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BILINEAR RUBIO DE FRANCIA INEQUALITIES FOR
COLLECTIONS OF NON-SMOOTH SQUARES
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Abstract: Let Q be a collection of disjoint dyadic squares w, let m, denote the
non-smooth bilinear projection onto w

mo(1.9)@) = [ L€ F O dgan,

and let » > 2. We show that the bilinear Rubio de Francia operator

(2 m(f,g)r“)l/r

we)

is LP x LY — L® bounded with constant independent of 2 whenever 1/p+1/q = 1/s,
r <p,g<r,andr'/2 <s<r/2.
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1. Introduction

Classical Littlewood—Paley theory on the real line is a staple of linear
harmonic analysis and has proven vastly important in its development.
It encodes a principle of orthogonality in L? spaces even when p # 2
for dyadically separated frequencies, and can thus be seen as a substi-
tute for Plancherel’s identity; this usually allows one to decouple the
action of a multiplier on each dyadic frequency and deal with them sep-
arately. Generalizations of the linear Littlewood—Paley inequalities were
first considered by Carleson in [9] (later reproved in a different way by
Cérdoba in [10]) for the special case where one replaces the Littlewood—
Paley dyadic intervals [2%,2F*1], k € Z by the intervals [n,n + 1], n € Z.
Later, Rubio de Francia in [19] extended Carleson’s result to arbitrary
collections of disjoint intervals. In particular, he proved the following:
let T = {I;}; be a collection of disjoint intervals and define the Rubio de
Francia square function

1/2
Rar: (o) = (Dlan f0R)
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where 7y is the frequency projection operator defined by

T (€) == L) F(©);
then for all 2 < p < o it holds that for all f € LP(R)

(1) IRAFZ flo@) Sp 1f] o)

(with constant independent of 7). The inequality is false in general
for p < 2, as was known since [9] — this corresponds to a failure of
orthogonality in L? spaces for small p’s. More in general, by the same
methods one can prove for a generic r > 2 that the Rubio de Francia
r-function
1/r
RaF f(o) = (Do, ) )
J

is bounded on L? for all ¥/ < p < oo (the lowerbound being sharp;
see [11] for a proof). The condition r > 2 is necessary, as can be seen
for example by considering the collection of Littlewood—Paley intervals.
Known proofs of (1) (see [13], [21], [22], [15]) rely on an interpolation
between the trivial L? case and (a substitute for) the L endpoint (or
dually between L? and H', as in [7]). See also [4] about an alternative
proof for such inequalities as well as for a bilinear generalization, in-
volving a collection of paraproducts-type operators. Higher dimensional
versions of the inequalities have been first shown in [13].

A natural question is whether similar orthogonality principles exist in
the bilinear setting and to what extent. That is, given bilinear multipl/igr
operators T; with disjoint frequency supports in the frequency plane R2,
under what conditions does it hold that, say, the square function

(Zmeor)”

is bounded from LP x L% to L°? Some results are known for special col-
lections of supports. Perhaps the first one is to be found in Lacey’s [14],
where he proves the LP x L9 — L? boundedness of the bilinear square

function
2> 1/2

frg— (Z

neZ
for p,q = 2 such that 1/p + 1/¢ = 1/2 (later extended to any 1/p +
1/q = 1/s in [16], [6]), where x is a C® function that is identically 1
in [-1/2,1/2] and vanishes outside [—1,1]. Thus here the frequency
supports consist of (smoothened) diagonal strips of roughly unit width
and unit separation. This was later extended by the first author in [5]

// X(€ =1 — 20) F(©)g(m)e €= g ay
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to the case of non-smooth diagonal strips, that is where one replaces
the smooth function x above by the non-smooth 1[_y51/2). The dis-
continuity at the boundary of the strip makes the analysis inherently
more complicated (the same phenomenon that arises in the study of, for
example, the Bilinear Hilbert transform).

A further and more recent example of a bilinear r-function of the form

above is given by
N 4 r\ 1/r
/I Fleatner € aca| )
a;<E<n<aji1

frg— (Z
JEZ

for a sequence of strictly increasing real numbers a; < a;11. It can be
thought of as a bilinear Rubio de Francia operator for iterated Fourier
integrals, which finds its motivation naturally in the analysis of the sta-
bility of solutions to AKNS systems. It was proven in [3] that for r > 2
this operator is LP x L? — L*® bounded for the same exponents for which
the Bilinear Hilbert transform is bounded (that is, under the necessary
condition 1/p+1/q = 1/s, at least when p,q > 1 and s > 2/3); moreover,
it is also bounded when 1 < r < 2, although the range depends on r in
this case. We refer the reader to [3] for details and for the aforementioned
physical motivation.

In this paper we are interested in bilinear operators built out of bi-
linear projectioni whose frequency supports consist of squares in the
frequency plane R2. Here the reference we have in mind is [2] by Benea
and the first author, in which the following bilinear versions of Rubio
de Francia /r\—functions are considered: let 2 be a collection of disjoint
squares in R? and let r be fixed, then define the operator

r\ 1/r
st = (B [ vueni@amene=acan )
we)

where x,, is a C® function that is identically 1 on %w and vanishes
outside w. In [2] the authors prove the following theorem:

Theorem 1.1 ([2]). Let Q be a collection of disjoint squares in R? and
let r > 2. Then

(2) 15a(f9)lc

forallp, q, s such that 1/p+1/q=1/s, " <p,g< o0, /2 <s<r. In
particular, the constant is independent of 2.

*® Spaq [ flrelglre

This result is to be thought of as a bilinear orthogonality principle
for collections of (smoothened) frequency squares in the same way as
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the Rubio de Francia theorem is for the linear case. Observe however
that the square function case r = 2 is not covered by the theorem — its
boundedness is currently an open problem. We remark that the condi-
tion 7’ < p, ¢ is necessary (to see why it suffices to consider a collection
of squares like the one given in Example 1 below).

Our interest here is to extend the results of [2] to the case where the
smooth characteristic function x,, above is replaced by the non-smooth
characteristic function 1, In particular, let 2 be a collection of disjoint
squares w = wp X wg in R2 and denote by 7, the non-smooth bilinear
frequency projection onto the square w, that is

. // (& mF©Fme €™ ag dy,

which in particular factorizes as m, = 7, ® 7,,. We are interested in
the bilinear operator

1/r
f?gHTQ(fa (Z'Trw f7 |> ) 7"22’

we

and specifically in proving bounds of the form

3) 1T (f, Dle < Clflrlglie;

we denote by C}, 4 5.0 the best constant C' such that the above inequality
holds for all f € LP, g € L? (we consider r fixed). The usual scaling
argument shows that a necessary condition is that the exponents p, ¢, s
satisfy Holder’s relationship, that is it must be

1 1 1

P q s
(and therefore Cp 45,0 = Cp q,0)-
We consider some examples in order to get acquainted with the prob-
lem at hand.

Example 1. Let r > 2. Suppose Qjine consists of an arbitrary number
of disjoint squares that all intersect a given vertical line, that is there
exists a frequency &y such that for every w € Qyne we have &y € ws.
Observe that the frequency intervals wy must be all disjoint. We can
bound pointwise

1/r
Télinc<f,g><x><( D ng(x)r) Csup | (@)

wWENine wellline

< RAF'(g9)(z) - € f (),
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where € denotes the Carleson operator, which is bounded on L? for all
1 < p < o (by the Carleson—Hunt theorem, [8], [12]), and therefore we
get that for p > 1 and ¢ > 7’ (or ¢ = 2 if r = 2) we can estimate for this
particular collection

163, (f: 9 (@) L2 Spg [ fellgles,
or in other words Cj, 4 0. Sp.q 1 in the stated range.

Example 2. L/ef r > 2 be fixed and consider now a collection of N/ x
N'/2 points in R? arranged in a rectangular grid with large spacing, and
suppose that each point labeled by (i, ;) is the center of a square w®
and furthermore that the squares are all disjoint (their sidelengths can
be all distinct). We let Qgyiq := {w'}; j<n1/> and we try to bound T¢,
in some range. Observe that since a priori

7o (f,9)(0)] < € f(x) - Cg(x)

we always have the trivial bound

176 g (P D Ne Spig N1 f Lol g o

for p,q > 1. We can beat this trivial bound of Cy 40,4 <p.q N/" by the

following argument: since for a fixed i the squares w® are such that w?’
all contain a same frequency as in the example above, we can bound
pointwise

< = |ﬂ“(f’g)(x)'r>w:( 2 X m;jf(m.wg(:c)r)l/r

WENgria i<NL2 j<NL/2

<ei@-(Y X |7rw;jg<x>|r)1/r

ile/z jSNl/z

<ot (3t

7;é]\[1/2

— NY2g f(x) Var" €g(z),

where Var” € is the variational Carleson operator

M—-1 1/r
Var" € f(z) :=sup sup ( Z |7r[€j,§j+1]f(3;)|r> .

M €i<-<€u \ j21
Tt is known from [18] that this operator is LP — LP bounded for v’ < p <
o0 if r > 2, as is the case, and therefore we get for the range p > 1, ¢ > 1’
an improvement in the dependence of the constant on the cardinality of 2
(specifically, Cp ¢.0,14 Sp.q (#Q)'/?" instead of (#Q)V/7).
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It is natural to conjecture that for some range of exponents (possibly
as large as p,q > 7/, like in [2]) one should have C, ;o <pq 1 for every
admissible €, or in other words that inequality (3) should hold with
constant C), ;, o independent of €2, and specifically independent of its
cardinality #€). Indeed, this is achieved in the p, ¢ > r’ range by product-
like collections of rectangles, that is collections of the form Q = {I x
Jst. IeZ, Je J}, where Z, J are collections of disjoint intervals; this
can be readily seen by a factorization of the operator and an application
of Rubio de Francia’s theorem. Simple pointwise arguments like the
one given in Example 2 are unlikely to give such a result. However, by
combining similar observations with the time-frequency analysis of [2]
and some further ideas from [1], [4] (as for example the consideration
in the time-frequency analysis of an exceptional subset built from non-
local operators), we are able to confirm the conjecture in the range given
by ' <p,q<r.

More precisely, let D denote the collection of dyadic intervals, that is
intervals of the form [n2*, (n + 1)2*] for arbitrary n,k € Z. Then our
main result can be stated as follows.

Theorem 1.2. Let r > 2 be fixed. Then for all p, q, s such that
1

+

S

SN
Q| =

and
r<pg<r, r2<s<r/2

it holds that for every arbitrary collection Q < D x D of disjoint (dyadic)

squares in R2 the estimate

(1) ( 3 (9 ') "

holds true for every f e LP, ge L9.

Spar [fleelgles
LS

Remark 1.3. In Theorem 1.1 (from [2]) above, the statement encom-
passes arbitrary non-dyadic squares; this is because of the flexibility
provided by the smoothness of the x,, functions. However, in the non-
smooth case things are not as simple. One can replace the assumption
that the squares are dyadic with a well-separation assumption: namely,
Theorem 1.2 still holds if we assume that 2 is a finite collection of ar-
bitrary squares such that 4w n 4w’ = ¢ whenever w # w’ (essentially
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because then each square is contained in a unique dyadic square of com-
parable size). In the linear case it’s always possible to reduce to a well-
separated case (see [19]) by means of classical Littlewood—Paley theory,
but in the bilinear case such tools are not currently available.

Remark 1.4. The condition r > 2 is a shortcoming we inherit from [2].
However, for the » = 2 case, one can deduce from the above theorem and
Holder’s inequality that T3 is L? x L? — L! bounded with constant at
most O, (#£°) for any € > 0. Indeed, we can bound pointwise T3(f, g) <
#QOTE(f, g), where 1/2 = 1/r + €, and conclude using Theorem 1.2 for
exponents p = q = 2.

This result partially confirms the natural conjecture stated above.
Observe the range of boundedness provided by Theorem 1.2 is smaller
than the corresponding one in Theorem 1.1 above. We explain the reason
why in Remark 2.26. Figure 1 in §2.7 provides a graphical illustration
of the range obtained in Theorem 1.2.

The proof of Theorem 1.2 is presented in §2, and is split into a number
of steps. The result is obtained by interpolation between a boundedness
result for 7§ (a trivial consequence of the Carleson-Hunt theorem) and
a partial boundedness result for T{; when r is close to 2. The latter is
obtained by adapting the time-frequency methods of [2] to our setup,
but using non-local operators to construct the exceptional set as in [1],
[4]. The necessary preliminaries are carried out in §2.1-§2.6. The proof
is concluded in §2.7, where the particular interpolation result we will use
(Lemma 2.24) is also presented. Finally, we present a simple application
in §3.

Acknowledgements. Both authors are supported by ERC project
FAnFArE no. 637510. The authors are very grateful to Cristina Benea
for many useful comments and discussions, and in particular for having
shared with us a preprint of [4]. The authors would also like to thank the
reviewers for their help with improving the presentation of the article.

2. Proof of Theorem 1.2

We can reduce the problem by linearization of the " norm and duality
to the following: given fe LP, ge L9, he L define the trilinear form

(5) A(fogh) / S T (@) T g2 () e,

R yeq
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where hy,(2) := h(z)ey(z) and {e,(x)}weq satisfies |{e, (x)}oll,~ < 1 for
every x € R; then it suffices to prove that

[Ar(f,9: )] Sp.gr [ flelg]La

uniformly in {e,(z)}weq. Thus we can further reduce the problem to
that of bounding the trilinear form

(6) A(f,g.h /EMf Vuag(@)he() da,

R yeq

where h = {h,}.ecq is a generic element of LY (ér,).

2.1. Discretization of the trilinear form. We perform a standard
discretization procedure on the trilinear form A, except this time, con-
trary to one’s expectations, we will not resolve the singularities using
a Whitney decomposition. We have (using Radon duality, with do the
induced Lebesgue measure on the plane & + & + &3 = 0)

A(f,g.h /Zf*nm )g + T (@) () do

weQ
= f ]lwl g w1 do 3 G2
> /5 ey O €3 @) a0 61 62,69
-3/ FUE) L (€))L (€2) i (€)Xes (65) A0 (€1 2. 65)
weQ Y1 +82+83=0
=3 [+ T @+ T » T o) de,
weN

where we have denoted ws := 2(—w; — wy) and X, is a smoothed out
characteristic function, identically equal to 1 on —w; —ws and identically
vanishing outside ws. Now, although the kernels decay very slowly, the
functions f = ]T(; are morally still roughly constant in modulus at scale
lwj| ! =: |w|™!, and therefore it makes sense to do the following changes
of variable:

5 [ 1+ @ T (@ » X () da

weN

=Sl l/f*nwl w7 y)g * T (0]~ ) * X (fol ) dy

we

=3 el / F o T (] (1 + 2))g * T (Jo] " (n + 2))

we neZ

x hy, * Xw3(|w|_1(n + 2))dz.
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In classical time-frequency analysis one rewrites the above form as an
average over z of discrete sums of coefficients, each given by an inner
product against suitably defined wavepackets associated to tiles in the
time-frequency plane, and then proceeds to bound the discrete sums
uniformly in z; the approach we will take however is different and will
involve allowing only a single scale for each square w, roughly speaking
— a choice reflected in our definition of tri-tiles given below. This will
allow us to do a time-frequency analysis of the trilinear form A free
from wavepackets (although wavepackets are intrinsically present in some
strong results that we will use off-the-shelf). Define then the tri-tiles as
follows:

Definition 2.1. A tri-tile P is a triple of sets of the form
P = (P17P27P3) = (I X th X CLJQ,I X W3),

where w = wy X wy € Q, wy = 2(—w; — ws) as before and T is a dyadic
interval of length |w|~!. Sets P; for j = 1,2,3 are referred to as tiles.
Given a tri-tile P we denote by Ip the interval I above; we also denote
by w(P) = w1(P) x we(P) the frequency square associated to the tri-
tile P, and similarly we write ws(P) for ws. Finally, given a collection of
tiles P we denote by Q(P) the collection of frequency squares on which P
is supported, namely

Q(P) := {w € N s.t. w = w(P) for some P € P}.

Using Holder’s inequality on each summand above, we have

1
ol £l 2T (ol 25 (] n-2)) =

< | Lo llze eyl * Lo L2 (1) Ve * Xasll 22 (1)
where the tri-tile P is given by
Ip = [lw|™'n, Jw| 7} (n + 1)]
and
P = (Ip X wl,Ip X wQ,IP X LU3).

Now, fix a parameter ry such that 2 < ry < r. This will be fixed
throughout the rest of the paper. Going back to writing 7, f for f =1,
we notice that again by Hoélder’s inequality we have

1/’)”0
N T |1p1/2<][ m1<p>f|’“°) ,

Ip
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and similarly for g. This may seem arbitrary at this point, but will
be useful later in avoiding logarithmic-type losses in our estimates (see
Remark 2.15). We introduce the shorthand notation

1/7‘0
f(Pr) := <7€ |7Tw1(P)f|TO> ;
1/’!'0
g(Py) := <]€ |7rw2(P)9|m) ,

h(P3) := | h,(py * Xa | Lo (1)
We have therefore shown that if P denotes the collection of all possible
tri-tiles (obtained by letting w range in Q and n € Z, in the above
notation), the trilinear form A is bounded by the discretized sum

IA(f,9,h)| < Ap(f.g.h) == . f(P1)g(Pa)h(Ps)|Ip].
PeP
The reason for this unusual choice of coefficients will become clear later
in light of Lemma 2.7 and Proposition 2.13 below (see particularly Re-
marks 2.14 and 2.15). In the rest of the section we will concentrate on
bounding the discretized sum.

2.2. Columns and rows. We introduce here some structured collec-
tions of tri-tiles, originating from [2], that will be fundamental to our
analysis of the trilinear form A. They are to be thought of as the ana-
logue for our setup of trees, in the language of classical time-frequency
analysis.

Definition 2.2. A collection of tri-tiles C is a column if there exists a
tri-tile T" € C, referred to as the top of C, such that for every P e C

wl(P) =2 wl(T)

and

Ip < Ir.
Analogously, a collection of tri-tiles R is a row if there exists a tri-
tile T € R, referred to as the top of R, such that for every P e R

wa(P) 2 wo(T)

and
Ip € Ir.

Given a column or row 7 we will use Top(T) to denote its top.

Remark 2.3. Observe that if C is a column then the collection of tiles
{P; s.t. P € C} is overlapping, while the tiles P, for P € C are all dis-
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joint, and in particular if w(P) # w(P’) then P, and Pj are disjoint in
frequency. The reverse holds for a row. This will be important later on.

We show below that when C is a column we can give a good bound
on A¢ (and similarly for rows). In particular, we argue similarly to [2]
and bound the discretized sum restricted to C as follows:

Z f(P1)g(P2)h(Ps)|Ip| < (sup f(Pr)) Z g(P2)h(Ps)|Ip|
PeC peC PeC
1/r
< (sup f(P1)) (1; g(Pz)rllp)
, 1/’
x (Z h(P3)" |1P> :
PeC

Then, for the term in g we bound

<Z g(PQWIP')W B <Z g(BR)™re ~g(P2)’“0|Ip>1/T

PeC PeC

1/r
< (supa(P) " (3 lrela(re))

PeC PeC

= (Supg P2 (r— ro)/T(Z/ |7Tw2(P)g‘ 0>
peC PeC

(notice we have introduced the same type of quantity that controls the
contribution of f in here). As for the term in h, we observe that

|1p[h(P3)" = [Ip| sup [he = X (9)]”

yelp

|Ip|(sup/hw<z>||my—z>dz)
yelp
|y—z|>M dz )T,
I sup/ h(z <1+ —_—
""<m @O\ T ) T
|yz|)_M dz )r,
< |I h su —
'P'(/' p( ) 1
< / o ()1, (2) dz,

where M > 0 is a large number and ®; denotes some rapidly decaying
function concentrated in the interval I. Now observe that for each fixed w
the tiles P which have w as their frequency support have space support
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of fixed size |Ip| = |w|™!, hence the intervals Ip are all disjoint. Define
then for an interval I of length greater or equal to |w|~! the function

DY (x) := Z D (x);
J dyadic s.t. JSI,
[T]jw]=1

notice ®% is essentially ~ 1 inside I and decays like (1+|w| dist(Z, z))~M+1
outside of it (see Remark 2.12 for why we need to introduce such func-
tions). We can thus bound

RO HIAEDS / oy (2)]7 1, (2)

PeC PeC

gz/\hwr’@yc dz.

To summarize, we introduce sizes:

Definition 2.4 (Sizes). For any collection of tri-tiles P define

PeP

1/T0
supo(P2) = sup( f Il ds)
Ip

PeP

1/r'
Size} (P) := sup( / he v ) ,
h( ) TcP ‘I7—| ;* | |

where the last supremum is taken over sub-collections T of P which are
either rows or columns.

1/T0
Size}(]P’) :=sup f(P) = Sup (7{ [T, (p) fI™° dx) )
P

Sizef7 (P):

With this notation, what has been shown in this section can be sum-
marized as

Proposition 2.5. Let C be a column of tri-tiles, then

1/r

1

‘AC<f7gvh)| < ( / |7Tw P g|TU>
m@c o ®

x Size} (C)[SizeZ(C)]" "0/ Sizej, (C)| L],

and similarly, if R is a row of tri-tiles, we have

‘AR(fvg» <|I |P§R/ |7Tw1(P)f| )

x [Size}(R)]"="0)/" Sizel(R) Sizej, (R)|Ir .
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2.3. Size bounds. We have the following immediate bounds for the
sizes introduced above:

Proposition 2.6. Let P be a collection of tri-tiles, then

1/7“0
Size} (P) < sup (]{ |€ f|"° dx> )
P

PelP

where € is the Carleson operator. The analogous inequality holds for Size?
as well.

Proof: Obvious. O

We do not state an analogous proposition for Size® since this size is
already in a convenient form.

Later on we will also need the following simple bound in terms of
Var™ %, the variational Carleson operator as defined in Example 2.

Lemma 2.7. Let C be a column of tri-tiles. Then

1 / , : .
— Two(P)9]™° dz < ][ Var™ €g|™ dx.
|IC|1;C Ip| w2 (P) | [c| |

Clearly, an analogous statement holds for rows.

Proof: If we rewrite the expression on the left hand side as

F 3 nmsl@) Ly (@)
le pec

then it follows from the definition of column (see Remark 2.3) that we
can bound pointwise

To
<Z |7Tw2(P)g(x)‘T0]lIP (l‘)) < Var™ %ga

PeC
and the lemma follows. O

2.4. Energies and energy estimates. In this subsection we introduce
the energies that will allow us to run a time-frequency argument for the
trilinear form A. We prelude a definition of disjointness (taken from [2])
for collections of columns and collections of rows that is needed to state
the definition of energies.

Definition 2.8. Given a collection € of columns, we say that the columns
in € are mutually disjoint if they are disjoint as sets of tri-tiles and if
the sets Top(C); are disjoint (in the time-frequency plane) as C ranges
over €.
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Analogously, given a collection R of rows, we say that the rows in R
are mutually disjoint if they are disjoint as sets of tri-tiles and if the
tiles Top(R)z are disjoint (in the time-frequency plane) as R ranges
over R.

Now we can state the definition of Energies.

Definition 2.9 (Energies). We denote

1/ro
Energy} (P) := supsup 2" (Z | Top(c) |) ,
neZ ¢ cee
where the inner supremum runs over the collections € of mutually disjoint
columns in P such that for any column C € € and for any P € C it is

F(Py) = 2m,

Define analogously Energyz(P) with respect to rows of tri-tiles in the
obvious way.
Finally, we denote

1/
Energy (F) i= supsup 2" (Z Eren) ) ,
Tex
where the inner supremum runs over the collections ¥ of mutually dis-
joint rows and columns in P such that for every 7 € T it is

1 1/r
— h|” ) > 2",
(|ITop(T)| /u; IT p(T)

Remark 2.10. Notice that we are using L"-type energies for f and g,
instead of L?-type energies as in [2]. However, this is not the only
difference. Even if one were to let g = 2 above, our definition of Energy!
would still be slightly different from the corresponding one of [2] (in
particular it’s somewhat relaxed) because in our arguments we won’t
have to resort to Bessel-type inequalities.

We must show that these quantities are well-behaved in order for the
machinery of time-frequency analysis to work. In particular, we ought
to show that the energies can be controlled in terms of LP norms of the
functions. This is what we do next. First of all, we have the simple

Proposition 2.11. For any collection of tri-tiles P and for any h €
L™ (0") we have

Energyp, (P) < [z ().
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Proof: We may assume for simplicity that the collection P is finite, since
our argument will not depend on its cardinality. Let n € Z and ¥
be a collection of disjoint maximal rows and columns that realize the
supremum in the definition of Energy®, that is

Energyi’l(IP’)T —or'n 2 |I-|-op(7—)|.
Tex

By definition we then have

Bnengh (B < ) 3 [ Il 4, do

TeT weT

’l" (.d .
Z /‘h | gy 43
weN TeX:

Tow

but the collection ¥ is maximal with respect to inclusion and therefore
for a fixed w the intervals Ito5(7) are disjoint, hence by the rapid decay
of the functions ®* we have

w
<
2 : (I)ITOp(T) SED

TeX:
Tow

and this concludes the proof. O

Remark 2.12. Two things should be noticed. Firstly, that in the last
lines of the above proof we crucially needed the decay of the functions ®Y
away from I to be controlled by |w|~! rather than by the larger ||, which
justifies their introduction and the subsequent definition of Size®.

Secondly, the maximality we appealed to above means the following:
given a column (or row) C such that

|[TOP(C)|/ Z ‘h| ITOP(C) z=2"",

we(C
we can enlarge C by adjoining all tri-tiles P € P such that w(P) € Q(C)
and Ip S Itop(c), and doing so will not change the left hand side of the

inequality at all. In other words, the only information Sizej is sensitive
to is the space support of columns or rows 7 and the squares w € Q(T).

Next we look at a bound for Energy’ for j = 1, 2.

Proposition 2.13. For any collection of tri-tiles P and for any f € L™
we have that

Energy}(P) < | flzro, 4 =1,2.
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Proof: We let j = 1 in here, the proof for j = 2 being identical. Let
n € Z and € be a collection of mutually disjoint columns that realize the
supremum in the definition of Energy} (P) within a factor of 2, that is

EnergY} (P)TU ~ 27" Z |ITop(C)|-
Ce€

Then by definition of energy this implies
Energyf P)™ < Z/ |7rw1(c)f| °dux,

Cec
where we have abused notation by writing C in place of Top(C) to ease
readability. We rewrite the latter quantity as

/ S s 0 f @) L1 () de

Cec

Since by definition of Energy' the tiles Top(C); are disjoint in time-
frequency, we can bound the sum pointwise (cf. the proof of Lemma 2.7)
in terms of the variational Carleson operator, namely

2 1@ f @) Lre (x) < (Var™ € f(2))™

CeC
We know from [18] that Var™® ¢ is LP — L? bounded for p > r{, and
therefore (as 9 > 2) our quantity above is bounded by

[ Ve de < 1513,
which finishes the proof. O

Remark 2.14. Lemma 2.7 and the above proposition are the reason for
our choice of working with the coefficients f(Py), g(P2), h(Ps). Indeed,
it is their form and precise localization (that is, the L™ averages don’t
involve weights supported everywhere on R) that allow us to introduce
pointwise estimates of the relevant quantities in terms of variational
Carleson operators.

Remark 2.15. The choice of introducing the parameter 7y satisfying
2 < rg < r is motivated by Proposition 2.13 and Lemma 2.7. Indeed,
the problem here is that the variational Carleson operator Var™ € is
only bounded when ry > 2. If we were to choose ry = 2 then, to ar-
gue by pointwise domination as above, we’d be forced to introduce a
logarithmic-type loss (in the cardinality of ) in our estimates, since the
best one could say would then be that for any € > 0

3 (@) F @) L1 (1) < (H#Q) (Var ™ € ()

Ce€
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(by Holder’s inequality). The introduction of the parameter ry allows
us to bypass this problem, at the cost of slightly reducing the range in
which certain of our estimates hold (see Proposition 2.21). This however
won’t be a problem in itself, in light of our use of interpolation in §2.7.

2.5. Decomposition lemmas. The decomposition lemma for Size' is
well known and perhaps immediate. An identical result holds for Size?
by replacing columns with rows.

Lemma 2.16 (Decomposition lemma for Size'). Let P be a collection
of tiles and let n be such that
Size} (P) <27 Energy}(IP’).
Then we can decompose P = Pioy, L Phigh such that
Size}c (Prow) <2771 Energy}c (P)

and Puign can be organized into a collection € of mutually disjoint
columns C such that
D] s 27,

CeC
Proof: The proof is a simple stopping time argument. Let Pgocx be
initialized to
Pyock := {PePs.t. f(P)>2"""" Energy}c(P)},
and let € be initialized to € := ¢§. We set right away
Piow 1= P\Pstock,

which will not be changed throughout the algorithm. The size property
is then immediate from the definition of (the initial state of) Pgtock-
As for the organization of Ppign := P\Pioyw into columns, we proceed as
follows. Let P be the tri-tile in Pgiocx such that Py is the leftmost,
higher tile in the collection. Then we let C be the maximal column
in Pygock with top Ppax and update € to be € U {C} and update Pgstock
to be Pstock\ U pec{P}- Repeat the process until Pyocx is empty and the
algorithm stops. Then we see that by maximality the columns in € are
mutually disjoint, and as for the bound on } .. |Ic| notice that we have
for each C and for each P €C

f(p)>21 Energy}(IP’)

and therefore just by definition of energy (and its monotonicity)

1/ro
g—n-1 Energy}(P) (Z |Ic> < Energy} (Phign) < Energy}c(]P’)7
CeC

which proves the claim. O



60 F. BErNICOT, M. VITTURI

The decomposition lemma for Size® is entirely similar (we have re-
placed the constant 2 with + in view of its application to the proof of
Lemma 2.18 below).

Lemma 2.17 (Decomposition lemma for Size®). Let v = 270/, Let P
be a collection of tiles and let n be such that

Size} (P) < v~ " Energy; (P).
Then we can decompose P = Py, L Phigh such that
Size} (Piow) < v~ " ! Energy; (P)

and Puign can be organized into a collection T of mutually disjoint
columns and rows T such that

S lirl <47 = 2
Tex

The proof is quite similar to the one given above for Size', and is thus
omitted.

Finally, by applying the decomposition lemmas simultaneously and
then iterating one can achieve a global decomposition of a given collec-
tion P with good control of the sizes of the sub-collections. In particular

Lemma 2.18 (global decomposition). Let P be a collection of tri-tiles.
Then there exists a partition P = | | (P! L PIV) with the properties:

i) Sizep(PM%) < min(2" Energy } (), Size} (P)),
a2 (Tocol,row : —n 2 fon2

Size,, (Py; ) < min(27" Energy, (P), Size (P)),

Sizep (Peobrow) < min(2-"0"/"" Energy; (P), Sizej, (P)),

Pl is organized into a collection €,, of disjoint columns,

ii

111

—

v
v) Y% is organized into a collection R, of disjoint rows,

vi) Dlcee, Hel S 2707,
vii) Ygem, =] < 27",
The collection P! is empty if n is such that

ol . 3
27" > Slzef(P) and 2—7'0n/7" > Slzeh(P> ,
Energy} (P) Energy; (P)

)
)
)
)
)
)

and similarly the collection PioV is empty if n is such that

SizeZ(]P’) and 9-ToR" > Size (IP)
- Energy?(l}”) ~ Energy; (P)

—n
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Proof: Initialize Pgiocx := P and apply iteratively the decomposition
Lemmas 2.16 and 2.17, in the order given by whichever of the quantities

Size} (Pstock) Sizeg (Pstock) ( Sized (Paroek) > ' ro
Energy}c (P)’ Energyz (P)’

Energyi)’1 (P)

is largest, sorting columns and rows into the current P! P'% respec-
tively and updating Pgocx at the end of each step to be the collec-
tion (Pstock)low resulting from the last application of a decomposition
lemma. We omit the details. O

2.6. General estimate for Ap. In this section we prove the following
general estimate, which will then be the main ingredient in the proof of
Proposition 2.21 in §2.7.

Lemma 2.19. Let Q, A be as above and let P be a collection of tri-tiles.
Let o = == and denote for shortness

Size}c([P’) =: 54, Energy}e(P) = 51,

Sizeg (P) =: Sy, Energyi(IP’)

Sizej (P) =: S3, Energy; (P) =: 83.
Then we have

1/r
As(f. g, )| < [sup £ v %gro]
PePJIp

_ — 20037’ 1—20637"
Xsfaolgll 20918220—02520 2002830 37 /T053 o031’ [ro

1/r
+ [sup][ | Var'™ %fro]
PeP JIp

% 8120'51 gf’—2c7§1 8220'52521—2052850537‘//r0531—20§3r//r0

for any 0;, & such that 01 + 02 + 03 = 1 and respectively & + &2 +&3 = 1,
and

<6 <min(1,(20)7Y), <& < %
1
0<b2<3, 0 < & < min(1L, (20)71),
0<0s <1, 0<&<

1.
Proof: Apply the global decomposition lemma (Lemma 2.18) to the col-
lection P, thus obtaining a partition P = | | P! 1 Prv. Tt suffices to
consider the collections P! (which correspond to the first term in (7)),
the proof for the collections PX°" being entirely analogous. Since P! is
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organized into a collection €, of disjoint columns, using Proposition 2.5
we can bound

|A]P’$l°1(f7g7h)| < Z |AC(fag7h)|

Cec,
]‘ 1/T 1 2 3
<y <|f| Ny m(p)gro) Size}(C)1[Size? (€))7 Sizel (C)) Ic|
cee, \Cl pee/Ip

1/r
<|I | Z/ T (P9 0) min(27"&;, S1)[min(27"E,, S2)]°
cee, M€l pec
x min(277"" €5, S3)|Icl;

by Lemma 2.7 term (ﬁ D pec flp |7er(p)g|T°)l/T can be replaced with

1/r
sup[][ Varr°<5g|’“°] )
PeP Ip

which then factors out of the sum. By definition of P!, what remains
is controlled by

min(27"&;, 81)[min(27"E,, S2)]7 min(2770" E5, 85)270",

and therefore it suffices to show that the sum over n of all these contri-
butions is controlled by the corresponding product of sizes and energies
in the first term of the right hand side of (7). This requires a tedious
but easy case by case analysis. Assume that

S Sy [8\™
(8) 5—1 < 5—2 < <53) ,

the other cases being similar and thus omitted. We have

T/ N .
Case 1: 27" < ‘gi < gs < (‘g—;) / . In this case the sum we have to

bound becomes

Z 2—n812—7m€g2—r0n/r'€327‘gn
n:2*"<8151_1
_ 5162053 Z 2711(1“1’0’77“0/7‘)7

ni2-n<S &
and since 1 + o — ro/r = 20 the above evaluates to
S eI ESEs,
which by assumption (8) is clearly controlled by the desired

2001 ¢1—2007 02005 po—2005 20031 /1o o1—20037" /T
52001 g1-2001 G200z gg 2002 G20 031" /1o g .
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N7 /T .
Case 2: % <27 K ‘g—j < (‘g—;) / °. In this case the sum becomes

Z 812—n0852—r0n/r’832r0n

n:S1E] 1 <2 <865

= S1E9& Z 9—n(o—ro/r)

n:S1E7 <2 <865

and o — ro/r = 20 — 1. Thus we have further sub-cases:

i) 20 —1 < 0. In this case the sum is controlled by

S 20—1 B
Slggsg(gi) = 8¥gle9g,,

which we have already established is fine;
ii) 20 —1 > 0. In this case the sum is controlled by

S 20—1 S 2001 S 1—2064 S 20—1
sean(z) -az) =s(z) (E)

and since by assumption 1 — 206; > 0 we can further bound this
by

P ﬁ 2001808 é 1—20604 é 20—1:5 ﬁ 2091505 & 2005+2003
&) 27\e & e ) 27\ s ’

which is clearly controlled by the desired quantity;
iii) 20 —1 = 0. In this case the sum is controlled by

20(02+93)
81 1720’(92 +93) . 82 20’(02 +93)
-4 (2) #(8) -

which is again the desired quantity since for this value of o it is
1-— 20’(492 + 93) = 200,.
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. _ N7 /T .
Case 3: SL < 2 <971 ¢ (& / °_ In this case the sum becomes
81 52 83

Z 81820-277‘0’”/7,/5327‘071,
”1525;1 <2-n <S;‘//“O 5;"’”0
= 815553 Z 27‘0n/r;
”?325;1 <2-n <S;//”‘O 5;"’#0

since ro/r = 1 — o, this is controlled by

o—1 20—1
318353<82) —515553(82> ,

& &
which we have encountered in a previous case and is therefore fine too.
Thus the proof is concluded. U

2.7. Proof of the main theorem. We are now ready to prove the
main theorem (Theorem 1.2). It will be obtained by interpolation be-
tween the two extreme situations, namely r = o0 and r close to 2.

For the first case, we only use the Carleson operator which is bounded
on all LP spaces for p € (1,00) to deduce the following:

Proposition 2.20. The bilinear operator T given by
T3 (f, 9) (@) := Sug|7rw(f,g)(33)|
we
is bounded from LP x L1 to L® for all1 < p,q < o, where 1/p+1/q = 1/s.

Proof: As observed in Example 2, the operator T{)° is bounded pointwise
by

T3 (f,9)(x) < € f(2) - Cg(w),
and the result then follows from the Carleson—-Hunt theorem. O

For the second case, we will prove the following proposition, whose
statement is identical to that of Theorem 1.2 except for the smaller range
of p, ¢ (namely p,q > 1o > 2 here, and hence s > 1 too).

Proposition 2.21. Let r > ro > 2 be fized (for interpolation purposes,
r should be thought of as being very close to 2). Then for all p, q, s such

that
1

S

+

SN
Q| =

and
ro<p,g<r, 19/2<s<r/2
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and for every arbitrary collection Q of disjoint dyadic squares in H/@, the
estimate

) (2 It g)(m)’”)w

we

Sparro [ flzelgle

LS
holds true for every f € LP, g e L9.

Remark 2.22. Clearly, since the choice of ry > 2 is arbitrary, the above
proposition also holds all the way down to ry = 2. The definitions of
Sizes and Energies have to change accordingly. However, for presentation
purposes, we prefer to work with a fixed choice of Size and Energy since
this doesn’t affect the range one obtains after the interpolation argument
that follows.

Theorem 1.2 follows from Propositions 2.20 and 2.21 by multilinear
interpolation of vector-valued operators. More precisely, it will follow
from a straightforward application of the next lemma (due to Silva, [20]),
which we state after a definition.

Definition 2.23. Let A(f, g, h) be a trilinear form and let (o, s, ag; t)
be such that 0 < aj,a < 1, a3 <1, a1 +as + a3 = 1, and t > 1.
We say that A is of generalized restricted weak type (a1, s, as;t) if for
every measurable subsets F', G, H of R of finite measure there exists a
subset H' < H, called major subset, such that |H'| ~ |H| and for all
functions f, g, h such that

1t
A<t <o (Siml) <tw

k
the inequality
[A(f, 9, h)| < [F|* |G| [ H[*
holds true.

Lemma 2.24 ([20]). Let A be a trilinear form of generalized restricted
weak type (a1, e, az;ty) and (B, Pe, Bs3;t1), with the property that the
magjor subset doesn’t depend on the a’s or B’s. Then for all 8 such that
0<6 <1, with

of =(1-0)a; +68;, j=1,2,3

and
1 1-60 0

—_ = + J—
to to |t
it holds that A is of generalized restricted weak type (af, a8, af, tg).

)



66 F. BErNICOT, M. VITTURI

Proof: The lemma is a particular case of a more general interpolation
lemma originating from [20] (specifically Lemma 4.3). We sketch the
proof here for the reader’s convenience.

We argue by complex interpolation. Let F, G, H, H', f, g, 6 be given
and let h be such that

1/t9
(Z|hk~|t9> < ]lH"

k
For z € C with Re z € [0, 1] define h* by

hi () == |hy ()"

for every k, where
t t
t(z)=(1- z)—e +22.
o h
When Rez = 0 we have |hi|' = |hg|', and when Rez = 1 we have
|hi|" = |hg|"; hence by assumption we have for Rez = 0

IA(f, g, 0*)] < |[F|*|G|*?|H[*,
and for Rez = 1 we have
IA(f,9.0%)| < |F|" |G| |H P>,

Since the function ®(z) := A(f, g,h*) is easily seen to be holomorphic
in the open strip S = {z € Cs.t. 0 < Rez < 1}, continuous in its
closure and bounded, we can apply to it Hadamard’s three-lines-lemma
and conclude that since h?*% = h we have

(A(f.g. )| < |F|™HGI H]%,
as desired. O

Theorem 1.2 follows by taking ¢; = oo and ¢y sufficiently close to 2
and applying Lemma 2.24 above to the trilinear form A in (6). The hy-
potheses are verified by Propositions 2.20 and 2.21, and we thus get that
for a given r > 2 the trilinear form A in (6) is of generalized restricted
weak type (aq, aq,asz;r) for all 1/r < ay, a2 < 1/r'; hence the trilinear
form A, in (5) is of generalized restricted weak type (in the classical
sense) (aq, a9, ag) for the same range of a’s. Finally, the strong type
estimates for T¢; follow by classical multilinear interpolation.

Remark 2.25. The crucial point in the above reasoning is that for r
sufficiently close to 2 Proposition 2.21 gives us a range of boundedness
arbitrarily close to L? x L? — L.
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1/q
1k

1/r

1/T0
I

1/r 1/ro 1}7" ‘.1 1p

FIGURE 1. The darker square corresponds to the p, g range given
by Proposition 2.21; interpolation with Proposition 2.20 extends
the range to that corresponding to the additional lighter area.

We end the proof of Theorem 1.2 by proving the last remaining propo-
sition.

Proof of Proposition 2.21: The proof follows a standard argument orig-
inating from [17] (although implicitly present in previous work).

By multilinear interpolation, it suffices to prove restricted weak type
estimates, that is it suffices to prove that if F', G, H are measurable
subsets of R of finite measure, then there exists a subset H' of H such
that |H'| ~ |H| and if

1/’
fetr dd<te (Th) <tw

we

then it holds that for any collection of tri-tiles P it is
(10) |AR(f, 9, 0)| Spg,rre |[FIPIGIVH|Y .

Given sets F', G, H and functions f, g as above, we fix two large num-
bers p,q » ro, and we define the exceptional set E to be

Ei= {x eRst. M(IEf")(x) 2 |I§||}

G
v {x e R s.t. M(|€g|")(x) 2 |H|}

v {x eER s.t. M(|Var™ € f|")(z) = il }

v {x € R s.t. M(] Var™ €g|™)(z) 2 },
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where M is the dyadic Hardy-Littlewood maximal function. Define
H' := H\FE; we claim that if we choose the implicit constants in the
definition of E to be large enough, we have |H'| ~ |H|. Indeed, this
follows from the L' — L'* boundedness of M and the boundedness of
the relevant operators for the given exponents, for example

{x eR st. M(%fP)(x) 2 |F|}‘ L2 il 2Ry

<] 7]
1% f13 Bl
= S S S < ],

where we have used the Carleson—Hunt theorem in the second to last
inequality. The same holds for the other terms in the definition of F,
where in particular one also has to invoke the L™ — L™ boundedness
of Var™ ¢ proven in [18].
Now, we partition the collection P into
]Psmall = {P e P s.t. Ip ¢ E},
Plarge = P\Psmalla

and will estimate separately the trilinear forms Ap__,
We start with Pgyay. Since p > rg we have

(7{ I‘ffI’”")l/m < (]f I‘ffl">1/p,

so given P € Pypan we observe that since Ip ¢ E we must have (see

Proposition 2.6)
) F 1/p
Slze}c(IPsmau) <p <|H||) .

and A]plarge .

Similarly, we see that

rocp piro — 1E|
sup ][ Var€ f|™ < —,
PEPsmall IP | ‘H|
) G 1/q
Slzef; (Psmall) Sq (||];I||> ,
|G|

sup ][ [Var"*€g|™ < —;
Pepsmall IP ‘H|

moreover, we have trivially

Sizei (Psmall) S 1.
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Combining this information with the general estimate in Lemma 2.19
(for which we set 0; = &; for j = 1,2, 3, thus forcing the condition 0 <
01,&1,02,& < 1/2) and the energy estimates in Propositions 2.11, 2.13,
we obtain after some algebra (recall that o = (r — 1) /r)

G (LN e
A h)l < F (1—061)/r0
| Psnlall(.f?g? )| ~p.q [H| |H| | ‘

|G| 20’02/q ,
% <I_I|) |G|(072692)/T0’ 1. |H‘1/T —2003/70

1/r 200
) N [|F| rIEl 1/p|F|<o—2ael)/ro
|H | |H |

|G| 20’02/6] ,
« <I—I|) |G|(1_002)/T°- 1. |H|1/r —2003/10

— ‘F‘l/To—QU(l/To—l/P)Ql ‘Gll/ro—za(l/ro—l/m%

% |H|l/r’fl/r72003/r072601/p72002/q.

By choosing p, q large enough, we obtain (10) for any choice of expo-
nents in the stated range. Notice that in order to prove Theorem 1.2
by interpolation we don’t need the full range of exponents provided by
Proposition 2.21; it suffices to take p,q large but fixed for each r, so
that the hypotheses of the interpolation Lemma 2.24 apply, to conclude
Theorem 1.2.

Now we are left with showing that (11) holds for Ap,, . as well. In
order to do so, we decompose Pjarge into L den Pa where

dist(Ip, E°) N 2d}~
1P| ’

it then suffices to prove that the contribution of Ap, is summable in d

and the sum is bounded by (11). Let then d be fixed and observe that

if P e Py then 2479 ¢ E, thus as seen above we must have (up to

finding a dyadic interval I that contains 2479 Jp and has comparable
length, which is always possible)

Py = {P € Plarge s.t. 1+

F
Cg P S La
]idJrO(l)]P | f| ‘H|

|F|
1€ fIP < 2%,
ﬁp |H|

and therefore
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and hence by Proposition 2.6 and Holder’s inequality

S 1( ) d/p |F| P
ize ]Pd < 2 () .
! ’ [H|

Similarly we have
||

sup ][ [Varo@ f|™o <. 241,
PePy JIp ‘H|

e? aa (161"
Size, (Pa) <q 2 <H|) ,

G
sup f [Var™€g|™ <. 2du.
Peby J1p | H|

However, for Sizei we now have a better estimate, namely for any P € Py

it must be )

[Zp] / 2, Il @7, < 27

‘ P| wed
for a large M > 0 of our choice, thanks to the fast decay of the func-
tions ®¢, (here for convenience we are writing ®¢ for ®; even when

|| < |w|7!), and this estimate in turn implies the bound
Size} (Py) < 279M/"",

If we apply the general estimate of Lemma 2.19 to P; as done before we
then get

|APd(f,g, h)| <o 27M'd|F|l/rof2a(1/rofl/73)91|G|1/r0720(1/T0*1/q)02

% |H‘l/rlfl/rf2m93/r072091/p72002/q

for some large M’ > 0 depending on M, r. As this is summable in d,
the proof is concluded. O

Remark 2.26. We comment here on why, aside from the logarithmic
loss, we cannot recover the same range for A as in Theorem 1.1 ([2]),
in which the bilinear frequency projections onto the w’s are taken to be
smooth. If one uses the appropriate version of the above argument in
that context, the range obtained is symmetric with respect to 2, that
is one gets estimates for all 7/ < p,q < r directly, without the need
to appeal to interpolation results like Lemma 2.24. The reason behind
this is two-fold: firstly there’s the fact that in that case all sizes satisfy
Size! (P) < 1 a priori for j = 1,2,3 (and with this information alone
one already obtains the range 2 < p,q¢ < r); and secondly the sizes
are controlled by L!-averages instead of L"-averages as in our case (see
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Proposition 2.6). Thus in the smooth case of [2] one can effectively bound
Size} (Psman) < min(1,|F|/|H|) and similarly for Size?, which then yields
the wider range described above. Our use of the p, q powers essentially
amounts to a substitute for the condition Size’ (P) < 1, hence the smaller
range.

Finally, the full range p, ¢ > 1’ in [2] is obtained by a further argument
involving the localization of sizes and energies; alternatively, one can
obtain it by considering the formal adjoints of the bilinear operator. In
the non-smooth case both approaches fail: our sizes and energies don’t
localize well, since we are controlling them with non-local operators; and
the formal adjoints cannot be simply reduced to the original operator, so
that the analysis developed in here doesn’t extend to them automatically.

3. Application to bilinear multipliers

Let ©Q be a collection of dyadic frequency squares, not necessarily
finite and not necessarily disjoint, and let a = {ay, },en be a sequence of
complex coefficients; form then the bilinear multiplier T given by

Tulf,9)@) = 3 aumalf. 9)(@).
we)
We are interested in finding conditions on §2 and {a, },eq which ensure
the LP x L9 — L* boundedness of T in some range of exponents p, ¢, s.
Consider the following situation: assume that for some § € (0,2) we
have |a|,s < o0, and moreover the coefficients a,, satisfy the Carleson
Condition

(12) D7 lawl? < Clayl?, VweQ.

w'IGQ,
Then we argue that the bilinear multiplier T, is bounded from LP x L4
into L*® with 1/p+1/q = 1/s for 5 < p,q < ', where ' is replaced by oo
if 8 < 1. Indeed, we partition the collection €2 as follows: let n € N and
define the sub-collection

Q= {weQst. |ay| ~27"|a|es};
then clearly
(13) #Q, < 2"

and moreover every collection €2, is the union of O(1) collections of
disjoint dyadic squares. This last fact is due to the Carleson Condition,
since for every wy € €0, it must be by definition

Claw,|” = Z aw|? ~ |au, |P#{w € Qp s.t. w < wol;

WERy,,
wCwo
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thus if we do a generational decomposition of 2, (starting from the
collection of maximal elements with respect to inclusion and so on), we
will encounter at most O(1) generations, which proves the claim.

Assume henceforth for the sake of clarity that for each n the collec-
tion ,, consists of disjoint dyadic squares only. If we take r € (2, 5) we
can bound

Bentate]= S5 er)” (5 muaer)”

weN neN “weQ, weNy,
~ 27 alles (#2) Y TG, (f,9) ().
neN

By Theorem 1.2 and triangle inequality we then have that
ITa(f. e Spq lalesl flrelglee D) 27" (#Q) T,

neN

but by (13) the sum is bounded by
Z 2—n26n/r' S 17

neN

thanks to our choice of r.

Remark 3.1. The Carleson Condition (12) is introduced to enforce the
fact that the collections €2,, are made of essentially disjoint squares, and
in particular they can be decomposed into at most O(1) collections of
disjoint squares. But actually, if we had that for some § < 1 each 2,
can be decomposed into at most O(#92) collections of disjoint squares,
we could still bound the multiplier in a (smaller) range.
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