Publ. Mat. 64 (2020), 195-232
DOI: 10.5565/PUBLMAT6412009

KEY POLYNOMIALS OVER VALUED FIELDS

ENRIC NART

Abstract: Let K be a field. For any valuation p on K[z] admitting key polynomials
we determine the structure of the whole set of key polynomials in terms of a fixed
key polynomial of minimal degree. We deduce a canonical bijection between the set
of p-equivalence classes of key polynomials and the maximal spectrum of the subring
of elements of degree zero in the graded algebra of u.
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Introduction

Key polynomials over a valued field (K, v) were introduced by S. Mac-
Lane as a tool to construct augmentations of discrete rank-one valuations
on the polynomial ring K[z] [5]. As an application, MacLane designed
an algorithm to compute all extensions of the given valuation v on K to
a finite field extension L/K [6].

This work was generalized to arbitrary valuations by M. Vaquié [11]
and, independently, by F. J. Herrera, M. A. Olalla, and M. Spiva-
kovsky [4].

In the non-discrete case limit augmented valuations arise. The struc-
ture of their graded algebra and the description of their sets of key
polynomials are crucial questions linked with the study of the defect
of a valuation in a finite extension and the local uniformization prob-
lem [3, 7, 10, 12].

In this paper we consider an arbitrary valuation p on K[x] admitting
key polynomials and we describe its set of key polynomials KP(u) in
terms of a fixed key polynomial of minimal degree. We also give some
hints about the structure of the graded algebra of u.

Some of the results of the paper can be found in [11], but only for
augmented valuations. Also, in [9] some partial results are obtained for
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residually transcendental valuations, by using the fact that these valua-
tions are determined by a minimal pair.

In our approach we do not make any assumption on u, and we de-
rive our results in a pure abstract form from the mere existence of key
polynomials.

In Section 2 we study general properties of key polynomials, while
in Section 3 we study specific properties of key polynomials of minimal
degree. In Section 4 we determine the structure of the subring A C G,
of elements of degree zero in the graded algebra of p.

Section 5 is devoted to the introduction of residual polynomial oper-
ators, based on old ideas of Ore and MacLane [8, 6]. These operators
yield a malleable and elegant tool, able to replace the onerous “lifting”
techniques in the context of valuations constructed from minimal pairs.

In Section 6 we describe the set of key polynomials and we prove that
a certain residual ideal operator sets a bijection

KP(1)/~, — Max(A)

between the set of p-equivalence classes of key polynomials and the max-
imal spectrum of A. This result is inspired by [2], where it was proved
for discrete rank-one valuations.

In Section 7 we single out a key polynomial of minimal degree for
augmented and limit augmented valuations. In this way, all previous
results can be applied to these valuations.

In Section 8 we obtain some partial results on the structure of the
graded algebra.

Acknowledgements. I thank the anonymous referees for their enlight-
ening comments. The results of Section 8 are inspired by their remarks
on a previous version of the paper.

1. Graded algebra of a valuation on a polynomial ring

1.1. Graded algebra of a valuation. Let I" be an ordered abelian
group. Consider
w: L — TU{c0}
a valuation on a field L, and denote
e m,, C O, C L, the maximal ideal and valuation ring of w.
o ky, = O, /my, the residue class field of w.
e 'y, = w(L*), the group of values of w.

To any subring A C L we may associate a graded algebra as follows.
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For every o € T',, consider the additive subgroups
Po={acAlw(a)>a}tDdPr={aecA|w()>al,
leading to the graded algebra
_ +
grw(A) - @OLEFW Pa/Pa N
The product of homogeneous elements is defined in an obvious way:
(a—i-P;F)(b—ﬁ—Pg) = ab—l—P(j_w.

If the classes a + P, b+ Py are different from zero, then w(a) = a,
w(b) = B. Hence, w(ab) = a + B, so that ab + ’P;Jrﬂ is different from
Zero too.

Thus, gr,,(A) is an integral domain.

Consider the “initial term” mapping H,,: A — gr,,(A), given by

H,(0)=0, Hy(a)=a+ ’P:;(a), fora e A, a#0.
Note that Hy(a) # 0 if a # 0. For all a,b € A we have
Hy,(ab) = Hy(a)Hy(b),
Hy(a+b) = Hy(a) + Hy(b), if w(a) =w() =w(a+b).
Definition 1.1. Two elements a,b € A are said to be w-equivalent if

H,(a) = H,(b). In this case, we write a ~y, b.

This is equivalent to w(a — b) > w(b).

We say that a is w-divisible by b if Hy(a) is divisible by H,(b)
in gr,, (A4). In this case, we write b|,a.

This is equivalent to a~,, be, for some ce€ A.

1.2. Valuations on polynomial rings. General setting. Through-
out the paper, we fix a field K and a valuation

p: K(x) — T, U{oc),
on the field K (x) of rational functions in one indeterminate x.

We do not make any assumption on the rank of u.

We denote by v = p,. the valuation on K obtained by the restriction
of p. The group of values of v is a subgroup of I',;:
'y =v(K*) = p(K*) CTy.

For each one of the two valuations v, i, we consider a different graded
algebra:
Gy =gr,(K), G,:= ng(K[x]).
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In the algebra G,, every non-zero homogeneous element is a unit, that
is,
Hy(a)"' = H,(a™ "), forallae K*.
The subring of homogeneous elements of degree zero of G, is ks, so
that G, has a natural structure of k,-algebra.

We have a natural embedding of graded algebras
Go =Gy, a+Pl(v)—a+Pl(p), forallael, and a € Py(v).
The subring of G,, determined by the piece of degree zero is denoted
A=A, =Polp)/Py (1)-
Since O, C Py = K[z] N O, and m, = Pf N O, C Py = K[z] N my,
there are canonical injective ring homomorphisms
ky — A —k,.

In particular, A and G, are equipped with a canonical structure of k,-al-
gebra.

The aim of the paper is to analyze the structure of the graded alge-
bra G,, and show that most of the properties of the extension /v are
reflected in algebraic properties of the extension G,,/G,.

For instance, an essential role is played by the resitdual ideal operator

(2) R=R,: K[lz] — I(A), g+— (Hu.(9)G.) NA,
where I(A) is the set of ideals in A.
In Sections 5 and 6 we shall study in more detail this operator R,

which translates questions about the action of p on K|x] into ideal-the-
oretic problems in the ring A.

Commensurability. The divisible hull of an ordered abelian group I'
is

QI :=T ®zQ.
This Q-vector space inherits a natural structure of ordered abelian group,
with the same rank as I'.

The rational rank of T is defined as rr(I") = dimg(QT").

Since I has no torsion, it admits an order-preserving embedding I' <
QT into its divisible hull. For every v € QI there exists a minimal positive
integer e such that ey € I

We say that our extension pu/v is commensurable if QI', = QT',, or,
in other words, if rr(I',/T',) = 0. This is equivalent to I',,/I", being a
torsion group.
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Actually, rr(T',,/I",) takes only the values 0 or 1, as the following
well-known inequality shows [1, Theorem 3.4.3]:

(3) tr. deg(ky/ky) +10(I,/Ty,) < tr.deg(K (z)/K) = 1.
Finally, we fix some notation to be used throughout the paper.
Notation. For any positive integer m we denote
Klx]m = {a € K[z] | deg(a) < m}.

For any polynomials f,x € Klz], with deg(x) > 0, we denote the
canonical y-expansion of f by

[= ZOSS stSa

being implicitly assumed that the coefficients f, € K[z] have deg(fs) <
deg(x).

2. Key polynomials. General properties

In this section we introduce the concept of key polynomial for p and
we study some general properties of key polynomials.

Definition 2.1. Let x € K|[x].
We say that x is p-irreducible if H,(x)G,, is a non-zero prime ideal.
We say that x is p-minimal if x {, f for any non-zero f € K([z] with
deg f < deg x.

The property of y-minimality admits a relevant characterization, given
in Proposition 2.3 below.

Lemma 2.2. Let f,x € Klz|. Consider a x-expansion of f € Klz| as
follows:

f:Zo< asx®, as € K[z], xtuas, for alls.

Then p(f) = Min{pu(asx”) | 0 < s}.

Proof: Write f=ag+ xq with g€ K[x]. Then p(f) > Min{u(ao), u(xq)}-

A strict inequality would imply ao ~, —Xxg¢, against our assump-
tion. Hence equality holds, and the result follows from a recurrent argu-
ment. O
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Proposition 2.3. Let x € K[x] be a non-constant polynomial. The fol-
lowing conditions are equivalent:

(1) x is p-minimal.

(2) For any f € K[x] with x-expansion f =) 4., fsx°, we have

p(f) = Min{u(fsx®) [0 < s}.

(3) For any non-zero f € K[x] with x-expansion f = Y . fsx*, we
have B

X tu [ = p(f) = n(fo)-

Proof: The implication (1) = (2) follows from Lemma 2.2. In fact, if
X is p-minimal, then x 1, fs for all s, because deg(fs) < deg(x).

Let us deduce (3) from (2). Take a non-zero f € K|x] and write
f = fo+ xq with ¢ € K[z]. By condition (2), we have u(f) < u(fo).

If u(f) <p(fo), then f ~, xq, so x |, f. Conversely, if f ~, xg for
some g € K[z], then u(f — xg) > wu(f). Since the x-expansion of f — xg
has the same 0-th coefficient fo, condition (2) shows that u(f) < p(f —

x9) < u(fo)-

Finally, we show that (3) implies (1). If deg(f) < deg(x), then the
x-expansion of f is f = fo. By condition (3), x 1, f. O

The property of p-minimality is not stable under p-equivalence. For
instance, if y is p-minimal and u(y) > 0, then y + x?2 ~u x and x + x?
is not p-minimal. However, for u-equivalent polynomials of the same
degree, u-minimality is clearly preserved.

Definition 2.4. A key polynomial for p is a monic polynomial in Kz
which is p-minimal and p-irreducible.
The set of key polynomials for p will be denoted by KP(u).

In the papers [4] and [11], different definitions for key polynomials
are considered, which are somehow related, as shown by Mahboub in [7].
We are using the classical definition of MacLane—Vaquié given in [11].

Lemma 2.5. Let x € KP(u) and let f € K[z] a monic polynomial such
that x |, f and deg(f) = deg(x). Then x ~, f and f is a key polynomial
for p too.

Proof: The x-expansion of f is f = fo+ x, with deg(fo) < deg(x). Con-
ditions (2) and (3) of Proposition 2.3 show that u(f) < u(fo). Hence,
H,(f) = H,(x) and f is p-irreducible. Since deg(f) = deg(x), f is

O

p-minimal too.
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Lemma 2.6. Let x € KP(y).

(1) For a,b € K[T]geg(y), let ab = ¢ + dx be the x-expansion of ab.

Then
p(ab) = p(c) < p(dx).

(2) x is irreducible in K|x].
Proof: For any a,b € K[z]qeg(y), We have x {, a, x {, b by the y-mini-
mality of x. Hence, x {, ab by the p-irreducibility of x. Thus, (1) follows
from Proposition 2.3.

In particular, the equality x = ab is impossible, so that x is irre-
ducible. O

Minimal expression of H,(f) in terms of x-expansions.

Definition 2.7. For x € KP(u) and a non-zero f € K|z], we let s,(f)
be the largest integer s such that x* |, f.

Namely, s, (f) is the order with which the prime H,,(x) divides H,(f)
inG,.

Accordingly, by setting s, (0) := oo, we get

(4) sx(f9) = 5x(f) + 5x(g), forall f,g € Klz].
Lemma 2.8. Let f € K[z] with x-ezpansion f =} fsx*. Denote

L(f) = {s € Zxo | p(fsx®) = p(f)}-
Then f ~y Zselx(f) fsx® and sy (f) = Min(Iy(f))-

Proof: Let g = Zselx(f) fsx®. By construction, f —g =} . fsx* has
p-value p(f —g) > p(f). This proves f ~, g. In particular, s,(f) =

5x(9)-
If s9 = Min(I,(f)), we may write

9= X" (fso + xh);
for some h € K[x]. By construction, u(fs,) = u(fs, +xh) = plg/x>).

By condition (3) of Proposition 2.3, x {,, (fs,+xh). Therefore, s, (g) =
S0- ]

Definition 2.9. For any f € K[z]| we denote s (f) = Max(I,(f)).
Denote for simpliciy s = s,(f) and s’ = 5| (f). The homogeneous
elements
ire(f) := Hu(fs) and  Ire(f) := Hu(fs)
are the initial residual coefficient and the leading residual coefficient of f,
respectively.

The next lemma shows that s} (f) is an invariant of the p-equivalence
class of f.
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Lemma 2.10. If f,g € Klz| satisfy f ~, g, then I, (f) = I, (g9) and
fs ~u gs for all s € I,(f). In particular, irc(f) = irc(g) and lre(f) =
Ire(g).

Proof: Consider the x-expansions f =" .. fsX®, 9= D g<s 9sX°-

If f ~, g, then for any s > 0 we have B B
() u(f) < p(f —g9) < ul(fs — g5)x°)-

The condition s € I, (f), s & I,(g) (or viceversa) contradicts (5). In
fact,

pw((fs —9s)x7) = p(f),

because u(fsx*®) = p(f) and p(gsx®) > p(g) = p(f).
Also, for all s € I,(f), we have u(fsx®) = p(f) and (5) shows that

fsx?® ~u gsx°. Thus, fs ~u Ggs- O
We shall see in Section 3 that the equality

s\ (fg) = s\ (f) + s\ (g), forall f,g€ K[a],
holds if y is a key polynomial of minimal degree.

Semivaluation attached to a key polynomial.

Lemma 2.11. Let x € KP(u). Consider the subset I'y C Iaeg(y) C I'y
defined as

FdEg(X) = {u(a) | a € K[x]deg(x)a a 7é 0}
Then Tgeg(y) is a subgroup of 'y, and (U geg(yy, (X)) = Ty

Proof: Since x is y-minimal, Proposition 2.3 shows that (I'geg(y), (X)) =
.

By Lemma 2.6, T'geg(y) is closed under addition.

Take p1(a) € Tgeg(y) for some non-zero a € K[]geg(y). The polynomi-
als a and x are coprime, because Y is irreducible. Hence, they satisfy a
Bézout identity

(6) ab+xd=1, deg(b) <deg(x), deg(d) < deg(a)< deg(x).

Since ab =1 — dx is the x-expansion of ab, Lemma 2.6 shows that
p(ab) =pu(1)=0. Hence —pu(a) = 1(b) €L geg(y)- This shows that I'geg(y) is
a subgroup of I',. O

Let x € KP(u). Consider the prime ideal p=x K[z] and the field K, =
Klz]/p. By the definition of I'4eg(y), We get a well-defined onto mapping
vyt K — Taeg(y), vy (f+p) = pu(fo), forall fe Klz]\p,

where fy € K|x] is the common 0-th coefficient of the y-expansion of all
polynomials in the class f + p.
This mapping v, depends on the pair u, X, and not only on x.
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Proposition 2.12. The mapping vy s a valuation on K, extending v,
with group of values T geg(y)-

Proof: This mapping v, is a group homomorphism by Lemma 2.6. Fi-
nally,

Oy ((f+9)+p) = p(fo+g0) >Min{u(fo), 1(go) } =Min{v, (f+p), vy (g+p)},

because (f + g)o = fo + go. Hence, v, is a valuation on K. O

Denote the maximal ideal, the valuation ring, and the residue class
field of vy by
my, C Oy C Ky, ky=0,/m,.
Let 0 € K, = K[z]/x K[z] be the root of x determined by the class
of z.
With this notation we have K, = K(6), and

ux (f(0)) = u(fo) = vy (fo(0)), forall f € Klz].

We abuse the language and denote still by v, the corresponding semi-
valuation
K[x] — K = Fdeg(X) U {OO}

().

with support xK[z] = vy

According to the definition given in (2), the residual ideal R(x) of a
key polynomial x is a prime ideal in A. Let us show that it is actually
a maximal ideal in A.

Proposition 2.13. If x is a key polynomial for u, then R(x) is the
kernel of the onto homomorphism

A—ky, g+Pyr g(0)+m,.
In particular, R(x) is a maximal ideal in A.

Proof: By Proposition 2.3, if g € Py, we have v,(g(6)) = plgo) >
p(g) > 0, so that g(#) € Oy. Thus, we get a well-defined ring homo-
morphism Py — k.

This mapping is onto, because every element in k, can be represented
as h(0) + my for some h € K[x]qeg(y) With vy (h(6)) > 0. Since u(h) =
vy (h(6)) > 0, we see that h belongs to Py.

Finally, if g € Pg, then v, (g(0)) > u(g) > 0; thus, the above homo-
morphism vanishes on 773' and it induces an onto mapping A —» k.

The kernel of this mapping is the set of all elements H,(f) for f €
K|[x] satisfying u(fo) > p(f) = 0. By Proposition 2.3, this is equivalent
to u(f) =0 and x |, f. In other words, the kernel is R(x). O
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3. Key polynomials of minimal degree

In this section we study special properties of key polynomials of min-
imal degree. These objects are crucial for the resolution of the two main
aims of the paper:

e Determine the structure of G,, as a k,-algebra.
e Determine the structure of the quotient set KP(u)/~,,.

Recall the embedding of graded k,-algebras
Gy — G-
Let £ € G, be a non-zero homogeneous element which is algebraic
over G,. Then ¢ satisfies a homogeneous equation

€ teaf+ - +eml" =0,

with g, ..., €, homogeneous elements in G, such that deg(e;&%) is con-
stant for all indices 0 < ¢ < m for which ¢; # 0.
Since all non-zero homogeneous elements in G, are units, we have

(7) ¢ algebraic over G, = £ is a unit in G,,, and ¢ is integral over G,.

Lemma 3.1. Let G, C G2 C G, be the subalgebra generated by all ho-
mogeneous elements in G,, which are algebraic over G,.
If a homogeneous element § € G,, is algebraic over G2l then it belongs

to Qf}l.

Proof: Since all non-zero homogeneous elements in ggl are units, the
element ¢ is integral over G2!. Hence, it is integral over G,, so that it
belongs to G. O

Theorem 3.2. Let ¢ € K[x] be a monic polynomial of minimal degree n
such that H,(¢) is transcendental over G,. Then ¢ is a key polynomial

for .
Moreover, for a,b € K[z],, let the ¢-expansion of ab be

(8) ab=c+d¢, ¢ de Klz],.
Then ab ~,, c.

Proof: Let us first show that ¢ is g-minimal.
According to Proposition 2.3, the y-minimality of ¢ is equivalent to

u(f) = Min{u(fs9°) | 0 < s},
for all f € K[z, being f =}, fs¢° its canonical ¢-expansion.
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For any given f € K[z], let § = Min{u(fs¢°) | 0 < s} and consider
I={0<s]|pu(fs9°) =4}, fI:Zfs¢s-

sel

We have p(f) > 0, and the desired equality u(f) = 0 is equivalent

to p(fr) = 6.
If #1 = 1, this is obvious. In the case #I > 1, the equality u(f;) =46
follows from the transcendence of H,(¢) over G,. In fact,

ﬂ(fl) > 6 = ZH;A(fs)H;L(¢)S =0.

sel

By the minimality of n = deg(¢), all H,(fs) are algebraic over G,.
Hence, u(fr) > § would imply that H,(¢) is algebraic over G2, leading

to H,(¢) algebraic over G, by Lemma 3.1. This ends the proof that ¢
is pg-minimal.

Let us now prove the last statement of the theorem.
For a,b € K|x], satisfying (8), Proposition 2.3 shows that

p(ab) = Min{u(c), u(dg)},

because ¢ is p-minimal. By equation (1), the inequality p(c) > u(deo)
implies

H (ab) _ Hﬂ(d)Hu(¢) if .U(C) > U(d¢)7
- H(0) + Ho(d)Hu(6) if p(c) = p(do).

By the minimality of n, the elements H,(a), H,(b), H,(c), H,(d) are
algebraic over G,. Hence, H,(¢) would be algebraic over G2!, leading
to H,,(¢) algebraic over G, by Lemma 3.1. This contradicts our assump-
tion on H,(¢).

Therefore, we must have p(c) < pu(d¢), leading to ab ~, c.

Finally, let us prove that ¢ is p-irreducible.
Let f,g € K|[z] be polynomials such that ¢ {, f, ¢ 1, g. By Proposi-
tion 2.3,

u(f) = u(fo), n(g) = u(go),

where fy, go are the 0-th degree coefficients of the ¢-expansions of f, g,
respectively.

Let fogo = c+d¢ be the ¢-expansion of fygo. As shown above, fogo ~,
¢, so that

u(fg) = u(fogo) = p(c).
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Since ¢ is the 0-th coefficient of the ¢-expansion of fg, the equality
p(fg) = p(c) shows that ¢ {, fg, by Proposition 2.3. This ends the
proof that ¢ is p-irreducible. O
Corollary 3.3. Consider the following three natural numbers:

¢ = minimal degree of f € K|x] such that H,(f) is not a unit in G,
m = minimal degree of a key polynomial for u,
n = minimal degree of f € K[x] such that

H,(f) is transcendental over G,,.

If one of these numbers exists, then all exist and £ = m = n.
Proof: For any f € K[z] we have
J €KP(n) = H,(f) ¢ G, = Hu(f) ¢ G;' = KP(n) # 0.

where the last implication holds by Theorem 3.2. Hence, the conditions
for the existence of these numbers are all equivalent:

3H,.(f) ¢ G}, <= KP(n) # 0 < G3' € G,

Suppose these conditions are satisfied. By Theorem 3.2, there exists a
key polynomial ¢ of degree n. Also, for any a € K|z],, the homogeneous
element H,(a) € G, is algebraic over G,, hence a unit in G, by (7).

Since H,(¢) is not a unit, this proves that n = ¢. Since there are no
key polynomials in K[z],, this proves n = m too. O

Corollary 3.4. If ¢ is a key polynomial of minimal degree, then for
all f,g € K[z] we have

Ire(fg) = Ire(f)Ire(g), sy(fg) = su(f) + s4(9)-
Proof: Consider the ¢-expansions f = Zogs fs@%, g = Zogt grdt.

We may write
fg=> bid/, bj= > fur

0<j stt=j

For each index j, there exist sg, to such that sg 4+ tg = j and

,u'(b]@bj) > ﬂ(fso¢sogto¢to) > ,u'(fg)a

where the last inequality holds because ju(fs, @) > u(f) and u(gy, ¢'0) >
1(g). Hence,

Fgru D bid?, T ={0<j|plbje’) =u(fg)}.
jeJ
For every j € J, consider the set
Li={(st)|s+t=Jj,s€ly(f) telyg)}



KEY POLYNOMIALS OVER VALUED FIELDS 207

Then, (1) and Theorem 3.2 show the existence of ¢s; € K|x],, such that

Z H fsgt Z H Cst (j)a

(s,t)el; (s,t)el;

where ¢; =37, ;. st Therefore, again by (1), we deduce that

fg~uh, h:ch¢j.

jeJ

Note that J = I4(h) by construction.

By Lemma 2.10, I4(fg) = Is(h) = J and Irc(fg) = lrc(h).

Thus, if ¢ = s;s(f) and m = sj(g), we need to show that Max(J) =
¢+ m and lrc(h) = H,(fo)H,u(gm)-

If j > £+m, then for all pairs (s,t) with s+¢ = j we have either s > ¢
or t > m. Thus, pu(fugud?) = p(fs3°ge0") > p(fg). Therefore, j & J.

For j = £+ m, the same argument applies to all pairs (s,t) with s+t =
j, except for the pair (s¢,t,,), for which u(fs, s, ¢') = pu(fg). Therefore,
j=~{+m is the maximal index in J and Irc(h) =H,(¢r4+m) = Hyu(beym) =

HH (flgm)' O
Units and maximal subfield of A.

Proposition 3.5. Let ¢ be a key polynomial of minimal degree n. For
any non-zero g € K[z|, with ¢-expansion g = Y ., gs¢°, the following
conditions are equivalent: a

(1) g~ a, for some a € K[z],.
2) H ) is algebraic over G,.
3) H ( ) is a unit in G,.

4) s ( ) = s4(9) = 0.

) 9 ~u go-

Proof: If g ~,, a for some a € K[z],, then H,(g) = H,(a) is algebraic
over G, by Corollary 3.3.

If H,(g) is algebraic over G, then H,(g) is a unit by (7).

If H,(g) is a unit, there exists f € K[z] such that fg ~, 1. By
Lemma 2.10, I4(fg) = I4(1) = {0}, so that s4(fg) = s;,(fg) = 0. By
equation (4) and Corollary 3.4, we deduce that s4(g) = sj(g) = 0.

This condition s4(g) = si,(g9) = 0 is equivalent to I4(g) = {0}, which
implies g ~, go by Lemma 2.8.

This proves (1) = (2) = (3) = (4) = (5). Finally, (5) = (1)
is obvious. O
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As a consequence of this characterization of homogeneous algebraic
elements, the subfield k C A of all elements in A which are algebraic
over G, can be expressed as:

(9) r=A"U{0} = {Hyu(a) | a € K[z]n, p(a) = 0} U{0}.

Since k contains all units of A, it is the maximal subfield contained in A.

Since every £ € k is homogeneous of degree zero, any monic homo-
geneous algebraic equation of £ over G, has coeflicients in the residue
field k,. Thus, k coincides with the algebraic closure of k, in A.

Proposition 3.6. Let k C A be the algebraic closure of k, in A. For
any key polynomial ¢ of minimal degree n, the composition of maps

K— A —» k‘¢
18 an isomorphism.

Proof: The restriction to & of the onto mapping A — kg described in
Proposition 2.13 maps

H,(a) — a(0) + my, forall a € K[z],.

Since the images cover all k4, this mapping is an isomorphism between s
and kg. O

Upper bound for weighted values. Let us characterize p-minimality
of a polynomial f € K[z] in terms of its ¢-expansion.

Proposition 3.7. Let ¢ be a key polynomial of minimal degree n. For
any [ € Klx| with ¢-expansion f = Zi:o fs@®, fo # 0, the following
conditions are equivalent:

(1) f is p-minimal.

(2) deg(f) = sy, (f)n.

(3) deg(fe) =0 and u(f) = n(feg").

Proof: Since deg(f) = deg(fe)+¢n and sy (f) < ¢, condition (2) is equiv-
alent to deg(f¢) = 0 and sy(f) = ¢. Thus, (2) and (3) are equivalent.

Let us deduce (3) from (1). Since deg(f — fr¢*) < deg(f), the p-min-
imality of f implies that f — fy¢* cannot be u-equivalent to f. Hence
p(fed) = u(f).

In particular, ¢ = Max(I4(f)). By Proposition 3.5, H,(fs) is a unit
for all fs # 0. Take b € K[z] and ¢, € K[z],, such that b f, ~, 1 and
bfs ~uce forall 0 <s < /.
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If we denote ¢, = 1, Lemma 2.8 and equation (1) show that
bf ~pb Y [0t = Hu(bf) = Y Hu(bfsd) = Y Hul(cs®).
s€ly(f) s€ly(f) s€ly(f)

Hence, bf ~, g := ZsEI¢(f) cs¢°. Since f |, g and f is p-minimal,

deg(fe) + {n = deg(f) < deg(g) = {n,

which implies deg(f;) = 0.

Finally, let us deduce (1) from (2). Take non-zero g,h € K[z] such
that g ~, fh. By Lemma 2.10 and Corollary 3.4, s;,(g9) = s, (fh) =
8y (f) + s (h), so that

deg(f) = si,(f) deg(¢) < s,(g) deg(¢) < deg(g).

Thus, f is g-minimal. O
Corollary 3.8. Suppose KP(u) # 0. Take f € K[z] and m a positive
integer. Then, f is p-minimal if and only if f™ is p-minimal.

Proof: Let ¢ be a key polynomial of minimal degree. By Corollary 3.4,
sy (f™) = msy(f). Hence, condition (2) of Proposition 3.7 is equivalent
for f and f™. O

As another consequence of the criterion for p-minimality, we may
introduce an important numerical invariant of a valuation on K[z ad-
mitting key polynomials.

Theorem 3.9. Let ¢ be a key polynomial of minimal degree for a valu-
ation p on K[x]. Then, for any monic non-constant f € K[z] we have

u(f)/ deg(f) < C(p) = p(¢)/ deg(d),
and equality holds if and only if f is p-minimal.
Proof: Since ¢ and f are monic, we may write
fIe80) = gieell) b deg(h) < deg(¢) deg(f).

By Proposition 2.3, u(f4°8(%)) < pu(¢°&())) or, equivalently, u(f)/deg(f)<
C(p).

By Proposition 3.7, equality holds if and only if f4°8(®) is y-minimal,
and this is equivalent to f being p-minimal, by Corollary 3.8. O
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4. Structure of A as a k,-algebra

In this section we determine the structure of A as a k,-algebra and
we derive some specific information about the extension k, /k,.

In Subsection 4.1 we deal with the case pu/v incommensurable. We
show that A = k,,. In this case all key polynomials have the same degree
and they are all p-equivalent.

In Subsection 4.2 we assume that p admits no key polynomials. We
have again A = k,,. Also, we find several characterizations of the condi-
tion KP(p) = 0.

In Subsection 4.3 we deal with the case p/v commensurable and
KP(u) # 0, which corresponds to the classical situation in which g is
residually transcendental.

In this case A is isomorphic to a polynomial ring in one indeterminate
with coefficients in &, the algebraic closure of k, in k,,.

4.1. Case p/v incommensurable. We recall that £/v incommensu-
rable means QI', C QI',, or, equivalently, rr(I",/T",) > 0

Lemma 4.1. Suppose p/v is incommensurable. Let ¢ € K[z] be a
monic polynomial of minimal degree n satisfying (o) ¢ QI',. Then,
for all f,g € K[x] we have:

(1) f ~uap®D), for some a € K[z], and a unique integer s(f) > 0.

10) zs a key polynomzal and s(f) = se(f) = s;,(f)
f is a p-unit if and only if s(f) = 0.

(2)

(3)

(4) £l g if and only if () < s(g).

(5) f is p-irreducible if and only if s(f) = 1.
(6) f is p-minimal if and only if deg(f) = s(f)n.

Proof: Consider the ¢-expansion f = >, fs¢°, with f, € K[z], for
all s. All monomials have different p-value. In fact, an equality

p(fs0”) = u(fed") = p(fs) — u(fe) = (t = s)u(e)
is possible only for s = t because u(¢) ¢ QI and p(fs), u(f:) belong
to QI', by the minimality of n.
Hence, f ~, a¢® for the monomial of least p-value. The unicity of s
follows from the same argument as above. This proves (1).

By Proposition 2.3, ¢ is p-minimal. Let us show that ¢ is u-irreducible.
Consider f, g € K[z] such that ¢ 1, f, ¢ 1, g. By property (1), f ~, a
and g ~, b for some a,b € K[z],. In particular,

p(fg) = p(ab) = p(a) + u(d) € QLY
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by the minimality of n. By property (1), fg ~, c¢® for some ¢ € K[z],
and an integer s > 0. Since u(¢) € QT,, the condition su(¢) = u(fg) —
p(c) € QI'y leads to s = 0, so that fg ~, c. Since ¢ is p-minimal, we
have ¢ {, fg. Hence, ¢ is p-irreducible.

Once we know that ¢ is a key polynomial, property (1) implies I (f) =
{s(f)} for all f € K[x]. Thus, s(f) = s4(f) = sy(f). This proves (2).

If f is a p-unit, then ¢ 1, f, so that s(f) = 0.
Conversely, if s(f) = 0, then H,(f) = H,(a) for some a € Klz],.
Since the polynomials a and ¢ are coprime, they satisfy a Bézout identity
ab+¢d =1, deg(b) <n, deg(d) <deg(a)<n.

Clearly, ab=1 — d¢ is the canonical ¢-expansion of ab. Since we can-
not have ab ~, d¢, because p(¢) & QI'y, we must have ab ~, 1. This
proves (3).

The rest of statements follow easily from (1), (2), and (3). O

In particular, all results of the last section apply to our key polyno-
mial ¢, because it is a key polynomial of minimal degree.

Theorem 4.2. Suppose /v incommensurable. Let ¢ € K|x] be a monic
polynomial of minimal degree n satisfying u(¢) & Qr,,. Then:
(1) ¢ is a key polynomial for p.
(2) All key polynomials have degree n and are p-equivalent to ¢. More
precisely,

KP(p) = {¢ +a|aec Klz]n, ula) > p(¢)}-

(3) The natural inclusions determine equalities k = A = k,,.
(4) R(¢) =0, and k, is a finite extension of k, isomorphic to k.

Proof: By properties (2), (5), and (6) of Lemma 4.1, ¢ is a key polyno-
mial for u, all key polynomials have degree n, and are all u-divisible by ¢.
By Lemma 2.5, they are p-equivalent to ¢. This proves (1) and (2).

Sincerr(I', /T',) > 0, the inequality in equation (3) shows that &, /k, is
an algebraic extension. Since k, C A C k,, the ring A must be a field.
In particular, kK = A by the remarks preceding Proposition 3.6.

Let us show that A = k. An element in kj, is of the form

(g/h) +m, €k,
with g, h € K|x] such that u(g/h) = 0.
By property (1) in Lemma 4.1, from u(g) = u(h) we deduce that

g ~uag®,  hoevy be?
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for a certain integer s > 0 and polynomials a,b € K]z, such that
p(a) = u(b). Thus,

g ag® a
E—i—muzﬁ—l—mu: E—l—mu
By Lemma 4.1, H,(a) and H,,(b) are units in G,,, so that H,(a)/H,(b) €
A* is mapped to (g/h) + m, under the embedding A < k,. This
proves (3).

By Proposition 2.13, R(¢) is the kernel of the onto mapping A — k.
Since A is a field, R(¢) = 0 and this mapping is an isomorphism.
This ends the proof of (4), because ky/k, is a finite extension. O

2. Valuations not admitting key polynomials.

Theorem 4.3. If KP(u) = 0, the canonical embedding A — k, is an
isomorphism.

Proof: An element in k* is of the form

(f/lg)+wmy, €kl fogeK[z], u(f/g)=0.

If KP(p) = 0, then Corollary 3.3 shows that H,(f) and H,(g) are
units in G,,. Hence, H,(f)H,(g)"" is an element in A whose image in k,,

is (f/g) +my. O

Theorem 4.4. Let p be a valuation on K[z| extending v. The following
conditions are equivalent:
) KP(p) =0.
2) G, is algebraic over G,.
3) Ewvery non-zero homogeneous element in G, is a unit.
4) p/v is commensurable and k, /k, is algebraic.
5) The set Of weighted values

(1
(
(
(
(

={u(f)/ deg(f) | f € Klz]\ K monic}

does not contain a mazximal element.
Proof: By Corollary 3.3, conditions (1), (2), and (3) are equivalent.

Let us show that (1) implies (4). If KP(p) = 0, then p/v is com-
mensurable by Theorem 4.2, and k,/k, is algebraic by Theorems 3.2
and 4.3.

Let us now deduce (5) from (4). Take ¢ an arbitrary monic polynomial
in K[z]\ K. Let us show that u(¢)/ deg(¢) € W is not an upper bound
for this set.
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Since QI', = QT',,, there exists a positive integer e such that eu(¢) €
I',. Thus, there exists a € K* such that p(a¢®) =0, so that H,(a¢®) €
k¥,

n

By hypothesis, this element is algebraic over k,. Hence H,(¢) is alge-
braic over G,. As mentioned in (7), H,(¢) is integral over G,. Consider
a homogeneous equation

(10) o+ et Hu(9) + -+ em 1 Hu(0)™ ! + Hu(9)™ = 0,

with €, ..., €, homogeneous elements in G, such that deg(e;H,(¢)") =
mu(p) for all indices 0 < i < m for which ¢; # 0.
By choosing a; € K with H,(a;) = ¢ for all i, equation (10) is
equivalent to
plag +a1g+ -+ am1¢™ "+ ¢™) > p(6™) = mu(9).
Hence, this monic polynomial f = ag 4+ a1¢ + -+ apm_16™ ! + ¢™ has
a larger weighted value

p(f)/ deg(f) > p(¢™)/ deg(f) = u(¢)/ deg(e).

Hence the set W contains no maximal element.

Finally, the implication (5) = (1) follows from Theorem 3.9. O

4.3. Case pu/v commensurable and KP(u) # 0.

Theorem 4.5. Suppose p/v commensurable and KP(u) # 0. The
canonical embedding A — k, induces an isomorphism between the field
of fractions of A and k,,.

Proof: Let x € K[z] be an arbitrary key polynomial for p.
We must show that the induced morphism Frac(A)— &, is onto.
An element in k}, is of the form

(f/g) +mu ekl fgeKlz], p(f/g)=0.

Set a = p(f) = p(g) € Ty. By Lemma 2.11, Ty = (Tgeg(y)» #(X))-
Hence we may write

—a=fB+su(x), BETldegnx) 5EZL.

Since 1(x) € QI geg(y), We may assume that 0 < s < e for some positive
integer e. Take a € K[x]geg(y) such that p(a) = 3. Then, the polyno-
mial h = ay?® satisfies u(h) = —a.

Thus, H,(hf) and H,(hg) belong to A and the fraction H, (hf)/H,(hg)
is mapped to (f/g) + m, by the morphism Frac(A)—k,. O
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Theorem 4.6. Suppose p/v commensurable. Let ¢ be a key polynomial
of minimal degree n and let e be a minimal positive integer such that

6/,6(¢) € Fdeg(d))-
Take ue K[z|,, such that p(u¢®)=0. Then & =H, (u¢®) € A is tran-

scendental over k, and A = K[¢].

Proof: The element £ is not a unit, because it is divisible by the prime
element H,(¢). By (7), £ is transcendental over k,.

Consider H,(g) € A, for some g € Klz] with u(g) = 0. Let g =
Y 0<s 9s®® be the ¢-expansion of g.

Let I=1I4(g) be the set of indices s such that u(gs$*)=0. For each s €
I, the equality su(¢) = —pu(gs) € Taeg(p) implies that s = ejs for some
integer 75 > 0.

By Lemma 2.8 and equation (1),

(11) g ~nu ZSGI 9s®°, Hu(g9) = ZSEI H,(959°).

Proposition 3.5 shows that H,(u) is a unit. For each s € I, there
exists ¢, € K|[z],, such that H,(cs) = H,(gs)H,(u) 7. Hence,

H,,(9s6") = Hyu(gs) Hpu(w) ™7 Hyu(u)* Hyy(¢°) = Hpu(c)8* € m[E].
Hence H,(g) € [€]. This proves that A = k[¢]. O

As a consequence of Theorems 4.2, 4.3, 4.4, 4.5, and 4.6, we obtain
the following computation of the residue class field k.

Corollary 4.7. If KP(u) = 0, then kK = A =k, is an algebraic exten-
sion of k.

If p/v is incommensurable, then Kk = A =k, is a finite extension
of ky.

If p/v is commensurable and KP(u) # 0, then k,, ~ k(y), where y is
an indeterminate.

5. Residual polynomial operator

Suppose /v commensurable and KP () # 0.
Let us fix a key polynomial ¢ € KP(u) of minimal degree n. Let ¢ =
H,,(¢) be the corresponding prime element of G,,.

Having in mind the description of the set KP(u) in Section 6, we
introduce a residual polynomial operator

R: K[x] — K[y],
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which provides a decomposition of any homogeneous element H,(f) €
G, into a product of a unit, a power of ¢, and the degree-zero ele-
ment R(f)(§) € A = k[¢] (Theorem 5.3). As a consequence, the op-
erator R provides a computation of the residual ideal operator (Theo-
rem 5.7).

In Lemma 2.11 we proved that I', = (I'y, u(¢)), where I',, is the
subgroup
I, ={u(e)|ae Kz]p,a#0} CT,.
Let e be a minimal positive integer with eu(¢) € I',,. By Theorem 3.9,
all key polynomials x of degree n have the same p-value u(x) = u(p).
Thus, this positive integer e does not depend on the choice of ¢.
It will be called the relative ramification index of p.

We fix a polynomial v € K[x], such that u(u¢®) =0 and consider
§ = Hu(ug®) = Hu(u)g® € A.
By Theorem 4.6, £ is transcendental over k, and A = k[¢].
Throughout this section, for any polynomial f € K[x] we denote
s(f) = s6(f),  s'(f) = s5(f), I(f):=Is(f).

For s € I(f), the condition u(fs¢®) = u(f) implies that s belongs to
a fixed class modulo e. In fact, for any pair s,¢ € I(f),

(fs¢”) =pu(fed") = (t=s)u(¢)=p(fs)—pu(fr) € Tn =t = s (mod e).

Hence I(f) C {so, $1,.--,84}, where

so=s(f)=Min(I(f)), sj=sotje,0<j<d, sa=5(f)=Max(I(f)).
By Lemma 2.8, we may write

(12)  frop D fod mou 8 (fag + o+ Lo, @+ -+ fau0™),
s€I(f)

taking into account only the monomials for which s; € I(f).
Definition 5.1. Consider the residual polynomial operator
R:=Ry,: Klo] — &ly], R(f)=Co+ Gy + -+ Gy '+,
for f # 0, where the coefficients (; € x are defined by
a3 = {Hu<fsd>—1Hu<u>d—jHu<fsj) it 5; € 1(7),
0 if s, & ().
Also, we define R(0) = 0.
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For s; € I(f), we have
ﬂ(fsj¢je) = U(f8d¢de) = u(f/9*),

s that (f.,) = p(for) + (d— f)ep(d) = plfo,) — (d— j)ulu).
Since the three homogeneous elements H,(f,), H,(fs,), and H,(u)
are units in G,,, we deduce that (; € A* = x* for s; € I(f).
Thus, the monic residual polynomial R(f) is well defined, and it has
degree

(14) d(f) = deg(R(f)) = d = (s'(f) — s(f))/e-
Note that (y # 0, because sg € I(f). Thus, R(f)(0) # 0.
Example. For any monomial f=a¢® with a € K[z],,, we have R(f)=1.

Definition 5.2. With the above notation, the normalized leading resid-
ual coefficient

nle(f) = Hu(fo) Hu(u) ™ = TIre(f)Hyu(u) " € G,
is a homogeneous unit in G, of degree u(f) — s(f)u(o).
For any g € K|z], from (4) and Corollary 3.4, we deduce that

d(fg) =d(f) +d(g), nle(fg)=nlc(f)nle(g), forall f,g€ Klz].
By definition, for any s; € I(f) we have

nle(f) ¢; §j = Hu(ij)Hﬂ(¢je)-
Thus, (12) leads to the following identity, which is the “raison d’étre”
of R(f).

Theorem 5.3. For any f € K[z|, we have H,(f)=nlc(f) > R(f)(&).
O

Note that nlc(f) is a unit, ¢*) the power of a prime element, and

R(f)(§) € A

Let us derive from Theorem 5.3 some basic properties of the residual
polynomials.

Corollary 5.4. For all f,g € K|[z]|, we have R(fg) = R(f)R(g).

Proof: Since the functions H,, and nlc are multiplicative, Theorem 5.3
shows that

R(f9)(€) = R(f)(E)R(g)(S)-
By Theorem 4.6, we deduce that R(fg) = R(f)R(g). O
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Corollary 5.5. For all f,g € K|z],

frowg == 1(f) = 1(g), nle(f) = nle(g), and R(f) = R(g);
flug = s(f) < s(g) and R(f) | R(g) in kly].
Proof: If f ~,, g, then I(f) = I(g) and nlc(f) = nlc(g) by Lemma 2.10.
Thus, R(f)(§) = R(g)(§) by Theorem 5.3, leading to R(f) = R(g) by
Theorem 4.6.
Conversely, I(f)=1(g) implies s(f) = Min(I(f)) = Min(I(g)) = s(g).
Thus, H,(f) = H,(g) follows from Theorem 5.3.
If f|. g, then fh ~, g for some h € K|z]. By the first item and
Corollary 5.4, we get R(g) = R(fh) = R(f)R(h), so that R(f) | R(g)-
Also, since s(g) = s(f) + s(h), we deduce that s(f) < s(g).
Conversely, 5(f) < s(g) and R(f) | R(g) imply H,(f) | Hy(g) by
Theorem 5.3, having in mind that nle(f), nlc(g) are units in G,,. O

Corollary 5.6. Let s € Z>o, ¢ € k%, and ¥ € kly] a monic polynomial
with ¥(0) # 0. Then there exists a polynomial f € K|[z] such that

s(f)=s, mle(f)=¢  R(f) =1

Proof: Let ¢ = CO + Cly + -+ Cdflydil + Cdyda with CO» sy Cdfl S
and (g = 1. Let I be the set of indices 0 < j < d with (; # 0.

By (9), for each j € I we may take f; € K[z], such that H,(f;) =
CH,(u)?¢;. Then f = ¢*(fo+ -+ f;7¢ + - + fad?) satisfies all our
requirements. O

Theorem 5.7. For any non-zero f € K|x],

R(f) = €"DER(f)(©)A.
Proof: By definition, an element in the ideal R(f) is of the form H,(h)
for some h € K|[z] such that f |, h and u(h) = 0.
The condition u(h) = 0 implies e | s(h). By Theorem 5.3,
Hy(h) = &/ H,, (u)=*™/¢ nle(h) R(h)(€).
On the other hand, Corollary 5.5 shows that s(f) < s(h) and R(f) |

R(h). Therefore, H,,(h) belongs to the ideal ¢[s()/eIR(f)(&)A.
Conversely, if m = [s(f)/e], then Theorem 5.3 shows that

EMR(F)(€) = ¢ Hy(w)" R()(€)
= Hu(f)q" =P nle(f) ™ Hu(w)™ € R(f),

because me > s(f) and nle(f), H,(u) are units. O
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5.1. Dependence of R on the choice of u. Let u* € K[z], be an-
other choice of a polynomial such that u(u*¢®) = 0 and denote

& =H,(u"¢°) = H,(u")q° € A.
Since p(u) = p(u*) and H,(u), H,(u*) are units in G, we have
¢ =01, whereo=H,(u)H,(u*)"' € A* = k"
Let R* be the residual polynomial operator associated with this choice
of u*.

For any f € K|z], suppose that R*(f) = ¢ +(fy+- -+ vy +y
By the very definition (13) of the residual coefficients,

(G=0"7¢, 1<j<d
We deduce the following relationship between R and R*:
R*(f)(y) = oc"R(f)(c ™ y), forall f € Klz].

5.2. Dependence of R on the choice of ¢. Let ¢, be another key
polynomial with minimal degree n and denote ¢, = H,,(¢.).
By Theorem 3.9, u(¢.) = u(¢), so that

¢ =¢+a, acKlzlp, pla)=p(d)
In particular, p(u¢S) = 0 and we may consider
§s = Hﬂ(u(bi) = HM(U)Qi €A

as a transcendental generator of A as a k-algebra.
Let R, be the residual polynomial operator associated with this choice
of ¢,.

Proposition 5.8. Let ¢, be another key polynomial with minimal de-
gree, and denote with a subindex ( ). all objects depending on ¢..

(1) If ¢ ~u ¢, then g = q, & =&, and R. = R.
(2) If ¢« Ay o, thene =1, ¢ = ¢+ Hy,(a), and & = € + 7, where
7= H,(ua) € k*. In this case, for any f € K|x] we have

(15) v IRy = (y+1)*DR(f)y+ 7).

In particular, s.(f) = ordy1-(R(f)) and s(f) + d(f) = s.(f) +
d(f)-

Proof: Suppose ¢, ~, ¢. By definition,
qx :Hu((b*) :HM(¢) =q, & :HN(U(b*) :Hu(u¢) =¢.
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Let f € K[z]. By equation (1), we can replace ¢ with ¢, in equa-
tion (12) to obtain

f ~p Zsel(f) Is9% ~u ¢i0(f50 4.4 f5_7'¢1€ 4+ deqstie).
Hence, (13) leads to the same residual coefficients, so that R(f) = R.(f).

Suppose ¢. 7, ¢, that is, p(a) = pu(¢). Then e = 1, Hu(¢s) =
H,(¢) + H,(a), and
& =H,(ups) = Hy(u)H,(¢) + Hy(u)Hy(a) =€+ 7.
Finally, let f € K[x], and denote s=5(f), s« =s.(f). By Theorem 5.3,

¢ nle()R(F)(E) = Hu(f) = g2 nlea ()R (f)(Ex)-
Since ¢ = H,(u)"*¢ and ¢, = H,(u) "¢ = H,(u) 1 (£ + 7), we deduce

ER(FE) =o€+ 7)™ R (f)(E+7),

where o = H,,(u)*~** nlc, (f) nle(f) ™! € £*, because

deg(nle(f)H,(u)"*) = 0 = deg(nle, (f)Hp(uw) ™).

By Theorem 4.6, this implies y*R(f)(y) = o(y + 7)**R*(f)(y + 7).
Since R(f) and R.(f) are monic polynomials, we have necessarily o = 1.
This proves (15). O

6. Key polynomials and unique factorization in G,

We keep the assumptions that p/v is commensurable and KP(u) # 0.
We keep dealing with a fixed key polynomial ¢ of minimal degree n,
and we denote ¢ = H,(¢), e least positive integer with eu(¢) € T'y,
u € K[z], such that p(u¢®) =0, and & = H,(u¢®). Also, we denote

s(f) == s4(f), s'(f):=su(f), R(f):=Rgu(f), forall fe K[z]

6.1. Homogeneous prime elements. By Theorem 4.6, the prime el-
ements in A are those of the form (&) for ¢ € k[y] an irreducible
polynomial.

An element in A, which is a prime in G, is a prime in A, but the
converse is not true. Let us now discuss what primes in A remain prime
in G,.

Lemma 6.1. Let ¢ € k[y] be a monic irreducible polynomial.

(1) If v #vy, then (&) is a prime element in G,,.
(2) Ifp =y, then  is a prime element in G, if and only if e = 1.
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Proof: Suppose ¢ # y. Since 1 is irreducible, we have ¥(0) # 0. By
Corollary 5.6, there exists f € K[z] such that s(f) = 0, nle(f) =1, and
R(f) =1. By Theorem 5.3, H,(f) = 9 (£).

Suppose ¥(§) = H,(f) divides the product of two homogeneous ele-
ments in G, say f |, gh for some g,h € K[z].

By Corollaries 5.5 and 5.4, ¢ = R(f) divides R(gh) = R(g)R(h).
Being 1 irreducible, it divides either R(g) or R(h), and this leads to (&)
dividing either H,(g) or H,(h) in G,, by Theorem 5.3.

The element ¢ is associate to ¢° in G,,. Since g is a prime element, its
e-th power is a prime if and only if e = 1. O

Besides these prime elements belonging to A, we know that ¢ is an-
other prime element in G,,, of degree (o).

The next result shows that there are no other homogeneous prime
elements in G,, up to multiplication by units.

Proposition 6.2. A polynomial f € Klx] is p-irreducible if and only if
one of the two following conditions is satisfied:

(1) s(f) = s'(f) = 1.
(2) s(f) =0 and R(f) is irreducible in x[y].

In the first case, H,(f) is associate to q; in the second case, to R(f)(£).

Proof: By Theorem 5.3, H,(f) = ¢*) nle(f) R(f)(¢). Since nle(f) is
a unit and ¢ is a prime, H,(f) is a prime if and only if one of the two
following conditions is satisfied:

(i) s(f) =1 and R(f)(&) is a unit.

(ii) s(f) =0 and R(f)(&) is a prime in G,.

The homogeneous element of degree zero R(f)(€) is a unit in G, if and
only if it is a unit in A. By Theorem 4.6, this is equivalent to deg(R(f)) =
0, which in turn is equivalent to s(f) = s'(f) by (14). Thus, (i) is equiv-
alent to (1), and H,(f) is associate to ¢ in this case.

Since R(f) # y, (ii) is equivalent to (2) by Lemma 6.1. Clearly, H,,(f)
is associate to R(f)(&) in this case. O

Putting together this characterization of p-irreducibility with the
characterization of p-minimality from Proposition 3.7, we get the fol-
lowing characterization of key polynomials.

Proposition 6.3. Let ¢ be a key polynomial for u, of minimal degree n.
A monic x € K[z] is a key polynomial for p if and only if one of the
two following conditions is satisfied:
(1) deg(x) = deg(¢) and x ~, ¢.
(2) s(x) =0, deg(x) = endeg(R(x)), and R(x) is irreducible in £[y].
In the first case, R(x) = &EA; in the second case, R(x) = R(x)(§)A.
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Proof: If x satisfies (1), then x is a key polynomial by Lemma 2.5.
Also, R(x) =R(¢) =EA by Theorem 5.7, since s(¢) = 1 and R(¢) = 1.

If x satisfies (2), then deg(R(x)) = s'(x)/e by (14), so that deg(x) =
s'(x)n, and x is p-minimal by Proposition 3.7. Also, x is p-irreducible
by Proposition 6.2.

Thus, x is a key polynomial, and R(x) = R(x)(£)A by Theorem 5.7.

Conversely, suppose ¥ is a key polynomial for p. Since y is g-minimal,
deg(x) = s'(x)n, by Proposition 3.7.

Since x is p-irreducible, it satisfies one of the conditions of Proposi-
tion 6.2.

If s(x) = s'(x) = 1, we get deg(x) = n and ¢ |, x. Thus, x ~, ¢ by
Lemma 2.5, and hence ¢ satisfies (1).

If s(x) = 0 and R(x) is irreducible in x[y], then deg(R(x)) = s'(x)/e
by (14). Thus, deg(x) = s'(x)n = endeg(R(x)), and hence y satis-
fies (2). O

Corollary 6.4. Let ¢ be a key polynomial for p of minimal degree n.
Let x € K[z] be a key polynomial such that x 7, ¢. Then Tgeg(yy = Ty

Proof: By Lemma 2.11, Ty = (Laeg(y)» #(x)). Since deg(x) > n, we
clearly have I'y, C I'qeg(y)- By Theorem 3.9 and Proposition 6.3,

d
(00 = S 1(6) = deg(ROX))en(9) € T € Ty
Hence I'y = Tgeg(y)- O

Corollary 6.5. The two following conditions are equivalent:

(1) e>1.
(2) All key polynomials of minimal degree are p-equivalent.

Proof: Let ¢ be a key polynomial of minimal degree n.

If e > 1 and y is a key polynomial not p-equivalent to ¢, then Propo-
sition 6.3 shows that deg(x) = endeg(R(x)) > n. Hence, all key poly-
nomials of degree n are p-equivalent to ¢.

If e=1, then p(¢) € T'y, so that there exists a € K|[z], with u(a) =
1(¢). The monic polynomial xy =¢+a has degree n and it is not p-equiv-
alent to ¢. Also, deg(R(x)) = 1, so that R(x) is irreducible. Therefore,
X is a key polynomial for p, because it satisfies condition (2) of Propo-
sition 6.3. O
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6.2. Unique factorization in G,. If x is a key polynomial for g,
then R(x) is a maximal ideal of A, by Proposition 2.13. Let us study
the fibers of the mapping R: KP () — Max(A).

Proposition 6.6. Let ¢ be a key polynomial of minimal degree and let
R=Ry.,.
For any x, X" € KP(u), the following conditions are equivalent:

Moreover, these conditions imply deg(x) = deg(x’).

Proof: The implications (1) = (2) = (3) are obvious.
Also, (3) = R(X') € R(x) = (4), because R(x’') is a maximal
ideal.

Let us show that (4) implies (5). By Proposition 6.3, condition (4)
implies that we have two possibilities for the pair y, x':
() X ~p 6 ~p X' or
(i) s(x) = s(x) = 0.
In the first case, we deduce (5) from Corollary 5.5.
In the second case, condition (5) follows from Theorems 5.7, 4.6, and
the fact that R(x), R(x’) are monic polynomials.

Let us show that (5) implies (1). If R(x) = R(x') = 1, then Proposi-
tion 6.3 shows that x ~, ¢ ~, x'.

If R(x) = R(x') # 1, then Proposition 6.3 shows that s(x) = s(x’) =
0 and

deg(x) = endeg(R(x)) = endeg(R(x")) = deg(x’).

Also, x |, X’ by the second equivalence of Corollary 5.5. Hence, x ~, X’
by Lemma 2.5.

This ends the proof of the equivalence of all conditions.

Finally, (1) implies deg(x) = deg(x’) by the p-minimality of both
polynomials. O

Theorem 6.7. Suppose p/v commensurable and KP(u) # 0. The resid-
ual ideal mapping

R: KP(u) — Max(A)
induces a bijection between KP(u)/~, and Max(A).
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Proof: Let ¢ be a key polynomial of minimal degree n.

By Proposition 6.6, R induces a 1-1 mapping between KP(x)/~, and
Max(A).

Let us show that R is onto. By Theorem 4.6, a maximal ideal £ in A
is given by ¥(§)A for some monic irreducible polynomial ¢ € k[y].

If v =y, then £ = R(¢) by Theorem 5.7. If ¢ # y, then it suffices
to show the existence of a key polynomial x such that R(x) = 1, by
Proposition 6.3.

Let d = deg(%)). By Lemma 5.6, there exists x € K[z] such that

S(X) = Oa HIC(X) = Hﬂ(u)ida R(X) = 1/J

Along the proof of that lemma, we saw that y may be chosen to have
¢-expansion:

X = ao + a19° + - - - + aqp®®, deg(a;) < n.

Also, the condition on aq is Hy(aq) = nle(x)H,(u)® = 1g,. Thus, we
may choose ag = 1. Then deg(x) = den, so that x is a key polynomial
because it satisfies condition (2) of Proposition 6.3. O

Theorem 6.8. Let P C KP(u) be a set of representatives of key poly-
nomials under pi-equivalence. Then the set HP = {H,(x) | x € P} is
a system of representatives of homogeneous prime elements of G, up to
associates.

Also, up to units in G, for any non-zero f € K|x] there is a unique
factorization:

(16) f ~u erp XX, Ay = Sx(f)

Proof: All elements in HP are prime elements by the definition of u-
irreducibility. Also, they are pairwise non-associate by Proposition 6.6.

Let ¢ be a key polynomial of minimal degree n.

By Proposition 6.2, every homogeneous prime element is associate
either to H,(¢) (which belongs to HP), or to ¢(¢§) for some irreducible
polynomial ¢ € k[y], ¥ # y.

In the latter case, along the proof of Theorem 6.7 we saw the existence
of x € KP(u) such that s(x) =0 and R(x) = .

Therefore, ¥(§) = R(x)(§) is associate to H,(x) € HP, by Theo-
rem 5.3.

Finally, every homogeneous element in G,, is associate to a product of
homogeneous prime elements, by Theorem 5.3 and Lemma 6.1. O
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7. Augmentation of valuations

We keep dealing with a valuation p on K[z] with KP(u) # 0.
There are different procedures to augment this valuation, in order to
obtain valuations ' on K[z] such that

u(f) < W'(f), forall f € Klz],

after embedding the value groups of  and ' in a common ordered group.
In this section we show how to single out a key polynomial for p’ of
minimal degree.
As an application, all results of this paper apply to determine the
structure of G,/ and the set KP(p')/~,, in terms of this key polynomial.

7.1. Ordinary augmentations.

Definition 7.1. Take y € KP(x). Let I, < I'" be an order-preserving
embedding of T, into another ordered group and choose v € I” such

that p(x) <.
The augmented valuation of p with respect to these data is the map-

ping

' Klz] — T U {oo},
assigning, to any g € K[| with canonical x-expansion g = .. gsx*,
the value a

1 (9) = Min{u(gs) + 5710 < s}.
We use the notation p’ = [u; x,7]. Note that p/(x) = 7.

The following proposition collects several results of [11, Section 1.1].

Proposition 7.2.
(1) The mapping 1’ = [; x,7] is a valuation on K|z] extending v, with
value group Ty = (Taeg(y)s V) -
(2) For all f € K[z], we have u(f) < p/(f).
Equality holds if and only if x 1, f or f =0.

(3) If x1u [, then Hy (f) is a unit in G, .
(4) The polynomial x is a key polynomial for 1.
(5) The kernel of the canonical homomorphism
Gy — G, a+Pl(u)— a+PlL), foralla €Ty,
is the principal ideal of G,, generated by H,(x).

Corollary 7.3. The polynomial x is a key polynomial for p' of minimal
degree.
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Proof: For any polynomial f € Klz] with deg(f) < deg(x), we have
X 1u f, because x is p-minimal. By (3) of Proposition 7.2, H,/(f) is a
unit in G/, so that f cannot be a key polynomial for p'. O

7.2. Limit augmentations. Consider a totally ordered set A not con-
taining a maximal element.

A continuous MacLane chain based on p and parameterized by A is
a family (ptq)aca of augmented valuations

Mo = [M;%,%L Qo € KP(N)» N(¢a) <Ya € F,uv
for all a € A, satisfying the following conditions:
(1) deg(¢n) = d is independent of o € A.

2) The mapping A — I'),, @ — 7, is an order-preserving embedding.
n
(3) For all & < 8 in A, we have

(b,é’ € KP(Ma)a ¢a ’7éuu ¢5a mp = [Ma;¢ﬂa'y,3]'

In Vaquié’s terminology, (ta)aca is a “famille continue de valuations
augmentées itérées” [11].

Definition 7.4. A polynomial f € K[x] is A-stable if there exists ag € A
such that
too (f) = pa(f), forall a > ayp.
In this case, we denote by pa(f) this stable value.

Lemma 7.5. If f € K|z] is not A-stable, then po(f) < pg(f) for all
a < fin A.

Proof: Let us show that the equality pa(f) = pg(f) for some a < 3
in A implies that f is A-stable.

Since pg = [ta; ¢p,7vs), Proposition 7.2 shows that ¢g 1,, f and
H,,(f) is a unit in G,,. Hence, for all § > f3, the image of H,,(f)
in G,; is a unit.

Since s = [1p; ¢5, V5], property (5) of Proposition 7.2 shows that ¢s1,.,
f. Hence pg(f) = ps(f), again by Proposition 7.2. Thus, f is A-sta-
ble. O

If all polynomials in K[z] are A-stable, then gy = limaea 1o has an
obvious meaning, and u4 is a valuation on K|z].

If there are polynomials which are not A-stable, there are still some
particular situations in which (pa)aca converges to a valuation (or semi-
valuation) on K|[z].

However, regardless of the fact that (ua)aca converges or not, non-
stable polynomials may be used to define limit augmented valuations of
this continuous MacLane chain.
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Let us assume that not all polynomials in K|[z] are A-stable.

We take a monic ¢ € K[z] which is not A-stable, and has minimal
degree among all polynomials having this property.

Since the product of A-stable polynomials is A-stable, ¢ is irreducible
in K[x].

Lemma 7.6. Let f € K[z] be a non-zero polynomial with canonical
¢-expansion f =3 ., fs@°. Then, there exist an index so and an ele-
ment ag € A such that

o (f) = pa(fso?®®) < pa(fs@®), for all s # so and o > «p.

Proof: Since all coefficients fs have degree less than deg(¢), they are all
A-stable. Let us take «; sufficiently large so that ua(fs) = pa(fs) for
all s >0 and all a > «3.

For every a € A, a > «y, let

ba=Min{pa(fs¢®) [0 < s}, La={s|pa(fsd’) =6da}t, sa=Min(la).

For any index s we have

(17) Ma(fsa(bsa) = MA(fsa) + Saﬂa((b) < Moz(fs(bs) = MA(fs) + Sﬂa(¢)-

Since ¢ is not A-stable, Lemma 7.5 shows that uq(¢) < pg(¢) for all
B > «, f € A. Thus, if we replace po with pg in (17), we get a strict
inequality for all s > s,, because the left-hand side of (17) increases
by sa(p8(®) — ta(®)), while the right-hand side increases by s(ug(4) —

fa(@)).

Therefore, either Iy = {s,}, or s3 = Min(Ig) < sq.

Since A contains no maximal element, we may consider a strictly
increasing infinite sequence of values of § € A. There must be an ay € A
such that

I, ={so}, forall a> ay,

because the set of indices s is finite. O

Definition 7.7. For any f € K|[z], we say that f is A-divisible by ¢, and
we write ¢ |4 f, if there exists ag € A such that ¢ |, f for all a > ag.

Lemma 7.8. For any f € K[x] with canonical ¢-expansion f =3 fs¢°,
the following conditions are equivalent: B

(1) f is A-stable.
(2) There ezists ag € A such that

ta(f) = palfo) < pa(fs@®), foralls >0 and a > .
(3) ¢1a f.
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Proof: By Lemma 7.6, there exist an index sy and an element ay € A
such that pa(fs) = pa(fs) for all s, and

(18) pa(f) = pa(fso@™) = na(fso) + sotta(®) < pra(fsd®),

for all s # sg and all @ > . By Lemma 7.5, 114 (@) grows strictly with a.
Hence, condition (1) is equivalent to sg = 0, which is in turn equivalent
to condition (2).

If po(f) = pg(f) for some a < 3, we have necessarily ¢ 1, f, because

pa(@) < pg(¢). Thus, (1) implies (3).
On the other hand, so>0in (18) implies ¢ 1, f. Thus, (3) implies (2).
O

Definition 7.9. Take ¢ € K|[z] a monic polynomial with minimal degree
among all polynomials which are not A-stable.

Let I'y — I" be an order-preserving embedding of I', into another
ordered group, and suppose that there exists v € IV such that pus(¢) < v
for all a € A.

The limit augmented valuation of the continuous MacLane chain
(1ta)aca With respect to these data is the mapping

' Klx] — T U {oo},
assigning, to any g € K[z] with ¢-expansion g = >, gs¢°, the value

' (g) = Min{pa(gs) +s7v]0 < s}
We use the notation p’ = [p1a; ¢,7]. Note that p/(¢) = 7.
The following proposition collects Propositions 1.22 and 1.23 of [11].

Proposition 7.10.

(1) The mapping 1’ = [pa; d,7] is a valuation on K[x| extending v.
(2) For all f € K[z], we have uo(f) < u/'(f) for all a € A.
The condition pa(f) < p'(f), for all a € A, is equivalent to ¢ |4 f

and f # 0.
Lemma 7.11. For a,b € K[z]qeg(s), let the ¢-expansion of ab be
ab=c+d¢, c,de K[x]geg(s)-
Then ab ~, c.

Proof: Since deg(a), deg(b) < deg(¢), the polynomials a and b are A-sta-
ble. In particular, ab is A-stable. By Lemma 7.8, there exists ag € A
such that

pa(c) = paolc), and pe(ab) = pa(c) < pa(de), for all @ > ap in A.

Hence, ia(ab) = () < jia(d) + pa(6) < pa(d) +. By the defini-
tion of p/, we conclude that p'(ab) = p'(c) < 1/ (dg). O
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Corollary 7.12. For all a € K[2]geg(¢), Hy (a) is a unit in G,.

Proof: Since ¢ is irreducible in Kz] and deg(a) < deg(¢), these two
polynomials are coprime. Hence there is a Bézout identity

ac+dp =1, deg(c) < deg(p), deg(d) < deg(a) < deg(®).
By Lemma 7.11, ac ~,/ 1. O

Corollary 7.13. The polynomial ¢ is a key polynomial for i/ of minimal
degree.

Proof: By the definition of 1/ we have p/(f) = Min{p/(fs¢*) | 0 < s} for
any f =3 <, fs¢° € K[z]. By Proposition 2.3, ¢ is y/-minimal.

Let us show that ¢ is p/'-irreducible. Suppose ¢ {,/ f, ¢ {,/ g for
f.g € Klz]. Let fo, go be the 0-th coefficients of the ¢-expansion of f
and g, respectively.

Since ¢ is y/-minimal, Proposition 2.3 shows that p'(f) = 1/ (fo) and
1 (g) = 1'(go)-

Consider the ¢-expansion

fogo = c+d¢, deg(c),deg(d) < deg(¢).
By Lemma 7.11, ¢/ (fogo) = 1/ (c), so that

1 (fg) = 1'(fogo) = 1 (c).

Since the polynomial ¢ is the 0-th coefficient of the ¢-expansion of fg,
Proposition 2.3 shows that ¢ {,, fg. Hence, ¢ is p-irreducible.
This shows that ¢ is a key polynomial for u'.

Finally, by Corollary 7.12, any polynomial in K[z] of degree smaller
than deg(¢) cannot be a key polynomial for 4/, because it is a g/-unit. O

8. Some remarks on the structure of G,, as a graded
algebra

Let p be a valuation on K|z] admitting key polynomials. Let n be
the minimal degree of a key polynomial for .

The subgroup I';, C T, admits an intrinsic description as the subgroup
of I';, formed by all values o such that there is a unit in G of degree «.

Lemma 8.1. Let u be a valuation on K[x] with KP(u) # 0. For any « €
I'., we have

(P(a)/PT())NG" #0 <= a €Ty,

where n is the minimal degree of a key polynomial for .
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Proof: Let a € T'y,, and take a € K|[z], such that y(a) = a. By Propo-
sition 3.5, H,(a) is a unit in P(a)/PT(a).

Let ¢ be a key polynomial of degree n and let v = pu(¢), so that

Fu = <Fn7 7>
Any a ¢ T'), can be written as

a=0y+p, LEZ L#0, [eTl,.
If ¢ < 0, then Proposition 2.3 shows that there is no polynomial
in K[z] with p-value equal to a. Thus, P(a)/P*(a) = {0}.
Suppose £ > 0. By the previous argument, there exists a unit z € G*
of degree 3. Then z H#(gb)e has degree o and there is no unit in
P(a)/PH(a) = (z Hu(¢)")A,
because H,(¢) is a prime element. O

The structure of G, is determined by that of the subalgebra
. +
Gun = @ael“n Pa/Pa C Gus

as indicated in the next result.

Proposition 8.2. Let u be a valuation on K |x] with KP(u) # 0. Lety =
w(o) be the common p-value of all key polynomials of minimal degree n.

Consider the graded algebra G, »[x] obtained by assigning degree ~y to
the indeterminate x. Then:

(1) If p is incommensurable, then G, ~ G, »[x] as G,-algebras.
(2) If p is commensurable, then we have an isomorphism of G, -algebras

g,u, ~ gu,n[x]/(xe - Zf),

where e is the least positive integer such that ey € Ty, z is a unit
in G, of degree ey, and & is a generator of A as a k-algebra.

Proof: Let ¢ be any key polynomial of minimal degree. The inclusion
Gun C G, determines a well-defined onto homomorphism of graded
G,-algebras:

(19) Gunlz] — G, x+— H,u(9).
If 14 is incommensurable, then any polynomial with coefficients in G, ,,

has monomials with different degree. Hence, our mapping (19) has a
trivial kernel and it is an isomorphism.

If 41 is commensurable, there exists u € K[z], such that p(u¢®) = 0,
and £ = H,(u¢®) is a transcendental generator of A as a k-algebra by
Theorem 4.6.
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Since H,(u) is a unit, we have H,(¢)° = 2£, where z = H,,(u)~".
If we show that this is a minimal relation for H,(¢), the proof of the
proposition will be complete. Suppose that the polynomial

D g @m @™ € Gpnla]

lies in the kernel of (19). By applying H,,(¢)° = 2z{, we may assume that
0<m < e. Again, this sum cannot have two different monomials. In fact,
deg(az™) = deg(bx’) = (m — £)y = deg(b) — deg(a) € T,,.

From (m — £)y € T';, we deduce m = ¢ (mod e), and this implies m = ¢.

Thus, our relation takes the form a H,(¢)™ = 0. Since G is an integral
domain, we necessarily have a = 0. O

The structure of the subalgebra G,, , depends very much on how the
valuation g has been constructed. We determine its structure in two
particular situations:

e [', is a finitely-generated group, or

e 1 has been obtained by a finite number of (ordinary) augmenta-

tions, starting with a valuation pg such that I',,, = T'.

If I, is finitely-generated, then it is a free abelian group. If N is the

rank of this group, we can choose

aiEK[x]n’ 'Vi:/“”(a’i)v 1<i<N,

such that 71, ..., vy is a Z-basis of I',,. Then, every « € T',, can be written
in a unique way as « = mq7y; + -+ + myyN, With mq,... ., my € Z.
Therefore, we may choose homogeneous units of each degree «

2% = Hy(a)™ - Hu(an)™ € G,

and these units satisfy
2008 = 2228 forall a, B € T'y.
As a consequence, G,, 5, is isomorphic to the group algebra
Gun >~ AL,

since P(a)/Pt(a) = z%A for all « € T,,.

This is an explicit description of the structure of G, , as a graded
algebra, because the structure of A has been explicitely determined in
Section 4 in all cases.

Suppose now that /i is a valuation on K[z] extending v with I',, =T,
and there is a finite sequence of augmentations (see Subsection 7.1)

(20) T T e T

with p; = [pi—1; ¢4,y for 1 < <r.



KEY POLYNOMIALS OVER VALUED FIELDS 231

We may always assume that (20) is a MacLane chain of augmenta-
tions, that is,

Git1 fuy Gin 00 <o

By Proposition 7.2, ¢,._1, ¢, are key polynomials of minimal degree
for pu.—1, u, respectively. In particular, n = deg(¢,).

Also, ¢, is another key polynomial for pu,_; which is not p,_1-equiv-
alent to ¢,_1. Hence, Corollary 6.4 shows that

F = Furflvn = F”’

Hr—1
and the last equality holds because p,—1(a) = p(a) for all a € K{z],.

By Theorem 4.2, the valuations 1, ..., p-—1 are necessarily commen-
surable. Let eq,...,e,._1 be their relative ramification indices. Then, we
have an isomorphism of G,-algebras

gp.,n = (gv ®kv A) [:171, e axr—l]a

where z1,...,z,_1 are homogeneous units of degree v;,...,7.—1 and
satisfy relations

it =, 1<i<nr

The arguments are quite similar to those in Proposition 8.2. We omit
the details.
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