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Abstract: In this article we study the family of BMOP spaces, p > 1, in the general
context of metric measure spaces. We give a characterization theorem that allows to
describe all possible relations between these spaces considered as sets of functions.
Examples illustrating the obtained cases and some additional results related to the
John—Nirenberg inequality are also included.

2010 Mathematics Subject Classification: Primary: 42B35, 46E30.

Key words: BMO space, metric measure space, non-doubling measure, John—Niren-
berg inequality.

1. Introduction

BMO is a function space which traditionally occurs in the literature as
an object associated to the space R?, d > 1, equipped with the Euclidean
metric and Lebesgue measure. Roughly speaking, it contains functions
whose mean oscillation over a given cube @ C R? is bounded uniformly
with respect to the choice of that cube. Although BMO was introduced
by John and Nirenberg in [8] in the context of partial differential equa-
tions, it is also a very useful tool in harmonic analysis. One reason is that
many of the operators considered there turn out to be bounded from L
to BMO even though they are not always bounded on L*. This, in turn,
can often be used to prove the boundedness of such operators on L? for
some p € (1,00) by using the interpolation theorem obtained by Feffer-
man and Stein in [6]. Another interesting thing concerns the fact that
BMO is dual to the Hardy space H', which is of great use in harmonic
analysis. This result was first shown by Fefferman in [5]. Finally, BMO
functions are in close relation with other objects appearing in this field
such as Carleson measures, paraproducts, or commutator operators (see,
e.g., [2], [3], [4], and [7] for further considerations).
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It is well known that most of the theory mentioned above can be
developed in more general contexts that include metric measure spaces
with measures which are doubling. However, the situation changes signif-
icantly if we want a measure to be completely arbitrary. Namely, many
fundamental results obtained in the case of Lebesgue measure cannot be
easily adapted to the non-doubling setting. In particular, there is less
flexibility in using various covering lemmas in an effective way. Conse-
quently, we have examples showing that some of the classical theorems
fail to occur in certain non-doubling situations (see, e.g., [1] and [11]
for studying the weak type (1,1) boundedness of the Hardy—Littlewood
maximal operator) while, in contrast, some theorems can be proved for
wider classes of spaces, usually requiring more complicated methods (see,
e.g., [10] and [12] where the boundedness of the Cauchy integral opera-
tor was studied).

Nevertheless, BMO spaces for non-doubling spaces were quite success-
fully studied by Mateu, Mattila, Nicolau, and Orobitg in [9]. Among
other things, the authors have shown that for many Borel measures
on R?, not necessary doubling, it is possible to define BMO spaces in
such a way as to be able to use an interpolation argument analogous
to that obtained in [6]. On the other hand, a somewhat surprising fact
shown in [9] is that there exist measures on R? for which the associ-
ated spaces BMO and BMO; defined with an aid of cubes and balls,
respectively, do not coincide. Another result, which will be mentioned
in this paper later on, is related to some untypical behavior of the fam-
ily of spaces BMOY, p > 1, which occurs under certain conditions. In
summary, there are many examples in [9] which illustrate that in some
specific situations BMO spaces may have very unusual properties. This
idea also accompanies the present article.

The main motivation of this work is to study the spaces BMO}, p > 1,
considered as sets of functions, in order to describe whether the natu-
ral inclusions between them are proper or not. Theorem 1, stated in
Section 2, gives the characterization of all the possible cases related to
this issue. Throughout the paper we deal with arbitrary metric measure
spaces and hence balls determined by metrics are used to define BMOY
spaces. From now on we omit the subscript b and write BMO? instead
of BMO?Y.

2. Main result

Let X = (X, p,u) be a metric measure space, where p is a metric
and p is a Borel measure such that the measure of each ball is finite and
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strictly positive. For a locally integrable function f and an open ball B
we denote the average value of f on B by

1
fB= m/Bf(x) du(x).

Then, for a parameter p > 1, we introduce the space BMO?(X) as the
space consisting of f’s satisfying

1 » 1/17
i s (o [ 1@ = faPaut)) <.

where the supremum is taken over all balls contained in X. We keep
to the rule that two functions are identified if they differ by a constant.
With this additional assumption |- ||, satisfies the norm properties and
thus BMOP(X) can be viewed as a Banach space (it is mathematical
folklore that BMOP(X) is complete in any setting). If p = 1, then we
will usually write BMO(X) or || f||« instead of BMO'(X) or || f][«.1.

Recall that by using Holder’s inequality, for 1 < p; < ps < oo, we have
|- lspr < - Il+,p, and hence BMOP?(X) C BMO?*(X). Consequently,
if BMOP*(X) and BMOP?(X) coincide as sets, then the corresponding
norms are equivalent. In fact, this is the case when p is doubling, that is,
w(B(x,2r)) < Cu(B(z,r)) with a constant C' > 0 independent of x € X
and 7 > 0. Indeed, one can obtain that all the spaces BMOP(X), p > 1,
coincide by using the John—Nirenberg inequality which is true for spaces
with the doubling condition (see [9, Theorem A, p. 563], for example).
However, the John—Nirenberg inequality fails to occur in general. More-
over, in [9] the authors were able to construct a (non-doubling) space X
for which there exists f € BMO(X) such that f ¢ BMOP(X), p > 1. Here
we go further and describe precisely which types of relations between the
spaces BMOP(X), p > 1, are possible to occur. Namely, we prove the
following.

11

Theorem 1. Let X = (X, p,u) be a metric measure space. Then we
have one of the three possibilities:

(a) all the spaces BMOP(X), p > 1, coincide,

(b) there exists pg > 1 such that BMO?(X) coincides with BMO(X)
if p<po and BMOP*(X) C BMOP?(X) for any 1 <p; < py < 00
if p2 > po,

(c) there exists po > 1 such that BMOP(X) coincides with BMO(X)
if p <po and BMOP*(X) C BMOP?(X) for any 1 < p; < py < o0
if p2>po-
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Conversely, for each of the cases described above and for any permis-
sible choice of po (while considering one of the last two cases) we can
construct X for which the associated spaces BMOP(X), p > 1, realize the
desired properties.

The proof of Theorem 1 given below is based on certain results of a
rather technical nature which are proved later on.

3. Proof of Theorem 1

In this section we prove Theorem 1. To do this we use two ingredients
which we formulate here and prove in Sections 4 and 5, respectively. The
first one is the following.

Lemma 1. Let X=(X, p, 1) be a metric measure space. If BMOP* (X) C
BMOP*(X) for some 1 < p; < py < 00, then for any a > 1 we have
BMO*P*(X) € BMO“P*(X).

The second thing we need is to find a suitable family of spaces X for
which some specific relations between the associated spaces BMO?(X),
p > 1, occur. The process of constructing such spaces is the most tech-
nical part of this article. We obtain two complementary propositions
stated below.

Proposition 1. Fizpg > 1. There exists a space X such that BMOP? (X)
coincides with BMO(X) if and only if p < po.

Proposition 2. Fizpg > 1. There exists a space X such that BMOP? (X)
coincides with BMO(X) if and only if p < po.

Now, Theorem 1 follows easily from the results mentioned above.

Proof of Theorem 1: Let X be a metric measure space. Denote
po = sup{p € [1,0) : BMO?(X) = BMO(X)}.

The case pg = oo corresponds to (a). Thus, assuming py < oo, we have
two possibilities: either BMO??(X) coincides with BMO(X) or not. We
analyze only the first one, which corresponds to the case (¢) from Theo-
rem 1 (the second one can be considered in a similar way). Obviously, we
have that pp > 1 and BMO?(X) coincides with BMO(X) for each p < po.
Now, take any 1 < p; < p2 < oo with ps > po. If p1 < po, then
BMOP*(X) € BMOP?(X) holds by the definition of py. On the other
hand, if p; > po, then there exists o > 1 such that p;/a < pg < p2/a.
Hence, for that a, we have BMOPY/*(X) C BMOP?/*(X) and by using
Lemma 1 we conclude that BMOP*(X) C BMOP*(X).
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The second part of Theorem 1 can be deduced by using the class of
spaces obtained in Propositions 1 and 2 which exhausts all the possibili-
ties associated with the cases (b) and (c). Since the case (a) can be simply
realized by any metric measure space satisfying the doubling condition,
we obtain the full characterization of all possible relations between the
spaces BMO?(X), p > 1. O

4. Proof of Lemma 1

This section is entirely devoted to the proof of Lemma 1. It is worth
mentioning here that it is possible to formulate the lemma in a more
general form than the one presented in the previous section. Namely,
the proof does not rely on the fact that balls were used to define the
spaces BMOP(X), p > 1. Thus, the conclusion remains true if one con-
siders the spaces BMO?(X) introduced with an aid of an arbitrary base,
that is a fixed family of subsets of X, instead.

Proof of Lemma 1: Suppose that BMO?' (X) C BMOP*(X) for some 1 <
p1 < p2 < oo and fix @ > 1. We begin with the simple observation that it
suffices to find a sequence {gn }F_; satistying ||gn | «,ap, < C uniformly
in N and limy_s oo [|gn || 5,ap; = 00-

Take f € BMOP'(X) \ BMOP??(X) and write f = fi + ifs, where f;
and fo are real-valued functions. Observe that at least one of the func-
tions f;, i € {1,2}, also lies in BMOP*(X) \ BMOP?(X). Therefore, we
can assume [ to be real-valued.

Consider an arbitrary N € N and choose a ball By C X such that

1
(1) H(BN)/BN |f — fBy|P?dp > N.

Then take fy = f — fp, and introduce gy by
gn (@) = sgu(fn(x)) - ()]

Our first goal is to show that ||gn||«,ap, < C uniformly in N. It will
be convenient at this point to notice that we have

5 [ ol i< — [ [ 10w = )P dnto) duty)
/|h hp|” dp,

forany p>1, B C X, and h Wthh is locally integrable. Take an arbitrary
ball B and note that (2) implies

) gy [ [ U @) dua) i) <2 25, =2 1123,
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We would like to obtain a similar estimate for gy and ap; instead
of fy and pi, respectively. Take any two points x and y contained in B.
If gn(x) and gy (y) are of the same sign, then

lgn (x) — gn ()Pt = HfN(x)\l/CY - |JCN(3J)\1/Q|M1 < |fn(w) — fn(y) P

On the other hand, if, for instance, gn(z) > 0 and gy (y) < 0, then we
obtain

lgn (z) — gn (y)|*P < 297 (gn (2)*P" + (=g (9)) )
= () + (AN ))

<29 fn(x) — fn(y)|Pr

Combining (3) with the last two estimates gives

@ /B /B lgn () — gn (9)]°P* dp(z) dp(y) < 20+9P|| £ o

which, by using (2) one more time, results in the desired inequality
lgn[l,ap < 2t f |+,p1-

Now, the only thing left to do is to estimate ||gn||«,ap, from below.
Namely, for a fixed M > 0 we take N satisfying

(4) 27PN — 20P2 (N[ 4 1)°P2 > M,

and show that

1
w(Bn)

We consider two cases: |(gn)By| < M +1 and (gn)py < —M —1. (In
the case (gn)py > M +1 one can replace f and gy by —fny and —gn,
respectively.) If |(gn) By < M + 1, then we use the following estimates:
for x € By such that |gn(z)| > 2(M + 1),

()

/ lanv — (gn) By %P2 dp > M.
By

(6) lgn(x) = (9n) By [*7* = 272 |gn (2)[*F2 = 27°F2[ v ()72,
and for z € By such that |gn(z)] < 2(M + 1),
lgn (@) = (9n) By [*7? 2 0 = |gn (2)|*P2 — 2972 (M + 1)

= \fN(x)|p2 — 9op2 (M 4 1)ap2'
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Applying (1), (4), (6), and (7) we obtain

g — (98 ) 5y |27 dp> 27072 / | du—297 (M 41)°7 u(By)
By

BN
(®) > (27PN — 2972 (M + 1)°72)p(By)
> Mu(Bn).

In turn, if (gn)By < —M — 1, then, equivalently,
/B (fv —gn)dp > (M +1)pu(By).
N

Let Uy = {x € By : gn(x) > 1}. Observe that for any y € By \ Uy we
have fn(y) —gn(y) <1 and hence

(9) /U (fx — gn) dp > Myu(By).

Therefore, by using the definition of Uy, the fact that (g5 )5, <0, and (9)
we get

/ lgn — (gn) By |*P2 dp > / g3 dp = I dp
Bn Un Un

(10) Z/U (fn —gn)dp

> Mu(Bn).

Finally, (5) is a consequence of (8) and (10). O

5. Test spaces

In this section we present a simple method of constructing metric
measure spaces X = (X, p,|-|) with specific properties of the associated
spaces BMOP(X), p > 1. Here | - | refers to the counting measure, which
is the only measure that will be considered in Sections 5 and 6. Before
reading the exact description of the constructed spaces, it may be helpful
to take a look at Figure 1 presented later on in this section.

We use the term test space for each X built in the following way. Let
M={m,,;:i=1,...,n, n € N} be a fixed triangular matrix of positive
integers with m; ; = 1. Define

X:XM:{xn’i,j:j:O,...,mn,i,izl,...,n,nEN},
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where all elements z,; ; are pairwise different. We denote by S, ; the
branch Sy, ; = {Zn 4,0, Tni,1 -+ Tnyim,,, }- Later on we use also auxiliary
symbols S, = U, Sni» Trn = Up—; Sk, and the function V: X x X — N
defined by V(z,y) = min{n € N : {z,y} C T,}. We introduce the
metric p on X determining the distance between two different elements x
and y by the formula

n+ % if {z,y} = {znn,0,Tnt1,1,0} for some n € N,
n— Til if xps0€{z,y}C Sp,; forsome 1 <i<n,neN,
plx,y) =qn— 2;‘_2 if {z,y} = {Tni0,Tnit10}
forsome 1 <i<n-—1,n€eN,
V(z,y)  otherwise.

At first glance, such a metric may look a little strange. However, its
main advantage lies in the arrangement of balls containing exactly two
points which we call pair of neighbors later on. Moreover, any ball
that cannot be covered by at least one of the sets N, := {z} U {y :
y is a neighbor of 2}, x € X, must be of the form T, or T, U{zn+1,1,0}
for some n > 2. These two properties make the associated BMOP(X)
spaces easier to deal with. Figure 1 shows a model of the space (X, p)
with particular emphasis on the fact that each two neighboring points
are connected by a solid line.

31,1 T3,1,m3,1

22,1 T2,2,mq 5

21,1 T2.1,ms 1

T1,1,1 T1,1,mq 1

3
£1,1,0 2 21,0

FIGURE 1.

Let us fix pg > 1. Our intention is to choose the matrix M in such a
way as to obtain that BMOP?(X) = BMO(X) if and only if p < pg. We
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construct M inductively. Namely, for each n > 2, supposing that the

values my i, ¢ = 1,...,k, k < n, have already been chosen, we take
b b

C1 n,g — .n - .n ) ':17"'7 )

(C1) n, {(n—z—i—l)?’ﬂ (n—1+2)p0J ! "

where |-| is the floor function and b,, is an even positive integer so large
that

bn b b
< mi — .
(C2) T 1] < mln{ {(n g i 2)”"J ' 2p }

We need some auxiliary estimates. First, observe that from (C1), (C2),
and the fact that b, is even it follows that b, /2 < |T,,| < 2b,,. Moreover,
for each i = 1,...,n, we have

|S7H‘| 4mm 1 1
11 — < =<4 —
(11) T = by — \(n—i+1)Po  (n—i+2)p0 )’

and

12) (Sl o M 1 1 1
T, = 26, 4\ (n—i+1)p0  (n—it2)p0 )"

We are ready to prove Proposition 1.

Proof of Proposition 1: For fixed py > 1 we let X = (X, p,| - |) be the
test space with M defined by using (C1) and (C2).

First we show that for each 1 < p < pg there exists C;, > 0 such
that || fll«p < Cpl|fll« for every f € BMO(X). Take f € BMO(X) and
1 < p < po. Without any loss of generality we can assume that || f||« = 1.
Then we have | f(x) — f(y)| < 2 whenever x and y are neighbors. Hence

for each B C X we have at least one of the two possibilities:

e B C N, for some x € X and then, by the triangle inequality,

max{|f(y) — f(2)| 1 y,2 € B} < 4,

e B is of the form T,, or T,, U{zp+1,1,0} for some n > 2.
If B C N, for some z € X, then we obtain the trivial bound

1

ST If@) - fal? < 47,

zEB

On the other hand, if B is of the form T}, or T,,U{x}41,1,0} for some n >
2, then we set E] = {x € B : |f(z) — f(zpno0)| >} for I € N. In each of
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the two cases, either {x,,11,1,0} € B or not, and by using (C2) and (11),
we get the following estimates: for [=1,...,n —1,

n—I
Byl _ |Tac VU Sual 4

14
) B (R T
forl=mn,...,n?,
‘E | |Tn71| 2
1 <
and, finally, for [ > n?,
(16) |E| = 0.

Moreover, recall the well known fact that for any a € C we have

(17) Do) = fBlP <27 ) [ f(x) —al’.

zeB zEB

Therefore, by using (14), (15), (16), and (17) we obtain

zEB rEB

= 2 A {r e B f(2)— f(enmn)| > A} dA
0

P2t _
=0

<
(I 1 E
(18) 4pz + | 2l‘
n—1
4-(1+ 1) 2(2n2)P-!
P 2. 227"/
<p4 <1+; T +n pore

< p4r (1 + 4ZZP‘P0‘1 + 21’) .

=1
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The combination of (13) and (18) shows that

sup |B| Z F(@) ~ folP < CF

BCX

independently of f, || f]l« =1, and B.

Now we prove that there exists g € BMO(X) such that g ¢ BMO?° (X).
We start with a simple remark. Namely, for f such that |f(z)— f(y)| < 2
for any neighboring points = and y and B of the form T, or T, U
{Znt+11,0}, » > 2, the average value of f over B does not differ too
much from f(x,,0). More precisely, by using (C2), (11), and the esti-
mate |T,,| > b, /2 we get

|fB = f(Znno)l < |B| Z {z € B:|f(z) — f(xnno)l > 20}

n— IUUSTLZ

2 2
<2+|T<Z (n—1) |Tn1>

T
(19) <2+2§ |U| T +2n2||T|1|
n—1 00
4
- —D
§6+2Zl_1 <n7z)po§6+81§_1il "< N,

for some fixed integer N = N(pg). Now, take g defined by the formula
9(Znij) :i—i—Zk, j=0,....mpsi=1,...,n,neN.

It is easy to check that ¢ € BMO(X) since for each B C X at least
one of the estimates (13) and (18) holds with p replaced by 1. Indeed,
to obtain these inequalities for f as above we only used the information
that | f(z)— f(y)| < 2 for any neighboring points x and y. Our function g
satisfies this condition as well. Also (19) remains true if we put g in place
of f. Now, let n > 2 and take B = T},. Observe that

(20) lg(x) —gp|>n—i—N, z€S,;,i=1,...,n.
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Therefore, if n > 4N, then by using (12) and (20) we have

5] 22 lo(@) gB|P°>|B|Zpoz—1pﬂ e B lg@) — gsl > I}

zeB
n—N-—1 —N—
1
> T Z po(l — 1)~ ‘ U
=2 =1
n—N-1
Po 1 1 1
21 > — p“ -
(21) =4 lz ((NHl)po (n+1)P°>
. @ [n/2+3/2—N | (l _ 1)p0—1
— 8 (N +1—1)po

=2

|n/2+3/2—N|

Po _1
z 9po+3 Z (l - 1)

I=N+1

since (N +1—1)"7P0 > 2(n+1)7?° for I < |n/2+3/2— N| and N +
I1—1<21—-1)forl > N+ 1. Letting n — oo we conclude that
g ¢ BMO? (X). O

At the end of this section we will be interested in test spaces X for
which BMO?(X) coincides with BMO(X) if and only if p < pg where
po € [1,00) is fixed. We can easily get such spaces slightly modifying the
previous construction of M. Namely, instead of using (C1) and (C2), we
define m,, ; for n > 2 by

1 bn bn .
1 ’ n.i— B - . ) :la"'v )
(CL) e, Log(n)ﬂ((n—wl)m (n—z+2)P°)J ' "

where b,, is an even integer so large that

2 it < (| i (i ~ v )| o).

We present a sketch of the proof of Proposition 2.

Proof of Proposition 2: For fixed pg > 1 we let X = (X, p,|-|) be the
test space with M defined by using (C1)’ and (C2)’. We show that for
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each 1 < p < pg there exists Cp, > 0 such that || f||«, < Cp|| f]|« for every
f € BMO(X). To obtain this it suffices to observe that

n—1
1 4-(1+ 1Pt 2(2n2)p~1
paP [ 1+ U+l +n2'7(n)
log(n)—l—ll - (I + 1)po n2po

is bounded uniformly in n if p < pg. This allows us to get a proper
variant of the estimate (18) for that p.

Now we prove that, for g € BMO(X) defined exactly in the same way
as in the proof of Proposition 1, we have g ¢ BMO?(X) for all p > po.
To see this note that if p > pg, then the estimates analogous to (19)
and (21) remain true. Namely, for B = T,, one can get

l95 — 9(Tnno0)| <N,
where N is an integer independent of n, and
_q ln/2+3/2-N|

. Z lg(x) — gBl" > w Z (1— 1)1’—1?0—1.

ﬁ opo+3
rx€EB I=N+1

It is now clear that for p > pg the quantity on the right hand side tends
to co with n — oo. O

6. Some related constructions

In the last section we consider several variants of the discussed con-
struction process in order to obtain test spaces with another interesting
properties. Our first goal is to show that if the entries of the matrix M
grow fast enough, then the John—Nirenberg inequality holds for func-
tions f € BMO(X). This result may be a little surprising at first, since
we know that the John—Nirenberg inequality holds for every doubling
metric measure spaces. Keeping that in mind, one may suppose that X
should have rather little chance of preserving this property if we force
the terms m,, ; to grow fast. However, observe that in Section 5 the ra-
tios between the values my, 1, ..., My, played a crucial role in estimating
the mean oscillation of the studied functions and the obtained estimates
were stronger for the smaller values of my, ;/my pn, i =1,...,n — 1.

To formulate the next proposition in a more readable way it is con-
venient to identify the matrix M with the sequence M’ = (m),mj,...)
formed by writing the entries of M row by row, that is, M’ = (mq 1, ma 1,
Ma2,M31,...). In what follows, for simplicity, we use M based on the
geometric sequence {2871} . Nevertheless, it will be clear that the
presented proof also works for any lacunary sequence {mj} }72 ,, that is,
a sequence satisfying mj,_ , /mj > ¢, k € N, for some fixed constant ¢ > 1.
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Proposition 3. Let X = (X, p,| - |) be the test space with M identified
with the geometric sequence {2871}22 . Then for the space BMO(X) the
John—Nirenberg inequality

e e B:lfl@) = fol > Ml _ . on—en/IIfIL)
B] B *

holds with constants ¢1,co > 0 independent of f € BMO(X), B C X,
and A > 0.

Proof: Let f € BMO(X) be such that || f||« = 1. First, observe that the
main difficulty in proving (22) is related to the situation in which B as
a set coincides with T,, or T}, U {@,41,1,0} for some n > 2. Indeed, for
any other ball B’ we have max{|f(z) — f(y)| : z,y € B’} < 4 and hence
(22) with B’ in place of B holds for any A > 0 if we choose ¢; and ¢
such that c; exp(—4cs) > 1. Therefore, fix n > 2 and consider B of the
aforementioned form. Note that 2% <|B| < 2¥+! where k = % Once
again we will take advantage of the useful property that |f(x) — f(y)| <
2 for neighboring points x and y. Proceeding just like we did before
to get (19) we can estimate the value |fg — f(zyn,0)| by some even
integer IV which is independent of f, n, and the choice of B. Then for
any integer [ > N we have

o € B:[f(z) - ful > 2} < [{o € B: | (@)~ f(2nmo)l>2( - N/2)}]
< Qk—l+N/2+1

(22)

S 2N/2+127Z|B|,

and now it is routine to choose ¢; and c¢p (independent of significant
parameters) such that (22) holds for all A > 0 and B C X of an arbitrary
form. O

For the presentation of the remaining two results we return to the ma-
trix description of the space X. We construct M in a similar way as it was
done earlier by using (C1) and (C2), but this time we choose the param-
eter pg separately in each step of induction. Namely, let P = (p2, p3, ... )
be a sequence of numbers strictly bigger than 1. We define m,, ; for n > 2
by

b b
C1)* n.i = 'n - 'n ) ‘:L"'v y
(C1) n, {(n—z—i—l)pn (n—z+2)i’nJ ‘ "

where b,, is an even integer so large that

b b b b
* < . n _ n n l
(C2) |T,—1] < min (h” g TR 2)an )3 nn) .
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Our next purpose will be to show that by a suitable choice of P it is
possible to obtain a space X for which the associated spaces BMO?(X)
are all different. Although this result is not very revealing in view of
Theorem 1, its advantage lies in the fact that the proof presented below,
contrary to the proof of Theorem 1, is constructive. Namely, for each
1 < p1 < p2 < oo we construct f € BMOP (X) \ BMOP*(X). In the
following proposition we take P formed by writing the elements of some
countable dense subset of (1,00) in an arbitrary order. We can use the
set QN (1, 00), for example.

Proposition 4. Let P be the sequence defined as above and let X =
(X, p,| - 1) be the test space with M defined by using (C1)* and (C2)*.
Then, for each 1 < p < p’ < oo there exists g € BMO?(X) such that
g ¢ BMOY (X).

Proof: Fix 1 <p<p' <ooandlet A= A(p,p) = [%p/,p’] We take g
defined by the formula
n—1
g(l'n,z,]):ZXA(pn)+Z k’XA(pk)v .7:07 sy M g,y i= ]-a N, e N.
k=1
Note that g is similar to the analogous function considered in the proof
of Proposition 1, but this time it grows only in those S, for which the
corresponding values p,, belong to A. It is a standard procedure to show
that g € BMO?(X) \BMOpl (X) and most of the work consists of proving
the appropriate variants of the estimates (18), (19), and (21). O

We conclude our studies with an example of a test space X for which
the associated spaces BMOP(X) coincide for the full range of the param-
eter p, but the John—Nirenberg inequality does not hold. Namely, we
will prove the following.

Proposition 5. There exists a (test) space X with the following prop-
erties:
(i) for each p > 1 there exists Cp, > 0 such that ||f|l«p < Cpllfll« for
every f € BMO(X),
(ii) there exists g € BMO(X) such that for each Il € N we can find
By C X and \; > 0 satisfying

[{z € Bi: |g(z) — gB,| > A}
| Bi
Proof: The space will be built by using M constructed with the aid

of (C1)* and (C2)* for some suitable sequence P of positive integers.
The key idea is to choose P such that p, tends to co very slowly.

> lexp(—A;/1).
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First, notice that the sole assumption p,, — oo implies (i). Indeed, let
f be such that ||f|l« = 1. Observe that for each p > 1 there exists Ny =
No(p) > 2 such that p, > p+ 1 for all n > Ny. Therefore, (18) holds
with p+1 instead of pg for every B of the form T, or T, U{xy+1,10}, 7 >
Np. Since for any other choices of B there exists K = K(p) independent
of that B (and f, of course) such that max{|f(z)—f(y)|: z,y € B} < K,
we see that (i) holds.

It remains to show that with additional assumptions imposed on P
also (ii) holds true. To be more specific slow growth of p, will suffice.
Let po = 2 and assume for convenience that P is nondecreasing. We
claim that there exists N € N such that, for any f with ||f]l. = 1,
we have |fp — f(xnno)| < N for B =T,, n > 2. Indeed, it suffices
to see that now the estimate (19) with py replaced by 2 holds. We are
ready to define P inductively. Suppose that p,, = [ for some n > 2. We
define p,,+1 by the formula

! if Lin™' = (n+1)7") <lexp(—(n— N —1)/1),
[+ 1 otherwise.

(23) Pn+1 = {

Clearly, p, is nondecreasing and p,, — co.

Finally, take g defined exactly in the same way as in the proof of
Proposition 1. Of course, g € BMO(X). Fix | € N such that | > 2 and
let n = n(l) = max{k : pr = {}. Then by using (12) and (23)

{z €T :lg(x) —gr,|>n—N—1}|

T
oz € Tt g(@) — g@nno) > 0 — 1}
- T

‘Snl 1 —1 —1
> — > - - 1

>lexp(—(n— N —1)/1),
and therefore we obtain that (ii) holds for By=T,, and \; = n—N—-1. O
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