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KEY POLYNOMIALS OVER VALUED FIELDS
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Abstract: Let K be a field. For any valuation µ on K[x] admitting key polynomials
we determine the structure of the whole set of key polynomials in terms of a fixed

key polynomial of minimal degree. We deduce a canonical bijection between the set

of µ-equivalence classes of key polynomials and the maximal spectrum of the subring
of elements of degree zero in the graded algebra of µ.
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Introduction

Key polynomials over a valued field (K, v) were introduced by S. Mac-
Lane as a tool to construct augmentations of discrete rank-one valuations
on the polynomial ring K[x] [5]. As an application, MacLane designed
an algorithm to compute all extensions of the given valuation v on K to
a finite field extension L/K [6].

This work was generalized to arbitrary valuations by M. Vaquié [11]
and, independently, by F. J. Herrera, M. A. Olalla, and M. Spiva-
kovsky [4].

In the non-discrete case limit augmented valuations arise. The struc-
ture of their graded algebra and the description of their sets of key
polynomials are crucial questions linked with the study of the defect
of a valuation in a finite extension and the local uniformization prob-
lem [3, 7, 10, 12].

In this paper we consider an arbitrary valuation µ on K[x] admitting
key polynomials and we describe its set of key polynomials KP(µ) in
terms of a fixed key polynomial of minimal degree. We also give some
hints about the structure of the graded algebra of µ.

Some of the results of the paper can be found in [11], but only for
augmented valuations. Also, in [9] some partial results are obtained for
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residually transcendental valuations, by using the fact that these valua-
tions are determined by a minimal pair.

In our approach we do not make any assumption on µ, and we de-
rive our results in a pure abstract form from the mere existence of key
polynomials.

In Section 2 we study general properties of key polynomials, while
in Section 3 we study specific properties of key polynomials of minimal
degree. In Section 4 we determine the structure of the subring ∆ ⊂ Gµ
of elements of degree zero in the graded algebra of µ.

Section 5 is devoted to the introduction of residual polynomial oper-
ators, based on old ideas of Ore and MacLane [8, 6]. These operators
yield a malleable and elegant tool, able to replace the onerous “lifting”
techniques in the context of valuations constructed from minimal pairs.

In Section 6 we describe the set of key polynomials and we prove that
a certain residual ideal operator sets a bijection

KP(µ)/∼µ−→ Max(∆)

between the set of µ-equivalence classes of key polynomials and the max-
imal spectrum of ∆. This result is inspired by [2], where it was proved
for discrete rank-one valuations.

In Section 7 we single out a key polynomial of minimal degree for
augmented and limit augmented valuations. In this way, all previous
results can be applied to these valuations.

In Section 8 we obtain some partial results on the structure of the
graded algebra.

Acknowledgements. I thank the anonymous referees for their enlight-
ening comments. The results of Section 8 are inspired by their remarks
on a previous version of the paper.

1. Graded algebra of a valuation on a polynomial ring

1.1. Graded algebra of a valuation. Let Γ be an ordered abelian
group. Consider

w : L −→ Γ ∪ {∞}
a valuation on a field L, and denote

• mw ⊂ Ow ⊂ L, the maximal ideal and valuation ring of w.

• kw = Ow/mw, the residue class field of w.

• Γw = w(L∗), the group of values of w.

To any subring A ⊂ L we may associate a graded algebra as follows.
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For every α ∈ Γw, consider the additive subgroups

Pα = {a ∈ A | w(a) ≥ α} ⊃ P+
α = {a ∈ A | w(a) > α},

leading to the graded algebra

grw(A) =
⊕

α∈Γw
Pα/P+

α .

The product of homogeneous elements is defined in an obvious way:

(a+ P+
α )(b+ P+

β ) = ab+ P+
α+β .

If the classes a+ P+
α , b+ P+

β are different from zero, then w(a) = α,

w(b) = β. Hence, w(ab) = α + β, so that ab + P+
α+β is different from

zero too.
Thus, grw(A) is an integral domain.

Consider the “initial term” mapping Hw : A→ grw(A), given by

Hw(0) = 0, Hw(a) = a+ P+
w(a), for a ∈ A, a 6= 0.

Note that Hw(a) 6= 0 if a 6= 0. For all a, b ∈ A we have

Hw(ab) = Hw(a)Hw(b),

Hw(a+ b) = Hw(a) +Hw(b), if w(a) = w(b) = w(a+ b).
(1)

Definition 1.1. Two elements a, b ∈ A are said to be w-equivalent if
Hw(a) = Hw(b). In this case, we write a ∼w b.

This is equivalent to w(a− b) > w(b).

We say that a is w-divisible by b if Hw(a) is divisible by Hw(b)
in grw(A). In this case, we write b|wa.

This is equivalent to a∼w bc, for some c∈A.

1.2. Valuations on polynomial rings. General setting. Through-
out the paper, we fix a field K and a valuation

µ : K(x) −→ Γµ ∪ {∞},
on the field K(x) of rational functions in one indeterminate x.

We do not make any assumption on the rank of µ.

We denote by v = µ|K the valuation on K obtained by the restriction
of µ. The group of values of v is a subgroup of Γµ:

Γv = v(K∗) = µ(K∗) ⊂ Γµ.

For each one of the two valuations v, µ, we consider a different graded
algebra:

Gv := grv(K), Gµ := grµ(K[x]).
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In the algebra Gv, every non-zero homogeneous element is a unit, that
is,

Hv(a)−1 = Hv(a
−1), for all a ∈ K∗.

The subring of homogeneous elements of degree zero of Gv is kv, so
that Gv has a natural structure of kv-algebra.

We have a natural embedding of graded algebras

Gv ↪−→ Gµ, a+P+
α (v) 7−→ a+P+

α (µ), for all α ∈ Γv and a ∈ Pα(v).

The subring of Gµ determined by the piece of degree zero is denoted

∆ = ∆µ = P0(µ)/P+
0 (µ).

Since Ov ⊂ P0 = K[x] ∩ Oµ and mv = P+
0 ∩ Ov ⊂ P

+
0 = K[x] ∩ mµ,

there are canonical injective ring homomorphisms

kv ↪−→ ∆ ↪−→ kµ.

In particular, ∆ and Gµ are equipped with a canonical structure of kv-al-
gebra.

The aim of the paper is to analyze the structure of the graded alge-
bra Gµ and show that most of the properties of the extension µ/v are
reflected in algebraic properties of the extension Gµ/Gv.

For instance, an essential role is played by the residual ideal operator

(2) R = Rµ : K[x] −→ I(∆), g 7−→ (Hµ(g)Gµ) ∩∆,

where I(∆) is the set of ideals in ∆.
In Sections 5 and 6 we shall study in more detail this operator R,

which translates questions about the action of µ on K[x] into ideal-the-
oretic problems in the ring ∆.

Commensurability. The divisible hull of an ordered abelian group Γ
is

QΓ := Γ⊗Z Q.
This Q-vector space inherits a natural structure of ordered abelian group,
with the same rank as Γ.

The rational rank of Γ is defined as rr(Γ) = dimQ(QΓ).

Since Γ has no torsion, it admits an order-preserving embedding Γ ↪→
QΓ into its divisible hull. For every γ∈QΓ there exists a minimal positive
integer e such that eγ ∈ Γ.

We say that our extension µ/v is commensurable if QΓv = QΓµ or,
in other words, if rr(Γµ/Γv) = 0. This is equivalent to Γµ/Γv being a
torsion group.
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Actually, rr(Γµ/Γv) takes only the values 0 or 1, as the following
well-known inequality shows [1, Theorem 3.4.3]:

(3) tr.deg(kµ/kv) + rr(Γµ/Γv) ≤ tr.deg(K(x)/K) = 1.

Finally, we fix some notation to be used throughout the paper.

Notation. For any positive integer m we denote

K[x]m = {a ∈ K[x] | deg(a) < m}.

For any polynomials f, χ ∈ K[x], with deg(χ) > 0, we denote the
canonical χ-expansion of f by

f =
∑

0≤s
fsχ

s,

being implicitly assumed that the coefficients fs ∈ K[x] have deg(fs) <
deg(χ).

2. Key polynomials. General properties

In this section we introduce the concept of key polynomial for µ and
we study some general properties of key polynomials.

Definition 2.1. Let χ ∈ K[x].
We say that χ is µ-irreducible if Hµ(χ)Gµ is a non-zero prime ideal.
We say that χ is µ-minimal if χ -µ f for any non-zero f ∈ K[x] with

deg f < degχ.

The property of µ-minimality admits a relevant characterization, given
in Proposition 2.3 below.

Lemma 2.2. Let f, χ ∈ K[x]. Consider a χ-expansion of f ∈ K[x] as
follows:

f =
∑

0≤s
asχ

s, as ∈ K[x], χ -µ as, for all s.

Then µ(f) = Min{µ(asχ
s) | 0 ≤ s}.

Proof: Write f=a0 +χq with q∈K[x]. Then µ(f) ≥ Min{µ(a0), µ(χq)}.
A strict inequality would imply a0 ∼µ −χq, against our assump-

tion. Hence equality holds, and the result follows from a recurrent argu-
ment.
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Proposition 2.3. Let χ∈K[x] be a non-constant polynomial. The fol-
lowing conditions are equivalent:

(1) χ is µ-minimal.
(2) For any f ∈ K[x] with χ-expansion f =

∑
0≤s fsχ

s, we have

µ(f) = Min{µ(fsχ
s) | 0 ≤ s}.

(3) For any non-zero f ∈ K[x] with χ-expansion f =
∑

0≤s fsχ
s, we

have

χ -µ f ⇐⇒ µ(f) = µ(f0).

Proof: The implication (1) =⇒ (2) follows from Lemma 2.2. In fact, if
χ is µ-minimal, then χ -µ fs for all s, because deg(fs) < deg(χ).

Let us deduce (3) from (2). Take a non-zero f ∈ K[x] and write
f = f0 + χq with q ∈ K[x]. By condition (2), we have µ(f) ≤ µ(f0).

If µ(f)<µ(f0), then f ∼µ χq, so χ |µ f . Conversely, if f ∼µ χg for
some g ∈ K[x], then µ(f − χg) > µ(f). Since the χ-expansion of f − χg
has the same 0-th coefficient f0, condition (2) shows that µ(f) < µ(f −
χg) ≤ µ(f0).

Finally, we show that (3) implies (1). If deg(f) < deg(χ), then the
χ-expansion of f is f = f0. By condition (3), χ -µ f .

The property of µ-minimality is not stable under µ-equivalence. For
instance, if χ is µ-minimal and µ(χ) > 0, then χ+ χ2 ∼µ χ and χ+ χ2

is not µ-minimal. However, for µ-equivalent polynomials of the same
degree, µ-minimality is clearly preserved.

Definition 2.4. A key polynomial for µ is a monic polynomial in K[x]
which is µ-minimal and µ-irreducible.

The set of key polynomials for µ will be denoted by KP(µ).

In the papers [4] and [11], different definitions for key polynomials
are considered, which are somehow related, as shown by Mahboub in [7].

We are using the classical definition of MacLane–Vaquié given in [11].

Lemma 2.5. Let χ ∈ KP(µ) and let f ∈ K[x] a monic polynomial such
that χ |µ f and deg(f) = deg(χ). Then χ ∼µ f and f is a key polynomial
for µ too.

Proof: The χ-expansion of f is f = f0 +χ, with deg(f0) < deg(χ). Con-
ditions (2) and (3) of Proposition 2.3 show that µ(f) < µ(f0). Hence,
Hµ(f) = Hµ(χ) and f is µ-irreducible. Since deg(f) = deg(χ), f is
µ-minimal too.
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Lemma 2.6. Let χ ∈ KP(µ).

(1) For a, b ∈ K[x]deg(χ), let ab = c + dχ be the χ-expansion of ab.
Then

µ(ab) = µ(c) ≤ µ(dχ).

(2) χ is irreducible in K[x].

Proof: For any a, b ∈ K[x]deg(χ), we have χ -µ a, χ -µ b by the µ-mini-
mality of χ. Hence, χ -µ ab by the µ-irreducibility of χ. Thus, (1) follows
from Proposition 2.3.

In particular, the equality χ = ab is impossible, so that χ is irre-
ducible.

Minimal expression of Hµ(f) in terms of χ-expansions.

Definition 2.7. For χ ∈ KP(µ) and a non-zero f ∈ K[x], we let sχ(f)
be the largest integer s such that χs |µ f .

Namely, sχ(f) is the order with which the prime Hµ(χ) divides Hµ(f)
in Gµ.

Accordingly, by setting sχ(0) :=∞, we get

(4) sχ(fg) = sχ(f) + sχ(g), for all f, g ∈ K[x].

Lemma 2.8. Let f ∈ K[x] with χ-expansion f =
∑

0≤s fsχ
s. Denote

Iχ(f) = {s ∈ Z≥0 | µ(fsχ
s) = µ(f)}.

Then f ∼µ
∑
s∈Iχ(f) fsχ

s and sχ(f) = Min(Iχ(f)).

Proof: Let g =
∑
s∈Iχ(f) fsχ

s. By construction, f − g =
∑
s6∈I fsχ

s has

µ-value µ(f − g) > µ(f). This proves f ∼µ g. In particular, sχ(f) =
sχ(g).

If s0 = Min(Iχ(f)), we may write

g = χs0(fs0 + χh),

for some h ∈ K[x]. By construction, µ(fs0) = µ(fs0 + χh) = µ(g/χs0).
By condition (3) of Proposition 2.3, χ -µ (fs0+χh). Therefore, sχ(g) =

s0.

Definition 2.9. For any f ∈ K[x] we denote s′χ(f) = Max(Iχ(f)).
Denote for simpliciy s = sχ(f) and s′ = s′χ(f). The homogeneous

elements
irc(f) := Hµ(fs) and lrc(f) := Hµ(fs′)

are the initial residual coefficient and the leading residual coefficient of f ,
respectively.

The next lemma shows that s′χ(f) is an invariant of the µ-equivalence
class of f .
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Lemma 2.10. If f, g ∈ K[x] satisfy f ∼µ g, then Iχ(f) = Iχ(g) and
fs ∼µ gs for all s ∈ Iχ(f). In particular, irc(f) = irc(g) and lrc(f) =
lrc(g).

Proof: Consider the χ-expansions f =
∑

0≤s fsχ
s, g =

∑
0≤s gsχ

s.
If f ∼µ g, then for any s ≥ 0 we have

(5) µ(f) < µ(f − g) ≤ µ((fs − gs)χs).
The condition s ∈ Iχ(f), s 6∈ Iχ(g) (or viceversa) contradicts (5). In

fact,
µ((fs − gs)χs) = µ(f),

because µ(fsχ
s) = µ(f) and µ(gsχ

s) > µ(g) = µ(f).
Also, for all s ∈ Iχ(f), we have µ(fsχ

s) = µ(f) and (5) shows that
fsχ

s ∼µ gsχs. Thus, fs ∼µ gs.

We shall see in Section 3 that the equality

s′χ(fg) = s′χ(f) + s′χ(g), for all f, g ∈ K[x],

holds if χ is a key polynomial of minimal degree.

Semivaluation attached to a key polynomial.

Lemma 2.11. Let χ ∈ KP(µ). Consider the subset Γv ⊂ Γdeg(χ) ⊂ Γµ
defined as

Γdeg(χ) = {µ(a) | a ∈ K[x]deg(χ), a 6= 0}.
Then Γdeg(χ) is a subgroup of Γµ and 〈Γdeg(χ), µ(χ)〉 = Γµ.

Proof: Since χ is µ-minimal, Proposition 2.3 shows that 〈Γdeg(χ), µ(χ)〉 =
Γµ.

By Lemma 2.6, Γdeg(χ) is closed under addition.
Take µ(a) ∈ Γdeg(χ) for some non-zero a ∈ K[x]deg(χ). The polynomi-

als a and χ are coprime, because χ is irreducible. Hence, they satisfy a
Bézout identity

(6) ab+ χd = 1, deg(b) < deg(χ), deg(d) < deg(a) < deg(χ).

Since ab = 1 − dχ is the χ-expansion of ab, Lemma 2.6 shows that
µ(ab)=µ(1)=0. Hence −µ(a)=µ(b)∈Γdeg(χ). This shows that Γdeg(χ) is
a subgroup of Γµ.

Let χ ∈ KP(µ). Consider the prime ideal p=χK[x] and the fieldKχ =
K[x]/p. By the definition of Γdeg(χ), we get a well-defined onto mapping

vχ : K∗χ −� Γdeg(χ), vχ(f + p) = µ(f0), for all f ∈ K[x] \ p,
where f0 ∈ K[x] is the common 0-th coefficient of the χ-expansion of all
polynomials in the class f + p.

This mapping vχ depends on the pair µ, χ, and not only on χ.
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Proposition 2.12. The mapping vχ is a valuation on Kχ extending v,
with group of values Γdeg(χ).

Proof: This mapping vχ is a group homomorphism by Lemma 2.6. Fi-
nally,

vχ((f+g)+p)=µ(f0+g0)≥Min{µ(f0), µ(g0)}=Min{vχ(f+p), vχ(g+p)},
because (f + g)0 = f0 + g0. Hence, vχ is a valuation on Kχ.

Denote the maximal ideal, the valuation ring, and the residue class
field of vχ by

mχ ⊂ Oχ ⊂ Kχ, kχ = Oχ/mχ.
Let θ ∈ Kχ = K[x]/χK[x] be the root of χ determined by the class

of x.
With this notation we have Kχ = K(θ), and

vχ(f(θ)) = µ(f0) = vχ(f0(θ)), for all f ∈ K[x].

We abuse the language and denote still by vχ the corresponding semi-
valuation

K[x] −� Kχ
vχ−→ Γdeg(χ) ∪ {∞}

with support χK[x] = v−1
χ (∞).

According to the definition given in (2), the residual ideal R(χ) of a
key polynomial χ is a prime ideal in ∆. Let us show that it is actually
a maximal ideal in ∆.

Proposition 2.13. If χ is a key polynomial for µ, then R(χ) is the
kernel of the onto homomorphism

∆ −� kχ, g + P+
0 7−→ g(θ) + mχ.

In particular, R(χ) is a maximal ideal in ∆.

Proof: By Proposition 2.3, if g ∈ P0, we have vχ(g(θ)) = µ(g0) ≥
µ(g) ≥ 0, so that g(θ) ∈ Oχ. Thus, we get a well-defined ring homo-
morphism P0 → kχ.

This mapping is onto, because every element in kχ can be represented
as h(θ) + mχ for some h ∈ K[x]deg(χ) with vχ(h(θ)) ≥ 0. Since µ(h) =
vχ(h(θ)) ≥ 0, we see that h belongs to P0.

Finally, if g ∈ P+
0 , then vχ(g(θ)) ≥ µ(g) > 0; thus, the above homo-

morphism vanishes on P+
0 and it induces an onto mapping ∆ � kχ.

The kernel of this mapping is the set of all elements Hµ(f) for f ∈
K[x] satisfying µ(f0) > µ(f) = 0. By Proposition 2.3, this is equivalent
to µ(f) = 0 and χ |µ f . In other words, the kernel is R(χ).
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3. Key polynomials of minimal degree

In this section we study special properties of key polynomials of min-
imal degree. These objects are crucial for the resolution of the two main
aims of the paper:

• Determine the structure of Gµ as a kv-algebra.
• Determine the structure of the quotient set KP(µ)/∼µ.

Recall the embedding of graded kv-algebras

Gv ↪−→ Gµ.

Let ξ ∈ Gµ be a non-zero homogeneous element which is algebraic
over Gv. Then ξ satisfies a homogeneous equation

ε0 + ε1ξ + · · ·+ εmξ
m = 0,

with ε0, . . . , εm homogeneous elements in Gv such that deg(εiξ
i) is con-

stant for all indices 0 ≤ i ≤ m for which εi 6= 0.
Since all non-zero homogeneous elements in Gv are units, we have

(7) ξ algebraic over Gv =⇒ ξ is a unit in Gµ, and ξ is integral over Gv.

Lemma 3.1. Let Gv ⊂ Gal
v ⊂ Gµ be the subalgebra generated by all ho-

mogeneous elements in Gµ which are algebraic over Gv.
If a homogeneous element ξ ∈ Gµ is algebraic over Gal

v , then it belongs
to Gal

v .

Proof: Since all non-zero homogeneous elements in Gal
v are units, the

element ξ is integral over Gal
v . Hence, it is integral over Gv, so that it

belongs to Gal
v .

Theorem 3.2. Let φ ∈ K[x] be a monic polynomial of minimal degree n
such that Hµ(φ) is transcendental over Gv. Then φ is a key polynomial
for µ.

Moreover, for a, b ∈ K[x]n, let the φ-expansion of ab be

(8) ab = c+ dφ, c, d ∈ K[x]n.

Then ab ∼µ c.

Proof: Let us first show that φ is µ-minimal.
According to Proposition 2.3, the µ-minimality of φ is equivalent to

µ(f) = Min{µ(fsφ
s) | 0 ≤ s},

for all f ∈ K[x], being f =
∑

0≤s fsφ
s its canonical φ-expansion.
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For any given f ∈ K[x], let δ = Min{µ(fsφ
s) | 0 ≤ s} and consider

I = {0 ≤ s | µ(fsφ
s) = δ}, fI =

∑
s∈I

fsφ
s.

We have µ(f) ≥ δ, and the desired equality µ(f) = δ is equivalent
to µ(fI) = δ.

If #I = 1, this is obvious. In the case #I > 1, the equality µ(fI) = δ
follows from the transcendence of Hµ(φ) over Gv. In fact,

µ(fI) > δ ⇐⇒
∑
s∈I

Hµ(fs)Hµ(φ)s = 0.

By the minimality of n = deg(φ), all Hµ(fs) are algebraic over Gv.
Hence, µ(fI) > δ would imply that Hµ(φ) is algebraic over Gal

v , leading
to Hµ(φ) algebraic over Gv by Lemma 3.1. This ends the proof that φ
is µ-minimal.

Let us now prove the last statement of the theorem.
For a, b ∈ K[x]n satisfying (8), Proposition 2.3 shows that

µ(ab) = Min{µ(c), µ(dφ)},

because φ is µ-minimal. By equation (1), the inequality µ(c) ≥ µ(dφ)
implies

Hµ(ab) =

{
Hµ(d)Hµ(φ) if µ(c) > µ(dφ),

Hµ(c) +Hµ(d)Hµ(φ) if µ(c) = µ(dφ).

By the minimality of n, the elements Hµ(a), Hµ(b), Hµ(c), Hµ(d) are
algebraic over Gv. Hence, Hµ(φ) would be algebraic over Gal

v , leading
to Hµ(φ) algebraic over Gv by Lemma 3.1. This contradicts our assump-
tion on Hµ(φ).

Therefore, we must have µ(c) < µ(dφ), leading to ab ∼µ c.

Finally, let us prove that φ is µ-irreducible.
Let f, g ∈ K[x] be polynomials such that φ -µ f , φ -µ g. By Proposi-

tion 2.3,

µ(f) = µ(f0), µ(g) = µ(g0),

where f0, g0 are the 0-th degree coefficients of the φ-expansions of f , g,
respectively.

Let f0g0 = c+dφ be the φ-expansion of f0g0. As shown above, f0g0 ∼µ
c, so that

µ(fg) = µ(f0g0) = µ(c).
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Since c is the 0-th coefficient of the φ-expansion of fg, the equality
µ(fg) = µ(c) shows that φ -µ fg, by Proposition 2.3. This ends the
proof that φ is µ-irreducible.

Corollary 3.3. Consider the following three natural numbers:

` = minimal degree of f ∈ K[x] such that Hµ(f) is not a unit in Gµ,
m = minimal degree of a key polynomial for µ,
n = minimal degree of f ∈ K[x] such that

Hµ(f) is transcendental over Gv.

If one of these numbers exists, then all exist and ` = m = n.

Proof: For any f ∈ K[x] we have

f ∈ KP(µ) =⇒ Hµ(f) 6∈ G∗µ =⇒ Hµ(f) 6∈ Gal
v =⇒ KP(µ) 6= ∅,

where the last implication holds by Theorem 3.2. Hence, the conditions
for the existence of these numbers are all equivalent:

∃Hµ(f) 6∈ G∗µ ⇐⇒ KP(µ) 6= ∅ ⇐⇒ Gal
v ( Gµ.

Suppose these conditions are satisfied. By Theorem 3.2, there exists a
key polynomial φ of degree n. Also, for any a ∈ K[x]n, the homogeneous
element Hµ(a) ∈ Gµ is algebraic over Gv, hence a unit in Gµ by (7).

Since Hµ(φ) is not a unit, this proves that n = `. Since there are no
key polynomials in K[x]n, this proves n = m too.

Corollary 3.4. If φ is a key polynomial of minimal degree, then for
all f, g ∈ K[x] we have

lrc(fg) = lrc(f) lrc(g), s′φ(fg) = s′φ(f) + s′φ(g).

Proof: Consider the φ-expansions f =
∑

0≤s fsφ
s, g =

∑
0≤t gtφ

t.
We may write

fg =
∑
0≤j

bjφ
j , bj =

∑
s+t=j

fsgt.

For each index j, there exist s0, t0 such that s0 + t0 = j and

µ(bjφ
j) ≥ µ(fs0φ

s0gt0φ
t0) ≥ µ(fg),

where the last inequality holds because µ(fs0φ
s0) ≥ µ(f) and µ(gt0φ

t0) ≥
µ(g). Hence,

fg ∼µ
∑
j∈J

bjφ
j , J = {0 ≤ j | µ(bjφ

j) = µ(fg)}.

For every j ∈ J , consider the set

Ij = {(s, t) | s+ t = j, s ∈ Iφ(f), t ∈ Iφ(g)}.
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Then, (1) and Theorem 3.2 show the existence of cs,t ∈ K[x]n such that

Hµ(bj) =
∑

(s,t)∈Ij

Hµ(fsgt) =
∑

(s,t)∈Ij

Hµ(cs,t) = Hµ(cj),

where cj =
∑

(s,t)∈Ij cs,t. Therefore, again by (1), we deduce that

fg ∼µ h, h =
∑
j∈J

cjφ
j .

Note that J = Iφ(h) by construction.
By Lemma 2.10, Iφ(fg) = Iφ(h) = J and lrc(fg) = lrc(h).
Thus, if ` = s′φ(f) and m = s′φ(g), we need to show that Max(J) =

`+m and lrc(h) = Hµ(f`)Hµ(gm).
If j > `+m, then for all pairs (s, t) with s+t = j we have either s > `

or t > m. Thus, µ(fsgtφ
j) = µ(fsφ

sgtφ
t) > µ(fg). Therefore, j 6∈ J .

For j = `+m, the same argument applies to all pairs (s, t) with s+t =
j, except for the pair (s`, tm), for which µ(fs`gtmφ

j) = µ(fg). Therefore,
j=`+m is the maximal index in J and lrc(h)=Hµ(c`+m) = Hµ(b`+m) =
Hµ(f`gm).

Units and maximal subfield of ∆.

Proposition 3.5. Let φ be a key polynomial of minimal degree n. For
any non-zero g ∈ K[x], with φ-expansion g =

∑
0≤s gsφ

s, the following
conditions are equivalent:

(1) g ∼µ a, for some a ∈ K[x]n.
(2) Hµ(g) is algebraic over Gv.
(3) Hµ(g) is a unit in Gµ.
(4) sφ(g) = s′φ(g) = 0.

(5) g ∼µ g0.

Proof: If g ∼µ a for some a ∈ K[x]n, then Hµ(g) = Hµ(a) is algebraic
over Gv by Corollary 3.3.

If Hµ(g) is algebraic over Gv, then Hµ(g) is a unit by (7).
If Hµ(g) is a unit, there exists f ∈ K[x] such that fg ∼µ 1. By

Lemma 2.10, Iφ(fg) = Iφ(1) = {0}, so that sφ(fg) = s′φ(fg) = 0. By

equation (4) and Corollary 3.4, we deduce that sφ(g) = s′φ(g) = 0.

This condition sφ(g) = s′φ(g) = 0 is equivalent to Iφ(g) = {0}, which
implies g ∼µ g0 by Lemma 2.8.

This proves (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5). Finally, (5) =⇒ (1)
is obvious.
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As a consequence of this characterization of homogeneous algebraic
elements, the subfield κ ⊂ ∆ of all elements in ∆ which are algebraic
over Gv can be expressed as:

(9) κ = ∆∗ ∪ {0} = {Hµ(a) | a ∈ K[x]n, µ(a) = 0} ∪ {0}.

Since κ contains all units of ∆, it is the maximal subfield contained in ∆.
Since every ξ ∈ κ is homogeneous of degree zero, any monic homo-

geneous algebraic equation of ξ over Gv has coefficients in the residue
field kv. Thus, κ coincides with the algebraic closure of kv in ∆.

Proposition 3.6. Let κ ⊂ ∆ be the algebraic closure of kv in ∆. For
any key polynomial φ of minimal degree n, the composition of maps

κ ↪−→ ∆ −� kφ

is an isomorphism.

Proof: The restriction to κ of the onto mapping ∆ → kφ described in
Proposition 2.13 maps

Hµ(a) 7−→ a(θ) + mφ, for all a ∈ K[x]n.

Since the images cover all kφ, this mapping is an isomorphism between κ
and kφ.

Upper bound for weighted values. Let us characterize µ-minimality
of a polynomial f ∈ K[x] in terms of its φ-expansion.

Proposition 3.7. Let φ be a key polynomial of minimal degree n. For

any f ∈ K[x] with φ-expansion f =
∑`
s=0 fsφ

s, f` 6= 0, the following
conditions are equivalent:

(1) f is µ-minimal.
(2) deg(f) = s′φ(f)n.

(3) deg(f`) = 0 and µ(f) = µ(f`φ
`).

Proof: Since deg(f) = deg(f`)+`n and s′φ(f) ≤ `, condition (2) is equiv-

alent to deg(f`) = 0 and s′φ(f) = `. Thus, (2) and (3) are equivalent.

Let us deduce (3) from (1). Since deg(f − f`φ`) < deg(f), the µ-min-
imality of f implies that f − f`φ` cannot be µ-equivalent to f . Hence
µ(f`φ

`) = µ(f).
In particular, ` = Max(Iφ(f)). By Proposition 3.5, Hµ(fs) is a unit

for all fs 6= 0. Take b ∈ K[x] and cs ∈ K[x]n such that b f` ∼µ 1 and
bfs ∼µ cs for all 0 ≤ s < `.



Key Polynomials over Valued Fields 209

If we denote c` = 1, Lemma 2.8 and equation (1) show that

bf ∼µ b
∑

s∈Iφ(f)

fsφ
s =⇒ Hµ(bf) =

∑
s∈Iφ(f)

Hµ(bfsφ
s) =

∑
s∈Iφ(f)

Hµ(csφ
s).

Hence, bf ∼µ g :=
∑
s∈Iφ(f) csφ

s. Since f |µ g and f is µ-minimal,

deg(f`) + `n = deg(f) ≤ deg(g) = `n,

which implies deg(f`) = 0.

Finally, let us deduce (1) from (2). Take non-zero g, h ∈ K[x] such
that g ∼µ fh. By Lemma 2.10 and Corollary 3.4, s′φ(g) = s′φ(fh) =

s′φ(f) + s′φ(h), so that

deg(f) = s′φ(f) deg(φ) ≤ s′φ(g) deg(φ) ≤ deg(g).

Thus, f is µ-minimal.

Corollary 3.8. Suppose KP(µ) 6= ∅. Take f ∈ K[x] and m a positive
integer. Then, f is µ-minimal if and only if fm is µ-minimal.

Proof: Let φ be a key polynomial of minimal degree. By Corollary 3.4,
s′φ(fm) = ms′φ(f). Hence, condition (2) of Proposition 3.7 is equivalent
for f and fm.

As another consequence of the criterion for µ-minimality, we may
introduce an important numerical invariant of a valuation on K[x] ad-
mitting key polynomials.

Theorem 3.9. Let φ be a key polynomial of minimal degree for a valu-
ation µ on K[x]. Then, for any monic non-constant f ∈ K[x] we have

µ(f)/ deg(f) ≤ C(µ) := µ(φ)/ deg(φ),

and equality holds if and only if f is µ-minimal.

Proof: Since φ and f are monic, we may write

fdeg(φ) = φdeg(f) + h, deg(h) < deg(φ) deg(f).

By Proposition 2.3, µ(fdeg(φ))≤µ(φdeg(f)) or, equivalently, µ(f)/deg(f)≤
C(µ).

By Proposition 3.7, equality holds if and only if fdeg(φ) is µ-minimal,
and this is equivalent to f being µ-minimal, by Corollary 3.8.
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4. Structure of ∆ as a kv-algebra

In this section we determine the structure of ∆ as a kv-algebra and
we derive some specific information about the extension kµ/kv.

In Subsection 4.1 we deal with the case µ/v incommensurable. We
show that ∆ = kµ. In this case all key polynomials have the same degree
and they are all µ-equivalent.

In Subsection 4.2 we assume that µ admits no key polynomials. We
have again ∆ = kµ. Also, we find several characterizations of the condi-
tion KP(µ) = ∅.

In Subsection 4.3 we deal with the case µ/v commensurable and
KP(µ) 6= ∅, which corresponds to the classical situation in which µ is
residually transcendental.

In this case ∆ is isomorphic to a polynomial ring in one indeterminate
with coefficients in κ, the algebraic closure of kv in kµ.

4.1. Case µ/v incommensurable. We recall that µ/v incommensu-
rable means QΓv ( QΓµ or, equivalently, rr(Γµ/Γv) > 0.

Lemma 4.1. Suppose µ/v is incommensurable. Let φ ∈ K[x] be a
monic polynomial of minimal degree n satisfying µ(φ) 6∈ QΓv. Then,
for all f, g ∈ K[x] we have:

(1) f ∼µ aφs(f), for some a ∈ K[x]n and a unique integer s(f) ≥ 0.
(2) φ is a key polynomial and s(f) = sφ(f) = s′φ(f).

(3) f is a µ-unit if and only if s(f) = 0.
(4) f |µ g if and only if s(f) ≤ s(g).
(5) f is µ-irreducible if and only if s(f) = 1.
(6) f is µ-minimal if and only if deg(f) = s(f)n.

Proof: Consider the φ-expansion f =
∑

0≤s fsφ
s, with fs ∈ K[x]n for

all s. All monomials have different µ-value. In fact, an equality

µ(fsφ
s) = µ(ftφ

t) =⇒ µ(fs)− µ(ft) = (t− s)µ(φ)

is possible only for s = t because µ(φ) 6∈ QΓv and µ(fs), µ(ft) belong
to QΓv by the minimality of n.

Hence, f ∼µ aφs for the monomial of least µ-value. The unicity of s
follows from the same argument as above. This proves (1).

By Proposition 2.3, φ is µ-minimal. Let us show that φ is µ-irreducible.
Consider f, g ∈ K[x] such that φ -µ f , φ -µ g. By property (1), f ∼µ a

and g ∼µ b for some a, b ∈ K[x]n. In particular,

µ(fg) = µ(ab) = µ(a) + µ(b) ∈ QΓv,
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by the minimality of n. By property (1), fg ∼µ cφs for some c ∈ K[x]n
and an integer s ≥ 0. Since µ(φ) 6∈ QΓv, the condition sµ(φ) = µ(fg)−
µ(c) ∈ QΓv leads to s = 0, so that fg ∼µ c. Since φ is µ-minimal, we
have φ -µ fg. Hence, φ is µ-irreducible.

Once we know that φ is a key polynomial, property (1) implies Iφ(f) =
{s(f)} for all f ∈ K[x]. Thus, s(f) = sφ(f) = s′φ(f). This proves (2).

If f is a µ-unit, then φ -µ f , so that s(f) = 0.
Conversely, if s(f) = 0, then Hµ(f) = Hµ(a) for some a ∈ K[x]n.

Since the polynomials a and φ are coprime, they satisfy a Bézout identity

ab+ φd = 1, deg(b) < n, deg(d) < deg(a) < n.

Clearly, ab= 1 − dφ is the canonical φ-expansion of ab. Since we can-
not have ab ∼µ dφ, because µ(φ) 6∈ QΓv, we must have ab ∼µ 1. This
proves (3).

The rest of statements follow easily from (1), (2), and (3).

In particular, all results of the last section apply to our key polyno-
mial φ, because it is a key polynomial of minimal degree.

Theorem 4.2. Suppose µ/v incommensurable. Let φ ∈ K[x] be a monic
polynomial of minimal degree n satisfying µ(φ) 6∈ QΓv. Then:

(1) φ is a key polynomial for µ.
(2) All key polynomials have degree n and are µ-equivalent to φ. More

precisely,

KP(µ) = {φ+ a | a ∈ K[x]n, µ(a) > µ(φ)}.
(3) The natural inclusions determine equalities κ = ∆ = kµ.
(4) R(φ) = 0, and kµ is a finite extension of kv isomorphic to kφ.

Proof: By properties (2), (5), and (6) of Lemma 4.1, φ is a key polyno-
mial for µ, all key polynomials have degree n, and are all µ-divisible by φ.
By Lemma 2.5, they are µ-equivalent to φ. This proves (1) and (2).

Since rr(Γµ/Γv) > 0, the inequality in equation (3) shows that kµ/kv is
an algebraic extension. Since kv ⊂ ∆ ⊂ kµ, the ring ∆ must be a field.
In particular, κ = ∆ by the remarks preceding Proposition 3.6.

Let us show that ∆ = kµ. An element in k∗µ is of the form

(g/h) + mµ ∈ k∗µ,
with g, h ∈ K[x] such that µ(g/h) = 0.

By property (1) in Lemma 4.1, from µ(g) = µ(h) we deduce that

g ∼µ aφs, h ∼µ bφs,
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for a certain integer s ≥ 0 and polynomials a, b ∈ K[x]n such that
µ(a) = µ(b). Thus,

g

h
+ mµ =

aφs

bφs
+ mµ =

a

b
+ mµ.

By Lemma 4.1, Hµ(a) and Hµ(b) are units in Gµ, so that Hµ(a)/Hµ(b) ∈
∆∗ is mapped to (g/h) + mµ under the embedding ∆ ↪→ kµ. This
proves (3).

By Proposition 2.13, R(φ) is the kernel of the onto mapping ∆ � kφ.
Since ∆ is a field, R(φ) = 0 and this mapping is an isomorphism.

This ends the proof of (4), because kφ/kv is a finite extension.

4.2. Valuations not admitting key polynomials.

Theorem 4.3. If KP(µ) = ∅, the canonical embedding ∆ ↪→ kµ is an
isomorphism.

Proof: An element in k∗µ is of the form

(f/g) + mµ ∈ k∗µ, f, g ∈ K[x], µ(f/g) = 0.

If KP(µ) = ∅, then Corollary 3.3 shows that Hµ(f) and Hµ(g) are
units in Gµ. Hence, Hµ(f)Hµ(g)−1 is an element in ∆ whose image in kµ
is (f/g) + mµ.

Theorem 4.4. Let µ be a valuation on K[x] extending v. The following
conditions are equivalent:

(1) KP(µ) = ∅.
(2) Gµ is algebraic over Gv.
(3) Every non-zero homogeneous element in Gµ is a unit.
(4) µ/v is commensurable and kµ/kv is algebraic.
(5) The set of weighted values

W = {µ(f)/ deg(f) | f ∈ K[x] \K monic}
does not contain a maximal element.

Proof: By Corollary 3.3, conditions (1), (2), and (3) are equivalent.

Let us show that (1) implies (4). If KP(µ) = ∅, then µ/v is com-
mensurable by Theorem 4.2, and kµ/kv is algebraic by Theorems 3.2
and 4.3.

Let us now deduce (5) from (4). Take φ an arbitrary monic polynomial
in K[x] \K. Let us show that µ(φ)/ deg(φ) ∈W is not an upper bound
for this set.
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Since QΓv = QΓµ, there exists a positive integer e such that eµ(φ) ∈
Γv. Thus, there exists a ∈ K∗ such that µ(aφe) = 0, so that Hµ(aφe) ∈
k∗µ.

By hypothesis, this element is algebraic over kv. Hence Hµ(φ) is alge-
braic over Gv. As mentioned in (7), Hµ(φ) is integral over Gv. Consider
a homogeneous equation

(10) ε0 + ε1Hµ(φ) + · · ·+ εm−1Hµ(φ)m−1 +Hµ(φ)m = 0,

with ε0, . . . , εm homogeneous elements in Gv such that deg(εiHµ(φ)i) =
mµ(φ) for all indices 0 ≤ i < m for which εi 6= 0.

By choosing ai ∈ K with Hµ(ai) = εi for all i, equation (10) is
equivalent to

µ(a0 + a1φ+ · · ·+ am−1φ
m−1 + φm) > µ(φm) = mµ(φ).

Hence, this monic polynomial f = a0 + a1φ+ · · ·+ am−1φ
m−1 + φm has

a larger weighted value

µ(f)/ deg(f) > µ(φm)/ deg(f) = µ(φ)/ deg(φ).

Hence the set W contains no maximal element.

Finally, the implication (5) =⇒ (1) follows from Theorem 3.9.

4.3. Case µ/v commensurable and KP(µ) 6= ∅.

Theorem 4.5. Suppose µ/v commensurable and KP(µ) 6= ∅. The
canonical embedding ∆ ↪→ kµ induces an isomorphism between the field
of fractions of ∆ and kµ.

Proof: Let χ ∈ K[x] be an arbitrary key polynomial for µ.
We must show that the induced morphism Frac(∆)→kµ is onto.
An element in k∗µ is of the form

(f/g) + mµ ∈ k∗µ, f, g ∈ K[x], µ(f/g) = 0.

Set α = µ(f) = µ(g) ∈ Γµ. By Lemma 2.11, Γµ = 〈Γdeg(χ), µ(χ)〉.
Hence we may write

−α = β + sµ(χ), β ∈ Γdeg(χ), s ∈ Z.

Since µ(χ) ∈ QΓdeg(χ), we may assume that 0 ≤ s < e for some positive
integer e. Take a ∈K[x]deg(χ) such that µ(a) = β. Then, the polyno-
mial h = aχs satisfies µ(h) = −α.

Thus, Hµ(hf) andHµ(hg) belong to ∆ and the fractionHµ(hf)/Hµ(hg)
is mapped to (f/g) + mµ by the morphism Frac(∆)→kµ.
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Theorem 4.6. Suppose µ/v commensurable. Let φ be a key polynomial
of minimal degree n and let e be a minimal positive integer such that
eµ(φ) ∈ Γdeg(φ).

Take u∈K[x]n such that µ(uφe) = 0. Then ξ=Hµ(uφe)∈∆ is tran-
scendental over kv and ∆ = κ[ξ].

Proof: The element ξ is not a unit, because it is divisible by the prime
element Hµ(φ). By (7), ξ is transcendental over kv.

Consider Hµ(g) ∈ ∆, for some g ∈ K[x] with µ(g) = 0. Let g =∑
0≤s gsφ

s be the φ-expansion of g.

Let I=Iφ(g) be the set of indices s such that µ(gsφ
s)=0. For each s ∈

I, the equality sµ(φ) = −µ(gs) ∈ Γdeg(φ) implies that s = ejs for some
integer js ≥ 0.

By Lemma 2.8 and equation (1),

(11) g ∼µ
∑

s∈I
gsφ

s, Hµ(g) =
∑

s∈I
Hµ(gsφ

s).

Proposition 3.5 shows that Hµ(u) is a unit. For each s ∈ I, there
exists cs ∈ K[x]n such that Hµ(cs) = Hµ(gs)Hµ(u)−js . Hence,

Hµ(gsφ
s) = Hµ(gs)Hµ(u)−jsHµ(u)jsHµ(φs) = Hµ(cs)ξ

js ∈ κ[ξ].

Hence Hµ(g) ∈ κ[ξ]. This proves that ∆ = κ[ξ].

As a consequence of Theorems 4.2, 4.3, 4.4, 4.5, and 4.6, we obtain
the following computation of the residue class field kµ.

Corollary 4.7. If KP(µ) = ∅, then κ = ∆ = kµ is an algebraic exten-
sion of kv.

If µ/v is incommensurable, then κ = ∆ = kµ is a finite extension
of kv.

If µ/v is commensurable and KP(µ) 6= ∅, then kµ ' κ(y), where y is
an indeterminate.

5. Residual polynomial operator

Suppose µ/v commensurable and KP(µ) 6= ∅.
Let us fix a key polynomial φ ∈ KP(µ) of minimal degree n. Let q =

Hµ(φ) be the corresponding prime element of Gµ.

Having in mind the description of the set KP(µ) in Section 6, we
introduce a residual polynomial operator

R : K[x] −→ κ[y],
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which provides a decomposition of any homogeneous element Hµ(f) ∈
Gµ into a product of a unit, a power of q, and the degree-zero ele-
ment R(f)(ξ) ∈ ∆ = κ[ξ] (Theorem 5.3). As a consequence, the op-
erator R provides a computation of the residual ideal operator (Theo-
rem 5.7).

In Lemma 2.11 we proved that Γµ = 〈Γn, µ(φ)〉, where Γn is the
subgroup

Γn = {µ(a) | a ∈ K[x]n, a 6= 0} ⊂ Γµ.

Let e be a minimal positive integer with eµ(φ) ∈ Γn. By Theorem 3.9,
all key polynomials χ of degree n have the same µ-value µ(χ) = µ(φ).
Thus, this positive integer e does not depend on the choice of φ.

It will be called the relative ramification index of µ.

We fix a polynomial u ∈ K[x]n such that µ(uφe) = 0 and consider

ξ = Hµ(uφe) = Hµ(u)qe ∈ ∆.

By Theorem 4.6, ξ is transcendental over kv and ∆ = κ[ξ].

Throughout this section, for any polynomial f ∈ K[x] we denote

s(f) := sφ(f), s′(f) := s′φ(f), I(f) := Iφ(f).

For s ∈ I(f), the condition µ(fsφ
s) = µ(f) implies that s belongs to

a fixed class modulo e. In fact, for any pair s, t ∈ I(f),

µ(fsφ
s)=µ(ftφ

t) =⇒ (t−s)µ(φ)=µ(fs)−µ(ft) ∈ Γn =⇒ t ≡ s (mod e).

Hence I(f) ⊂ {s0, s1, . . . , sd}, where

s0 =s(f)=Min(I(f)), sj=s0+je, 0 ≤ j ≤ d, sd=s′(f)=Max(I(f)).

By Lemma 2.8, we may write

(12) f ∼µ
∑
s∈I(f)

fsφ
s ∼µ φs0(fs0 + · · ·+ fsjφ

je + · · ·+ fsdφ
de),

taking into account only the monomials for which sj ∈ I(f).

Definition 5.1. Consider the residual polynomial operator

R := Rφ,u : K[x] −→ κ[y], R(f) = ζ0 + ζ1y + · · ·+ ζd−1y
d−1 + yd,

for f 6= 0, where the coefficients ζj ∈ κ are defined by

(13) ζj =

{
Hµ(fsd)−1Hµ(u)d−jHµ(fsj ) if sj ∈ I(f),

0 if sj 6∈ I(f).

Also, we define R(0) = 0.
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For sj ∈ I(f), we have

µ(fsjφ
je) = µ(fsdφ

de) = µ(f/φs0),

so that µ(fsj ) = µ(fsd) + (d− j)eµ(φ) = µ(fsd)− (d− j)µ(u).
Since the three homogeneous elements Hµ(fsj ), Hµ(fsd), and Hµ(u)

are units in Gµ, we deduce that ζj ∈ ∆∗ = κ∗ for sj ∈ I(f).
Thus, the monic residual polynomial R(f) is well defined, and it has

degree

(14) d(f) := deg(R(f)) = d = (s′(f)− s(f))/e.

Note that ζ0 6= 0, because s0 ∈ I(f). Thus, R(f)(0) 6= 0.

Example. For any monomial f=aφs with a ∈ K[x]n, we have R(f)=1.

Definition 5.2. With the above notation, the normalized leading resid-
ual coefficient

nlc(f) = Hµ(fsd)Hµ(u)−d = lrc(f)Hµ(u)−d ∈ G∗µ
is a homogeneous unit in Gµ of degree µ(f)− s(f)µ(φ).

For any g ∈ K[x], from (4) and Corollary 3.4, we deduce that

d(fg) = d(f) + d(g), nlc(fg) = nlc(f) nlc(g), for all f, g ∈ K[x].

By definition, for any sj ∈ I(f) we have

nlc(f) ζj ξ
j = Hµ(fsj )Hµ(φje).

Thus, (12) leads to the following identity, which is the “raison d’être”
of R(f).

Theorem 5.3. For any f ∈K[x], we have Hµ(f)=nlc(f) qs(f)R(f)(ξ).

Note that nlc(f) is a unit, qs(f) the power of a prime element, and
R(f)(ξ) ∈ ∆.

Let us derive from Theorem 5.3 some basic properties of the residual
polynomials.

Corollary 5.4. For all f, g ∈ K[x], we have R(fg) = R(f)R(g).

Proof: Since the functions Hµ and nlc are multiplicative, Theorem 5.3
shows that

R(fg)(ξ) = R(f)(ξ)R(g)(ξ).

By Theorem 4.6, we deduce that R(fg) = R(f)R(g).
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Corollary 5.5. For all f, g ∈ K[x],

f ∼µ g ⇐⇒ I(f) = I(g), nlc(f) = nlc(g), and R(f) = R(g);

f |µ g ⇐⇒ s(f) ≤ s(g) and R(f) | R(g) in κ[y].

Proof: If f ∼µ g, then I(f) = I(g) and nlc(f) = nlc(g) by Lemma 2.10.
Thus, R(f)(ξ) = R(g)(ξ) by Theorem 5.3, leading to R(f) = R(g) by
Theorem 4.6.

Conversely, I(f)=I(g) implies s(f) = Min(I(f)) = Min(I(g)) = s(g).
Thus, Hµ(f) = Hµ(g) follows from Theorem 5.3.

If f |µ g, then fh ∼µ g for some h ∈ K[x]. By the first item and
Corollary 5.4, we get R(g) = R(fh) = R(f)R(h), so that R(f) | R(g).

Also, since s(g) = s(f) + s(h), we deduce that s(f) ≤ s(g).
Conversely, s(f) ≤ s(g) and R(f) | R(g) imply Hµ(f) | Hµ(g) by

Theorem 5.3, having in mind that nlc(f), nlc(g) are units in Gµ.

Corollary 5.6. Let s ∈ Z≥0, ζ ∈ κ∗, and ψ ∈ κ[y] a monic polynomial
with ψ(0) 6= 0. Then there exists a polynomial f ∈ K[x] such that

s(f) = s, nlc(f) = ζ, R(f) = ψ.

Proof: Let ψ = ζ0 + ζ1y + · · · + ζd−1y
d−1 + ζdy

d, with ζ0, . . . , ζd−1 ∈ κ
and ζd = 1. Let I be the set of indices 0 ≤ j ≤ d with ζj 6= 0.

By (9), for each j ∈ I we may take fj ∈ K[x]n such that Hµ(fj) =
ζHµ(u)jζj . Then f = φs(f0 + · · ·+ fjφ

je + · · ·+ fdφ
de) satisfies all our

requirements.

Theorem 5.7. For any non-zero f ∈ K[x],

R(f) = ξds(f)/eeR(f)(ξ)∆.

Proof: By definition, an element in the ideal R(f) is of the form Hµ(h)
for some h ∈ K[x] such that f |µ h and µ(h) = 0.

The condition µ(h) = 0 implies e | s(h). By Theorem 5.3,

Hµ(h) = ξs(h)/eHµ(u)−s(h)/e nlc(h)R(h)(ξ).

On the other hand, Corollary 5.5 shows that s(f) ≤ s(h) and R(f) |
R(h). Therefore, Hµ(h) belongs to the ideal ξds(f)/eeR(f)(ξ)∆.

Conversely, if m = ds(f)/ee, then Theorem 5.3 shows that

ξmR(f)(ξ) = qmeHµ(u)mR(f)(ξ)

= Hµ(f)qme−s(f) nlc(f)−1Hµ(u)m ∈ R(f),

because me ≥ s(f) and nlc(f), Hµ(u) are units.
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5.1. Dependence of R on the choice of u. Let u∗ ∈K[x]n be an-
other choice of a polynomial such that µ(u∗φe) = 0 and denote

ξ∗ = Hµ(u∗φe) = Hµ(u∗)qe ∈ ∆.

Since µ(u) = µ(u∗) and Hµ(u), Hµ(u∗) are units in Gµ, we have

ξ∗ = σ−1ξ, where σ = Hµ(u)Hµ(u∗)−1 ∈ ∆∗ = κ∗.

Let R∗ be the residual polynomial operator associated with this choice
of u∗.

For any f ∈ K[x], suppose that R∗(f) = ζ∗0 +ζ∗1y+· · ·+ζ∗d−1y
d−1+yd.

By the very definition (13) of the residual coefficients,

ζ∗j = σd−jζj , 1 ≤ j ≤ d.

We deduce the following relationship between R and R∗:

R∗(f)(y) = σdR(f)(σ−1y), for all f ∈ K[x].

5.2. Dependence of R on the choice of φ. Let φ∗ be another key
polynomial with minimal degree n and denote q∗ = Hµ(φ∗).

By Theorem 3.9, µ(φ∗) = µ(φ), so that

φ∗ = φ+ a, a ∈ K[x]n, µ(a) ≥ µ(φ).

In particular, µ(uφe∗) = 0 and we may consider

ξ∗ = Hµ(uφe∗) = Hµ(u)qe∗ ∈ ∆

as a transcendental generator of ∆ as a κ-algebra.
Let R∗ be the residual polynomial operator associated with this choice

of φ∗.

Proposition 5.8. Let φ∗ be another key polynomial with minimal de-
gree, and denote with a subindex ( )∗ all objects depending on φ∗.

(1) If φ∗ ∼µ φ, then q∗ = q, ξ∗ = ξ, and R∗ = R.
(2) If φ∗ 6∼µ φ, then e = 1, q∗ = q + Hµ(a), and ξ∗ = ξ + τ , where

τ = Hµ(ua) ∈ κ∗. In this case, for any f ∈ K[x] we have

(15) ys(f)R(f)(y) = (y + τ)s∗(f)R∗(f)(y + τ).

In particular, s∗(f) = ordy+τ (R(f)) and s(f) + d(f) = s∗(f) +
d∗(f).

Proof: Suppose φ∗ ∼µ φ. By definition,

q∗ = Hµ(φ∗) = Hµ(φ) = q, ξ∗ = Hµ(uφ∗) = Hµ(uφ) = ξ.
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Let f ∈ K[x]. By equation (1), we can replace φ with φ∗ in equa-
tion (12) to obtain

f ∼µ
∑

s∈I(f)
fsφ

s
∗ ∼µ φs0∗ (fs0 + · · ·+ fsjφ

je
∗ + · · ·+ fsdφ

de
∗ ).

Hence, (13) leads to the same residual coefficients, so that R(f) = R∗(f).

Suppose φ∗ 6∼µ φ, that is, µ(a) = µ(φ). Then e = 1, Hµ(φ∗) =
Hµ(φ) +Hµ(a), and

ξ∗ = Hµ(uφ∗) = Hµ(u)Hµ(φ) +Hµ(u)Hµ(a) = ξ + τ.

Finally, let f ∈K[x], and denote s=s(f), s∗=s∗(f). By Theorem 5.3,

qs nlc(f)R(f)(ξ) = Hµ(f) = qs∗∗ nlc∗(f)R∗(f)(ξ∗).

Since q = Hµ(u)−1ξ and q∗ = Hµ(u)−1ξ∗ = Hµ(u)−1(ξ + τ), we deduce

ξsR(f)(ξ) = σ(ξ + τ)s∗R∗(f)(ξ + τ),

where σ = Hµ(u)s−s∗ nlc∗(f) nlc(f)−1 ∈ κ∗, because

deg(nlc(f)Hµ(u)−s) = 0 = deg(nlc∗(f)Hµ(u)−s∗).

By Theorem 4.6, this implies ysR(f)(y) = σ(y + τ)s∗R∗(f)(y + τ).
Since R(f) and R∗(f) are monic polynomials, we have necessarily σ = 1.
This proves (15).

6. Key polynomials and unique factorization in Gµ
We keep the assumptions that µ/v is commensurable and KP(µ) 6= ∅.

We keep dealing with a fixed key polynomial φ of minimal degree n,
and we denote q = Hµ(φ), e least positive integer with eµ(φ) ∈ Γn,
u ∈ K[x]n such that µ(uφe) = 0, and ξ = Hµ(uφe). Also, we denote

s(f) := sφ(f), s′(f) := s′φ(f), R(f) := Rφ,u(f), for all f ∈ K[x].

6.1. Homogeneous prime elements. By Theorem 4.6, the prime el-
ements in ∆ are those of the form ψ(ξ) for ψ ∈ κ[y] an irreducible
polynomial.

An element in ∆, which is a prime in Gµ, is a prime in ∆, but the
converse is not true. Let us now discuss what primes in ∆ remain prime
in Gµ.

Lemma 6.1. Let ψ ∈ κ[y] be a monic irreducible polynomial.

(1) If ψ 6= y, then ψ(ξ) is a prime element in Gµ.
(2) If ψ = y, then ξ is a prime element in Gµ if and only if e = 1.
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Proof: Suppose ψ 6= y. Since ψ is irreducible, we have ψ(0) 6= 0. By
Corollary 5.6, there exists f ∈ K[x] such that s(f) = 0, nlc(f) = 1, and
R(f) = ψ. By Theorem 5.3, Hµ(f) = ψ(ξ).

Suppose ψ(ξ) = Hµ(f) divides the product of two homogeneous ele-
ments in Gµ, say f |µ gh for some g, h ∈ K[x].

By Corollaries 5.5 and 5.4, ψ = R(f) divides R(gh) = R(g)R(h).
Being ψ irreducible, it divides either R(g) or R(h), and this leads to ψ(ξ)
dividing either Hµ(g) or Hµ(h) in Gµ, by Theorem 5.3.

The element ξ is associate to qe in Gµ. Since q is a prime element, its
e-th power is a prime if and only if e = 1.

Besides these prime elements belonging to ∆, we know that q is an-
other prime element in Gµ, of degree µ(φ).

The next result shows that there are no other homogeneous prime
elements in Gµ up to multiplication by units.

Proposition 6.2. A polynomial f ∈ K[x] is µ-irreducible if and only if
one of the two following conditions is satisfied:

(1) s(f) = s′(f) = 1.
(2) s(f) = 0 and R(f) is irreducible in κ[y].

In the first case, Hµ(f) is associate to q; in the second case, to R(f)(ξ).

Proof: By Theorem 5.3, Hµ(f) = qs(f) nlc(f)R(f)(ξ). Since nlc(f) is
a unit and q is a prime, Hµ(f) is a prime if and only if one of the two
following conditions is satisfied:

(i) s(f) = 1 and R(f)(ξ) is a unit.
(ii) s(f) = 0 and R(f)(ξ) is a prime in Gµ.

The homogeneous element of degree zero R(f)(ξ) is a unit in Gµ if and
only if it is a unit in ∆. By Theorem 4.6, this is equivalent to deg(R(f)) =
0, which in turn is equivalent to s(f) = s′(f) by (14). Thus, (i) is equiv-
alent to (1), and Hµ(f) is associate to q in this case.

Since R(f) 6= y, (ii) is equivalent to (2) by Lemma 6.1. Clearly, Hµ(f)
is associate to R(f)(ξ) in this case.

Putting together this characterization of µ-irreducibility with the
characterization of µ-minimality from Proposition 3.7, we get the fol-
lowing characterization of key polynomials.

Proposition 6.3. Let φ be a key polynomial for µ, of minimal degree n.
A monic χ ∈ K[x] is a key polynomial for µ if and only if one of the

two following conditions is satisfied:

(1) deg(χ) = deg(φ) and χ ∼µ φ.
(2) s(χ) = 0, deg(χ) = en deg(R(χ)), and R(χ) is irreducible in κ[y].

In the first case, R(χ) = ξ∆; in the second case, R(χ) = R(χ)(ξ)∆.
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Proof: If χ satisfies (1), then χ is a key polynomial by Lemma 2.5.
Also, R(χ)=R(φ)=ξ∆ by Theorem 5.7, since s(φ) = 1 and R(φ) = 1.

If χ satisfies (2), then deg(R(χ)) = s′(χ)/e by (14), so that deg(χ) =
s′(χ)n, and χ is µ-minimal by Proposition 3.7. Also, χ is µ-irreducible
by Proposition 6.2.

Thus, χ is a key polynomial, and R(χ) = R(χ)(ξ)∆ by Theorem 5.7.

Conversely, suppose χ is a key polynomial for µ. Since χ is µ-minimal,
deg(χ) = s′(χ)n, by Proposition 3.7.

Since χ is µ-irreducible, it satisfies one of the conditions of Proposi-
tion 6.2.

If s(χ) = s′(χ) = 1, we get deg(χ) = n and φ |µ χ. Thus, χ ∼µ φ by
Lemma 2.5, and hence φ satisfies (1).

If s(χ) = 0 and R(χ) is irreducible in κ[y], then deg(R(χ)) = s′(χ)/e
by (14). Thus, deg(χ) = s′(χ)n = en deg(R(χ)), and hence χ satis-
fies (2).

Corollary 6.4. Let φ be a key polynomial for µ of minimal degree n.
Let χ ∈ K[x] be a key polynomial such that χ 6∼µ φ. Then Γdeg(χ) = Γµ.

Proof: By Lemma 2.11, Γµ = 〈Γdeg(χ), µ(χ)〉. Since deg(χ) ≥ n, we
clearly have Γn ⊂ Γdeg(χ). By Theorem 3.9 and Proposition 6.3,

µ(χ) =
deg(χ)

deg(φ)
µ(φ) = deg(R(χ))eµ(φ) ∈ Γn ⊂ Γdeg(χ).

Hence Γµ = Γdeg(χ).

Corollary 6.5. The two following conditions are equivalent:

(1) e > 1.
(2) All key polynomials of minimal degree are µ-equivalent.

Proof: Let φ be a key polynomial of minimal degree n.

If e > 1 and χ is a key polynomial not µ-equivalent to φ, then Propo-
sition 6.3 shows that deg(χ) = en deg(R(χ)) > n. Hence, all key poly-
nomials of degree n are µ-equivalent to φ.

If e= 1, then µ(φ) ∈ Γn, so that there exists a ∈ K[x]n with µ(a) =
µ(φ). The monic polynomial χ=φ+a has degree n and it is not µ-equiv-
alent to φ. Also, deg(R(χ)) = 1, so that R(χ) is irreducible. Therefore,
χ is a key polynomial for µ, because it satisfies condition (2) of Propo-
sition 6.3.
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6.2. Unique factorization in Gµ. If χ is a key polynomial for µ,
then R(χ) is a maximal ideal of ∆, by Proposition 2.13. Let us study
the fibers of the mapping R : KP(µ)→ Max(∆).

Proposition 6.6. Let φ be a key polynomial of minimal degree and let
R = Rφ,u.

For any χ, χ′ ∈ KP(µ), the following conditions are equivalent:

(1) χ ∼µ χ′.
(2) Hµ(χ) and Hµ(χ′) are associate in Gµ.
(3) χ |µ χ′.
(4) R(χ) = R(χ′).
(5) R(χ) = R(χ′).

Moreover, these conditions imply deg(χ) = deg(χ′).

Proof: The implications (1) =⇒ (2) =⇒ (3) are obvious.
Also, (3) =⇒ R(χ′) ⊂ R(χ) =⇒ (4), because R(χ′) is a maximal

ideal.

Let us show that (4) implies (5). By Proposition 6.3, condition (4)
implies that we have two possibilities for the pair χ, χ′:

(i) χ ∼µ φ ∼µ χ′, or
(ii) s(χ) = s(χ′) = 0.

In the first case, we deduce (5) from Corollary 5.5.
In the second case, condition (5) follows from Theorems 5.7, 4.6, and

the fact that R(χ), R(χ′) are monic polynomials.

Let us show that (5) implies (1). If R(χ) = R(χ′) = 1, then Proposi-
tion 6.3 shows that χ ∼µ φ ∼µ χ′.

If R(χ) = R(χ′) 6= 1, then Proposition 6.3 shows that s(χ) = s(χ′) =
0 and

deg(χ) = en deg(R(χ)) = en deg(R(χ′)) = deg(χ′).

Also, χ |µ χ′ by the second equivalence of Corollary 5.5. Hence, χ ∼µ χ′
by Lemma 2.5.

This ends the proof of the equivalence of all conditions.

Finally, (1) implies deg(χ) = deg(χ′) by the µ-minimality of both
polynomials.

Theorem 6.7. Suppose µ/v commensurable and KP(µ) 6= ∅. The resid-
ual ideal mapping

R : KP(µ) −→ Max(∆)

induces a bijection between KP(µ)/∼µ and Max(∆).
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Proof: Let φ be a key polynomial of minimal degree n.
By Proposition 6.6, R induces a 1-1 mapping between KP(µ)/∼µ and

Max(∆).
Let us show that R is onto. By Theorem 4.6, a maximal ideal L in ∆

is given by ψ(ξ)∆ for some monic irreducible polynomial ψ ∈ κ[y].
If ψ = y, then L = R(φ) by Theorem 5.7. If ψ 6= y, then it suffices

to show the existence of a key polynomial χ such that R(χ) = ψ, by
Proposition 6.3.

Let d = deg(ψ). By Lemma 5.6, there exists χ ∈ K[x] such that

s(χ) = 0, nlc(χ) = Hµ(u)−d, R(χ) = ψ.

Along the proof of that lemma, we saw that χ may be chosen to have
φ-expansion:

χ = a0 + a1φ
e + · · ·+ adφ

de, deg(aj) < n.

Also, the condition on ad is Hµ(ad) = nlc(χ)Hµ(u)d = 1Gµ . Thus, we
may choose ad = 1. Then deg(χ) = den, so that χ is a key polynomial
because it satisfies condition (2) of Proposition 6.3.

Theorem 6.8. Let P ⊂ KP(µ) be a set of representatives of key poly-
nomials under µ-equivalence. Then the set HP = {Hµ(χ) | χ ∈ P} is
a system of representatives of homogeneous prime elements of Gµ up to
associates.

Also, up to units in Gµ, for any non-zero f ∈ K[x] there is a unique
factorization:

(16) f ∼µ
∏

χ∈P
χaχ , aχ = sχ(f).

Proof: All elements in HP are prime elements by the definition of µ-
irreducibility. Also, they are pairwise non-associate by Proposition 6.6.

Let φ be a key polynomial of minimal degree n.
By Proposition 6.2, every homogeneous prime element is associate

either to Hµ(φ) (which belongs to HP), or to ψ(ξ) for some irreducible
polynomial ψ ∈ κ[y], ψ 6= y.

In the latter case, along the proof of Theorem 6.7 we saw the existence
of χ ∈ KP(µ) such that s(χ) = 0 and R(χ) = ψ.

Therefore, ψ(ξ) = R(χ)(ξ) is associate to Hµ(χ) ∈ HP, by Theo-
rem 5.3.

Finally, every homogeneous element in Gµ is associate to a product of
homogeneous prime elements, by Theorem 5.3 and Lemma 6.1.
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7. Augmentation of valuations

We keep dealing with a valuation µ on K[x] with KP(µ) 6= ∅.
There are different procedures to augment this valuation, in order to

obtain valuations µ′ on K[x] such that

µ(f) ≤ µ′(f), for all f ∈ K[x],

after embedding the value groups of µ and µ′ in a common ordered group.
In this section we show how to single out a key polynomial for µ′ of

minimal degree.
As an application, all results of this paper apply to determine the

structure of Gµ′ and the set KP(µ′)/∼µ′ in terms of this key polynomial.

7.1. Ordinary augmentations.

Definition 7.1. Take χ ∈ KP(µ). Let Γµ ↪→ Γ′ be an order-preserving
embedding of Γµ into another ordered group and choose γ ∈ Γ′ such
that µ(χ) < γ.

The augmented valuation of µ with respect to these data is the map-
ping

µ′ : K[x] −→ Γ′ ∪ {∞},
assigning, to any g ∈ K[x] with canonical χ-expansion g =

∑
0≤s gsχ

s,
the value

µ′(g) = Min{µ(gs) + sγ | 0 ≤ s}.
We use the notation µ′ = [µ;χ, γ]. Note that µ′(χ) = γ.

The following proposition collects several results of [11, Section 1.1].

Proposition 7.2.

(1) The mapping µ′ = [µ;χ, γ] is a valuation on K[x] extending v, with
value group Γµ′ = 〈Γdeg(χ), γ〉.

(2) For all f ∈ K[x], we have µ(f) ≤ µ′(f).
Equality holds if and only if χ -µ f or f = 0.

(3) If χ -µ f , then Hµ′(f) is a unit in Gµ′ .
(4) The polynomial χ is a key polynomial for µ′.

(5) The kernel of the canonical homomorphism

Gµ −→ Gµ′ , a+ P+
α (µ) 7−→ a+ P+

α (µ′), for all α ∈ Γµ,

is the principal ideal of Gµ generated by Hµ(χ).

Corollary 7.3. The polynomial χ is a key polynomial for µ′ of minimal
degree.
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Proof: For any polynomial f ∈ K[x] with deg(f) < deg(χ), we have
χ -µ f , because χ is µ-minimal. By (3) of Proposition 7.2, Hµ′(f) is a
unit in Gµ′ , so that f cannot be a key polynomial for µ′.

7.2. Limit augmentations. Consider a totally ordered set A not con-
taining a maximal element.

A continuous MacLane chain based on µ and parameterized by A is
a family (µα)α∈A of augmented valuations

µα = [µ;φα, γα], φα ∈ KP(µ), µ(φα) < γα ∈ Γµ,

for all α ∈ A, satisfying the following conditions:

(1) deg(φα) = d is independent of α ∈ A.
(2) The mapping A→ Γµ, α 7→ γα is an order-preserving embedding.
(3) For all α < β in A, we have

φβ ∈ KP(µα), φα 6∼µα φβ , µβ = [µα;φβ , γβ ].

In Vaquié’s terminology, (µα)α∈A is a “famille continue de valuations
augmentées itérées” [11].

Definition 7.4. A polynomial f ∈ K[x] is A-stable if there exists α0 ∈ A
such that

µα0
(f) = µα(f), for all α ≥ α0.

In this case, we denote by µA(f) this stable value.

Lemma 7.5. If f ∈ K[x] is not A-stable, then µα(f) < µβ(f) for all
α < β in A.

Proof: Let us show that the equality µα(f) = µβ(f) for some α < β
in A implies that f is A-stable.

Since µβ = [µα;φβ , γβ ], Proposition 7.2 shows that φβ -µα f and
Hµβ (f) is a unit in Gµβ . Hence, for all δ ≥ β, the image of Hµβ (f)
in Gµδ is a unit.

Since µδ=[µβ ;φδ, γδ], property (5) of Proposition 7.2 shows that φδ -µβ
f . Hence µβ(f) = µδ(f), again by Proposition 7.2. Thus, f is A-sta-
ble.

If all polynomials in K[x] are A-stable, then µA = limα∈A µα has an
obvious meaning, and µA is a valuation on K[x].

If there are polynomials which are not A-stable, there are still some
particular situations in which (µα)α∈A converges to a valuation (or semi-
valuation) on K[x].

However, regardless of the fact that (µα)α∈A converges or not, non-
stable polynomials may be used to define limit augmented valuations of
this continuous MacLane chain.
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Let us assume that not all polynomials in K[x] are A-stable.
We take a monic φ ∈ K[x] which is not A-stable, and has minimal

degree among all polynomials having this property.
Since the product of A-stable polynomials is A-stable, φ is irreducible

in K[x].

Lemma 7.6. Let f ∈ K[x] be a non-zero polynomial with canonical
φ-expansion f =

∑
0≤s fsφ

s. Then, there exist an index s0 and an ele-
ment α0 ∈ A such that

µα(f) = µα(fs0φ
s0) < µα(fsφ

s), for all s 6= s0 and α ≥ α0.

Proof: Since all coefficients fs have degree less than deg(φ), they are all
A-stable. Let us take α1 sufficiently large so that µα(fs) = µA(fs) for
all s ≥ 0 and all α ≥ α1.

For every α ∈ A, α ≥ α1, let

δα=Min{µα(fsφ
s) | 0 ≤ s}, Iα={s | µα(fsφ

s) = δα}, sα=Min(Iα).

For any index s we have

(17) µα(fsαφ
sα) = µA(fsα) + sαµα(φ) ≤ µα(fsφ

s) = µA(fs) + sµα(φ).

Since φ is not A-stable, Lemma 7.5 shows that µα(φ) < µβ(φ) for all
β > α, β ∈ A. Thus, if we replace µα with µβ in (17), we get a strict
inequality for all s > sα, because the left-hand side of (17) increases
by sα(µβ(φ)− µα(φ)), while the right-hand side increases by s(µβ(φ)−
µα(φ)).

Therefore, either Iβ = {sα}, or sβ = Min(Iβ) < sα.
Since A contains no maximal element, we may consider a strictly

increasing infinite sequence of values of β ∈ A. There must be an α0 ∈ A
such that

Iα = {s0}, for all α ≥ α0,

because the set of indices s is finite.

Definition 7.7. For any f ∈ K[x], we say that f is A-divisible by φ, and
we write φ |A f , if there exists α0 ∈ A such that φ |µα f for all α ≥ α0.

Lemma 7.8. For any f ∈K[x] with canonical φ-expansion f=
∑

0≤sfsφ
s,

the following conditions are equivalent:

(1) f is A-stable.
(2) There exists α0 ∈ A such that

µα(f) = µα(f0) < µα(fsφ
s), for all s > 0 and α ≥ α0.

(3) φ -A f .
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Proof: By Lemma 7.6, there exist an index s0 and an element α0 ∈ A
such that µα(fs) = µA(fs) for all s, and

(18) µα(f) = µα(fs0φ
s0) = µA(fs0) + s0µα(φ) < µα(fsφ

s),

for all s 6= s0 and all α ≥ α0. By Lemma 7.5, µα(φ) grows strictly with α.
Hence, condition (1) is equivalent to s0 = 0, which is in turn equivalent
to condition (2).

If µα(f) = µβ(f) for some α < β, we have necessarily φ -µα f , because
µα(φ) < µβ(φ). Thus, (1) implies (3).

On the other hand, s0>0 in (18) implies φ -µα f . Thus, (3) implies (2).

Definition 7.9. Take φ ∈ K[x] a monic polynomial with minimal degree
among all polynomials which are not A-stable.

Let Γµ ↪→ Γ′ be an order-preserving embedding of Γµ into another
ordered group, and suppose that there exists γ ∈ Γ′ such that µα(φ) < γ
for all α ∈ A.

The limit augmented valuation of the continuous MacLane chain
(µα)α∈A with respect to these data is the mapping

µ′ : K[x] −→ Γ′ ∪ {∞},
assigning, to any g ∈ K[x] with φ-expansion g =

∑
0≤s gsφ

s, the value

µ′(g) = Min{µA(gs) + sγ | 0 ≤ s}.
We use the notation µ′ = [µA;φ, γ]. Note that µ′(φ) = γ.

The following proposition collects Propositions 1.22 and 1.23 of [11].

Proposition 7.10.

(1) The mapping µ′ = [µA;φ, γ] is a valuation on K[x] extending v.
(2) For all f ∈ K[x], we have µα(f) ≤ µ′(f) for all α ∈ A.

The condition µα(f) < µ′(f), for all α ∈ A, is equivalent to φ |A f
and f 6= 0.

Lemma 7.11. For a, b ∈ K[x]deg(φ), let the φ-expansion of ab be

ab = c+ dφ, c, d ∈ K[x]deg(φ).

Then ab ∼µ′ c.

Proof: Since deg(a),deg(b) < deg(φ), the polynomials a and b are A-sta-
ble. In particular, ab is A-stable. By Lemma 7.8, there exists α0 ∈ A
such that

µA(c) = µα(c), and µα(ab) = µα(c) < µα(dφ), for all α ≥ α0 in A.

Hence, µA(ab) = µA(c) < µA(d) + µα(φ) < µA(d) + γ. By the defini-
tion of µ′, we conclude that µ′(ab) = µ′(c) < µ′(dφ).
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Corollary 7.12. For all a ∈ K[x]deg(φ), Hµ′(a) is a unit in Gµ′ .

Proof: Since φ is irreducible in K[x] and deg(a) < deg(φ), these two
polynomials are coprime. Hence there is a Bézout identity

ac+ dφ = 1, deg(c) < deg(φ), deg(d) < deg(a) < deg(φ).

By Lemma 7.11, ac ∼µ′ 1.

Corollary 7.13. The polynomial φ is a key polynomial for µ′ of minimal
degree.

Proof: By the definition of µ′ we have µ′(f) = Min{µ′(fsφs) | 0 ≤ s} for
any f =

∑
0≤s fsφ

s ∈ K[x]. By Proposition 2.3, φ is µ′-minimal.

Let us show that φ is µ′-irreducible. Suppose φ -µ′ f , φ -µ′ g for
f, g ∈ K[x]. Let f0, g0 be the 0-th coefficients of the φ-expansion of f
and g, respectively.

Since φ is µ′-minimal, Proposition 2.3 shows that µ′(f) = µ′(f0) and
µ′(g) = µ′(g0).

Consider the φ-expansion

f0g0 = c+ dφ, deg(c),deg(d) < deg(φ).

By Lemma 7.11, µ′(f0g0) = µ′(c), so that

µ′(fg) = µ′(f0g0) = µ′(c).

Since the polynomial c is the 0-th coefficient of the φ-expansion of fg,
Proposition 2.3 shows that φ -µ′ fg. Hence, φ is µ-irreducible.

This shows that φ is a key polynomial for µ′.

Finally, by Corollary 7.12, any polynomial in K[x] of degree smaller
than deg(φ) cannot be a key polynomial for µ′, because it is a µ′-unit.

8. Some remarks on the structure of Gµ as a graded
algebra

Let µ be a valuation on K[x] admitting key polynomials. Let n be
the minimal degree of a key polynomial for µ.

The subgroup Γn ⊂ Γµ admits an intrinsic description as the subgroup
of Γµ formed by all values α such that there is a unit in G of degree α.

Lemma 8.1. Let µ be a valuation on K[x] with KP(µ) 6= ∅. For any α ∈
Γµ, we have

(P(α)/P+(α)) ∩ G∗ 6= ∅ ⇐⇒ α ∈ Γn,

where n is the minimal degree of a key polynomial for µ.
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Proof: Let α ∈ Γn, and take a ∈ K[x]n such that µ(a) = α. By Propo-
sition 3.5, Hµ(a) is a unit in P(α)/P+(α).

Let φ be a key polynomial of degree n and let γ = µ(φ), so that
Γµ = 〈Γn, γ〉.

Any α 6∈ Γn can be written as

α = `γ + β, ` ∈ Z, ` 6= 0, β ∈ Γn.

If ` < 0, then Proposition 2.3 shows that there is no polynomial
in K[x] with µ-value equal to α. Thus, P(α)/P+(α) = {0}.

Suppose ` > 0. By the previous argument, there exists a unit z ∈ G∗
of degree β. Then z Hµ(φ)` has degree α and there is no unit in

P(α)/P+(α) = (z Hµ(φ)`)∆,

because Hµ(φ) is a prime element.

The structure of Gµ is determined by that of the subalgebra

Gµ,n :=
⊕

α∈Γn
Pα/P+

α ⊂ Gµ,

as indicated in the next result.

Proposition 8.2. Let µ be a valuation on K[x] with KP(µ) 6= ∅. Let γ =
µ(φ) be the common µ-value of all key polynomials of minimal degree n.

Consider the graded algebra Gµ,n[x] obtained by assigning degree γ to
the indeterminate x. Then:

(1) If µ is incommensurable, then Gµ ' Gµ,n[x] as Gv-algebras.
(2) If µ is commensurable, then we have an isomorphism of Gv-algebras

Gµ ' Gµ,n[x]/(xe − zξ),
where e is the least positive integer such that eγ ∈ Γn, z is a unit
in Gµ of degree eγ, and ξ is a generator of ∆ as a κ-algebra.

Proof: Let φ be any key polynomial of minimal degree. The inclusion
Gµ,n ⊂ Gµ determines a well-defined onto homomorphism of graded
Gv-algebras:

(19) Gµ,n[x] −→ Gµ, x 7−→ Hµ(φ).

If µ is incommensurable, then any polynomial with coefficients in Gµ,n
has monomials with different degree. Hence, our mapping (19) has a
trivial kernel and it is an isomorphism.

If µ is commensurable, there exists u ∈ K[x]n such that µ(uφe) = 0,
and ξ = Hµ(uφe) is a transcendental generator of ∆ as a κ-algebra by
Theorem 4.6.
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Since Hµ(u) is a unit, we have Hµ(φ)e = zξ, where z = Hµ(u)−1.
If we show that this is a minimal relation for Hµ(φ), the proof of the
proposition will be complete. Suppose that the polynomial∑

m≥0
am x

m ∈ Gµ,n[x]

lies in the kernel of (19). By applying Hµ(φ)e = zξ, we may assume that
0≤m < e. Again, this sum cannot have two different monomials. In fact,

deg(a xm) = deg(b x`) =⇒ (m− `)γ = deg(b)− deg(a) ∈ Γn.

From (m− `)γ ∈ Γn we deduce m ≡ ` (mod e), and this implies m = `.
Thus, our relation takes the form aHµ(φ)m = 0. Since G is an integral

domain, we necessarily have a = 0.

The structure of the subalgebra Gµ,n depends very much on how the
valuation µ has been constructed. We determine its structure in two
particular situations:

• Γn is a finitely-generated group, or
• µ has been obtained by a finite number of (ordinary) augmenta-

tions, starting with a valuation µ0 such that Γµ0 = Γv.

If Γn is finitely-generated, then it is a free abelian group. If N is the
rank of this group, we can choose

ai ∈ K[x]n, γi = µ(ai), 1 ≤ i ≤ N,
such that γ1, . . . , γN is a Z-basis of Γn. Then, every α ∈ Γn can be written
in a unique way as α = m1γ1 + · · ·+mNγN , with m1, . . . ,mN ∈ Z.

Therefore, we may choose homogeneous units of each degree α

zα := Hµ(a1)m1 · · ·Hµ(aN )mN ∈ G∗µ,n,
and these units satisfy

zα+β = zαzβ , for all α, β ∈ Γn.

As a consequence, Gµ,n is isomorphic to the group algebra

Gµ,n ' ∆[Γn],

since P(α)/P+(α) = zα∆ for all α ∈ Γn.
This is an explicit description of the structure of Gµ,n as a graded

algebra, because the structure of ∆ has been explicitely determined in
Section 4 in all cases.

Suppose now that µ0 is a valuation on K[x] extending v with Γµ0 = Γv
and there is a finite sequence of augmentations (see Subsection 7.1)

(20) µ0
φ1,γ1−→ µ1

φ2,γ2−→ · · · φr−1,γr−1−→ µr−1
φr,γr−→ µr = µ,

with µi = [µi−1; φi, γi] for 1 ≤ i ≤ r.
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We may always assume that (20) is a MacLane chain of augmenta-
tions, that is,

φi+1 -µi φi, 0 ≤ i < r.

By Proposition 7.2, φr−1, φr are key polynomials of minimal degree
for µr−1, µ, respectively. In particular, n = deg(φr).

Also, φr is another key polynomial for µr−1 which is not µr−1-equiv-
alent to φr−1. Hence, Corollary 6.4 shows that

Γµr−1
= Γµr−1,n = Γn,

and the last equality holds because µr−1(a) = µ(a) for all a ∈ K[x]n.
By Theorem 4.2, the valuations µ1, . . . , µr−1 are necessarily commen-

surable. Let e1, . . . , er−1 be their relative ramification indices. Then, we
have an isomorphism of Gv-algebras

Gµ,n ' (Gv ⊗kv ∆)[x1, . . . , xr−1],

where x1, . . . , xr−1 are homogeneous units of degree γ1, . . . , γr−1 and
satisfy relations

xeii = ηi, 1 ≤ i < r.

The arguments are quite similar to those in Proposition 8.2. We omit
the details.
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