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COMPUTATION OF HOPF GALOIS STRUCTURES ON
LOW DEGREE SEPARABLE EXTENSIONS AND
CLASSIFICATION OF THOSE FOR DEGREES p?

AND 2p

TERESA CRESPO AND MARTA SALGUERO

Abstract: A Hopf Galois structure on a finite field extension L/K is a pair (H, u),
where H is a finite cocommutative K-Hopf algebra and p a Hopf action. In this paper
we present a program written in the computational algebra system Magma which
gives all Hopf Galois structures on separable field extensions of degree up to eleven
and several properties of those. Besides, we exhibit several results on Hopf Galois
structures inspired by the program output. We prove that if (H,u) is an almost
classically Hopf Galois structure, then it is the unique Hopf Galois structure with
underlying Hopf algebra H up to isomorphism. For p an odd prime, we prove that a
separable extension of degree p? may have only one type of Hopf Galois structure and
determine those of cyclic type; we determine as well the Hopf Galois structures on
separable extensions of degree 2p. We highlight the richness of the results obtained
for extensions of degree 8 by computing an explicit example and presenting some
tables which summarize these results.
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1. Introduction

A Hopf Galois structure on a finite extension of fields L/K is a
pair (H, u), where H is a finite cocommutative K-Hopf algebra and p is
a Hopf action of H on L, i.e. a K-linear map pu: H — Endg (L) giving L
a left H-module algebra structure and inducing a K-vector space iso-
morphism L ®x H — Endg (L). Hopf Galois structures were introduced
by Chase and Sweedler in [4]. For separable field extensions, Greither
and Pareigis [13] give the following group-theoretic equivalent condition
to the existence of a Hopf Galois structure.

Both authors acknowledge support by grant MTM2015-66716-P (MINECO/FEDER,
UE).
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Theorem 1. Let L/K be a separable field extension of degree g, L its
Galois closure, G = Gal(L/K), and G' = Gal(L/L). Then there is a bi-
jective correspondence between the set of Hopf Galois structures on L/ K
and the set of reqular subgroups N of the symmetric group Sy normal-
ized by A(G), where \: G — S, is the monomorphism given by the action
of G on the left cosets G/G’.

For a given Hopf Galois structure on a separable field extension L/K
of degree g, we will refer to the isomorphism class of the corresponding
group N as the type of the Hopf Galois structure. The Hopf algebra H
corresponding to a regular subgroup N of S; normalized by A(G) is
the sub-K-Hopf algebra Z[N]G of the group algebra Z[N] fixed under
the action of G, where G acts on L by K-automorphisms and on N by
conjugation via A\. The Hopf action is induced by n — n=1(1), for n €
N, where we identify S, with the group of permutations of G/G’ and
1 denotes the class of 1 in G/G’. Tt is known that the sub-Hopf algebras
of LIN]% are in 1-to-1 correspondence with the subgroups of N stable
under the action of G (see e.g. [11, Proposition 2.2]) and that, given
two regular subgroups Ny and Ny of Sy normalized by A(G), the Hopf
algebras E[N 1]¢ and E[NQ]G are isomorphic if and only if the groups Ny
and Ny are G-isomorphic.

Childs [5] gives an equivalent condition to the existence of a Hopf
Galois structure introducing the holomorph of the regular subgroup N
of S;. We state the more precise formulation of this result due to Byott [2]
(see also [7, Theorem 7.3]).

Theorem 2. Let G be a finite group, G' C G a subgroup, and \: G —
Sym(G/G") the morphism given by the action of G on the left cosets G/G'.
Let N be a group of order |G : G'] with identity element ey. Then there
18 a bijection between

N ={a: N < Sym(G/G") such that a(N) is reqular}
and
G ={B: G = Sym(N) such that B(G') is the stabilizer of ey }.

Under this bijection, if o € N corresponds to 8 € G, then a(N) is nor-
malized by A\(G) if and only if B(G) is contained in the holomorph Hol(N)
of N.

As a corollary to the preceding theorem, Byott [2, Proposition 1]
obtains the following formula to count Hopf Galois structures.
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Corollary 3. Let L/K be a separable field extension of degree g, L its
Galois closure, G = Gal(L/K), and G’ = Gal(L/L). Let N be an ab-
stract group of order g and let Hol(N) denote the holomorph of N. The
number a(N, L/K) of Hopf Galois structures of type N on L/K is given
by the following formula

|[Aut(G, G|
|Aut(N)]|
where Aut(G,G’) denotes the group of automorphisms of G taking G’
to G', Aut(N) denotes the group of automorphisms of N, and b(N, G, G’)
denotes the number of subgroups G* of Hol(N) such that there is an
isomorphism from G to G* taking G’ to the stabilizer of 1 in G*.

a(N,L/K) = b(N,G,G"),

In Hopf Galois theory one has the following Galois correspondence
theorem.

Theorem 4 ([4, Theorem 7.6]). Let (H, ) be a Hopf Galois structure
on the field extension L/ K. For a sub-K-Hopf algebra H' of H we define

L ={z e L|ph)(x) =e(h)-x for all h € H'},

where € s the counit of H. Then, L isa subfield of L containing K,
and

Fu: {H' C H sub-Hopf algebra} — {Fieldls E| K CEC L}
H — L1
18 injective and inclusion reversing.

In [13] a class of Hopf Galois structures is identified for which the
Galois correspondence is bijective. We shall say that a Hopf Galois struc-
ture (H, p) on L/K is an almost classically Galois structure if the corre-
sponding regular subgroup N of Sy normalized by A(G) has the property
that its centralizer Zs, (N) in S, is contained in A(G).

Theorem 5 ([13, 5.2)). If (H,u) is an almost classically Galois Hopf
Galois structure on L/ K, then the map Fpg from the set of sub-K-Hopf
algebras of H into the set of subfields of L containing K is bijective.

In [10] the Hopf Galois character of separable field extensions of de-
gree up to 7 and of some subextensions of their normal closure has been
determined. In [11, Theorem 3.4] a family of extensions is given with no
almost classically Galois structure but with a Hopf Galois structure for
which the Galois correspondence is bijective. In [9] a degree 8 non-normal
separable extension having two non-isomorphic Hopf Galois structures
with isomorphic underlying Hopf algebras is presented.
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In this paper we present a program written in the computational al-
gebra system Magma which determines all Hopf Galois structures of a
separable field extension of a given degree g and their corresponding
type. It is effective up to degree 11 and uses the Magma database of
transitive groups which derives from the classification given in [1]. More-
over, our program distinguishes almost classically Galois structures and
decides for the remaining ones if the Galois correspondence is bijective.
Finally, it classifies the Hopf Galois structures in Hopf algebra isomor-
phism classes. In the case of prime degree, we obtain the results already
found in [5, Theorem 2] and [16, Theorem 5.2], namely that if L/K is
a separable field extension of prime degree and L is its Galois closure,
then L/K has a Hopf Galois structure if and only if Gal(L/K) is solv-
able and, in this case, the Hopf Galois structure is unique. We note that
the case of degree 8 is especially interesting since there are 5 groups of
order 8 up to isomorphism. We detail the results obtained in this case
in Tables 1, 2, and 3. By performing an analysis of the outputs of our
program, we have deduced several general behaviours. In Section 3 we
prove that an almost classically Hopf Galois structure stands alone in
its Hopf algebra isomorphism class. In Section 4 we prove that a sepa-
rable field extension of degree p?, for p an odd prime, has at most one
type of Hopf Galois structure and we describe the ones of cyclic type.
In Section 5 we determine the Hopf Galois structures on separable field
extensions of degree 2p, for p an odd prime.

2. Description of the computation procedure

Given a separable field extension L/K of degree g, L its Galois clo-
sure, G = Gal(L/K), and G’ = Gal(L/L), the action of G on the left
cosets G/G’ is transitive. Hence, the morphism X\: G — S, identifies G
with a transitive subgroup of S, which is determined up to conjugacy.
Moreover, if we enumerate the left cosets G/G’ starting with the one
containing 14, A(G') is equal to the stabilizer of 1 in G. Therefore, con-
sidering all separable field extensions L/K of degree g is equivalent to
considering all transitive groups G of degree g up to conjugation. The
structure of the computation procedure is as follows:

Step 1 Given a transitive group G of degree g and a type of regular
subgroups N of S, run over the conjugacy class of N in S, and
determine whether IV is normalized by G. In the affirmative case,
check if the centralizer Z(N) of N in S, is contained in G. If
it is so, the Hopf Galois structure determined by N is almost
classically Galois.
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Step 2 For each transitive group G of degree g and G’ = Stabg(1), de-
termine the number intfields(G) of subgroups of G containing G’,
that is, by the fundamental theorem of classical Galois theory,
the number of intermediate fields of the extension L/K.

Step 3 For each pair (G, N) determined in Step 1, determine the num-
ber subGst(N) of G-stable subgroups of N, i.e. subgroups of N
normalized by G, that is, the cardinality of the image of the
map Fp in Theorem 4 for the Hopf Galois structure given by V.
Check if this number equals intfields(G), that is, if the Galois
correspondence is bijective.

Step 4 For each pair (G, Ny), (G, N2), with N7 ~ Ny and subGst(N) =
subGst(Ns), check if Ny and Ny are G-isomorphic, that is, if the
corresponding Hopf algebras are isomorphic. To this end we use
that, for a regular subgroup N of the symmetric group Sy, the
automorphism group Aut(N) of N is isomorphic to the stabi-
lizer of 1 in the holomorph Hol(N) of N and that Hol(N) is the
normalizer of N in S;. We obtain the set of all isomorphisms by
composing the isomorphism from N; to N3 given by Magma with
each automorphism of No. We run over this set of isomorphisms
and check for each element whether it is a G-isomorphism until
the answer is affirmative or the set is exhausted.

We note that in Step 1 we compute the transversal of the normalizer
of N in S; and the conjugate of N by each element in this transver-
sal. This computation needs a significantly shorter execution time than
the use of the Magma function class from degree 9 onwards. The pro-
gram returns all regular subgroups N of S, giving a Hopf Galois struc-
ture, hence determines explicitly all of them. In the vector which collects
such N’s we have added a numbering variable in order to identify each
of them with an integer number. This numeration is respected all along
the program so that, once the N’s have been computed in Step 1, we can
easily know the properties of the corresponding Hopf Galois structures
by searching the assigned number. This greatly simplifies the reading
and interpretation of the results. The Magma code of this program may
be found in [12].

3. Almost classically Galois Hopf Galois structures

By looking at the distribution in Hopf algebra isomorphism classes of
the Hopf Galois structures of a given separable extension provided by
our program we have deduced the following result.
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Proposition 6. Let L/K be a separable field extension of degree g. Let
(H,p) be an almost classically Galois structure on L/K and (H', ')
a Hopf Galois structure on L/K. If the Hopf algebras H and H' are
K -isomorphic, then the Hopf Galois structures (H,u) and (H',u') are
isomorphic. Hence an almost classically Galois structure stands alone in
its Hopf algebra isomorphism class.

Proof: Let L be a Galois closure of L/K, G=Gal(L/K), G’ = Gal(L/L),
let A: G — S, be the monomorphism from G into the symmetric group Sy
given by the action of G on the left cosets G/G’. By Theorem 1 and
[13, Proposition 4.1}, (#, 1) corresponds to a regular subgroup N of S,
normalized by A(G) and such that the centralizer Z of N in S, is con-
tained in A(G), and (H’', 1’) corresponds to a regular subgroup N’ of S,
normalized by A\(G). We know also that an isomorphism from H to #H’
corresponds to a A(G)-isomorphism from N to N’. If f is such an iso-
morphism, we have o f(n)o~! = f(ono™!), for all 0 € \(G) and n € N.
Now, since Z CA\(G), we have 2z f(n)z~! = f(znz™!) = f(n),forallz € Z
and n € N. This implies that N’ = f(N) is contained in the centralizer
of Z in S,. Since N is regular, this centralizer coincides with N. We
have then N'=N and, again by Theorem 1, this implies that the Hopf
Galois structures (#H, p) and (H’', ') are isomorphic. O

4. Extensions of degree p?, for p an odd prime

For p prime, there are exactly two groups of order p?, up to isomor-
phism, the cyclic one Cp2 and the direct product of two copies of Ci,
and hence two possible types for a Hopf Galois structure of a field ex-
tension of degree p?. We shall prove that the two types do not occur
simultaneously when p # 2. This fact was suggested to us by the pro-
gram output for degree 9 extensions. The case p = 2 goes differently.
Both Galois extensions of degree 4 and separable extensions of degree 4
whose Galois closure has Galois group the dihedral group Ds.4 have Hopf
Galois structures of cyclic type and of type Cy x Cy. If we write Cpe
additively as Z/p?Z, its holomorph is Z/p?Z x (Z/p*Z)*. For C, x C,
the automorphism group is isomorphic to GL(2, F)).

Proposition 7. Let L/K be a separable field extension of degree p?,
p an odd prime, L/K its normal closure, and G ~ Gal(L/K). If L/K
has a Hopf Galois structure of type Cp2, then it has no structure of
type C, x C,. Therefore, a separable field extension of degree p?, for
p an odd prime, has at most one type of Hopf Galois structures either
cyclic or elementary abelian.
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Proof: By Theorem 2, if L/K has a Hopf Galois structure of type Cz,
then G is a transitive subgroup of Hol(C)2). We shall see that all transi-
tive subgroups of Hol(C)2) contain an element of order p?. Let us write
Hol(Cy2) as Z/p*Z x (Z/p*Z)* and let o be a generator of (Z/p*Z)*.
The immersion of Hol(C)2) in the symmetric group S is given by send-
ing the generator 1 of Z/p?Z to the p3-cycle (1,2,...,p?) and o to it-
self, considered as a permutation. The stabilizer of 0 in the image H
of Hol(Cy2) in S,2 consists of the images of the elements (0,07). We
have |H| = [Hol(Cj2)| = p®(p — 1), hence H has a unique p-Sylow sub-
group Syl(H) which is isomorphic to the only non-abelian group of or-
der p? having an element of order p? (see [8]). Now, a subgroup H’
of H is transitive if and only if [H’ : Staby (0) N H'] = p?. Let H' be a
transitive subgroup of H. We have then p? | |H'| and |H'| | p*(p — 1),
hence H' has a unique p-Sylow subgroup Syl(H’) which has order p?
or p%. In the first case, Syl(H') = Syl(H) contains an element of or-
der p?. In the second case, Syl(H’) is a subgroup of Syl(H) of order pZ.
The group Syl(H) is isomorphic to the group

Gp = {(1 +0pm l{) :m,be Z/pQZ}7

where m actually only matters modulo p. The group G, has p® —p? ele-
ments of order p?, those with b # 0 (mod p), hence p cyclic subgroups of
order p?. It also has p?—1 elements of order p, those nontrivial with b = 0
(mod p), hence one noncyclic subgroup of order p?. Then H’ contains
an element of order p? except in the case in which Syl(H’) is isomorphic
to the noncyclic subgroup of order p? of Gp. The corresponding sub-
group of Hol(C)2) is generated by (p,1d) and (0,0P~1). Its intersection
with Stabg (0) consists in the elements (0,0'?~1), 1 < I < p, hence
this intersection has order p. We have then that if Syl(H’) is isomor-
phic to the noncyclic subgroup of order p? of G, then p divides exactly
[H' : Staby (0) N H’'] and H’ is not transitive. We have proved then that
all transitive subgroups of Hol(C):) contain an element of order p?.

Let us look now at Hol(C,, x Cp,). By [14, Theorem 4.4], Hol(Cp x Cp)
has no elements of order p?. Taking into account what we have proved
above, this finishes the proof of the proposition. O

Remark 8. Kohl proves in [14] that any Hopf Galois structure on a
cyclic extension of order p”, for p an odd prime, is of cyclic type. Childs
studies in [6] these Hopf Galois structures in the case of cyclic extensions
of order p2.

We give a more precise description of the Hopf Galois structures of
cyclic type on separable field extensions of degree p? in the next theorem.
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Theorem 9. Let L/K be a separable field extension of degree p?, p an
odd prime, L/K its normal closure, and G ~ Gal(L/K). The exten-
sion L/K has a Hopf Galois structure of cyclic type if and only if G is
isomorphic to the semidirect product Cp2 X Cp,, form a divisor of p(p—1).
The number of structures is p for m =1 and m = p and is equal to 1 in
the remaining cases.

Proof: We have proved that all transitive subgroups of Hol(C)2) have
an element of order p?. Reciprocally, a subgroup of Hol(C)2) having an
element of order p? is transitive. Let us write Hol(C)2) = (1,0), as above.
The cyclic subgroups of order p? of Hol(C,:) are ((1,07®~1)) for j =
0,...,p — 1. We obtain then that the transitive subgroups of Hol(C):)
are these p groups of order p? and one group isomorphic to Cp2 1 Cyy, for
each divisor m of p(p — 1), m # 1, namely ((1,7®=1) (0, gP(P=1D/m)),
We count the number of structures using Corollary 3. For G ~ (e,
the number of structures is clearly equal to the number of transitive
subgroups of Hol(C)2) isomorphic to C2, hence p. For G = (a,b), with
a=(1,07®=1D) b= (0,0PP=D/™) we have G’ = (b). An automorphism
of G sending G’ to G’ must be the identity on G’. Now the image of a
must be a’, with ged(i,p) = 1, when m # p. Hence |Aut(G,G’)| =
|Aut(N)| and the number of structures is 1. When m = p, the image
of a may be a*b®?~VJi | with ged(i,p) = 1, and 0 < j < p — 1. Hence
|Aut(G,G")| = p*(p — 1) = p|Aut(N)| and the number of structures
is p. O

5. Extensions of degree 2p, for p an odd prime

In the next two theorems we determine the Hopf Galois structures
of separable field extensions of degree 2p, where p is an odd prime.
This result was suggested by the output of our program for degree 6
and 10 extensions. Since there are exactly two groups of order 2p, up
to isomorphism, the cyclic one and the dihedral one, we have exactly
two types of Hopf Galois structures. We deal with the cyclic type in
Theorem 10 and with the dihedral type in Theorem 11. We note that
the case of Galois extensions was already obtained by Byott in [3] and
by Kohl in [15].

Theorem 10. Let L/K be a separable field extension of degree 2p, p an
odd prime, LK its normal closure, and G ~ Gal(L/K). Then L/K has

a Hopf Galois structure of cyclic type if and only if G is isomorphic to
either

i) the semidirect product Cq, x Cy, of a cyclic group of order 2p and
»
a cyclic group of order m dividing p — 1, or
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(i1) the semidirect product C, x Cp, of a cyclic group of order p and a
cyclic group of even order m dividing p — 1.

The number of structures is 1, except in case (ii), form = 1, when this

number is p. In this last case, G is isomorphic to the dihedral group Do,.

Proof: By Theorem 2, if L/K has a Hopf Galois structure of type Csp,
then G is a transitive subgroup of Hol(Cs,). We have that

Hol(Cayp) =~ Cop x Cpy = {a,b ] a®® = 1,0P~1 = 1,bab™ ! = a'),

where ¢ has order p — 1 modulo 2p. By ordering the elements in Cs),
as a,a?,...,a*® = 1, we obtain the embedding of Hol(Cs,) in the sym-
metric group Ss, mapping a to (1,2,...,2p) and b to a permutation
of order p — 1, which sends any number in {1,2,...,2p} to one with
the same parity. Let G be a transitive group of degree 2p. The order
of G is a multiple of 2p, and G contains an element of order p. Since the
only subgroup of order p of Hol(C3,) is (a?), we have that G contains a.
Moreover, in order to be transitive, it must contain an element sending 2p
to 1. Such elements in Hol(Cy,) are exactly those of the form a/b*, with
j odd. Now (a?,a’b*) = (a?, ab®) if j is odd. The transitive subgroups
of Hol(Cy,) containing a are clearly (a,bP=1/™) ~ Cy, x C,,, where m
ranges over the positive divisors of p — 1. This gives case (i).

Let us assume now that a € G. If |G| = 2pm, then G contains exactly
m elements sending 2p to 1. Let us determine the number of elements
sending 2p to 1 in Gy, := (a?,ab¥). Since (ab*)a?(ab®)~! = a®" | we
have (ab*)! = a!+"+-+“7" bkl and we obtain that G, contains the
elements ab®, with [ odd. If the order of b* is odd, then a € Gj. If
the order n of b* is even, then G} contains n/2 elements sending 2p
to 1, namely ab®, with [ odd, 1 <1 < n — 1. Moreover, the elements of
order n in (b) are among the elements bRl with [ odd, 1 <1 < n — 1.
We have then that the transitive subgroups of Hol(Cy,) not containing a
are (az,ab(p_l)/2m> ~ Cp x Cy,, where m ranges over the even positive
divisors of p — 1. This gives case (ii).

We determine now the number of structures by using Corollary 3.
For N = Cy)p, we have |Aut(N)| = p — 1. We have exactly one sub-
group of Hol(Cy,) for each isomorphism class of G. For the groups G =
{a,b®P=D/m) "the stabilizer G’ of 2p is (bP~1/™). The image of a under
an automorphism of G is a’, with j coprime with 2p. Since bab~' = a?,
we have that an automorphism of G sending G’ to G’ must send b®—1)/m
to itself. We obtain then |Aut(G,G’)| = |Aut(NV)|, hence the number of
Hopf Galois structures is 1. For the groups <a2,ab(p_1)/2m>, the sta-
bilizer G’ of 2p is (b®~1/™) If m = 1, then G ~ Dy, and we obtain
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|[Aut(G, G")| = p(p—1), hence the number of Hopf Galois structures is p.
If m > 1, taking into account the conjugate of a® by ab®~1/2™ we ob-
tain that an automorphism of G sending G’ to G’ must send ab®—1/2m
to itself, hence |Aut(G, G')| = |Aut(N)| and the number of Hopf Galois
structures is 1. O

Theorem 11. Let L/K be a separable field extension of degree 2p, p an
odd prime, L/K its normal closure, and G ~ Gal(L/K). The exten-
sion L/K has a Hopf Galois structure of dihedral type if and only if G
s isomorphic to either

(i) the semidirect product (C, x Cp) x Cp, of the direct product of two
cyclic groups of order p and a cyclic group of even order m dividing
p—1, or

(11) the semidirect product (C, x Cp) X (Cy x Cy,) of the direct product
of two cyclic groups of order p and the direct product of a cyclic
group of order 2 and a cyclic group of even order m dividing p—1,
or

(i11) the semidirect product Cap x Cyp, of a cyclic group of order 2p and
a cyclic group of order m dividing p — 1, or
(iv) the semidirect product Cp x Cy, of a cyclic group of order p and a
cyclic group of even order m dividing p — 1.
The number of structures is always 2.

Proof: By Theorem 2, if L/K has a Hopf Galois structure of type Ds,,
then G is a transitive subgroup of Hol(Dy,). Let us write Dy, = (p, 0 |
pP =1,0%=1,0pc = p~!). We shall see that the automorphism group
of Dy, is isomorphic to Hol(C}). More precisely, it is generated by ¢
and v determined by ¢(p) = p, p(c) = op, and P(p) = p, Y(o) = o,
where i is a generator of (Z/pZ)*, and satisfying weyp~1 = pi. We
obtain then that Hol(Ds,) is generated by p, o, ¢, ¢ with the relations
Pp = 15 o? = 13 Qap = 13 ,(/}pfl = 13 opo = pil,

Yoyl = ', opo=pp, Yoyl =p pp=ygp, o =1o,
and is isomorphic to (C, x C}p) % (Cy x Cp_1). By ordering the ele-
ments in Dg, as p,p?,...,p7 = 1, ap,0p?,...,0p? = o, we obtain
the embedding of Hol(Ds,) in the symmetric group S3, mapping p
to (1723 cee 7p)(2pa 2p - 1; e ap+ 1)7 o to (:I-ap+ 1)(2ap+ 2)7 LN} (pa 2p)a
oto (p+1,p+2,...,2p), and ¢ to (1,i,4%,...,i" D (p+ 1,p+i,p +
i%,...,p+i?~2), where the powers of i are computed modulo p.

If G is a transitive subgroup of Hol(Dsy,), then 2p divides the order |G|
of G, hence G contains an element of order p which belongs to the p-Sylow
subgroup (p, ) of Hol(Dsp,). We distinguish two cases, depending on
whether the p-Sylow subgroup of G' has order p or p?.
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Case 1. If the p-Sylow subgroup of G has order p?, then it is (p, ¢).
If G is transitive, it must contain a permutation sending p to 2p and
if |G| = 2mp, then it contains m elements sending p to 2p. The el-
ements in Hol(Dsy,) sending p to 2p are those of the form oz, with
x € Stab(p) = (p,¢). We determine now the order of these elements.
First, the order of o is 2. If 0 < j < p — 1, we have (o¢?)" = p/™/2pI"
if n is even, and (op?)* = op/(»=D/2pI" if n is odd. Hence the or-
der of o/ is 2p. If 0 < j < p—1and 0 < k < p — 1, we have
(opipk)n = pi(m=s" 2 i (020 ™) if 1 is even, and (oplk)n =
crpj(Z(r:zlj)/2 IR i (526 ™) if n is odd. Hence the order of opiy*
is equal to the order of 1* if this order is even, and equals twice the
order of ¥ if this order is odd.

We obtain then the following transitive subgroups of Hol(D,,) having
a p-Sylow group of order p?:

8) (. p, 0,20 DIM) = (o, p p@D/2 Y2E=1/m) (G % Cp) % Co,

for m a divisor of p — 1 exactly divisible by 2.

b) (¢, p,cpP=N/M) ~ (C, x C,) x Cyp,, for m a divisor of p— 1 divisible

by 4.

c) (@, p,0,®P=V/MY ~ (C, x Cp) x (Cy x Cp,), for m an even divisor

of p—1.

The groups of types a) and b) correspond to (i) in the statement and
those of type c) correspond to (ii). We determine now the number of
structures by using Corollary 3. For N = Dy,, we have |[Aut(N)| =
p(p — 1). The stabilizer G’ of p is (¢, ¥*), where k = 2(p — 1)/m in
cases a) and b) and k = (p — 1)/m in case c¢). We determine now the
automorphisms of G sending G’ to G’. Let h be such an automorphism.
The image of ¢ under h must be 7', with 1 < j; < p — 1 and, taking
into account the action of 1 on ¢, h must send ¥* to @2¢*, with 0 <
j2 < p—1. The image of p under h must belong to (p, ¢) and, since o
has order 2 and commutes with 1, the image of o under A must be
an order 2 element in (o,), hence o, or op®=D/2 in case ¢®P—1)/2
belongs to G, i.e. for cases b) and c). Taking into account the action
of o on ¢ and p, we obtain that the elements in Aut(G, G’) are of one of
the following forms, with 1 < j; <p—1,0 < j, < p—1 and the second
form not occurring in case a).

@ — @7t Q — it
P P29 e R
p > p p = p e

o0 o — oypP—D/2,
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We obtain then |Aut(G, G')| = |Aut(N)] in case a) and |Aut(G, G')| =
2|Aut(N)| in cases b) and ¢). Hence in all three cases, the number of
Hopf Galois structures is 2.

Case 2. We consider now the case when the p-Sylow subgroup of G
has order p. The subgroups of order p of Hol(Ds,) are (pp’), with
0 <j<p-1,and (p). To be transitive, G must contain an element
sending p to 2p, hence an element in o{p, ). Since the normalizers in
Hol(D2,) of {pp?) if j & {0,2}, and the one of {¢) reduce to (p, ¥, ),
the p-Sylow subgroup of G is (z), where z = p or z = pp?. If G ~ Dy,
G must contain an element y of order 2 satisfying yry = ! and send-
ing p to 2p. We obtain then the groups (p,o) ~ (pp? oyp®@=1/2) ~
Dy, If G ~ Cyp, G must contain an element y of order 2 sending p
to some element in {p + 1,...,2p} and commuting with z. We have
y = op®D/2(pp?)7 for x = p and y = op* for x = pp>. We obtain
then the groups (oypP=1/2pi+1020Y ~ (gpFp) =~ Cyp, 0 < j < p — 1,
0 <k <p-—1. If a subgroup of Hol(Dy,) contains one of these copies
of Cyp, then it is transitive.

By computation, we obtain that the only subgroups of Hol(Dap)
strictly containing (azp(p’l)/?pj“gazj) and having a p-Sylow subgroup
of order p are (o ®P=D/2pi+1 521 i (=i'+1)/2y1) where | = (p—1)/d for
some divisor d of p— 1. Moreover, (aw(p_l)/zpj“gpzj) is normal in such
a group and the order of (oy(P=D/2pi+1 21 pi(=i'+1)/21} {5 2pd. Anal-
ogously, the only subgroups of Hol(Ds,) strictly containing (op*p) and
having a p-Sylow subgroup of order p are (opFep, (' ~D((P+1)/2=k)yly
where [ = (p — 1)/d for some divisor d of p — 1. Moreover, (op*p)
is normal in such a group and the order of {op*y, np(il_l)((p"’l)/z_k)wl)
is 2pd. We have then 2p transitive subgroups of Hol(D,,) isomorphic to
the semidirect product Cy, x Cy for each divisor d of p — 1. This gives
case (iil) in the statement.

Finally, if G has no element of order 2p, it still must contain an ele-
ment sending p to 2p. Such elements in Hol(Ds,) are of the form op*q)!.
The order of o@*i! is equal to the order of ! (resp. twice the or-
der of 9!) if this order is even (resp. odd). Taking into account that
op®P=1/2 commutes with p, we obtain the groups (p,op®=D/d) ~
Cp x Cy, for d a divisor of p — 1, such that d is divisible by 4, and the
groups (p, op?(P=1/d) ~ Cp x Cy, for d a divisor of p — 1, such that d is
exactly divisible by 2. Taking into account that ¢ commutes with py?,
we obtain the groups (p,ohp®=D/d) ~ Cp % Cy for d an even divisor
of p— 1. We have then 2p transitive subgroups of Hol(Dy,) isomorphic
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to the semidirect product C), x Cy for each even divisor d of p — 1. This
gives case (iv) in the statement.

We determine now the number of structures by using Corollary 3. Tak-
ing into account that |[Aut(N)| = |Aut(Ds,)| = p(p — 1), |Aut(Cyyp)| =
|[Aut(Cp)| = p — 1, and that for all groups G described above, an auto-
morphism sending G’ to G’ must restrict on G’ to the identity, we obtain
that the number of structures is always 2. O

Remark 12. We note that all integer numbers g with 2 < g < 11, ex-
cept g=8, are of one of the forms p, p?, or 2p, with p prime. The prime
case has been considered in [5] and [16]. The results obtained by our pro-
gram have allowed us to intuit the classification of separable extensions
of degree 2p or p? with respect to their Hopf Galois character. Since 8 is
of none of these forms, the case g = 8 is specially interesting and besides
it presents a high richness of results.

6. Example

In this section we perform explicitly the bijection from the set of reg-
ular subgroups of the symmetric group Sy normalized by A(G) to the
set of isomorphism classes of Hopf Galois structures given by Theorem 1
for a particular example. As mentioned above, degree 8 extensions ex-
hibit a high richness of results. We shall examine the case presenting
the biggest Hopf algebra isomorphism class. We consider a Galois exten-
sion L/K with Galois group G = C3 x Cy x Cy. As given in Table 3, it
has 42 Hopf Galois structures of type Ds.4 partitioned in 7 Hopf algebra
isomorphism classes of 6 elements each. We will examine in detail one
of these classes and determine the corresponding Hopf algebra and Hopf
actions. We may write L = K(a, 3,7), with o?,5%,7% € K and G is
then generated by the automorphisms a, b, ¢ given by

a:o— —« b:a— « c:a— o
pr— B pr— —p pr— B
Yy Yy Y= =7,

The group Cs x Cy x Cy ~ 873 is given in Magma as the subgroup of the
symmetric group generated by (1,8)(2,3)(4,5)(6,7), (1,3)(2,8)(4,6)(5,7),
(1,5)(2,6)(3,7)(4,8). If we order the elements in G as Id, ab, b, ac, ¢, abe,
be, a, we have A(a) = (1,8)(2,3)(4,5)(6,7), A(b) = (1,3)(2,8)(4,6)(5,7),
Ae) =(1,5)(2,6)(3,7)(4, 8), and we shall identify G with its image by A.
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The following regular subgroups of Sg are isomorphic to Ds.4, normalized

by G and mutually G-isomorphic.
Ny = (s1 =(1,8)(2,

We check that ar;a = r

1,6,5,2)
1,4,7,2),(3,6,5,8
1,4,5,8),(2,3,6,7
)
)

= ( ,(3,4,7,8)
= ( ( )
= ( ( )
7«4_(1 4,3,6),(2,5,8,7)
= ( ( )
= (1, (2,3,4,5)

),
)
)
)
1,2,3,8), (4,5,6,7)),
1,6,7,8),(2,3,4,5)).

, brib = ry, cric = r;, as;a = s, bs;b = s;,

csic = s;, 1 < i <6, hence N; is normalized by G, for 1 < i < 6 and

s; +— 84, 7y — 75 defines a G-isomorphism from N; to IV;, 1 <14, <6.
By computation, we obtain that the Hopf algebra corresponding to NV;

is the K-Hopf algebra with basis 1, r; + 73,72, a(r; —13), 84, 8;ri + 8i73,

2
SiTi,

ri—>ab, i

Ty —> ab, T3

2

r3 —> a, r3

74— abe, T3

rs — ab, T3

2

r¢ — abe, T2

S1 — a,
So — a,
s3 — abe,
S4 — ab,
s5 — abce,

S¢ — ac,

s1ry — be,

SoT9 —— C,

s3rg — b,

S474 — be,

S5T5 — C,

Ssgrg — b,

— C,

— bc,

— c,
— b,

— b,

— bc,

S1T%
SQT%
83T§
S4Ti
55T§

56r§

a(s;r; — s;ir3) and the Hopf actions are given by

3 — abe,
3

TS — ac,
3

T — ac,
3

Ty — ac,
3

Ty —> a,

Tg'——% a,

— ac, s17r5 — b,
— abc, .927“3 — b,
— ab, 337‘§’ — be,
—a,  s4Th —
— ac, 557“? — be,

— ab,  sere — cC.

A different explicit example can be found in [17, Example 5.3.1].

7. Program output

We present the results obtained for separable field extensions of de-
gree 8 in Tables 1, 2, and 3 in the appendix. We denote by k7% the
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ith transitive group of degree k called by TransitiveGroup(k,4) in the
Magma program. In Tables 1 and 3, for each regular subgroup of Sg
(i.e. for i = 1,...,5), we give the name of the abstract group of order 8
isomorphic to it. For the names of some of the remaining groups, the
reader may consult Table 8A in [1]. In Tables 1 and 2, for each tran-
sitive group G of degree 8 and each group N of order 8, we give the
total number T' of Hopf Galois structures of type N for a separable field
extension L/K of degree 8 such that the Galois group of the normal
closure L over K is isomorphic to G. Moreover, we give the number a-c
of those which are almost classically Galois, the number BC of those
for which the Galois correspondence is bijective, and the number G-i of
Hopf algebra isomorphism classes in which the Hopf Galois structures
are partitioned. In particular the difference BC minus a-c gives the num-
ber of non almost classically Galois Hopf Galois structures for which the
Galois correspondence is bijective. The transitive groups G such that the
corresponding field extension L/K has no Hopf Galois structure are not
included in the table.

We note that the field extension with smallest degree having a non
almost classically Galois Hopf Galois structure with bijective Galois cor-
respondence is a Galois extension of degree 4 with Galois group Cy and
Hopf Galois structure of type Co x C5. The non-Galois extension with
smallest degree having this property is a separable extension of degree 6
whose Galois closure has group 675 and the Hopf Galois structure is of
type S3. The field extension with smallest degree having non-isomorphic
Hopf Galois structures with isomorphic Hopf algebras is a Galois exten-
sion of degree 6 with Galois group the symmetric group Ss3 for which the
three Hopf Galois structures of cyclic type Cg have underlying isomor-
phic Hopf algebras.

In Table 3 we give the distribution of Hopf Galois structures in Hopf
algebra isomorphism classes for transitive groups of degree 8 having some
class with more that one element. For example, in the cell corresponding
toG=N=Cy xC5,10=5%x14+1x241x 3 means that for a Galois
extension with Galois group Cy x Cs there are 10 Hopf Galois structures
of type C4 x C5 which are distributed in 5 classes with 1 element, 1 class
with 2 elements, and 1 class with 3 elements.

Table 4 is a compendium of the computation results. In it we give for
every degree g the total number of transitive groups of degree g and the
number Max of transitive groups of degree g whose order does not exceed
the order of the holomorphs of all the groups of order g; the number of
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possible types of Hopf Galois structures; the total number of Hopf Galois
structures and the number of the almost classically Galois ones; the
number of Hopf Galois structures with bijective Galois correspondence
and the number of those which are not almost classically Galois; the
number of Hopf algebra isomorphism classes in which the Hopf Galois
structures are partitioned (which correspond to G-isomorphism classes
of the corresponding regular groups N) and the number of those for
Galois extensions (i.e. when G/ = Gal(L/L) is trivial); and finally, the
execution times in seconds and the memory used in megabytes. We note
that the presented program is very efficient up to degree 11. One may
observe in particular that the computation for degree 8, which gives a
large number of Hopf Galois structures, takes only about 17 seconds.
The memory used reaches 160 megabytes for degree 11.

The reader may find in [12], for each degree g up to 11, the output
of the program containing in particular the precise description of the
regular subgroups IV of S; corresponding to the Hopf Galois structures
as well as tables summarizing these results.

8. Conclusions

The elaboration of the program presented allows to determine all Hopf
Galois structures of separable field extensions of a given degree up to
degree 11. Such a determination has been obtained by theoretic tools
only for prime degree extensions. Besides, a careful inspection of the
data provided by the program has led us to obtain several theoretic
results. In Proposition 7 we prove a partial result concerning Hopf Galois
structures of separable field extensions of degree p?, for p an odd prime,
and describe in Theorem 9 those of cyclic type. This result came up
from the output of the program for degree 9 extensions. In Theorems 10
and 11 we determine Hopf Galois structures of separable field extensions
of degree 2p, for p an odd prime. This result was suggested by the output
for degree 6 and 10 extensions. The results obtained by the program
have given us the intuition about the general behaviour for the infinite
families of extensions discussed in the theorems. We specially highlight
the richness of results obtained in the degree 8 case.
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Appendix - Tables
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