋃
i=1

Sn,i

∣∣∣+ (n− 1)2|Tn−1|

)

≤ 2 + 2

n−1∑
l=1

|
⋃n−l
i=1 Sn,i|
|Tn|

+ 2n2
|Tn−1|
|Tn|

(19)

≤ 6 + 2

n−1∑
l=1

4

(n− l)p0
≤ 6 + 8

∞∑
l=1

l−p0 ≤ N,

for some fixed integer N = N(p0). Now, take g defined by the formula

g(xn,i,j) = i+

n−1∑
k=1

k, j = 0, . . . ,mn,i, i = 1, . . . , n, n ∈ N.

It is easy to check that g ∈ BMO(X) since for each B ⊂ X at least
one of the estimates (13) and (18) holds with p replaced by 1. Indeed,
to obtain these inequalities for f as above we only used the information
that |f(x)−f(y)| ≤ 2 for any neighboring points x and y. Our function g
satisfies this condition as well. Also (19) remains true if we put g in place
of f . Now, let n ≥ 2 and take B = Tn. Observe that

(20) |g(x)− gB | ≥ n− i−N, x ∈ Sn,i, i = 1, . . . , n.
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Therefore, if n ≥ 4N , then by using (12) and (20) we have

1

|B|
∑
x∈B
|g(x)−gB |p0 ≥

1

|B|

∞∑
l=1

p0(l − 1)p0−1|{x ∈ B : |g(x)− gB | > l}|

≥ 1

|Tn|

n−N−1∑
l=2

p0(l − 1)p0−1
∣∣∣n−N−l⋃
i=1

Sn,i

∣∣∣
≥ p0

4

n−N−1∑
l=2

(l − 1)p0−1
(

1

(N+ l − 1)p0
− 1

(n+ 1)p0

)
(21)

≥ p0
8

bn/2+3/2−Nc∑
l=2

(l − 1)p0−1

(N + l − 1)p0

≥ p0
2p0+3

bn/2+3/2−Nc∑
l=N+1

(l − 1)−1,

since (N + l − 1)−p0 ≥ 2(n + 1)−p0 for l ≤ bn/2 + 3/2 − Nc and N +
l − 1 ≤ 2(l − 1) for l ≥ N + 1. Letting n → ∞ we conclude that
g /∈ BMOp0(X).

At the end of this section we will be interested in test spaces X for
which BMOp(X) coincides with BMO(X) if and only if p ≤ p0 where
p0 ∈ [1,∞) is fixed. We can easily get such spaces slightly modifying the
previous construction of M . Namely, instead of using (C1) and (C2), we
define mn,i for n ≥ 2 by

(C1)’ mn,i=

⌊
1

log(n)+1

(
bn

(n−i+ 1)p0
− bn

(n−i+ 2)p0

)⌋
, i=1, . . . , n,

where bn is an even integer so large that

(C2)’ |Tn−1| ≤ min

(⌊
1

log(n) + 1

(
bn

(n+ 1)p0
− bn

(n+ 2)p0

)⌋
,
bn
n2p0

)
.

We present a sketch of the proof of Proposition 2.

Proof of Proposition 2: For fixed p0 ≥ 1 we let X = (X, ρ, | · |) be the
test space with M defined by using (C1)’ and (C2)’. We show that for
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each 1 < p ≤ p0 there exists Cp > 0 such that ‖f‖∗,p ≤ Cp‖f‖∗ for every
f ∈ BMO(X). To obtain this it suffices to observe that

p 4p

(
1 +

1

log(n) + 1

n−1∑
l=1

4 · (l + 1)p−1

(l + 1)p0
+ n2 · 2(2n2)p−1

n2p0

)
is bounded uniformly in n if p ≤ p0. This allows us to get a proper
variant of the estimate (18) for that p.

Now we prove that, for g ∈ BMO(X) defined exactly in the same way
as in the proof of Proposition 1, we have g /∈ BMOp(X) for all p > p0.
To see this note that if p > p0, then the estimates analogous to (19)
and (21) remain true. Namely, for B = Tn one can get

|gB − g(xn,n,0)| ≤ N,
where N is an integer independent of n, and

1

|B|
∑
x∈B
|g(x)− gB |p ≥

p(log(n) + 1)−1

2p0+3

bn/2+3/2−Nc∑
l=N+1

(l − 1)p−p0−1.

It is now clear that for p > p0 the quantity on the right hand side tends
to ∞ with n→∞.

6. Some related constructions

In the last section we consider several variants of the discussed con-
struction process in order to obtain test spaces with another interesting
properties. Our first goal is to show that if the entries of the matrix M
grow fast enough, then the John–Nirenberg inequality holds for func-
tions f ∈ BMO(X). This result may be a little surprising at first, since
we know that the John–Nirenberg inequality holds for every doubling
metric measure spaces. Keeping that in mind, one may suppose that X
should have rather little chance of preserving this property if we force
the terms mn,i to grow fast. However, observe that in Section 5 the ra-
tios between the values mn,1, . . . ,mn,n played a crucial role in estimating
the mean oscillation of the studied functions and the obtained estimates
were stronger for the smaller values of mn,i/mn,n, i = 1, . . . , n− 1.

To formulate the next proposition in a more readable way it is con-
venient to identify the matrix M with the sequence M ′ = (m′1,m

′
2, . . . )

formed by writing the entries of M row by row, that is, M ′ = (m1,1,m2,1,
m2,2,m3,1, . . . ). In what follows, for simplicity, we use M based on the
geometric sequence {2k−1}∞k=1. Nevertheless, it will be clear that the
presented proof also works for any lacunary sequence {m′k}∞k=1, that is,
a sequence satisfyingm′k+1/m

′
k ≥ c, k ∈ N, for some fixed constant c > 1.



116 D. Kosz

Proposition 3. Let X = (X, ρ, | · |) be the test space with M identified
with the geometric sequence {2k−1}∞k=1. Then for the space BMO(X) the
John–Nirenberg inequality

(22)
|{x ∈ B : |f(x)− fB | > λ}|

|B|
≤ c1 exp(−c2λ/‖f‖∗)

holds with constants c1, c2 > 0 independent of f ∈ BMO(X), B ⊂ X,
and λ > 0.

Proof: Let f ∈ BMO(X) be such that ‖f‖∗ = 1. First, observe that the
main difficulty in proving (22) is related to the situation in which B as
a set coincides with Tn or Tn ∪ {xn+1,1,0} for some n ≥ 2. Indeed, for
any other ball B′ we have max{|f(x)− f(y)| : x, y ∈ B′} ≤ 4 and hence
(22) with B′ in place of B holds for any λ > 0 if we choose c1 and c2
such that c1 exp(−4c2) ≥ 1. Therefore, fix n ≥ 2 and consider B of the

aforementioned form. Note that 2k≤|B| ≤ 2k+1 where k = n(n+1)
2 . Once

again we will take advantage of the useful property that |f(x)− f(y)| ≤
2 for neighboring points x and y. Proceeding just like we did before
to get (19) we can estimate the value |fB − f(xn,n,0)| by some even
integer N which is independent of f , n, and the choice of B. Then for
any integer l ≥ N we have

|{x ∈ B : |f(x)− fB | > 2l}| ≤ |{x ∈ B : |f(x)−f(xn,n,0)|>2(l −N/2)}|

≤ 2k−l+N/2+1

≤ 2N/2+12−l|B|,

and now it is routine to choose c1 and c2 (independent of significant
parameters) such that (22) holds for all λ > 0 and B ⊂ X of an arbitrary
form.

For the presentation of the remaining two results we return to the ma-
trix description of the space X. We construct M in a similar way as it was
done earlier by using (C1) and (C2), but this time we choose the param-
eter p0 separately in each step of induction. Namely, let P = (p2, p3, . . . )
be a sequence of numbers strictly bigger than 1. We define mn,i for n ≥ 2
by

(C1)* mn,i =

⌊
bn

(n− i+ 1)pn
− bn

(n− i+ 2)pn

⌋
, i = 1, . . . , n,

where bn is an even integer so large that

(C2)* |Tn−1| ≤ min

(⌊
bn

(n+ 1)pn
− bn

(n+ 2)pn

⌋
,
bn
n2pn

,
bn
nn

)
.
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Our next purpose will be to show that by a suitable choice of P it is
possible to obtain a space X for which the associated spaces BMOp(X)
are all different. Although this result is not very revealing in view of
Theorem 1, its advantage lies in the fact that the proof presented below,
contrary to the proof of Theorem 1, is constructive. Namely, for each
1 ≤ p1 < p2 < ∞ we construct f ∈ BMOp1(X) \ BMOp2(X). In the
following proposition we take P formed by writing the elements of some
countable dense subset of (1,∞) in an arbitrary order. We can use the
set Q ∩ (1,∞), for example.

Proposition 4. Let P be the sequence defined as above and let X =
(X, ρ, | · |) be the test space with M defined by using (C1)* and (C2)*.
Then, for each 1 ≤ p < p′ < ∞ there exists g ∈ BMOp(X) such that

g /∈ BMOp′(X).

Proof: Fix 1 ≤ p < p′ <∞ and let A = A(p, p′) =
[
p+p′

2 , p′
]
. We take g

defined by the formula

g(xn,i,j)= i·χA(pn)+

n−1∑
k=1

k·χA(pk), j=0, . . . ,mn,i, i = 1, . . . , n, n ∈ N.

Note that g is similar to the analogous function considered in the proof
of Proposition 1, but this time it grows only in those Sn for which the
corresponding values pn belong to A. It is a standard procedure to show

that g ∈ BMOp(X)\BMOp′(X) and most of the work consists of proving
the appropriate variants of the estimates (18), (19), and (21).

We conclude our studies with an example of a test space X for which
the associated spaces BMOp(X) coincide for the full range of the param-
eter p, but the John–Nirenberg inequality does not hold. Namely, we
will prove the following.

Proposition 5. There exists a (test) space X with the following prop-
erties:

(i) for each p > 1 there exists Cp > 0 such that ‖f‖∗,p ≤ Cp‖f‖∗ for
every f ∈ BMO(X),

(ii) there exists g ∈ BMO(X) such that for each l ∈ N we can find
Bl ⊂ X and λl > 0 satisfying

|{x ∈ Bl : |g(x)− gBl
| > λl}|

|Bl|
> l exp(−λl/l).

Proof: The space will be built by using M constructed with the aid
of (C1)* and (C2)* for some suitable sequence P of positive integers.
The key idea is to choose P such that pn tends to ∞ very slowly.
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First, notice that the sole assumption pn →∞ implies (i). Indeed, let
f be such that ‖f‖∗ = 1. Observe that for each p > 1 there exists N0 =
N0(p) ≥ 2 such that pn ≥ p + 1 for all n ≥ N0. Therefore, (18) holds
with p+1 instead of p0 for every B of the form Tn or Tn∪{xn+1,1,0}, n ≥
N0. Since for any other choices of B there exists K = K(p) independent
of that B (and f , of course) such that max{|f(x)−f(y)| : x, y ∈ B} ≤ K,
we see that (i) holds.

It remains to show that with additional assumptions imposed on P
also (ii) holds true. To be more specific slow growth of pn will suffice.
Let p2 = 2 and assume for convenience that P is nondecreasing. We
claim that there exists N ∈ N such that, for any f with ‖f‖∗ = 1,
we have |fB − f(xn,n,0)| ≤ N for B = Tn, n ≥ 2. Indeed, it suffices
to see that now the estimate (19) with p0 replaced by 2 holds. We are
ready to define P inductively. Suppose that pn = l for some n ≥ 2. We
define pn+1 by the formula

(23) pn+1 =

{
l if 1

4 (n−l − (n+ 1)−l) ≤ l exp(−(n−N − 1)/l),

l + 1 otherwise.

Clearly, pn is nondecreasing and pn →∞.
Finally, take g defined exactly in the same way as in the proof of

Proposition 1. Of course, g ∈ BMO(X). Fix l ∈ N such that l ≥ 2 and
let n = n(l) = max{k : pk = l}. Then by using (12) and (23)

|{x ∈ Tn : |g(x)− gTn
| ≥ n−N − 1}|

|Tn|

≥ |{x ∈ Tn : |g(x)− g(xn,n,0)| ≥ n− 1}|
|Tn|

≥ |Sn,1|
|Tn|

≥ 1

4
(n−l − (n+ 1)−l)

≥ l exp(−(n−N − 1)/l),

and therefore we obtain that (ii) holds for Bk=Tn and λl = n−N−1.
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