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SUMS, PRODUCTS, AND RATIOS ALONG THE EDGES

OF A GRAPH
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Abstract: In their seminal paper Erdős and Szemerédi formulated conjectures on
the size of sumset and product set of integers. The strongest form of their conjecture

is about sums and products along the edges of a graph. In this paper we show that

this strong form of the Erdős–Szemerédi conjecture does not hold. We give upper and
lower bounds on the cardinalities of sumsets, product sets, and ratio sets along the

edges of graphs.
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1. Introduction

1.1. Sum-product problems. Given a finite set A of a ring, the sum-
set and the product set are defined by

A+A = {A+B : A,B ∈ A}
and

AA = {AB : A,B ∈ A}.
Erdős and Szemerédi raised the following conjecture:

Conjecture 1 ([6]). Every finite set of integers A having large enough
cardinality satisfies

(1) max(|A+A|, |AA|) ≥ |A|2−ε,
where ε→ 0 as |A| → ∞.

They proved that

(2) max(|A+A|, |AA|) = Ω(|A|1+δ)
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for some δ > 0. Here and in what follows we use the asymptotic
notation Ω(·), O(·), and Θ(·). For two functions over the reals, f(x)
and g(x), we write f(x) = Ω(g(x)) if there is a positive constant B > 0
and a threshold D such that f(x) ≥ B · g(x) for all x ≥ D. We write
f(x) = O(g(x)) if there is a positive constant B > 0 and a threshold D
such that f(x) ≤ B · g(x) for all x ≥ D. Finally, f(x) = Θ(g(x)) if
f(x) = O(g(x)) and f(x) = Ω(g(x)).

Erdős and Szemerédi formulated an even stronger conjecture. In this
variant one considers a subset of the possible pairs in the sumset and
product set. LetGn be a graph on n vertices v1, v2, . . . , vn with n1+c edges
for some real c > 0. Let A be an n-element set of real numbers, say A =
{a1, a2, . . . , an}. The sumset of A along Gn, denoted by A +Gn A, is
the set {ai + aj | (i, j) ∈ E(Gn)}. The product set along Gn is defined
similarly:

A ·Gn A = {ai · aj | (i, j) ∈ E(Gn)}.
The Strong Erdős–Szemerédi Conjecture is the following:

Conjecture 2 ([6]). For every c > 0 and ε > 0 there is a threshold n0

such that if n ≥ n0, then, for any n-element subset of integers A ⊂ N
and any graph Gn with n vertices and at least n1+c edges, one has

|A+Gn A|+ |A ·Gn A| ≥ |A|1+c−ε.

The original conjecture, inequality (1), would follow from this stronger
conjecture by taking the complete graph Gn = Kn.

The problem of finding sets and graphs with small sumsets and prod-
uct sets along the edges is a way to analyze to what extent the additive
and multiplicative structure can intervene in a set. In the other direc-
tion, Balog and Wooley ([2]) showed that any finite set of real numbers
can be partitioned into a highly non-additive part and a highly non-
multiplicative part. (See also [11] for some related work.)

For more details on the sum-product problem we refer to a recent
survey [7].

Here we refute Conjecture 2 by giving constructions with small sum-
sets along a graph where the product set is also small. A similar problem
– which is closely related to the original sum-product conjecture – is to
bound the number of sums and ratios along the edges of a graph. We
give upper and lower bounds on these quantities.

2. Products

In the next construction we define a set and a graph with many edges
such that both the sumset and the product set are small.
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Theorem 3. For arbitrary large m0 there is a set of integers A and a

graph Gm on |A| = m ≥ m0 vertices with Ω(m5/3/ log1/3m) edges such
that

|A+Gm A|+ |A ·Gm A| = O
(

(|A| log |A|)4/3
)
.

Proof: It is easier to describe our construction using rational numbers
instead of integers. Multiplying then with the least common multiple of
the denominators will not affect the size of the sumset or the product
set, giving a construction for integers.

We define the set A first and then the graph. Below, the func-
tion lpf(m) denotes the least prime factor of m. We write (v, w) = 1 if v
and w are relatively prime. Let

A :=
{uw
v
| u, v, w ∈ N, where v, w ≤ n1/6, u ≤ n2/3, (v, w) = 1,

and lpf(u) > n1/6
}
.

The number of u, w, v triples with v, w ≤ n1/6, u ≤ n2/3 is about n,
but there are further restrictions. The lpf(u) > n1/6, u ≤ n2/3 condi-
tions allow us to select about n2/3/ log(n1/6) numbers for u, and there
are ∼ 6n1/3/π2 coprime pairs v, w up to n1/6. We are going to define
a graph Gm with vertex set A, where |A| = m = O(n/ log n). Two
elements a, b ∈ A are connected by an edge if, in the definition of A
above, a = wu

v and b = vz
w . There are at least

Ω(n1/6n1/6(n2/3/ log(n1/6))2) = Ω(n5/3/ log2 n)

edges (the number of quadruples u, v, w, z satisfying v, w ≤ n1/6, u, z ≤
n2/3, (v, w) = 1, and lpf(z), lpf(u) > n1/6).

The products of pairs of elements of A along an edge of Gm are
integers of size at most n4/3. The sums along the edges are of the form

wu

v
+
vz

w
=
w2u+ v2z

vw
.

The denominator is a positive integer of size at most n1/3 and the nu-
merator is a positive integer of size at most 2n. Hence the number of
sums is at most 2n4/3.

Modifying the construction above we give a counterexample to the
Strong Erdős–Szemerédi Conjecture for every 1 > c > 0. For the sake
of simplicity we will ignore logarithmic multipliers, using the asymptotic
notations Ωl(·), Ol(·), and Θl(·). For two functions over the reals, f(x)
and g(x), we write f(x) = Ωl(g(x)) if there is a constant B ≤ 0 and



146 N. Alon, I. Ruzsa, J. Solymosi

a threshold D such that f(x) ≥ logB x · g(x) for all x ≥ D. We write
f(x) = Ol(g(x)) if there is a positive constant B ≥ 0 and a threshold D

such that f(x) ≤ logB x · g(x) for all x ≥ D. We write f(x) = Θl(g(x))
if f(x) = Ol(g(x)) and f(x) = Ωl(g(x)).

Theorem 4. For every 1 > c > 0 there is a δ > 0 such that, for arbitrary
large n, there is an n-element subset of integers A ⊂ N and a graph Hn

with Ωl(n
1+c) edges such that

|A+Hn A|+ |A ·Hn A| = Ol(|A|1+c−δ).

Proof: We consider two cases separately, when 0 < c ≤ 2/3 and when
2/3 < c < 1.

Case 1: (2/3 < c < 1). We define A similar to the previous construction,
but now the ranges of u, v, and w are different:

A :=
{uw
v
| v, w ≤ n

1−c
2 , (v, w) = 1, u ≤ nc, lpf(u) > n

1−c
2

}
.

The number of u, w, v triples satisfying the conditions is Ωl(n).
If |A| = m, then let Hm be the graph with vertex set A. Two ele-
ments a, b ∈ A are connected by an edge if they can be written as a = uw

v

and b = vz
w . There are at least Ωl(n

1+c) edges in Hm. The products of

two such elements of A are integers of size at most n2c. A typical sum is

uw

v
+
vz

w
=
w2u+ v2z

vw
.

The numerator is an integer of size at most 2n and the denominator is
an integer of size at most n1−c. Therefore, the sumset along the edges
of Hm has size at most 2n2−c. Since 2c > 2 − c in this range of c, we
set δ = 1− c. (Note that n = Ol(m).)

Case 2: (0 < c ≤ 2/3). It is possible to describe a construction similar to
that in the first case, but we prefer to take a subgraph of the graph Gm
in Theorem 3. Let p be a parameter satisfying 0 < p ≤ 1, to be specified
later. In Gm take first the edges with the pm4/3 most popular products.
(The popularity of an element e ∈ A · A is the number of pairs a, b ∈ A
such that a·b = e.) This gives a graph G′m with at least Ωl(pm

5/3) edges,
with Ol(pm

4/3) products, and at most Ol(m
4/3) sums. Now, in G′m

take the most popular pm4/3 sums to get the subgraph Hm with at
least Ωl(p

2m5/3) edges, with Ol(pm
4/3) products, and Ol(pm

4/3) sums.
Choosing p to be nc/2/n1/3 we get Ωl(n

1+c) edges and Ol(n
1+c/2) sums

and products.
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3. Ratios

In this section we consider a problem similar to the Strong Erdős–
Szemerédi Conjecture, but we change products to ratios. Define

A/GnA = {ai/aj | (i, j) ∈ E(Gn)}.
(Note that each edge (i, j) here provides two ratios: ai/aj and aj/ai.)
Changing product to ratio is a common technique in sum-product
bounds. When one is using the multiplicative energy (like in [13] and [8],
for example) then the role of product and ratio are interchangeable. The
multiplicative energy of a set A is the number of quadruples (a, b, c, d) ∈
A4 such that ab = cd, which is clearly the same as the number of
quadruples where a/c = d/b. But the symmetry fails in the Strong
Erdős–Szemerédi Conjecture. We are going to show examples when the
sumsets and ratio sets are even smaller than in the previous construction.

3.1. Connection to the original conjecture. What is the connec-
tion of the Strong Erdős–Szemerédi Conjecture to the original conjecture
(when Gn = Kn)? Similar questions were investigated in [3]. Here we
consider the connections to the sum-ratio problem along a graph. If
there was a counterexample to Conjecture 1, that would imply the exis-
tence of a set with very small sumset and ratio set along a dense graph.
In our first result let us suppose that both the product set and ratio set
are small.

Theorem 5. Let us suppose that there is a set A of n real numbers
such that |A + A| ≤ n2−α, |AA| = Θ(n2−β), and |A/A| ≤ n2−β for
some α, β > 0 real numbers. Then, there is a set B with N > n elements

and a graph GN with Ω(N
3

3−β ) edges such that

|B/GNB| = O(N)

and
|B +GN B| = O(N

2−α
3−β ).

Proof: Let B = {a ± ζbc | a, b, c ∈ A}, where ζ ∈ R is selected such
that all sums are distinct. Note that B has cardinality 2|A||AA| = N =
Θ(n3−β). In the graph GN every a − ζac is connected to b + ζac by

an edge. The number of edges is n3 = Ω(N
3

3−β ). The number of sums

along the edges is |A+A| = O(N
2−α
3−β ), and ratios along the edges have

the form
a+ ζac

b− ζac
=

1 + ζc

b/a− ζc
,

so the cardinality of the ratio set is at most |A||A/A| = O(N).
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A bound on the cardinality of the product set does not imply a similar
bound on the ratio set. Or, equivalently, a bound on the cardinality of
the sumset does not imply a similar bound on the difference set. A
classical construction of the second author in [10] is an example for
that. It uses the observation that S = {0, 1, 3} satisfies |S + S| = 6
and |S − S| = 7. If we consider the set of numbers A, of the form a =∑k−1
i=0 αi(a)10i, where αi(a) ∈ S, then |A| = 3k, |A + A| = 6k, and

|A−A| = 7k.
Note that, in this construction, the multiplicity of a member a− a′ =∑k−1
i=0 (α(a)− α(a′))10i of A−A along the edges of the complete graph

on A is 3r, where r is the number of indices satisfying α(a) = α(a′). It
is easy to see that, for every fixed small δ > 0, the fraction of edges in

which the parameter r exceeds (1/3+δ)k is at most e−Ω(δ2k). Therefore,

any graph on A with at least (9k)1−cδ2 edges, for an appropriate abso-
lute positive constant c, has on at least half of its edges a value of the
difference with multiplicity at most 3(1/3+δ)k, implying that the number
of distinct differences along the edges is at least

0.5
(9k)1−cδ2

3(1/3+δ)k
.

As 9/31/3 > 6 and the number of sums is only 6k, this shows that for
small δ the number of differences along the edges of any such graph is
significantly larger than the number of sums.

The above discussion shows that we need a modified statement to
transform a possible counterexample to Conjecture 1 to a statement
about few sums and ratios along a graph. We are going to apply the
following lemma.

Lemma 6. Let A be an n-element subset of an abelian group and sup-
pose that |A + A| ≤ K|A|. Then, there is an integer parameter M and

a graph Hn with vertex set A and at least
√

M |A|3
4K log |A| edges such that

|A−Hn A| ≤M . Moreover, M satisfies the following inequalities:

|A|
K log |A|

≤M ≤ 4K log |A||A|.

Proof: The additive energy of A, denoted by E(A), is the number of a,
b, c, d quadruples from A such that a + b = c + d. This is the same
as the number of quadruples satisfying a − c = d − b. By the Cauchy–
Schwarz inequality we have E(A) ≥ |A|3/K. Denote the elements of the
difference set as follows: A − A = {t1, t2, . . . , t`}. For every element ti,
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we can define its multiplicity by m(ti) = |{a, b ∈ A | a− b = ti}|. With
these notations we can write the additive energy as

E(A) =
∑̀
i=1

m2(ti) =

logn∑
k=1

∑
2k≤m(ti)<2k+1

m2(ti).

There is a k such that

(3)
∑

2k≤m(ti)<2k+1

m2(ti) ≥
|A|3

K log |A|
.

Let Tk = {ti ∈ A−A | 2k ≤ m(ti) < 2k+1}, and set M = |Tk|. The edges
of Hn are defined as follows: (a, b) ∈ A2 is an edge iff a − b = ti ∈ Tk.
The number of the edges is

∑
ti∈Tk m(ti). From inequality (3) we have

a lower bound on the m(ti)s,

m(ti) ≥
|A|3/2

2
√
MK log |A|

,

so the number of edges is at least√
M |A|3

4K log |A|
.

In order to bound the magnitude of M , note that since
∑
ti∈Tk m(ti) ≤

|A|2, the largest m(ti) for an element ti in Tk satisfies the trivial in-
equality maxti∈Tk(m(ti)) ≤ 2|A|2/M . Replacing the m(ti)s by 2|A|2/M
on the left hand side of inequality (3) we get the desired upper bound
on M . The lower bound follows from the same inequality and from the
fact that m(ti) ≤ |A| for every ti ∈ A−A.

In the proof of Theorem 5, in GN , the edges were defined by pairs
of vertices having the form (a − ζac, b + ζac). If we have a bound on
the product set only, |AA| ≤ n2−β , then in our new graph, G′N , we
connect a− ζac and b+ ζac only if (a, b) is an edge in Hn, where Hn is
defined in Lemma 6 applied to the setA in the multiplicative group. This
guarantees that the ratio set along the edges is not (much) larger than
the product set along edges of GN . The new graph G′N is a subgraph of
the graph GN in Theorem 5.

The new parameter M makes the description of our next result a bit
complicated, but the important feature of this construction is that it
shows that if there is a counterexample to Conjecture 1, then there is a
set of numbers B and graph G′N with many edges so that the sumset and
the ratio set are both small. The number of edges might be less than in
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Theorem 5, but then the size of the ratio set along this graph is much
smaller. We will state a simpler, but weaker, statement in a corollary
below.

Theorem 7. Let us suppose that there is a set of n real numbers A such
that |A+A| ≤ n2−α and |AA| = Θl(n

2−β) for some α > 0, β > 1/2 real
numbers. Then, there is a set B with N > n elements, a parameter M
in the range

Ωl(N
β

3−β ) ≤M ≤ Ol(N
2−β
3−β ),

and a graph G′N with Ωl(M
1
2N

4+β
6−2β ) edges such that

|B/G′NB| = Ol(MN
1

3−β )

and

|B +G′N
B| = Ol(N

2−α
3−β ).

Note that the number of edges in G′N is at least Ωl(N
2+β
3−β ), which is

bigger than the cardinalities of the sumset and ratio set along its edges.

Corollary 8. Let us suppose that there is a set of n real numbers A such
that |A+A| ≤ n2−α and |AA| = Θl(n

2−β) for some α > 0, β > 1/2 real
numbers. Then, there is a set B with N > n elements and a graph G′N
with Ωl(N

2+β
3−β ) edges such that

|B/G′NB| = Ol(N)

and

|B +G′N
B| = Ol(N

2−α
3−β ).

Proof of Theorem 7: Applying Lemma 6 to the multiplicative subgroup
of real numbers with K = |A|1−β we get a graph Hn as in the lemma.
We connect a − ζac and b + ζac in G′N only if (a, b) is an edge in Hn.
For given a and b we can choose any c ∈ A, so the number of edges
is Ωl(|A|

√
M |A|2+β) = Ωl(

√
M |A|4+β). The size of the ratio set along

the edges is |A|M , and the sumset is not larger than O(N
2−α
3−β ) since

G′N is a subgraph of GN .

3.2. Constructions. In the next construction we define a set and a
graph with many edges such that both the sumset and the ratio set are
very small. It can be viewed as a special case of Theorem 5 with α =
0 and β = 1. An alternative construction with similar parameters is
described in [2].
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Theorem 9. For arbitrary large n there is a set of reals A of cardinal-
ity n and a graph Gn with Ω(n3/2) edges such that

|A+Gn A|+ |A/GnA| ≤ O(|A|).

Proof: As before, in the construction we define the set A first and
then Gn. Let A = {±(2i− 2j) | 1 ≤ j < i ≤

√
n}. Two elements, 2i− 2j

and −(2k − 2`), are connected by an edge iff j = `. Along this Gn both
the sumsets and the ratio sets are small,

|A+Gn A| = |{2i − 2k | 1 ≤ i, k ≤
√
n}| ≤ n,

and

|A/GnA| = |{−(2s − 1)/(2t − 1) | 1 ≤ s, t ≤
√
n− 1}| < n.

In this construction,

|A| = 2

(
b
√
nc

2

)
∼ n

and the number of edges is a little more than

2

(
b
√
nc

3

)
≥
(

1

3
− o(1)

)
n3/2.

3.3. Matchings. Erdős and Szemerédi mentioned in their paper that
maybe even for a linear number of edges (when c = 0) the Strong Erdős–
Szemerédi Conjecture holds, but noted that it is not true for reals. For
any even integer n there is an n-element set of reals A, such that Gn is
a perfect matching and

|A+Gn A|+ |A ·Gn A| = O(|A|1/2).

It was shown by Alon, Angel, Benjamini, and Lubetzky in [1] that if we
assume the Bombieri–Lang conjecture (see details in [3]), then for any
set of integers A, if Gn is a matching, then

|A+Gn A|+ |A ·Gn A| = Ω(|A|4/7).

It is possible that 4/7 can be improved to a number close to 1, but if we
change multiplication to ratio, then just the trivial bound Ω(

√
n) holds.

A simple construction demonstrating this is the following. Take n =
k2 and distinct primes, p1, . . . , pk, q1, . . . , qk. The matching consists of all
pairs (pi/qj , (qj−1)pi/qj) (i, j = 1, . . . , k), andA is the collection of these
pairwise distinct rationals. The sums along the matching edges are the
pis, the quotients (of large divided by small) along the edges are (qj−1).
For this set A of the quotients above and for the matching Gn we have

|A+Gn A|+ |A/GnA| = O(|A|1/2),

which is as small as possible.
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4. Lower bounds

Lower bounds on the number of sums and products along graphs
were obtained in [1]. Under assuming the Bombieri–Lang conjecture
they proved that if A is an n-element set of integers and Gn a graph
with m edges then

(4) |A+Gn A|+ |A ·Gn A| = Ω

(
min

(
m8/14

n1/14
,
m

n1/2

))
.

For the unconditional case (without the Bombieri–Lang conjecture)
they proved that

(5) |A+Gn A|+ |A ·Gn A| = Ω

(
m19/9−o(1)

n28/9+o(1)

)
.

We will apply a variant of Elekes’ classical proof, used in his sum-product
estimate in [5] to get better estimates.

Theorem 10. Let A be an n-element set of reals and Gn a graph with
m edges. Then

|A+Gn A|+ |A ·Gn A| ≥ Ω

(
m3/2

n7/4

)
.

Proof: Let us consider the Cartesian product (A +Gn A) × (A ·Gn A),
where the sums and the products are considered along a graph Gn. De-
fine a set of n2 lines L, where the lines are y = (x−a)b for every a, b ∈ A.
For an element of A, say u, if in the graph u has two neighbours w1, w2,
then ((u+w1)−w1)w2 is inA·GnA. Thus (u+w1, uw2) lies on the line y =
(x − w1)w2 and hence the lines give at least the sum of the squares of
degrees incidences in the Cartesian product (A+GnA)×(A·GnA). If the
graph has m edges, then, by the Cauchy–Schwarz inequality, the number
of incidences is at least n(2m/n)2. On the other hand, by the Szemerédi–
Trotter Theorem [14], we have at most O(n4/3(|A+A||A/A|)2/3) inci-
dences. We conclude that m2/n < cn4/3(|A+A||A/A|)2/3. This implies
the required Ω((m6/n7)1/4) lower bound on |A+Gn A|+ |A ·Gn A|.

Since the values of the product and sum along an edge determine the
values in the end-vertices, there is an obvious lower bound, |A+Gn A|+
|A ·GnA| ≥

√
m. Note that Theorem 10 gives stronger bound only if the

number of edges is larger than n7/4. Our result improves the (conditional)
inequality in (4) if the number of edges is larger than n47/26 ∼ n1.8, and
it is always stronger than the bound in (5).
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The very same technique can be applied to give a similar lower bound
on the number of sums and ratios. Consider the Cartesian product
(A +Gn A) × (A/GnA) and the set of lines L, where the lines are y =
(x − a)/b for every a, b ∈ A. Applying the Szemerédi–Trotter Theorem
as above, we have

|A+Gn A|+ |A/GnA| ≥ Ω

(
m3/2

n7/4

)
.

Elekes’ bound was improved in [12] using the Szemerédi–Trotter The-
orem in a different way. The argument there can be modified to bound
the number of sums and ratios along a graph. The proof is rather tech-
nical, it follows [12] step by step but with more parameters in order to
deal with the density version of the original proof. We do not think that
this estimate is close to the truth and it is just slightly better, in a small
range when m � n11/6, than the simple bound above. We state the
bound without the detailed proof.

Claim 11. Let A be an n-element set of reals and Gn a graph with
m edges. Then

|A+Gn A|+ |A/GnA| ≥ Ω

(
m18/11

n2

)
.

5. Arrangements of pencils

The following question was asked by Misha Rudnev [9]. An n-pencil
in the plane is a set of n concurrent lines. The center of a pencil is the
common intersection point of its lines.

Problem 12. If the centers of four n-pencils are not collinear, then
what is the maximum possible number of points with four incident lines
(one from each pencil)?

Chang and Solymosi proved in [4] that the number of such points is
at most O(n2−δ) for some δ > 0. (They did not calculate δ explicitly.)
Using the construction in Theorem 9 we show that δ ≤ 1/2.

Claim 13. For arbitrary large n there are arrangements of four non-
collinear n-pencils which determine Ω(n3/2) points incident to four lines.

Proof: In this construction we refer to Theorem 9. If a set of reals A has
small sumset, then the geometric interpretation of this fact is that the
points of the Cartesian product A×A can be covered by a small number
of slope −1 lines. Similarly, if the ratio set is small, then A× A can be
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covered by a small number of lines through the origin. The set of points
where four lines intersect is defined as

P := {(2i − 2j ,−(2k − 2j)) ∈ R2 | 1 ≤ j ≤ i, k ≤
√
n}.

The four pencils are:

• The vertical lines with a point in P :

L1 := {x = 2i − 2j | 1 ≤ j ≤ i ≤
√
n}.

• The horizontal lines with a point in P :

L2 := {y = −2i + 2j | 1 ≤ j ≤ i ≤
√
n}.

• The slope −1 lines with a point in P :

L3 := {x− (2i − 2j) = −(y + (2k − 2j)) | 1 ≤ j ≤ i, k ≤
√
n}.

• Lines through the origin with a point in P :

L4 :=

{
y = − 2i−j − 1

2k−j − 1
x | 1 ≤ j ≤ i, k ≤

√
n

}
.

Note that in the definition of L3 and L4 the same lines are listed multiple
times. Ignoring these repetitions it is easy to see that all four families
have size approximately n, and |P | = Ω(n3/2). One can apply a pro-
jective transformation to shift the centers of the pencils from infinity
to R2.
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