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WEIGHTED NORM INEQUALITIES

FOR GENERALIZED FOURIER-TYPE TRANSFORMS

AND APPLICATIONS

Alberto Debernardi

Abstract: We obtain necessary and sufficient conditions on weights for the gener-

alized Fourier-type transforms to be bounded between weighted Lp-Lq spaces. As

an important example, we investigate transforms with kernel of power type, as for
instance the sine, Hankel, or Hα transforms. The obtained necessary and sufficient

conditions are given in terms of weights, but not in terms of their decreasing rear-

rangements, as in several previous investigations.
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1. Introduction

1.1. Weighted norm inequalities for the Fourier transform. Given
an integral operator T and 1 ≤ p, q ≤ ∞, determining necessary and
sufficient conditions on pairs of nonnegative locally integrable functions
u, v : Rn → R+ (also called weights) in order for the inequality

(1.1)

(∫
Rn
u(y)|Tf(y)|q dy

)1/q

≤ CT,n,p,q
(∫

Rn
v(x)|f(x)|p dx

)1/p

,

to be satisfied for every measurable f (with C independent of f) is
an important problem in analysis. One of the main examples of such
transform T is the Fourier transform

f̂(y) =

∫
Rn
f(x)eix·y dx,

for which (1.1) is rewritten as

(1.2)

(∫
Rn
u(y)|f̂(y)|q dy

)1/q
≤ Cn,p,q

(∫
Rn
v(x)|f(x)|p dx

)1/p
, 1 ≤ p, q ≤ ∞.
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Important examples of applications of the above inequalities are the
study of uncertainty principle relations (cf. [4]) or restriction inequali-
ties [21, 42, 17]. Inequality (1.2) and its variants have been extensively
studied, see [1, 3, 5, 6, 27, 33] and the references therein.

The following is well known, and was proved independently by
Heinig [26], Jurkat–Sampson [27], and Muckenhoupt [32, 33] in the
1980s (we take n = 1): if u, v are even, nonincreasing, and nonde-
creasing as functions of |x| respectively, then inequality (1.2) holds with
1 < p ≤ q <∞ if and only if

sup
r>0

(∫ 1/r

0

u(x) dx

)1/q(∫ r

0

v(x)1−p
′
dx

)1/p′

≤ C.

Typical examples of weights u, v are power functions. In this case,
important examples of (1.2) are the Hausdorff–Young inequality [2, 3](∫

Rn
|f̂(x)|p

′
dx

)1/p′

≤ C
(∫

Rn
|f(x)|p dx

)1/p

, 1 ≤ p ≤ 2,

and the Hardy–Littlewood inequality(∫
Rn
|x|p−2|f̂(x)|p dx

)1/p

≤ C
(∫

Rn
|f(x)|p dx

)1/p

, 1 < p ≤ 2,

see [39, 41]. More generally, if u(x) = |x|−βq and v(x) = |x|γp, inequal-
ity (1.2) is known as the classical Pitt’s inequality, and it holds if and
only if

(1.3) β = γ + n

(
1

q
− 1

p′

)
, max

{
0, n

(
1

q
− 1

p′

)}
≤ β < n

q
.

Another interesting problem is to study whether the sharp range for β
given above can be extended when considering regularity conditions on f
(cf. [23, 29, 37]). For instance, if f is a radial function defined on Rn
(i.e., f(x) = f0(|x|)), inequality (1.2) holds if and only if

β = γ + n

(
1

q
− 1

p′

)
,

n

q
− n− 1

2
+ max

{
0,

1

q
− 1

p′

}
≤ β < n

q
.

If additionally f0 satisfies general monotonicity conditions (see Sec-
tion 6), the latter range can be improved to

n

q
− n+ 1

2
< β <

n

q
.

Such monotonicity assumption sometimes allows us to weaken the suffi-
cient conditions the weights u, v should satisfy to guarantee that (1.1)
holds, and in fact it plays a key role in Section 6.
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In what follows all integral transforms we consider are one-dimensional
and defined on R+. We will denote, for any function f , any weight v,
and any 0 < p <∞,

‖f‖p :=

(∫ ∞
0

|f(x)|p dx
)1/p

, ‖f‖p,v :=‖v1/pf‖p=

(∫ ∞
0

v(x)|f(x)|p dx
)1/p

.

1.2. Integral transforms of Fourier type. Following [24], for a
complex-valued function f we denote

(1.4) Ff(y) =

∫ ∞
0

s(x)f(x)K(x, y) dx, y > 0,

where K is a continuous kernel and s is a nonnegative nondecreasing
function such that

(1.5) s(x) . s(2x), x > 0.

Furthermore, we assume that there exists a nonnegative nondecreasing
function w satisfying

(1.6) s(x)w(1/x) � 1, x > 0,

and such that the estimate

(1.7) |K(x, y)| . min{1, (s(x)w(y))−1/2}, x, y > 0,

holds. Moreover, we suppose that f, s ∈ L1
loc, and

(1.8)
∫ 1

0

s(x)|f(x)| dx+

∫ ∞
1

s(x)1/2|f(x)| dx <∞,

so that Ff(y) is pointwise defined on (0,∞). Note that in this case the
estimate

(1.9) |Ff(y)| .
∫ 1/y

0

s(x)|f(x)| dx+ w(y)−1/2

∫ ∞
1/y

s(x)1/2|f(x)| dx

holds. We remark that the weight s could be incorporated into the ker-
nel K; however, it is worth considering it separately, as it appears as
one of the two factors in the estimate (1.7). Another reason to sepa-
rate s from K is to stay close to the framework of the so-called Fouri-
er-type transforms, also referred to as F -transforms (see [25, 41, 43] and
the recent paper [24]), i.e., those satisfying (1.5)–(1.7), and for which
there exists C > 0 such that if f ∈ L2

s, (or in other words, ‖f‖2,s <∞),
then

(1.10) ‖Ff‖2,w ≤ C‖f‖2,s.

The latter is known as weighted Bessel’s inequality. Classical examples
of Fourier-type transforms are the sine and cosine transforms, or the
Hankel transform, which is introduced in the next subsection.
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Weighted norm inequalities of transforms with such kernels have been
studied in detail in [24], where the authors obtained the following suffi-
cient conditions that guarantee inequality (1.1) for F -transforms: let us
denote by u∗ the decreasing rearrangement of u, and by v∗ = [(1/v)∗]−1.
For any 1 ≤ a ≤ ∞, we denote a′ = a/(a− 1) the dual exponent of a.

Theorem A. Let 1 < p ≤ q < ∞, 1 < a ≤ 2, (p, q, a) 6= (2, 2, 2). Let
u, v be weights satisfying

sup
r>0

(∫ 1/r

0

u∗(y) dy

)1/q(∫ r

0

v∗(x)1−p
′
dx

)1/p′

≤ C,(1.11)

sup
r>0

(∫ ∞
1/r

y−q/a
′
u∗(y) dy

)1/q(∫ ∞
r

x−p/a
′
v∗(x)1−p

′
dx

)1/p′

≤ C.(1.12)

Then, the following inequality holds:

(1.13) ‖w1/a′Ff‖q,u . ‖s1/af‖p,v.

If (p, q, a) = (2, 2, 2) and u, v are weights satisfying

sup
r>0

(∫ 1/r

0

u∗(y) dy

)(∫ r

0

v∗(x)1−p
′
dx

)
≤ C,

the following inequality holds:

‖w1/2Ff‖2,u . ‖s1/2f‖2,v.

In this paper we deal with transforms of the form (1.4) for which esti-
mate (1.7) holds. These are more general than Fourier-type transforms,
since conditions (1.5)–(1.8) do not imply (1.10) in general.

1.3. Integral transforms with power-type kernel. We also define
the transforms with kernels of power type (or power-type kernels) as
those of the form

(1.14) Ff(y) = yc0
∫ ∞
0

xb0f(x)K(x, y) dx,

where

(1.15) |K(x, y)| . min{xb1yc1 , xb2yc2},

with bj , cj ∈ R for 0 ≤ j ≤ 2. It is clear that every transform of the
form (1.4) satisfying the estimate (1.7) with s(x) = xδ, δ ∈ R, is a
transform with power-type kernel, but the converse is not true.

Here, in order for Ff(y) to be well defined we assume∫ 1

0

xb0+b1 |f(x)| dx+

∫ ∞
1

xb0+b2 |f(x)| dx <∞.
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Note that in general the kernels of the type K(x, y) � min{xb1yc1 ,
xb2yc2} differ from the kernels satisfying Oı̆narov’s condition [35], i.e.,
for some d > 0,

(1.16) d−1(K(t, u) +K(u, v)) ≤ K(t, v) ≤ d(K(t, u) +K(u, v)),

0 < v ≤ u ≤ t <∞.

In the case bj = cj = 0, j = 1, 2, it is clear that K(x, y) � 1 im-
plies (1.16). However, this case is of no interest for us, as our main result
for transforms with power-type kernel is not applicable (see Corollary 1.6
below). However, if

K(x, y) �

{
1, if xy ≤ 1,

(xy)−δ, if xy > 1,

with δ > 0, and for N big enough we set t = Nα, u = Nβ , v =
N−(α+β)/2, with α > β > 0, then (1.16) reads as

1 . Nδ α−β
2 . 1,

which is clearly not true.

1.4. The Hankel and Hα transforms. Two important examples of
transforms illustrating the operators from the previous subsection are
the Hankel and the Hα transforms. The former is defined as (cf. [41])

(1.17) Hαf(y) =

∫ ∞
0

x2α+1f(x)jα(xy) dx,

where jα is the normalized Bessel function of order α, given by the series

(1.18) jα(x) = Γ(α+ 1)

∞∑
k=0

(−1)k(x/2)2k

k!Γ(α+ k + 1)
.

We also mention the identity jα(x) = Γ(α+1)(x/2)−αJα(x), where Jα is
the Bessel function of the first kind of order α. The function jα(xy)
satisfies the estimate

(1.19) |jα(xy)| . min{1, (xy)−α−1/2}.

It holds that Hα is a Fourier-type transform, but also a transform
with power-type kernel. The Hankel transform of order α = n/2 − 1
arises as the Fourier transform of radial functions in Rn, see [39] (in
fact, the cosine transform is nothing more than the Hankel transform of
order α = −1/2).



8 A. Debernardi

In relation with the Hankel transform, we have the Hα transform,
defined as

(1.20) Hα(y) =

∫ ∞
0

(xy)1/2f(x)Hα(xy) dx, α > −1/2,

see [36, 41]. Here Hα is the Struve function of order α [19, 44], given
by the series

(1.21) Hα(x) =

(
x

2

)α+1 ∞∑
k=0

(−1)k(x/2)2k

Γ(k + 3/2)Γ(k + α+ 3/2)
.

The function Hα is continuous and satisfies the estimate

(1.22) |Hα(x)| .

{
min{xα+1, x−1/2}, α < 1/2,

min{xα+1, xα−1}, α ≥ 1/2.

Moreover, Hα is related to the Bessel function of the first kind Jα in
the following way: Hα is the solution of the non-homogeneous Bessel
differential equation

(1.23) x2
d2f

dx2
+ x

df

dx
+ (x2 − α2)f =

4(x/2)α+1

√
πΓ(α+ 1/2)

,

whilst Jα is the solution of the homogeneous differential equation corre-
sponding to (1.23) that is bounded at the origin for nonnegative α.

The operator Hα corresponds to a transform with power-type kernel,
but if we write it in the form (1.4), condition (1.7) does not hold in
general.

We remark that the Hα transform can be defined for a wider range
of α than α > −1/2 (see [36] for more details), but for our purpose we
need to restrict ourselves to the indicated range.

Further basic properties of the kernels jα and Hα are discussed in
Subsection 2.1.

1.5. Main results and outline. The aim of this work is to give sim-
ple necessary and sufficient conditions on two different kinds of integral
transforms for the weighted norm inequality (1.13) to hold. In more
detail, we deal with transforms of the form (1.4) whose kernel satis-
fies (1.7) (which generalize the Fourier-type transforms), and those of
the form (1.14) with power-type kernel. We emphasize that if F as de-
fined in (1.4) is such that s(x) = xδ with δ ∈ R, and satisfies (1.7),
then F has a power-type kernel. Our main tool is Hardy’s inequality;
this allows us to obtain those conditions written in terms of integrals of
the weights u, v instead of their decreasing rearrangements, as in many
previous articles within the scope of this topic.

In Section 2 we list some properties of the normalized Bessel function
and the Struve function (the kernels of the Hankel and Hα transforms,
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respectively). We also prove an auxiliary lemma related to the antideriv-
ative of the Struve function.

In Section 3 we study the transforms (1.4) for which the estimate (1.7)
holds. Note that in contrast with the F -type transforms, we do not
require that properties (1.5), (1.6), nor Bessel’s inequality (1.10) hold; as
already mentioned, such transforms are more general than F -transforms.
The statement yielding sufficient conditions for (1.13) to hold reads as
follows:

Theorem 1.1. Let 1 < p ≤ q <∞, 1 ≤ a ≤ ∞, and u, v be nonnegative.
Assume there exists C > 0 such that

sup
r>0

(∫ 1/r

0

u(y)w(y)q/a
′
dy

)1/q(∫ r

0

v(x)1−p
′
s(x)p

′/a′ dx

)1/p′

≤ C,(1.24)

sup
r>0

(∫ ∞
1/r

u(y)w(y)q(1/a
′−1/2) dy

)1/q

(1.25)

×
(∫ ∞

r

v(x)1−p
′
s(x)p

′(1/a′−1/2) dx

)1/p′

≤ C.

Then the weighted norm inequality

(1.26) ‖w1/a′Ff‖q,u . ‖s1/af‖p,v

holds for every measurable f .

Remark 1.2. Theorem 1.1 (and every other assertion in the sequel)
is stated for all measurable f , although the interesting case is when
‖s1/af‖p,v <∞. However, if such a norm is not finite, inequality (1.26)
trivially holds, which makes the assertion true for any measurable f (and
the same applies for further results).

Note that the sufficient conditions of Theorem 1.1 depend both on
the parameter a and on the weights s and w. However, conditions (1.11)
and (1.12) from Theorem A do not depend on the weights s, w, but only
on the parameter a. In order to prove Theorem A, in [24] the authors
make use of Calderón’s inequality (see also [12])

(1.27) (Tf)∗(y) .
∫ 1/y

0

f∗(x) dx+ y−1/a′
∫ ∞
1/y

x−1/a′f∗(x) dx, 1 < a ≤ 2,

applicable to transforms T of type (1,∞) and (a, a′) for all 1<a≤2. If F

is a Fourier-type transform, then Tf = w1/a′F (s−1/af) is of type (1,∞)
and (a, a′) for 1 < a ≤ 2 (cf. [24, Lemma 2.1]). Thus, the weights s, w
appear inside the norm (1.13), but not in conditions (1.11) and (1.12),
so that the appearance of a is essential in the approach of [24].
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Note that we can consider the weights u = wq/a
′
u and v = sp/av

in place of u, v respectively, so that the parameter a can be omitted.
However, we prefer to keep it in the formulation of our results, so that
we stay close to the framework of [24].

Using a so-called “gluing lemma” (see [22]), it is possible to write
conditions (1.24) and (1.25) as only one that is equivalent to the simulta-
neous fulfillment of these. However, this is only applicable to transforms
whose weights satisfy (1.6), such as Fourier-type transforms. In order to
apply the mentioned gluing lemma, we also need to restrict ourselves to
the case a = 1.

Corollary 1.3. Let 1 < p ≤ q < ∞ and u, v be nonnegative. Assume
that (1.6) holds and that there exists C > 0 such that

(1.28) sup
r>0

[(∫ r

0

v(x)1−p
′
dx+ s(r)p

′/2
∫ ∞
r

v(x)1−p
′
s(x)−p

′/2 dx

)1/p′

×
(
w(1/r)q/2

∫ ∞
1/r

u(y)w(y)−q/2 dy +

∫ 1/r

0

u(y) dy

)1/q
]
≤ C.

Then the weighted norm inequality ‖Ff‖q,u . ‖sf‖p,v holds for every
measurable f .

Although Theorem 1.1 can be applied to a larger number of operators
than just the Fourier-type transforms (see Theorem A), we see that it has
some limitations. For instance, if s(x) � w(x) � 1, it readily follows that
we can get no sufficient conditions whenever u, v are power weights, since
(1.24) and (1.25) cannot hold simultaneously. This already excludes the
classical Fourier transform or the cosine transform from the scope of
Theorem 1.1.

Also note that whenever s and w are increasing, (1.11) always implies
(1.24), by Hardy–Littlewood rearrangement inequality (cf. [7, Chap-

ter II]), which for our purpose can be stated as
∫ t
0
u(x) dx ≤

∫ t
0
u∗(x) dx

for all t > 0 and measurable u. Moreover, in [24] the authors prove that
condition (1.12) is redundant in the cases a′ < max{q, p′} or a = p =
q = 2, by showing that in these cases (1.11) implies (1.12).

Theorem 1.1 is sharp in general, as shown by considering any trans-
form with kernel satisfying K(x, y) � min{1, (s(x)w(y))−1/2} (Theo-
rem 3.3). In this case, we can write the following:

Corollary 1.4. Let the kernel K from (1.4) satisfy K(x, y) � min{1,
(s(x)w(y))−1/2}. Then the inequality ‖w1/a′Ff‖q,u . ‖s1/af‖p,v holds
for every measurable f if and only if (1.24) and (1.25) are satisfied.
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As an example of a kernel satisfying the hypotheses of the latter,
consider

K(x, y) =

{
1, if xy ≤ 1,

(s(x)w(y))−1/2, if xy > 1,

so that

Ff(y) =

∫ 1/y

0

s(x)f(x) dx+ w(y)−1/2

∫ ∞
1/y

s(x)1/2f(x) dx.

Furthermore, note that it follows from Theorem 3.3 that condition (1.24)
is necessary for (1.13) to hold (with a = 1) in the case of the Laplace
transform (for which K(x, y) = e−xy and s ≡ w ≡ 1), as shown by
Bloom in [8].

Sections 4–6 are devoted to the study of weighted norm inequalities for
transforms with power-type kernel. We start by considering transforms
of the form (1.4) assuming that s(x) = xδ with δ > 0, and taking
weights u, v that are piecewise power functions, that is, if for any real
numbers α1, α2 we denote α = (α1, α2), α′ = (α2, α1), and

xα :=

{
xα1 , x ≤ 1,

xα2 , x > 1,

then our weights have the form

(1.29) u(x) = x−β
′
q, v(x) = xγp,

with βi, γi ∈ R, i = 1, 2. First, we rewrite Theorem 1.1 for power weights
as follows:

Theorem 1.5. Let β1 − γ1 = β2 − γ2. Let F be of the form (1.14) with
kernel satisfying (1.15). Assume that u, v are of the form (1.29), and
that s(x) = xδ with δ > 0. If

(1.30) βi = γi +
1

q
− 1

p′
, i = 1, 2,

with

(1.31)
1

q
− δ

2
< βi <

1

q
, i = 1, 2,

then the inequality

(1.32) ‖x−β
′
Ff‖q ≤ C‖xγ+δf‖p

holds for any measurable f .

Taking β1 = β2 = β and γ1 = γ2 = γ in Theorem 1.5, we derive the
following corollary for transforms (1.14) with kernels of power type.
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Corollary 1.6. Let 1 < p ≤ q < ∞, and let F be of the form (1.14)
with kernel satisfying (1.15) and such that b1 − b2 = c1 − c2 > 0. Then,
the inequality

(1.33) ‖y−βFf‖q . ‖xγf‖p
holds with

(1.34) β=γ + c0 − b0 + c1 − b1 +
1

q
− 1

p′
,

1

q
+ c0 + c2 < β <

1

q
+ c0 + c1.

Here, additionally to the Fourier-type transforms with s(x) = xδ,
δ > 0 (Hankel with α > −1/2), one can consider any kind of transform
as long as its kernel satisfies upper estimates given by power functions,
as for instance the sine or Hα transforms. We remark that although
the sine transform is not of Fourier-type itself, it can be written as a
weighted Hankel integral.

Similarly as for Theorem A, one can prove that (1.34) is necessary
for (1.33) to hold if K(x, y) � min{xb1yc1 , xb2yc2} (see Theorem 4.1). In
particular, the Hα transform with α > 1/2 has a kernel satisfying such
estimate (see Remark 2.1 below).

We list in Section 4 the sufficient conditions for (1.33) to hold that are
derived from Corollary 1.6 for each of the aforementioned transforms, as
well as the already known necessary and/or sufficient conditions.

In Section 5 we give an application of Corollary 1.6. We study inequal-
ity (1.33) for transforms with the kernel represented by power series

K(x, y) = xb1yc1
∞∑
m=0

am(xy)km, k ∈ N, am ∈ C, b1, c1 ∈ R, x, y > 0,

under certain assumptions. Following the idea of Sadosky and Whee-
den in [37], we prove in Theorem 5.1 that we can extend the range
of β in (1.34) for which inequality (1.33) is valid provided that certain
moments of f vanish. More precisely, we show that in such case, in-
equality (1.33) holds for some values β > 1/q + c0 + c1, thus extending
the range given in (1.34). Moreover, the assertion is not true in general
for β = 1/q + c0 + c1. Such statement is a generalization of [37, The-
orem 1], where, in particular, the authors proved that if a function f
has zero mean, then Pitt’s inequality (1.3) holds (with n = 1) in the
interval 1/q < β < 1 + 1/q (recall that the optimal range for β in the
general case is max{0, 1/q − 1/p′} ≤ β < 1/q), and the assertion does
not hold for β = 1/q.

Finally, in Section 6 we use the same approach as in Theorem 1.1 to
derive sufficient conditions for inequality (1.33) to hold in the case of
functions satisfying general monotonicity conditions. As is known for
the case of the sine and Hankel transforms (cf. [16, 24, 29]), the sharp
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range of β for which inequality (1.33) holds can be improved in many
cases. Our main result of Section 6, Theorem 6.6, yields the necessary
and sufficient conditions for (1.33) to hold in the case of the sine and
Hankel transforms, as well as for the Hα transform.

2. Preliminary concepts

2.1. The Bessel and Struve functions. Here we give useful proper-
ties of the Bessel and Struve functions, which can be found in [19, 44].

We start with the normalized Bessel function. For x ≤ 1, one has
jα(x) � 1, whilst

jα(x) =
Cα

xα+1/2
cos

(
x− π(α+ 1/2)

2

)
+O(x−α−3/2), x→∞,

so that (1.19) holds. We also need an upper estimate for the primitive
function of xνjα(xy), ν ∈ R, as a function of x. Let gνα,y be such that

d

dx
gνα,y(x) = xνjα(xy),

with constant of integration equal to zero. It is proved in [18, Lemma 2.6]
(see also [16, Lemma 3.1]) that

(2.1) |gνα,y(x)| . xν−α−1/2

yα+3/2
.

In relation with the Hα transform, we have the following property
concerning the derivatives of Hα:

(2.2)
d

dx
(xαHα(x)) = xαHα−1(x).

Moreover, for x ≤ 1 and fixed α, the estimate Hα(x) � xα+1 holds.
Indeed, in view of (1.21), we only need to show that for x ≤ 1,

∞∑
k=0

(−1)k(x/2)2k

Γ(k + 3/2)Γ(k + α+ 3/2)
� 1.

On the one hand, the latter series is absolutely convergent for x ≤ 1,
and thus bounded from above. On the other hand,

∞∑
k=0

(−1)k(x/2)2k

Γ(k + 3/2)Γ(k + α+ 3/2)

≥ 1

Γ(3/2)Γ(α+ 3/2)

(
1− x2

10(α+ 5/2)

)
� 1, x ≤ 1.

For large x, we have the following asymptotic expansion [44, p. 332]:

(2.3) Hα(x)=

(
πx

2

)−1/2

(sin(x−απ/2−π/4))+
(x/2)α−1

Γ(α+1/2)Γ(1/2)
(1+O(x−2)),
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from which we can deduce

|Hα(x)| . x−1/2 + xα−1 � xmax{−1/2,α−1} =

{
x−1/2, if α < 1/2,

xα−1, if α ≥ 1/2,

so that (1.22) holds.

Remark 2.1. It is worth mentioning that for α ≥ 1/2 and x > 0, Hα(x) is
nonnegative [44, p. 337], and moreover, it easily follows from (2.3) that
if α > 1/2, then there is x0 > 1 such that

Hα(x) � xα−1, x > x0.

Hence, for such choice of α one has Hα(x) � min{xα+1, xα−1}.

2.2. Auxiliary lemma. In the same spirit as in (2.1), we need an
upper estimate for the primitive function of xνHα(xy). Let us denote

hνα,y(x) =

∫ x

0

tνHα(ty) dt, ν ≥ 1/2, α > −1/2.

Then it follows from (1.22) and the fundamental theorem of calculus
that

d

dx
hνα,y(x) = xνHα(xy).

Lemma 2.2. We have, for any ν ≥ 1/2 and α > −1/2,

|hνα,y(x)| . y−1xν min{(xy)α+2, (xy)α}.

Proof: By definition of hνα,y,

hνα,y(x) =

∫ x

0

tνHα(ty) dt =
1

y

∫ xy

0

(
z

y

)ν
Hα(z) dz

=
1

yν+1

∫ xy

0

zν−α−1zα+1Hα(z) dz,

where we have applied the change of variable z = ty.
If ν = α + 1, then we simply have hα+1

α,y (x) = y−1xα+1Hα+1(xy),
by (2.2), and (1.22) implies that

|hα+1
α,y (x)| . y−1xα+1 min{(xy)α+2, (xy)α}.

If ν 6= α+ 1, integration by parts along with (2.2) yields

hνα,y(x) =
1

y
xνHα+1(xy)− (ν − α− 1)

yν+1

∫ xy

0

zν−1Hα+1(z) dz =: A−B.

Let us now estimate A and B (recall that since α > −1/2, Hα+1 is
nonnegative). On the one hand,

A .
1

y
xν min{(xy)α+2, (xy)α}.
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On the other hand, we consider two cases in order to estimate B. If xy ≤
1, we have

|B| . 1

yν+1

∫ xy

0

zν+α+1 dz � (xy)ν+α+2

yν+1
=

1

y
xν(xy)α+2.

If xy ≥ 1,

|B| . 1

yν+1

∫ xy

0

zν+α−1 dz � 1

y
xν(xy)α.

Collecting these estimates, we conclude

|hνα,y(x)| . A+ |B| . 1

y
xν min{(xy)α+2, (xy)α},

as desired.

3. Weighted norm inequalities for integral transforms

In this section we aim to study what necessary and sufficient con-
ditions should nonnegative weights u, v satisfy for the weighted norm
inequality (1.13) to hold for the transform F given by (1.4), assuming
only estimate (1.7).

3.1. Sufficiency results. In order to prove Theorem 1.1, we make use
of Hardy’s inequality (cf. [11]). If p = 1, q = ∞, or p = q = ∞, the
result holds under the usual modification of Lp norms.

Lemma 3.1. Let 1 ≤ p ≤ q ≤ ∞. If u, v are nonnegative, there exists
B > 0 such that the inequality(∫ ∞

0

u(y)

(∫ y

0

|g(x)| dx
)q

dy

)1/q

≤ B
(∫ ∞

0

v(x)|g(x)|p dx
)1/p

holds for every measurable g if and only if there exists C > 0 such that
for every r > 0,(∫ ∞

r

u(y) dy

)1/q(∫ r

0

v(x)1−p
′
dx

)1/p′

≤ C.

Also, there exists B > 0 such that the inequality(∫ ∞
0

u(y)

(∫ ∞
y

|g(x)| dx
)q

dy

)1/q

≤ B
(∫ ∞

0

v(x)|g(x)|p dx
)1/p

holds for every measurable g if and only if there exists C > 0 such that
for every r > 0,(∫ r

0

u(y) dy

)1/q(∫ ∞
r

v(x)1−p
′
dx

)1/p′

≤ C.
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Proof of Theorem 1.1: It follows from (1.9) and the change of variables
y → 1/y that

‖w1/a′Ff‖q,u.
(∫ ∞

0

u(1/y)w(1/y)q/a
′
y−2

(∫ y

0

s(x)|f(x)| dx
)q

dy

)1/q

+

(∫ ∞
0

u(1/y)w(1/y)q(1/a
′−1/2)y−2

(∫ ∞
y

s(x)1/2|f(x)| dx
)q
dy

)1/q
=: I1 + I2.

We proceed to estimate I1 and I2 from above. Applying Lemma 3.1 with
g(x) = s(x)f(x), we have the estimate

I1 =

(∫ ∞
0

u(1/y)w(1/y)q/a
′
y−2

(∫ y

0

s(x)|f(x)| dx
)q

dy

)1/q

.

(∫ ∞
0

v(x)s(x)p/a|f(x)|p dx
)1/p

,

provided that(∫ ∞
r

u(1/y)w(1/y)q/a
′
y−2 dy

)1/q(∫ r

0

v(x)1−p
′
s(x)p

′/a′ dx

)1/p′
≤ C, r > 0,

is satisfied, or equivalently, if (1.24) holds. Finally, if (1.25) holds, or
equivalently, if(∫ r

0

u(1/y)w(1/y)q(1/a
′−1/2)y−2 dy

)1/q

×
(∫ ∞

r

v(x)1−p
′
s(x)p

′(1/a′−1/2) dx

)1/p′

≤ C, r > 0,

then, applying Lemma 3.1 with g(x) = s(x)1/2f(x), we obtain the esti-
mate

I2 =

(∫ ∞
0

u(1/y)w(1/y)q(1/a
′−1/2)y−2

(∫ ∞
y

s(x)1/2|f(x)| dx
)q

dy

)1/q

.

(∫ ∞
0

v(x)s(x)p/a|f(x)|p dx
)1/p

,

which establishes inequality (1.13).

In order to prove Corollary 1.3 we first show a generalization of the
gluing lemma [22, Lemma 2.2]:
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Lemma 3.2. Let f, g ≥ 0, α, β > 0, and let ϕ, ψ be nonnegative and
nonincreasing. Assume ϕ(s)α � ψ(s)β. Then, the conditions

(3.1) sup
t>0

(∫ t

0

g(s) ds

)β(∫ ∞
t

ϕ(s)f(s) ds

)α
<∞

and

(3.2) sup
t>0

(∫ t

0

f(s) ds

)α(∫ ∞
t

ψ(s)g(s) ds

)β
<∞

hold simultaneously if and only if

(3.3) sup
t>0

(∫ t

0

g(s) ds+
1

ψ(t)

∫ ∞
t

ψ(s)g(s) ds

)β
×
(
ϕ(t)

∫ t

0

f(s) ds+

∫ ∞
t

ϕ(s)f(s) ds

)α
<∞.

Proof of Lemma 3.2: It is clear that (3.3) is equivalent to the finiteness
of

sup
t>0

[
ϕ(t)α

(∫ t

0

g(s) ds

)β(∫ t

0

f(s) ds

)α

+

(∫ t

0

g(s) ds

)β(∫ ∞
t

ϕ(s)f(s) ds

)α

+
ϕ(t)α

ψ(t)β

(∫ ∞
t

ψ(s)g(s) ds

)β(∫ t

0

f(s) ds

)α

+
1

ψ(t)β

(∫ ∞
t

ψ(s)g(s) ds

)β(∫ ∞
t

ϕ(s)f(s) ds

)α]
.

(3.4)

From the latter it is obvious that (3.3) implies (3.1) and (3.2), since
ϕ(t)α/ψ(t)β � 1. In order to prove the converse, note that the second
term of (3.4) corresponds to (3.1), whilst the third term of (3.4) cor-
responds to (3.2) (after applying the equivalence ϕ(t)α � ψ(t)β on the
term outside the integrals). Thus, it remains to prove the finiteness of
the first and fourth terms of (3.4). For t > 0, let b(t) ∈ (0, t) be the num-

ber such that
∫ b(t)
0

f(s) ds =
∫ t
b(t)

f(s) ds. Then, using the monotonicity
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of ϕ and ψ, and the equivalence ϕ(s)α � ψ(s)β , we get

ϕ(t)α
(∫ t

0

g(s) ds

)β(∫ t

0

f(s) ds

)α
� ϕ(t)α

(∫ b(t)

0

g(s) ds

)β(∫ t

0

f(s) ds

)α
+ψ(t)β

(∫ t

b(t)

g(s) ds

)β(∫ t

0

f(s) ds

)α

≤
(∫ b(t)

0

g(s) ds

)β(∫ t

b(t)

ϕ(s)f(s) ds

)α
+

(∫ t

b(t)

ψ(s)g(s) ds

)β(∫ b(t)

0

f(s) ds

)α

≤ sup
t>0

(∫ t

0

g(s) ds

)β(∫ ∞
t

ϕ(s)f(s) ds

)α

+ sup
t>0

(∫ ∞
t

ψ(s)g(s) ds

)β(∫ t

0

f(s) ds

)α
<∞.

Similarly, for t ∈ (0,∞), let c(t) ∈ (t,∞) be such that
∫ c(t)
t

ψ(s)g(s) ds =∫∞
c(t)

ψ(s)g(s) ds. We have

1

ψ(t)β

(∫ ∞
t

ψ(s)g(s) ds

)β(∫ ∞
t

ϕ(s)f(s) ds

)α
� 1

ψ(t)β

((∫ ∞
t

ψ(s)g(s) ds

)β(∫ c(t)

t

ϕ(s)f(s) ds

)α
+

(∫ ∞
t

ψ(s)g(s) ds

)β(∫ ∞
c(t)

ϕ(s)f(s) ds

)α)

� 1

ψ(t)β

((∫ ∞
c(t)

ψ(s)g(s) ds

)β(∫ c(t)

t

ϕ(s)f(s) ds

)α

+

(∫ c(t)

t

ψ(s)g(s) ds

)β(∫ ∞
c(t)

ϕ(s)f(s) ds

)α)

≤
(∫ ∞

c(t)

ψ(s)g(s) ds

)β(∫ c(t)

t

f(s) ds

)α

+

(∫ c(t)

t

g(s) ds

)β(∫ ∞
c(t)

ϕ(s)f(s) ds

)α

≤ sup
t>0

(∫ ∞
t

ψ(s)g(s) ds

)β(∫ t

0

f(s) ds

)α

+ sup
t>0

(∫ t

0

g(s) ds

)β(∫ ∞
t

ϕ(s)f(s) ds

)α
<∞,

as desired.
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Proof of Corollary 1.3: Note that we can rewrite conditions (1.24) and
(1.25) (with a = 1) as

sup
r>0

(∫ ∞
r

u(1/y)y−2 dy

)1/q(∫ r

0

v(y)1−p
′
dy

)1/p′

<∞,(3.5)

sup
r>0

(∫ r

0

u(1/y)w(1/y)−q/2y−2 dy

)1/q(∫ ∞
r

v(y)1−p
′
s(y)−p

′/2 dy

)1/p′
<∞.(3.6)

Putting

f(y) = u(1/y)w(1/y)−q/2y−2, g(y) = v(y)1−p
′
,

together with ϕ(y) = w(1/y)q/2, ψ(y) = s(y)−p
′/2, α = 1/q, and β =

1/p′, it is clear that (3.5) and (3.6) are the same as (3.1) and (3.2)
respectively. Also, observe that (1.6) is equivalent to ϕ(y)α � ψ(y)β .
Hence, we are under the hypotheses of Corollary 1.3, and we can deduce
that the joint fulfillment of (1.24) and (1.25) is equivalent to

sup
t>0

[(∫ t

0

v(y)1−p
′
dy + s(t)p

′/2
∫ ∞
t

v(y)1−p
′
s(y)−p

′/2 dy

)1/p′

×
(
w(1/t)q/2

∫ t

0

u(1/y)w(1/y)−q/2y−2 dy +

∫ ∞
t

u(1/y)y−2 dy

)1/q]
<∞,

or equivalently, (1.28).

3.2. Necessity results.

3.2.1. Necessity in weighted Lebesgue spaces. Here we present
necessary conditions for (1.13) to hold, with F given by (1.4). We con-
sider the following assumptions on the weights u, v:

uwq/a
′
∈ L1

loc, v1−p
′
sp
′/a′ ∈ L1

loc.

Theorem 3.3. Let 1 < p, q <∞ and 1 ≤ a ≤ ∞. Assume that inequal-
ity (1.13) holds for every f , where

Ff(y) =

∫ ∞
0

s(x)f(x)K(x, y) dx.

(i) If the kernel K(x, y) satisfies

(3.7) K(x, y) � 1, 0 < xy ≤ 1,

then (1.24) is valid.
(ii) If the kernel K(x, y) satisfies

K(x, y) � (s(x)w(y))−1/2, xy > 1,

then (1.25) is valid.
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Note that Corollary 1.4 readily follows from Theorems 1.1 and 3.3.

Proof of Theorem 3.3: For the first part, let

fr(x) = v(x)1−p
′
s(x)(1−p

′)(p/a−1)χ(0,r)(x), r > 0.

It follows from (3.7) and the equality 1 + (1− p′)(p/a− 1) = p′/a′ that
for y ≤ 1/r

|Ffr(y)| =
∫ ∞
0

fr(x)K(x, y)s(x) dx �
∫ r

0

v(x)1−p
′
s(x)p

′/a′ dx.

On the one hand, we have

(3.8) ‖w1/a′Ff‖q,u ≥
(∫ 1/r

0

u(y)w(y)q/a
′
dy

)1/q(∫ r

0

v(x)1−p
′
s(x)p

′/a′ dx

)
,

and on the other hand,

‖s1/afr‖p,v =

(∫ r

0

v(x)1−p
′
s(x)p

′/a′ dx

)1/p

.

Combining the latter equality with (1.13) and (3.8), we derive(∫ 1/r

0

u(y)w(y)q/a
′
dy

)1/q(∫ r

0

v(x)1−p
′
s(x)p

′/a′ dx

)
.

(∫ r

0

v(x)1−p
′
s(x)p

′/a′ dx

)1/p

,

i.e., (1.24) holds.
We omit the proof of the second part, as it is essentially a repetition

of that of the first part. In this case, one should consider the function

fr(x) = v(x)1−p
′
s(x)p

′(1/a′−1/2)−1/2χ(r,∞)(x), r > 0,

and proceed analogously as above.

The latter shows that condition (1.24) is best possible for some clas-
sical transforms, such as the Hankel (or the cosine) transform, since
jα(xy) � 1 whenever xy ≤ 1 for every α ≥ −1/2 (i.e., (3.7) is satisfied).

3.2.2. Necessity in weighted Lorentz spaces. To conclude the part
dealing with necessary conditions for (1.13), we present a generaliza-
tion of a result due to Benedetto and Heinig [6, Theorem 2], related to
weighted Lorentz spaces (introduced in [31]; see also [13]). We also refer
the reader to [10, 34, 38] for recent advances in the theory of Fourier
inequalities in Lorentz spaces.

In this part we do not present sufficiency conditions, as those rely on
rearrangement inequalities that follow from Bessel’s weighted inequal-
ity (1.10) (cf. [6]), which we are not considering in this work.
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Recall that for a measure space (X,µ) with X ⊂ R and f a complex
µ-measurable function, we define the distribution function of f as

Df (t) = µ{x ∈ X : |f(x)| > t}, t ∈ [0,∞).

Note that Df is nonnegative. Moreover, for 0 < p <∞ (see, e.g., [7]),∫
X

|f(x)|p dµ(x) = p

∫ ∞
0

tp−1Df (t) dt.

Theorem 3.4. Let 1 < p, q < ∞. Assume that the kernel K(x, y)
from (1.4) satisfies K(x, y) � 1 for xy ≤ 1. If u and v are weights such
that the inequality

(3.9)

(∫ ∞
0

(Ff)∗(y)qu(y) dy

)1/q

≤ C0

(∫ ∞
0

f∗(x)pv(x) dx

)1/p

holds for every f , then(∫ 1/r

0

u(y) dy

)1/q(∫ r

0

v(x) dx

)−1/p(∫ r

0

s(x) dx

)
≤ C, r > 0.

Proof: The argument is similar to that of [6, Theorem 2]. Let f(x) =
χ(0,r)(x). It is clear that f∗=f . Observe that the right hand side of (3.9)

is equal to C0

(∫ r
0
v(x) dx

)1/p
, and moreover we have

Ff(y) =

∫ ∞
0

s(x)f(x)K(x, y) dx =

∫ r

0

s(x)K(x, y) dx.

If we denote c = minxy≤1K(x, y), then by hypotheses c > 0, and for y ≤
1/r, one has

(3.10) Ff(y) >
c

2

∫ r

0

s(x) dx =: Ar.

For any r > 0, the following estimate holds:(∫ ∞
0

(Ff)∗(y)qu(y) dy

)1/q

≥
(∫ 1/r

0

(Ff)∗(y)qu(y) dy

)1/q

=

(
q

∫ ∞
0

tq−1

(∫
{y∈(0,1/r):(Ff)∗(y)>t}

u(y) dy

)
dt

)1/q

=

(
q

∫ ∞
0

tq−1

(∫ min{DFf (t),1/r}

0

u(y) dy

)
dt

)1/q

,

(3.11)

where in the last step we have used that {y : (Ff)∗(y) > t} = {y :
DFf (t) > y}. Also note that for t < Ar, (3.10) implies

(0, 1/r) ⊂ {y > 0 : Ff(y) > Ar} ⊂ {y > 0 : Ff(y) > t}.
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Thus, for such choice of t,

DFf (t) =

∫
{y>0:|Ff(y)|>t}

dz ≥
∫ 1/r

0

dy =
1

r
.

In view of the latter, we deduce that if t < Ar, then min{DFf (t), 1/r} =
1/r. Combining such observation with (3.11), we obtain(∫ ∞

0

(Ff)∗(y)qu(y) dy

)1/q

≥
(
q

∫ Ar

0

tq−1

(∫ 1/r

0

u(y) dy

)
dt

)1/q

= Ar

(∫ 1/r

0

u(y) dy

)1/q

.

Finally, it follows from (3.9) and the previous estimates that

c

2

(∫ 1/r

0

u(y) dy

)1/q(∫ r

0

v(x) dx

)−1/p(∫ r

0

s(x) dx

)

≤
(∫ ∞

0

(Ff)∗(y)qu(y) dy

)(∫ r

0

v(x) dx

)−1/p

≤ C0

(∫ r

0

v(x) dx

)1/p(∫ r

0

v(x) dx

)−1/p

= C0,

which establishes the assertion.

4. Weighted norm inequalities for transforms with
power-type kernel

In what follows we assume u(x) = x−β
′
q, v(x) = xγp with β1 −

γ1 = β2 − γ2 and s(x) = w(x) = xδ, δ > 0 in (1.4). Piecewise power
weights have been considered for the study of weighted restriction Fourier
inequalities [9, 17], and moreover they play a fundamental role in the
study of weighted norm inequalities for the Jacobi transform [24] (see
also [28]).

For the sake of generality, we first give sufficient conditions for (1.32)
to hold, and then we also study necessary conditions for (1.33) to hold,
i.e., with non-mixed power weights.

4.1. Sufficient conditions.

Proof of Theorem 1.5: Let us verify that conditions (1.30) and (1.31)
imply (1.24) and (1.25) with a = 1. On the one hand, it is clear that
the integrals on the left hand side of (1.24) converge if and only if

β2 <
1

q
and γ1 <

1

p′
.
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On the other hand, the integrals on the left hand side of (1.25) converge
if and only if

β1 >
1

q
− δ

2
and γ2 >

1

p′
− δ

2
.

Notice that (1.30) and (1.31) (along with β1 − γ1 = β2 − γ2) imply that
all the previous conditions hold. Now we proceed to verify that (1.24)
and (1.25) hold. It suffices to check those conditions for r < 1/2 or r > 2.
We check (1.24) first. If r < 1/2,(∫ 1/r

0

u(y) dy

)1/q(∫ r

0

v(x)1−p
′
dx

)1/p′
� r−γ1+1/p′

(
C +

∫ 1/r

1

y−β1q dy

)1/q
� r−γ1+1/p′ max{1, rβ1−1/q}

= max{r−γ1+1/p′ , rβ1−γ1+1/p′−1/q},

which is uniformly bounded in r < 1/2 if and only if

(4.1) β1 − γ1 ≥ 1/q − 1/p′.

If r > 2,(∫ 1/r

0

u(y) dy

)1/q(∫ r

0

v(x)1−p
′
dx

)1/p′
� rβ2−1/q

(
C+

∫ r

1

xγ2p(1−p
′) dx

)1/p′
� rβ2−1/q max{1, r−γ2+1/p′}

= max{rβ2−1/q, rβ2−γ2+1/p′−1/q}.

The latter is uniformly bounded in r > 2 if and only if

(4.2) β2 − γ2 ≤ 1/q − 1/p′.

The joint fulfillment conditions (4.1) and (4.2) together with β1 − γ1 =
β2 − γ2 is equivalent to (1.30).

Finally, we are left to verify (1.25). First, if r < 1/2,(∫ ∞
1/r

u(y)y−qδ/2 dy

)1/q(∫ ∞
r

v(x)1−p
′
x−p

′δ/2 dx

)1/p′

� rβ1+δ/2−1/q

(
C +

∫ 1

r

x−p
′(γ1+δ/2) dx

)1/p′

� max{xβ1+δ/2−1/q, rβ1−γ1+1/p′−1/q},
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which is uniformly bounded in r < 1/2 if and only if (4.1) holds. Sec-
ondly, for r > 2,(∫ ∞

1/r

u(y)y−qδ/2 dy

)1/q(∫ ∞
r

v(x)1−p
′
x−p

′δ/2 dx

)1/p′

� r−γ2−δ/2+1/p′
(
C +

∫ 1

1/r

y−q(β2+δ/2) dy

)1/q

� max{r−γ2−δ/2+1/p′ , rβ2−γ2+1/p′−1/q},

and the latter is uniformly bounded in r > 2 if and only if (4.2) holds.

Now we prove Corollary 1.6, which applies to transforms with power-
type kernel, and is equivalent to Theorem 1.5 with non-mixed power
weights, as mentioned in the Introduction.

Proof of Corollary 1.6: The proof is essentially based on changing vari-
ables in Theorem 1.5. Let us define d = c1 − c2 and

K̃(x, y) = x−b1y−c1K(x, y).

Then it holds that

|K̃(x, y)| . min{1, (xy)−d}, d > 0.

We also define the auxiliary integral transform

Gf(y) =

∫ ∞
0

x2df(x)K̃(x, y) dx,

which satisfies the hypotheses of Theorem 1.5 (with δ = 2d). Putting
g(x) = xb0+b1−2df(x), we have the following relation:

yc0+c1Fg(y) = Gf(y),

and therefore, in virtue of Theorem 1.5, the weighted norm inequality

‖y−c0−c1−β
′
Gf‖q=‖y−β

′
Fg‖q.‖xγ

′+2dg‖p=‖xγ
′+b0+b1f‖p, 1<p≤q<∞,

holds with β′ = γ′+1/q−1/p′ and 1/q−d < β′ < 1/q, or in other words,
if we set β = β′ + c0 + c1 and γ = γ′ + b0 + b1, then inequality (1.33)
holds if both conditions in (1.34) are satisfied.

At this point we can already derive sufficient conditions for (1.33) to
hold whenever F is the sine, Hankel, or Hα transform. To do this, we
use the estimates (1.19), (1.22), and Corollary 1.6 (recall that | sinxy| ≤
min{xy, 1} for x, y > 0). Those sufficient conditions are the following:
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• Sine transform: β = γ + 1/q − 1/p′, and

1

q
< β < 1 +

1

q
.

• Hankel transform of order α > −1/2: β = γ− 2α− 1 + 1/q− 1/p′,
and

1

q
− α− 1

2
< β <

1

q
.

• Hα transform of order α > −1/2: β = γ + 1/q − 1/p′, and

1

q
< β <

1

q
+ α+

3

2
, if α < 1/2,

1

q
+ α− 1

2
< β <

1

q
+ α+

3

2
, if α ≥ 1/2.

Note that the above conditions are not optimal in the case of the sine
and Hankel transforms. For the sine transform, it is known [24] that
(1.33) holds if and only if β = γ + 1/q − 1/p′ and

max

{
1

q
− 1

p′
, 0

}
≤ β < 1 +

1

q
,

and for the Hankel transform (of order α ≥ −1/2), (1.33) holds if and
only if (see [15]) β = γ − 2α− 1 + 1/q − 1/p′ and

max

{
1

q
− 1

p′
, 0

}
− α− 1

2
≤ β < 1

q
.

For the Hα transform, Rooney proved in [36] that (1.33) holds if
β = γ + 1/q − 1/p′ and

β≥max

{
1

q
− 1

p′
, 0

}
and

1

q
+ α− 1

2
< β <

1

q
+ α+

3

2
, if α<1/2,

1

q
+ α− 1

2
< β <

1

q
+ α+

3

2
, if α≥1/2.

(4.3)

Note that whenever α > 1/2, the above sufficient conditions coincide
with those given by Corollary 1.6, and moreover they are optimal (see
Theorem 4.1 and Remark 4.2 below).

4.2. Necessary conditions. Let us now study what conditions follow
from (1.33). The main result of this subsection goes along the same lines
as Theorem 3.3.



26 A. Debernardi

Theorem 4.1. Let 1 < p ≤ q <∞. Assume that inequality (1.33) holds
for all f , with F as in (1.14).

(i) If the kernel K(x, y) satisfies

K(x, y) � xb1yc1 , xy ≤ 1, b1, c1 ∈ R,

then

β = γ + c0 − b0 + c1 − b1 +
1

q
− 1

p′
, β <

1

q
+ c0 + c1.

(ii) If the kernel K(x, y) satisfies

K(x, y) � xb2yc2 , xy > 1, b2, c2 ∈ R,

then

β = γ + c0 − b0 + c2 − b2 +
1

q
− 1

p′
, β >

1

q
+ c0 + c2.

Proof: For r > 0, let fr(x) = x−b0−b1+dχ(0,r)(x), where d > −1 is such
that γ − b0 − b1 + d > −1/p for a given γ ∈ R. Then

‖xγfr‖p =

(∫ r

0

xp(γ−b0−b1+d) dx

)1/p

� rγ−b0−b1+d+1/p.

If y ≤ 1/r, one has

Ffr(y) = yc0
∫ r

0

x−b1+dK(x, y) dx � rd+1yc0+c1 ,

Then, it follows from inequality (1.33) and the finiteness of ‖xγfr‖p that

rγ−b0−b1+d+1/p � ‖xγfr‖p & ‖y−βFfr‖q ≥
(∫ 1/r

0

y−βq|Ffr(y)|q dy
)1/q

� rd+1

(∫ 1/r

0

yq(−β+c0+c1) dy

)1/q

� rβ−c0−c1−1/q+d+1.

Note that the finiteness of the latter integral is equivalent to β < 1/q +
c0 + c1. Moreover, the inequality rβ−c0−c1−1/q+d+1 . rγ−b0−b1+d+1/p

holds uniformly in r > 0 if and only if β = c0− b0 + c1− b1 + 1/q− 1/p′.
This completes the proof of the first part.

The proof of the second part is omitted, as it is analogous to that of
the first part. In this case one should use consider the function

fr(x) = x−b0−b2−dχ(r,∞)(x),

where d > 1 is such that γ − b0 − b2 − d < −1/p for a given γ ∈ R.
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Remark 4.2. Note that if the kernel K(x, y) of (1.14) is such that

K(x, y) � min{xb1yc1 , xb2yc2},

with b1− b2 = c1− c2 > 0, then the sufficient conditions of Corollary 1.6
are also necessary. An example of a transform satisfying such property
is the Hα transform with α > 1/2 (cf. Remark 2.1). This proves that
Corollary 1.6 is sharp, although in general it does not give the sharp
sufficient conditions for inequality (1.33) to hold whenever F is some of
the aforementioned transforms, such as the sine transform.

5. Integral transforms with kernel represented by a
power series and functions with vanishing moments

This section is motivated by the well-known result due to Sadosky
and Wheeden [37]. They proved that the sufficient conditions (1.3) that
guarantee Pitt’s inequality (in one dimension) can be relaxed, provided
that f has vanishing moments. More precisely, one has:

Theorem B. Let f be such that∫ ∞
−∞

xjf(x) dx = 0, j = 0, . . . , n− 1, n ∈ N.

Then, the weighted norm inequality

(5.1)

(∫
R
|x|−βq|f̂(x)|q dx

)1/q

≤ C
(∫

R
|x|γp|f(x)|p dx

)1/p

holds with β = γ + 1/q − 1/p′ and

1

q
< β < n+

1

q
, β 6= 1

q
+ j, j = 1, . . . , n− 1.

5.1. Main results. Following the idea of Sadosky and Wheeden, here
we obtain an analogous statement to Theorem B for transforms with
kernels represented by power series. As examples, we mention the sine,
Hankel, and Hα transforms. The generalization of Theorem B reads as
follows:

Theorem 5.1. Let 1 < p ≤ q < ∞ and let the integral transform F be
as in (1.14). Let

(5.2) K(x, y)=xb1yc1
∞∑
m=0

am(xy)km, k∈N, am∈C, b1, c1∈R, x, y>0,

with
∑∞
m=0 |ak| = A < ∞. Assume the series defining K converges

for every x, y > 0, and moreover |K(x, y)| . xb2yc2 for xy > 1, where
b2, c2 ∈ R, and c1 − c2 = b1 − b2 ≥ 0. If f is such that

(5.3)
∫ ∞
0

xb0+b1+`kf(x) dx = 0, ` = 0, . . . , n− 1, n ∈ N,



28 A. Debernardi

then the inequality ‖y−βFf‖q ≤ C‖xγf‖p holds with

β = γ + c0 − b0 + c1 − b1 +
1

q
− 1

p′
,

1

q
+ c0 + c1 < β <

1

q
+ c0 + c1 + n`,

and β 6= 1/q + c0 + c1 + jk, j = 1, . . . , n− 1.

Proof: First of all note that since
∑
|am| < ∞, one has |K(x, y)| .

xb1yc1 whenever xy ≤ 1.
By (5.3), we can write, for any ` = 1, . . . , n,

Ff(y) = yc0+c1
∫ ∞
0

xb0+b1f(x)

(
x−b1y−c1K(x, y)−

`−1∑
m=0

am(xy)km
)
dx.

If we define

G`(x, y) = x−b1y−c1K(x, y)−
`−1∑
m=0

am(xy)km =

∞∑
m=`

am(xy)km,

then it is clear that for xy ≤ 1 one has

|G`(x, y)| ≤ A(xy)k`.

For xy > 1, since x−b1y−c1 |K(x, y)| . (xy)c2−c1 and c2 − c1 ≤ 0, it is
also clear that |G`(x, y)| . (xy)k(`−1). In conclusion,

|G`(x, y)| .

{
(xy)k`, xy ≤ 1,

(xy)k(`−1), xy > 1,

or equivalently,

|G`(x, y)| . min{(xy)k`, (xy)k(`−1)}.

Hence, by Corollary 1.6, the transform defined as

G`g(y) = yc0+c1
∫ ∞
0

xb0+b1f(x)G`(x, y) dx

satisfies the inequality

‖y−βG`g‖q . ‖xγg‖p,

provided that β = γ + c0 − b0 + c1 − b1 + 1/q − 1/p′ and

1

q
+ c0 + c1 + k(`− 1) < β <

1

q
+ c0 + c1 + k`.

Since the latter holds for every ` = 1, . . . , n, our assertion follows.

In general Theorem 5.1 is not true whenever β = 1/q+c0 +c1 +jk for
some j ∈ {0, 1, . . . , n}, as shown in the case of the Fourier transform [37].
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Remark 5.2. In contrast with Corollary 1.6, in Theorem 5.1 we can allow
b1 = b2, c1 = c2. This is because in order to prove Theorem 5.1 we ap-
ply Corollary 1.6 to the transform G`, whose kernel satisfies |G`(x, y)| .
min{(xy)k`, (xy)k(`−1)}, thus it always satisfies the hypothesis of Corol-
lary 1.6, namely b1 = c1 = k` > k(`− 1) = b2 = c2.

A similar result to Theorem 5.1 also holds for the Fourier transform
on Rn, cf. [37, Theorem 2]. See also [14], where a similar problem with
nonradial weights is considered.

For the Hankel transform of order α ≥ −1/2, we have the represen-
tation of jα(xy) by power series (1.18). Thus, on applying Theorem 5.1
with b1 = c0 = c1 = 0, b0 = 2α+ 1, and k = 2, we obtain the following:

Corollary 5.3. Let 1 < p ≤ q <∞ and let f be such that∫ ∞
0

x2α+1+2`f(x) dx = 0, ` = 0, . . . , n− 1, n ∈ N.

Then the inequality
‖y−βHαf‖q ≤ C‖xγf‖p

holds if β = γ − 2α− 1 + 1/q − 1/p′ and

1

q
< β <

1

q
+ 2n, β 6= 1

q
+ 2`, ` = 1, . . . , n− 1.

Remark 5.4. Let us compare Theorem B and Corollary 5.3. It is
known that if

∫
R f(x) dx = 0, then inequality (5.1) does not necessar-

ily hold for β = 1 + 1/q [37]. However, it follows from Corollary 5.3
with α = −1/2 (i.e., the cosine transform) that if

∫
R f(x) dx = 0 and

moreover f is even, then inequality (5.1) holds for β = 1 + 1/q.

Let us now state a version of Theorem 5.1 for the sine transform.
Since

sinxy = xy

∞∑
m=0

(−1)m

(2m+ 1)!
(xy)2m,

Theorem 5.1 with b0 = c0 =0, b1 = c1 =1, and k = 2 yields the following:

Corollary 5.5. Let 1 < p ≤ q <∞ and let f be such that∫ ∞
0

x2`+1f(x) dx = 0, ` = 0, . . . , n− 1, n ∈ N.

Then the inequality
‖y−β f̂sin‖q ≤ C‖xγf‖p

holds if β = γ + 1/q − 1/p′ and

1

q
+ 1 < β <

1

q
+ 2n+ 1, β 6= 1

q
+ 2`+ 1, ` = 1, . . . , n− 1.
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Finally, we present the statement corresponding to the Hα transform.
In view of (1.21) and (1.22), we apply Theorem 5.1 with b0 = c0 = 1/2,
b1 = c1 = α+ 1, and k = 2.

Corollary 5.6. Let 1 < p ≤ q <∞ and α > −1/2. Let f be such that∫ ∞
0

xα+3/2+2`f(x) dx = 0, ` = 0, . . . , n− 1, n ∈ N.

Then the inequality

‖y−βHαf‖q ≤ C‖xγf‖p
holds if β = γ + 1/q − 1/p′ and

1

q
+ α+

3

2
< β <

1

q
+ α+

3

2
+ 2n, β 6= 1

q
+ α+

3

2
+ 2`, ` = 1, . . . , n− 1.

5.2. Sharpness. To conclude this section, we show that in general
Theorem 5.1 does not hold for β = 1/q + c0 + c1 (or equivalently,
for γ = 1/p′ + b0 + b1), although

∫∞
0
xb0+b1f(x) dx = 0.

Proposition 5.7. Let 0 < q ≤ ∞ and 1 < p <∞. Let the transform F
be as in (1.14), with kernel K(x, y) of the form (5.2), satisfying |a0| > 0
and

∑
|am| = A <∞. Assume there is C > 0 such that

|K(x, y)| ≤

{
Cxb1yc1 , if xy ≤ 1,

Cxb2yc2 , if xy > 1,

where bj , cj ∈ R, j = 1, 2. Furthermore, suppose there exists ν ∈ R
and Gνy(x) such that (d/dx)Gνy(x) = xνK(x, y), and that there exists
C ′ > 0 for which

(5.4) |Gνy(x)| ≤ C′xbyc, b, c ∈ R, xy ≥ 1,

holds with b− b1 − ν < 1. Then, if u 6≡ 0, the weighted norm inequality

(5.5)

(∫ ∞
0

u(y)|Ff(y)|q dy
)1/q

.

(∫ ∞
0

xp(1/p
′+b0+b1)|f(x)|p dx

)1/p

cannot hold for all f satisfying
∫∞
0
xb0+b1f(x) dx = 0.

Remark 5.8. Note that the examples we presented above (sine, Hankel,
or Hα transforms) satisfy the hypotheses of Proposition 5.7. For exam-
ple, in the case of the Hα transform (α > −1/2), we have b1 = α + 1,
b2 = α− 1, and for any ν ≥ 1/2, b = α+ ν (cf. Lemma 2.2).

Proof of Proposition 5.7: Define, for N ∈ N,

fN (x) =
1

xb0+b1+1
(χ(1/N,1)(x)− χ(1,N)(x)).
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Then ∫ ∞
0

xb0+b1fN (x) dx =

∫ 1

1/N

1

x
dx−

∫ N

1

1

x
dx = logN − logN = 0,

and(∫ ∞
0

xp(1/p
′+b0+b1)|fN (x)|p dx

)1/p

=

(∫ N

1/N

1

x
dx

)1/p

= (2 logN)1/p.

Now let y ∈ (0,∞) and assume N is such that 1/N < 1/y < N . We
have

y−c0 |Ff(y)| =

∣∣∣∣∫ 1

1/N

1

xb1+1
K(x, y) dx−

∫ N

1

1

xb1+1
K(x, y) dx

∣∣∣∣
≥
∣∣∣∣∫ 1/y

1/N

1

xb1+1
K(x, y) dx

∣∣∣∣− 2

∣∣∣∣∫ 1

1/y

1

xb1+1
K(x, y) dx

∣∣∣∣
−
∣∣∣∣∫ N

1/y

1

xb1+1
K(x, y) dx

∣∣∣∣
=: I1 − I2 − I3.

Now we proceed to estimate I1 from below, and I2, I3 from above. Then,
joining all such estimates and combining them with the latter inequality,
we can obtain a lower estimate for y−c0 |Ff(y)|. First,

I1 =

∣∣∣∣∫ 1/y

1/N

K(x, y)− xb1yc1a0 + xb1yc1a0
xb1+1

dx

∣∣∣∣
≥
∣∣∣∣∫ 1/y

1/N

xb1yc1a0
xb1+1

dx

∣∣∣∣− ∣∣∣∣∫ 1/y

1/N

K(x, y)− xb1yc1a0
xb1+1

dx

∣∣∣∣.
Since∣∣∣∣∫ 1/y

1/N

a0x
b1yc1

xb1+1
dx

∣∣∣∣ = |a0|yc1
∣∣∣∣∫ 1/y

1/N

1

x
dx

∣∣∣∣ ≥ yc1 |a0| logN − yc1 |a0 log y|,

and ∣∣∣∣∫ 1/y

1/N

K(x, y)− a0xb1yc1
xb1+1

dx

∣∣∣∣ ≤ yc1 ∫ 1/y

1/N

x−1
∞∑
m=1

|am|(xy)mk dx

≤ Ayc1+k
∫ 1/y

1/N

xk−1 dx ≤ Ayc1 ,

we obtain

I1 ≥ yc1 |a0| logN − yc1 |a0 log y| −Ayc1 =: yc1 |a0| logN − η1(y).
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We now proceed to estimate I2 from above. Here we distinguish two
cases, namely if 1/y < 1 or 1/y ≥ 1; in the following we take j = 1
if 1/y < 1, and j = 2 otherwise:

I2 = 2

∣∣∣∣∫ 1

1/y

1

xb1+1
K(x, y) dx

∣∣∣∣ ≤ 2Cycj
∣∣∣∣∫ 1

1/y

xbj−b1−1 dx

∣∣∣∣
≤ 2Cycj max{1, 1/y}max{1, yb1+1−bj}

≤ 2Cycj max{1, 1/y, yb1−bj , yb1+1−bj} =: η2(y).

Finally, integration by parts and estimate (5.4) yield

I3 =

∣∣∣∣∫ N

1/y

1

xb1+1+ν
xνK(x, y) dx

∣∣∣∣ ≤ N−b1−1−ν |Gνy(N)|+ yb1+1+ν |Gνy(1/y)|

+(b1 + ν + 1)

∫ N

1/y

1

xb1+2+ν
|Gνy(x)| dx

≤ C′ycNb−b1−1−ν + C′yc−b+b1+1+ν + C′(b1 + 1 + ν)yc
∫ N

1/y

xb−b1−2−ν dx

≤ C′yc+ C′yc−b+b1+1+ν + C′yc
∣∣∣∣ b1 + 1 + ν

b− b1 − 2− ν

∣∣∣∣(1 + y−b+b1+1+ν) =: η3(y).

Thus, collecting all estimates, we obtain

y−c0−c1 |Ff(y)| ≥ |a0| logN − y−c1(η1(y) + η2(y) + η3(y)).

Since u(y) 6≡ 0, we can find 0 < t1 < t2 < ∞ such that
∫ t2
t1
u(y) dy > 0.

Choosing N so large that for every y ∈ (t1, t2) there holds

y−c0−c1 |Ff(y)| ≥ |a0| logN − y−c1(η1(y) + η2(y) + η3(y)) >
|a0|
2

logN,

it can be deduced from inequality (5.5) (with the usual modification
if q =∞) that

|a0|
2

logN

(∫ t2

t1

yq(c0+c1)u(y) dy

)1/q

≤
(∫ ∞

0

|Ff(y)|qu(y) dy

)1/q

.

(∫ ∞
0

xp(1/p
′+b0+b1)|fN (x)|p dx

)1/p

= (2 logN)1/p,

which is a contradiction, since p > 1.
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6. Weighted norm inequalities with general monotone
functions

In this section we consider the so-called general monotone functions.
We say [30] that a function locally of bounded variation f : R+ → C is
general monotone (written f ∈ GM) if there exist constants C, λ > 1
such that

(6.1)
∫ 2x

x

|df(t)| ≤ C

x

∫ λx

x/λ

|f(t)| dt, x > 0,

where
∫
|df(t)| is understood as a Stieltjes integral. For the discrete

version of general monotonicity, see [40]. We are interested in obtaining
sufficient conditions for the weighted norm inequality

(6.2) ‖Ff‖q,u . ‖f‖p,v, 1 < p ≤ q <∞,

to hold for every f ∈ GM whenever F is a transform of power-type
kernel (i.e., of the form (1.14) and satisfying (1.15)). In what follows we
assume the kernel K is continuous in the variable x. Here u, v are general
nonnegative weights. As a particular case, we investigate whether we
can relax the sufficient conditions of Corollary 1.6 when u, v are power
weights under the assumption f ∈ GM .

Here we assume that

(6.3) |K(x, y)| . xb1yc1 , xy < 1,

with b1, c1 ∈ R. Let G(x, y) be such that

(6.4)
d

dx
G(x, y) = xb0K(x, y),

where the additive constant of G is taken to be zero (such G exists due
to the continuity of K in the variable x). We moreover suppose that
G(x, y) satisfies the estimate

(6.5) |G(x, y)| . xbyc, xy ≥ 1,

with b, c ∈ R. Finally, we say that f ∈ GM is admissible if∫ 1

0

xb0+b1 |f(x)| dx+

∫ ∞
1

xb−1|f(x)| dx <∞.

Remark 6.1. Let us recall some useful properties of f ∈ GM .

(1) If σ ≥ 0, ∫ ∞
y

xσ|df(x)| .
∫ ∞
y/λ

xσ−1|f(x)| dx,

where λ is the constant from (6.1), see [23, p. 111].
(2) If

∫∞
1
|f(x)| dx <∞, then x|f(x)| → 0 as x→∞ (cf. [30]).

(3) The function xσf(x) is GM for every σ ∈ R.
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6.1. Main results. First we obtain straightforward upper estimates
for G that follow from the upper estimates for K. This will provide an
expression for b, c in (6.5) in the general case.

Proposition 6.2. Let K satisfy (6.3), and assume that |K(x, y)| .
xb2yc2 for xy > 1. Let G be given by the relation (6.4). Then,

(i) If b0 + b1 > 0 and b0 + b2 6= −1, then

|G(x, y)| .

{
yc1xb0+b1+1, if xy ≤ 1,

yc2xb0+b2+1 + yc1−b0−b1−1 + yc2−b0−b2−1, if xy > 1.

(ii) If b0 + b2 < −1 and b0 + b1 6= −1, then

|G(x, y)| .

{
yc1xb0+b1+1 + yc1−b0−b1−1 + yc2−b0−b2−1, if xy ≤ 1,

yc2xb0+b2+1, if xy > 1.

Proof: (i) Since b0 + b1 > 0, we can write G(x, y) =
∫ x
0
tb0K(t, y) dt, by

the Fundamental Theorem of Calculus. For x ≤ 1/y,

|G(x, y)| . yc1
∫ x

0

tb0+b1 dt . yc1xb0+b1+1,

whilst for x > 1/y, using the latter estimate we obtain

|G(x, y)| . yc1−b0−b1−1 +

∫ x

1/y

tb0 |K(t, y)| dt

. yc1−b0−b1−1 + yc2−b0−b2−1 + yc2xb0+b2+1.

(ii) Since b0 + b2 < −1, we can write G(x, y) =
∫∞
x
tb0K(t, y) dt, again

by the Fundamental Theorem of Calculus. For x > 1/y,

|G(x, y)| . yc2
∫ ∞
x

tb0+b2 dt � yc2xb0+b2+1.

For x ≤ 1/y, using the latter estimate we obtain

|G(x, y)| .
∫ 1/y

x

tb0 |K(t, y)| dt+ yc2−b0−b2−1

. yc1xb0+b1+1 + yc1−b0−b1−1 + yc2−b0−b2−1,

as desired.

Remark 6.3. Observe that the upper estimates for |G(x, y)| given in
Proposition 6.2 are rather rough, and they are not optimal for oscillating
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kernels K(x, y), such as K(x, y) = jα(xy). However, those estimates are
useful for kernels satisfying

K(x, y) �

{
xb1yc1 , if xy ≤ 1,

xb2yc2 , if xy > 1.

In fact, the Struve function Hα with α > 1/2 satisfies the above esti-
mate, and it can be easily checked that in this case the result given by
Proposition 6.2 coincides with that of Lemma 2.2. For oscillating ker-
nels it is more convenient to obtain these estimates by using an iterated
integration by parts, as done in Lemma 2.2 for the Struve function, or
in [18] for the Bessel function (in both cases the estimates are sharp).

The following lemma yields an upper pointwise estimate for Ff .

Lemma 6.4. Let f ∈GM be an admissible function. Assume (6.3) holds,
and G(x, y) defined by (6.4) satisfies (6.5) with b ≥ 0. Then the trans-
form

Ff(y) = yc0
∫ ∞
0

xb0f(x)K(x, y) dx

satisfies the pointwise estimate

(6.6) |Ff(y)| . yc0+c1
∫ 1/y

0

|f(x)|xb0+b1 dx+ yc+c0
∫ ∞
1/(λy)

xb−1|f(x)| dx,

where λ is the constant from (6.1).

Note that if f ∈ GM is admissible, it follows from Lemma 6.4 that
Ff(y) is defined in (0,∞).

Proof of Lemma 6.4: In view of (6.3), we have

|Ff(y)| . yc0+c1
∫ 1/y

0

xb0+b1 |f(x)| dx+ yc0
∣∣∣∣∫ ∞

1/y

f(x)xb0K(x, y) dx

∣∣∣∣=:I1+|I2|.

Partial integration on I2 yields the estimate

|I2| ≤ yc0 |f(x)G(x, y)|
∣∣∣∣∞
1/y

+ yc0
∫ ∞
1/y

|G(x, y) df(x)|.

First, since f is admissible, it follows from (6.5) and (2) and (3) of
Remark 6.1 that

lim
x→∞

|f(x)G(x, y)| . yc lim
x→∞

xb|f(x)| = 0.
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Secondly, since b ≥ 0, we deduce from (1) of Remark 6.1 and (6.5) that

yc0 |f(1/y)G(1/y, y)| . yc+c0−b|f(1/y)| ≤ yc+c0−b
∫ ∞
1/y

|df(x)|

. yc+c0
∫ ∞
1/(λy)

xb−1|f(x)| dx.

Finally, similarly as above,

yc0
∫ ∞
1/y

|G(x, y) df(x)| . yc+c0
∫ ∞
1/y

xb|df(x)| . yc+c0
∫ ∞
1/(λy)

xb−1|f(x)| dx,

and therefore (6.6) is established.

Remark 6.5. Note that if b − c − 1 = b0 + b1 − c1, one may take λ = 1
in (6.6), since

yc+c0
∫ 1/y

1/(λy)

xb−1|f(x)| dx � yc0+c1
∫ 1/y

1/(λy)

xb0+b1 |f(x)| dx

≤ yc0+c1
∫ 1/y

0

xb0+b1 |f(x)| dx.

We are now in a position to prove sufficient conditions for the inequal-
ity (1.33) to hold.

Theorem 6.6. Let 1 < p ≤ q < ∞ and f ∈ GM be admissible. Let
F be as in (1.14). Assume (6.3) holds, and G(x, y) defined by (6.4)
satisfies (6.5) with b ≥ 0. Then, inequality (6.2) holds provided that
there exists C > 0 such that for every r > 0,(∫ 1/r

0

u(y)y(c0+c1)q dy

)1/q(∫ r

0

v(x)1−p
′
x(b0+b1)p

′
dx

)1/p′

≤ C,(6.7)

(∫ ∞
1/(λr)

u(y)y(c+c0)q dy

)1/q(∫ ∞
r

v(x)1−p
′
x(b−1)p′ dx

)1/p′

≤ C,(6.8)

where λ is the constant from (6.1).

Remark 6.7. Note that under certain assumptions on the parameters c,
b, ci, and bi (i = 0, 1), we can use the gluing lemma (Lemma 3.2) to
rewrite conditions (6.7) and (6.8) as one single condition, similarly as
done with Theorem 1.1 and Corollary 1.3.
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Proof of Theorem 6.6: Using the estimate (6.6), we can write(∫ ∞
0

u(y)|Ff(y)|q dy
)1/y

.

(∫ ∞
0

u(y)

(
yc0+c1

∫ 1/y

0

xb0+b1 |f(x)| dx
)q
dy

)1/q

+

(∫ ∞
0

u(y)

(
yc+c0

∫ ∞
1/(λy)

xb−1|f(x)| dx
)q
dy

)1/q
=: I1 + I2.

On the one hand, by Lemma 3.1 and the change of variables y → 1/y,
the inequality

I1 =

(∫ ∞
0

u(1/y)

y2+(c0+c1)q

(∫ y

0

xb0+b1 |f(x)| dx
)q

dy

)1/q

.

(∫ ∞
0

v(x)|f(x)|p dx
)1/p

= ‖f‖p,v

holds if(∫ ∞
r

u(1/y)

y2+(c0+c1)q
dy

)1/q(∫ r

0

v(x)1−p
′
x(b0+b1)p

′
dx

)1/p′

≤ C, r > 0,

or equivalently, if (6.7) is satisfied. On the other hand, again by Lem-
ma 3.1 and the change of variables y → 1/y, the inequality

I2 �
(∫ ∞

r

u((λy)−1)

y2+(c+c0)q

(∫ ∞
y

xb−1|f(x)| dx
)q

dy

)1/q

.

(∫ ∞
0

v(x)|f(x)|p dx
)1/p

= ‖f‖p,v

holds provided that(∫ r

0

u((λy)−1)

y2+(c+c0)q
dy

)1/q(∫ ∞
r

v(x)1−p
′
x(b−1)p′ dx

)1/p′

≤ C, r > 0,

or equivalently, if (6.8) holds.

Let us also state sufficient conditions for inequality (6.2) whenever u
and v are power weights.

Corollary 6.8. Let 1 < p ≤ q < ∞ and f ∈ GM be admissible. Let
F be as in (1.14). Assume (6.3) holds, and G(x, y) defined by (6.4)
satisfies (6.5) with b ≥ 0 and c < c1. Then, inequality (1.33) holds with

β = γ + c0 − b0 + c1 − b1 +
1

q
− 1

p′
,

1

q
+ c0 + c < β <

1

q
+ c0 + c1.
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The proof of the latter is omitted, as it is essentially an application
of Theorem 6.6 with u(y) = y−βq, v(x) = xγp. It then follows the same
steps as the proof of Theorem 1.5.

Remark 6.9. Let us compare the conditions for β in Corollaries 1.6
and 6.8. On the one hand, we observe that in both statements the
condition β < 1/q + c0 + c1 is required. On the other hand, Corol-
lary 1.6 requires that β > 1/q + c0 + c2, whilst Corollary 6.8 requires
β > 1/q+c0+c. Therefore, in order for Corollary 6.8 to yield a nontrivial
result we need to assume c < c2.

6.2. Examples. Let us present sufficient conditions for inequality (1.33)
to hold for the above transforms under the assumption f ∈ GM . Some
of the following results are already known, some others are new. It is
worth noting that in all examples we show below, the conditions on the
parameters b ≥ 0, c < c1, and b− c− 1 = b0 + b1 − c1 hold (in fact, the
latter condition can be omitted when u, v are power weights, see (6.8)).

(1) For the Fourier transform (in this case the integration in (1.4)
is performed in the interval (−∞,∞), but it can be divided into
two integrals over the interval (0,∞)), since K(x, y) = eixy and
G(x, y) = (iy)−1eixy, we have b = b0 = b1 = c0 = c1 = 0 and
c = −1. Thus, for f ∈ GM , the sufficient conditions that guarantee
the inequality

‖y−β f̂‖q . ‖xγf‖p
are β = γ + 1/q − 1/p′ and −1 + 1/q < β < 1/q. For the cosine
transform the situation is similar, i.e., the sufficient conditions are
the same, and in both cases those are also necessary (cf. [23, 29]).

(2) The sine transform (for which K(x, y) = sinxy and G(x, y) =
−y−1 cosxy) satisfies b1 = c1 = 1, b = b0 = c0 = 0, and c = −1,
thus, if f ∈ GM , the sufficient conditions for the inequality

‖y−β f̂sin‖q . ‖xγf‖p
to hold are β = γ+ 1/q− 1/p′ and −1 + 1/q < β < 1 + 1/q. These
conditions are also necessary, as shown in [29].

(3) The classical Hankel transform of order α ≥ −1/2 (1.17) has kernel
K(x, y) = jα(xy) satisfying jα(xy) � 1 for xy ≤ 1, and moreover

|G(x, y)| . y−α−3/2xα+1/2, x, y ∈ R+,

cf. [18, Lemma 2.6]. Thus, on applying Corollary 6.8 with b0 =
2α + 1, b1 = c = c1 = 0, b = α + 1/2, and c = −α − 3/2, we get
that the inequality

‖y−βHαf‖q . ‖xγf‖p
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holds with β = γ−2α−1+1/q−1/p′ and 1/q−α−3/2 < β < 1/q.
These sufficient conditions are also necessary, as proved in [16].
This includes the cosine transform (α = −1/2), see also [29].

(4) The Hα transform with α > −1/2 (1.20) has kernel K(x, y) =
Hα(xy) satisfying Hα(xy) � (xy)α+1 for xy ≤ 1. By Lemma 2.2,
we have

|G(x, y)| . yα−1xα+1/2, xy > 1.

Hence, applying Corollary 6.8 with b0 = c0 = 1/2, b1 = c1 = α+1,
b = α+ 1/2, and c = α− 1, we get that the inequality

(6.9) ‖y−βHαf‖q . ‖xγf‖p

holds with β = γ + 1/q − 1/p′ and 1/q + α − 1/2 < β < 1/q +
α+ 3/2. Notice that for α ≥ 1/2, this yields no improvement with
respect to the general case (cf. (4.3)), but for −1/2 < α < 1/2,
the GM hypothesis on f allows us to drop the condition β ≥
max{1/q − 1/p′, 0}.

To conclude, we prove that the range of β for which (6.9) holds given
by Corollary 6.8 is sharp.

Theorem 6.10. Let 1 < p ≤ q < ∞ and f ∈ GM be admissible.
Inequality (6.9) holds if and only if

(6.10) β = γ + 1/q − 1/p′, 1/q + α− 1/2 < β < 1/q + α+ 3/2.

Proof: We only need to prove that if (6.9) holds for every admissible f ∈
GM , then (6.10) holds. For α > −1/2 and r > 0, consider the function
fr(x) = xα+1/2χ(0,r)(x). Note that f ∈ GM and it is admissible. By [20,
§11.2 (2)], one has

Hαfr(y) = rα+1y−1/2Hα+1(ry).

On the one hand

‖xγfr‖p =

(∫ r

0

xp(γ+α+1/2) dx

)1/p

� rγ+α+1/2+1/p,

provided that γ + α+ 1/2 > −1/p. On the other hand,

‖y−βHαfr‖q = rα+1

(∫ ∞
0

y−q(β+1/2)|Hα+1(ry)|q dy
)1/q

.

Since Hα+1(ry) � (ry)α+2 whenever ry ≤ 1, the latter integral is con-
vergent near the origin if and only if β < 1/q + α + 3/2, whereas since
Hα+1(ry) � (ry)α whenever ry is large enough (cf. Remark 2.1), the
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integral converges near infinity if and only if β > 1/q+α−1/2. In order
to conclude the proof, we note that

‖y−βHαfr‖q ≥ r2α+3

(∫ 1/r

0

yq(−β+α+3/2) dy

)1/q

� rα+3/2+β−1/q.

Combining the latter with inequality (6.9) and the equivalence ‖xγf‖p �
rγ+α+1/2+1/p, we get that rα+3/2+β−1/q . rγ+α+1/2+1/p for every r > 0,
i.e., β = γ + 1/q − 1/p′.
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dació Ferran Sunyer i Balaguer from Institut d’Estudis Catalans during
the carrying out of this work.

References

[1] N. E. Aguilera and E. O. Harboure, On the search for weighted norm in-

equalities for the Fourier transform, Pacific J. Math. 104(1) (1983), 1–14.
DOI: 10.2140/pjm.1983.104.1.

[2] K. I. Babenko, An inequality in the theory of Fourier integrals, (Russian), Izv.

Akad. Nauk SSSR Ser. Mat. 25(4) (1961), 531–542.
[3] W. Beckner, Inequalities in Fourier analysis, Ann. of Math. (2) 102(1) (1975),

159–182. DOI: 10.2307/1970980.

[4] W. Beckner, Pitt’s inequality and the uncertainty principle, Proc. Amer. Math.
Soc. 123(6) (1995), 1897–1905. DOI: 10.2307/2161009.

[5] J. J. Benedetto and H. Heinig, Fourier transform inequalities with measure
weights, Adv. Math. 96(2) (1992), 194–225. DOI: 10.1016/0001-8708(92)90055

-P.
[6] J. J. Benedetto and H. P. Heinig, Weighted Fourier inequalities: New proofs

and generalizations, J. Fourier Anal. Appl. 9(1) (2003), 1–37. DOI: 10.1007/

s00041-003-0003-3.
[7] C. Bennett and R. Sharpley, “Interpolation of Operators”, Pure and Applied

Mathematics 129, Academic Press, Inc., Boston, MA, 1988.
[8] S. Bloom, Hardy integral estimates for the Laplace transform, Proc. Amer.

Math. Soc. 116(2) (1992), 417–426. DOI: 10.2307/2159748.
[9] S. Bloom and G. Sampson, Weighted spherical restriction theorems for the

Fourier transform, Illinois J. Math. 36(1) (1992), 73–101. DOI: 10.1215/ijm/

1255987608.
[10] S. Boza and J. Soria, Weak-type boundedness of the Fourier transform on

rearrangement invariant function spaces, Proc. Edinb. Math. Soc. (2) 61(3)
(2018), 879–890. DOI: 10.1017/s0013091518000032.

[11] J. S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21(4)
(1978), 405–408. DOI: 10.4153/CMB-1978-071-7.

[12] A. P. Calderón, Spaces between L1 and L∞ and the theorem of Marcinkiewicz,

Studia Math. 26 (1966), 273–299. DOI: 10.4064/sm-26-3-301-304.
[13] M. J. Carro, J. A. Raposo, and J. Soria, Recent developments in the theory

of Lorentz spaces and weighted inequalities, Mem. Amer. Math. Soc. 187(877)
(2007), 128 pp. DOI: 10.1090/memo/0877.

http://dx.doi.org/10.2140/pjm.1983.104.1
http://dx.doi.org/10.2307/1970980
http://dx.doi.org/10.2307/2161009
https://doi.org/10.1016/0001-8708(92)90055-P
https://doi.org/10.1016/0001-8708(92)90055-P
https://doi.org/10.1007/s00041-003-0003-3
https://doi.org/10.1007/s00041-003-0003-3
http://dx.doi.org/10.2307/2159748
https://doi.org/10.1215/ijm/1255987608
https://doi.org/10.1215/ijm/1255987608
http://dx.doi.org/10.1017/s0013091518000032
http://dx.doi.org/10.4153/CMB-1978-071-7
http://dx.doi.org/10.4064/sm-26-3-301-304
http://dx.doi.org/10.1090/memo/0877


Norm Inequalities for Fourier-Type Transforms 41

[14] C. Carton-Lebrun, Fourier inequalities with nonradial weights, Trans. Amer.

Math. Soc. 333(2) (1992), 751–767. DOI: 10.2307/2154060.
[15] L. De Carli, On the Lp-Lq norm of the Hankel transform and related opera-

tors, J. Math. Anal. Appl. 348(1) (2008), 366–382. DOI: 10.1016/j.jmaa.2008.

06.053.
[16] L. De Carli, D. Gorbachev, and S. Tikhonov, Pitt and Boas inequalities for

Fourier and Hankel transforms, J. Math. Anal. Appl. 408(2) (2013), 762–774.
DOI: 10.1016/j.jmaa.2013.06.045.

[17] L. De Carli, D. Gorbachev, and S. Tikhonov, Pitt inequalities and restriction

theorems for the Fourier transform, Rev. Mat. Iberoam. 33(3) (2017), 789–808.
DOI: 10.4171/RMI/955.

[18] A. Debernardi, Uniform convergence of Hankel transforms, J. Math. Anal.

Appl. 468(2) (2018), 1179–1206. DOI: 10.1016/j.jmaa.2018.09.001.
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