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Abstract: Let Ω be a collection of disjoint dyadic squares ω, let πω denote the
non-smooth bilinear projection onto ω

πωpf, gqpxq :“

¨
1ωpξ, ηq pfpξqpgpηqe

2πipξ`ηqx dξ dη,

and let r ą 2. We show that the bilinear Rubio de Francia operator
ˆ

ÿ

ωPΩ

|πωpf, gq|
r

˙1{r

is LpˆLq Ñ Ls bounded with constant independent of Ω whenever 1{p` 1{q “ 1{s,

r1 ă p, q ă r, and r1{2 ă s ă r{2.

2010 Mathematics Subject Classification: 42A45.

Key words: bilinear Fourier multipliers, orthogonality.

1. Introduction

Classical Littlewood–Paley theory on the real line is a staple of linear
harmonic analysis and has proven vastly important in its development.
It encodes a principle of orthogonality in Lp spaces even when p ‰ 2
for dyadically separated frequencies, and can thus be seen as a substi-
tute for Plancherel’s identity; this usually allows one to decouple the
action of a multiplier on each dyadic frequency and deal with them sep-
arately. Generalizations of the linear Littlewood–Paley inequalities were
first considered by Carleson in [9] (later reproved in a different way by
Córdoba in [10]) for the special case where one replaces the Littlewood–
Paley dyadic intervals r2k, 2k`1s, k P Z by the intervals rn, n` 1s, n P Z.
Later, Rubio de Francia in [19] extended Carleson’s result to arbitrary
collections of disjoint intervals. In particular, he proved the following:
let I “ tIjuj be a collection of disjoint intervals and define the Rubio de
Francia square function

RdF2
I fpxq :“

ˆ

ÿ

j

|πIjfpxq|
2

˙1{2

,
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where πI is the frequency projection operator defined by

yπIfpξq :“ 1Ipξq pfpξq;

then for all 2 ď p ă 8 it holds that for all f P LppRq

(1) }RdF2
I f}LppRq Àp }f}LppRq

(with constant independent of I). The inequality is false in general
for p ă 2, as was known since [9] – this corresponds to a failure of
orthogonality in Lp spaces for small p’s. More in general, by the same
methods one can prove for a generic r ą 2 that the Rubio de Francia
r-function

RdFrI fpxq :“

ˆ

ÿ

j

|πIjfpxq|
r

˙1{r

is bounded on Lp for all r1 ă p ă 8 (the lowerbound being sharp;
see [11] for a proof). The condition r ě 2 is necessary, as can be seen
for example by considering the collection of Littlewood–Paley intervals.
Known proofs of (1) (see [13], [21], [22], [15]) rely on an interpolation
between the trivial L2 case and (a substitute for) the L8 endpoint (or
dually between L2 and H1, as in [7]). See also [4] about an alternative
proof for such inequalities as well as for a bilinear generalization, in-
volving a collection of paraproducts-type operators. Higher dimensional
versions of the inequalities have been first shown in [13].

A natural question is whether similar orthogonality principles exist in
the bilinear setting and to what extent. That is, given bilinear multiplier

operators Tj with disjoint frequency supports in the frequency plane xR2,
under what conditions does it hold that, say, the square function

ˆ

ÿ

j

|Tjpf, gq|
2

˙1{2

is bounded from Lp ˆLq to Ls? Some results are known for special col-
lections of supports. Perhaps the first one is to be found in Lacey’s [14],
where he proves the Lp ˆ Lq Ñ L2 boundedness of the bilinear square
function

f, g ÞÑ

ˆ

ÿ

nPZ

ˇ

ˇ

ˇ

ˇ

¨
χpξ ´ η ´ 2nq pfpξqpgpηqe2πipξ`ηqx dξ dη

ˇ

ˇ

ˇ

ˇ

2˙1{2

for p, q ě 2 such that 1{p ` 1{q “ 1{2 (later extended to any 1{p `
1{q “ 1{s in [16], [6]), where χ is a C8 function that is identically 1
in r´1{2, 1{2s and vanishes outside r´1, 1s. Thus here the frequency
supports consist of (smoothened) diagonal strips of roughly unit width
and unit separation. This was later extended by the first author in [5]
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to the case of non-smooth diagonal strips, that is where one replaces
the smooth function χ above by the non-smooth 1r´1{2,1{2s. The dis-
continuity at the boundary of the strip makes the analysis inherently
more complicated (the same phenomenon that arises in the study of, for
example, the Bilinear Hilbert transform).

A further and more recent example of a bilinear r-function of the form
above is given by

f, g ÞÑ

ˆ

ÿ

jPZ

ˇ

ˇ

ˇ

ˇ

¨
ajăξăηăaj`1

pfpξqpgpηqe2πipξ`ηqx dξ dη

ˇ

ˇ

ˇ

ˇ

r˙1{r

for a sequence of strictly increasing real numbers aj ă aj`1. It can be
thought of as a bilinear Rubio de Francia operator for iterated Fourier
integrals, which finds its motivation naturally in the analysis of the sta-
bility of solutions to AKNS systems. It was proven in [3] that for r ě 2
this operator is LpˆLq Ñ Ls bounded for the same exponents for which
the Bilinear Hilbert transform is bounded (that is, under the necessary
condition 1{p`1{q “ 1{s, at least when p, q ą 1 and s ą 2{3); moreover,
it is also bounded when 1 ď r ă 2, although the range depends on r in
this case. We refer the reader to [3] for details and for the aforementioned
physical motivation.

In this paper we are interested in bilinear operators built out of bi-
linear projections whose frequency supports consist of squares in the

frequency plane xR2. Here the reference we have in mind is [2] by Benea
and the first author, in which the following bilinear versions of Rubio
de Francia r-functions are considered: let Ω be a collection of disjoint

squares in xR2 and let r be fixed, then define the operator

SrΩpf, gqpxq :“

ˆ

ÿ

ωPΩ

ˇ

ˇ

ˇ

ˇ

¨
χωpξ, ηq pfpξqpgpηqe

2πipξ`ηqx dξ dη

ˇ

ˇ

ˇ

ˇ

r˙1{r

,

where χω is a C8 function that is identically 1 on 1
2ω and vanishes

outside ω. In [2] the authors prove the following theorem:

Theorem 1.1 ([2]). Let Ω be a collection of disjoint squares in xR2 and
let r ą 2. Then

(2) }SrΩpf, gq}LspRq Àp,q }f}Lp}g}Lq

for all p, q, s such that 1{p` 1{q “ 1{s, r1 ă p, q ă 8, r1{2 ă s ă r. In
particular, the constant is independent of Ω.

This result is to be thought of as a bilinear orthogonality principle
for collections of (smoothened) frequency squares in the same way as
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the Rubio de Francia theorem is for the linear case. Observe however
that the square function case r “ 2 is not covered by the theorem – its
boundedness is currently an open problem. We remark that the condi-
tion r1 ă p, q is necessary (to see why it suffices to consider a collection
of squares like the one given in Example 1 below).

Our interest here is to extend the results of [2] to the case where the
smooth characteristic function χω above is replaced by the non-smooth
characteristic function 1ω. In particular, let Ω be a collection of disjoint

squares ω “ ω1 ˆ ω2 in xR2 and denote by πω the non-smooth bilinear
frequency projection onto the square ω, that is

πωpf, gqpxq :“

¨
1ωpξ, ηq pfpξqpgpηqe

2πipξ`ηqx dξ dη,

which in particular factorizes as πω “ πω1 b πω2 . We are interested in
the bilinear operator

f, g ÞÑ T rΩpf, gqpxq :“

ˆ

ÿ

ωPΩ

|πωpf, gqpxq|
r

˙1{r

, r ě 2,

and specifically in proving bounds of the form

(3) }T rΩpf, gq}Ls ď C}f}Lp}g}Lq ;

we denote by Cp,q,s,Ω the best constant C such that the above inequality
holds for all f P Lp, g P Lq (we consider r fixed). The usual scaling
argument shows that a necessary condition is that the exponents p, q, s
satisfy Hölder’s relationship, that is it must be

1

p
`

1

q
“

1

s

(and therefore Cp,q,s,Ω “ Cp,q,Ω).
We consider some examples in order to get acquainted with the prob-

lem at hand.

Example 1. Let r ě 2. Suppose Ωline consists of an arbitrary number
of disjoint squares that all intersect a given vertical line, that is there
exists a frequency ξ0 such that for every ω P Ωline we have ξ0 P ω1.
Observe that the frequency intervals ω2 must be all disjoint. We can
bound pointwise

T rΩline
pf, gqpxq ď

ˆ

ÿ

ωPΩline

|πω2
gpxq|r

˙1{r

¨ sup
ωPΩline

|πω1
fpxq|

ď RdFrpgqpxq ¨ C fpxq,
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where C denotes the Carleson operator, which is bounded on Lp for all
1 ă p ă 8 (by the Carleson–Hunt theorem, [8], [12]), and therefore we
get that for p ą 1 and q ą r1 (or q ě 2 if r ě 2) we can estimate for this
particular collection

}T rΩline
pf, gqpxq}Ls Àp,q }f}Lp}g}Lq ,

or in other words Cp,q,Ωline
Àp,q 1 in the stated range.

Example 2. Let r ą 2 be fixed and consider now a collection of N1{2ˆ

N1{2 points in xR2 arranged in a rectangular grid with large spacing, and
suppose that each point labeled by pi, jq is the center of a square ωij

and furthermore that the squares are all disjoint (their sidelengths can
be all distinct). We let Ωgrid :“ tωijui,jďN1{2 and we try to bound T rΩgrid

in some range. Observe that since a priori

|πωpf, gqpxq| ď C fpxq ¨ C gpxq

we always have the trivial bound

}T rΩgrid
pf, gq}Ls Àp,q N

1{r}f}Lp}g}Lq

for p, q ą 1. We can beat this trivial bound of Cp,q,Ωgrid
Àp,q N

1{r by the

following argument: since for a fixed i the squares ωij are such that ωij1
all contain a same frequency as in the example above, we can bound
pointwise
ˆ

ÿ

ωPΩgrid

|πωpf, gqpxq|
r

˙1{r

“

ˆ

ÿ

iďN1{2

ÿ

jďN1{2

|πωij1
fpxq ¨ πωij2

gpxq|r
˙1{r

ď C fpxq ¨

ˆ

ÿ

iďN1{2

ÿ

jďN1{2

|πωij2
gpxq|r

˙1{r

ď C fpxq ¨

ˆ

ÿ

iďN1{2

pVarr C gpxqqr
˙1{r

“ N1{2rC fpxqVarr C gpxq,

where Varr C is the variational Carleson operator

Varr C fpxq :“ sup
M

sup
ξ1ă¨¨¨ăξM

ˆM´1
ÿ

j“1

|πrξj ,ξj`1sfpxq|
r

˙1{r

.

It is known from [18] that this operator is Lp Ñ Lp bounded for r1 ă p ă
8 if r ą 2, as is the case, and therefore we get for the range p ą 1, q ą r1

an improvement in the dependence of the constant on the cardinality of Ω
(specifically, Cp,q,Ωgrid

Àp,q p#Ωq1{2r instead of p#Ωq1{r).
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It is natural to conjecture that for some range of exponents (possibly
as large as p, q ą r1, like in [2]) one should have Cp,q,Ω Àp,q 1 for every
admissible Ω, or in other words that inequality (3) should hold with
constant Cp,q,Ω independent of Ω, and specifically independent of its
cardinality #Ω. Indeed, this is achieved in the p, q ą r1 range by product-
like collections of rectangles, that is collections of the form Ω “ tI ˆ
J s.t. I P I, J P J u, where I, J are collections of disjoint intervals; this
can be readily seen by a factorization of the operator and an application
of Rubio de Francia’s theorem. Simple pointwise arguments like the
one given in Example 2 are unlikely to give such a result. However, by
combining similar observations with the time-frequency analysis of [2]
and some further ideas from [1], [4] (as for example the consideration
in the time-frequency analysis of an exceptional subset built from non-
local operators), we are able to confirm the conjecture in the range given
by r1 ă p, q ă r.

More precisely, let D denote the collection of dyadic intervals, that is
intervals of the form rn2k, pn ` 1q2ks for arbitrary n, k P Z. Then our
main result can be stated as follows.

Theorem 1.2. Let r ą 2 be fixed. Then for all p, q, s such that

1

p
`

1

q
“

1

s

and

r1 ă p, q ă r, r1{2 ă s ă r{2

it holds that for every arbitrary collection Ω Ă DˆD of disjoint (dyadic)

squares in xR2 the estimate

(4)

›

›

›

›

ˆ

ÿ

ωPΩ

|πωpf, gqpxq|
r

˙1{r›
›

›

›

Ls
Àp,q,r }f}Lp}g}Lq

holds true for every f P Lp, g P Lq.

Remark 1.3. In Theorem 1.1 (from [2]) above, the statement encom-
passes arbitrary non-dyadic squares; this is because of the flexibility
provided by the smoothness of the χω functions. However, in the non-
smooth case things are not as simple. One can replace the assumption
that the squares are dyadic with a well-separation assumption: namely,
Theorem 1.2 still holds if we assume that Ω is a finite collection of ar-
bitrary squares such that 4ω X 4ω1 “ H whenever ω ‰ ω1 (essentially
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because then each square is contained in a unique dyadic square of com-
parable size). In the linear case it’s always possible to reduce to a well-
separated case (see [19]) by means of classical Littlewood–Paley theory,
but in the bilinear case such tools are not currently available.

Remark 1.4. The condition r ą 2 is a shortcoming we inherit from [2].
However, for the r “ 2 case, one can deduce from the above theorem and
Hölder’s inequality that T 2

Ω is L2 ˆ L2 Ñ L1 bounded with constant at
most Oεp#Ωεq for any ε ą 0. Indeed, we can bound pointwise T 2

Ωpf, gq ď
#ΩεT rΩpf, gq, where 1{2 “ 1{r ` ε, and conclude using Theorem 1.2 for
exponents p “ q “ 2.

This result partially confirms the natural conjecture stated above.
Observe the range of boundedness provided by Theorem 1.2 is smaller
than the corresponding one in Theorem 1.1 above. We explain the reason
why in Remark 2.26. Figure 1 in §2.7 provides a graphical illustration
of the range obtained in Theorem 1.2.

The proof of Theorem 1.2 is presented in §2, and is split into a number
of steps. The result is obtained by interpolation between a boundedness
result for T8Ω (a trivial consequence of the Carleson–Hunt theorem) and
a partial boundedness result for T rΩ when r is close to 2. The latter is
obtained by adapting the time-frequency methods of [2] to our setup,
but using non-local operators to construct the exceptional set as in [1],
[4]. The necessary preliminaries are carried out in §2.1–§2.6. The proof
is concluded in §2.7, where the particular interpolation result we will use
(Lemma 2.24) is also presented. Finally, we present a simple application
in §3.

Acknowledgements. Both authors are supported by ERC project
FAnFArE no. 637510. The authors are very grateful to Cristina Benea
for many useful comments and discussions, and in particular for having
shared with us a preprint of [4]. The authors would also like to thank the
reviewers for their help with improving the presentation of the article.

2. Proof of Theorem 1.2

We can reduce the problem by linearization of the `r norm and duality
to the following: given f P Lp, g P Lq, h P Ls

1

define the trilinear form

(5) Λrpf, g, hq :“

ˆ
R

ÿ

ωPΩ

πω1
fpxqπω2

gpxqhωpxqdx,
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where hωpxq :“ hpxqεωpxq and tεωpxquωPΩ satisfies }tεωpxquω}`r1 ď 1 for
every x P R; then it suffices to prove that

|Λrpf, g, hq| Àp,q,r }f}Lp}g}Lq}h}Ls1

uniformly in tεωpxquωPΩ. Thus we can further reduce the problem to
that of bounding the trilinear form

(6) Λpf, g,hq :“

ˆ
R

ÿ

ωPΩ

πω1
fpxqπω2

gpxqhωpxqdx,

where h “ thωuωPΩ is a generic element of Ls
1

p`r
1

q.

2.1. Discretization of the trilinear form. We perform a standard
discretization procedure on the trilinear form Λ, except this time, con-
trary to one’s expectations, we will not resolve the singularities using
a Whitney decomposition. We have (using Radon duality, with dσ the
induced Lebesgue measure on the plane ξ1 ` ξ2 ` ξ3 “ 0)

Λpf, g,hq “

ˆ
R

ÿ

ωPΩ

f ˚}1ω1
pxqg ˚}1ω2

pxqhωpxqdx

“
ÿ

ωPΩ

ˆ
ξ1`ξ2`ξ3“0

pfpξ1q1ω1
pξ1qpgpξ2q1ω1

pξ2qxhωpξ3qdσpξ1, ξ2, ξ3q

“
ÿ

ωPΩ

ˆ
ξ1`ξ2`ξ3“0

pfpξ1q1ω1
pξ1qpgpξ2q1ω1

pξ2qxhωpξ3qχω3
pξ3qdσpξ1, ξ2, ξ3q

“
ÿ

ωPΩ

ˆ
R
f ˚}1ω1pxqg ˚}1ω2

pxqhω ˚}χω3
pxqdx,

where we have denoted ω3 :“ 2p´ω1 ´ ω2q and χω3
is a smoothed out

characteristic function, identically equal to 1 on ´ω1´ω2 and identically
vanishing outside ω3. Now, although the kernels decay very slowly, the

functions f ˚}1ωj are morally still roughly constant in modulus at scale

|ωj |
´1 “: |ω|´1, and therefore it makes sense to do the following changes

of variable:
ÿ

ωPΩ

ˆ
R
f ˚}1ω1

pxqg ˚}1ω2
pxqhω ˚}χω3

pxqdx

“
ÿ

ωPΩ

|ω|´1

ˆ
R
f ˚}1ω1

p|ω|´1yqg ˚}1ω2
p|ω|´1yqhω ˚}χω3

p|ω|´1yqdy

“
ÿ

ωPΩ

ÿ

nPZ
|ω|´1

ˆ 1

0

f ˚}1ω1
p|ω|´1pn` zqqg ˚}1ω2

p|ω|´1pn` zqq

ˆ hω ˚}χω3
p|ω|´1pn` zqq dz.
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In classical time-frequency analysis one rewrites the above form as an
average over z of discrete sums of coefficients, each given by an inner
product against suitably defined wavepackets associated to tiles in the
time-frequency plane, and then proceeds to bound the discrete sums
uniformly in z; the approach we will take however is different and will
involve allowing only a single scale for each square ω, roughly speaking
– a choice reflected in our definition of tri-tiles given below. This will
allow us to do a time-frequency analysis of the trilinear form Λ free
from wavepackets (although wavepackets are intrinsically present in some
strong results that we will use off-the-shelf). Define then the tri-tiles as
follows:

Definition 2.1. A tri-tile P is a triple of sets of the form

P “ pP1, P2, P3q “ pI ˆ ω1, I ˆ ω2, I ˆ ω3q,

where ω “ ω1 ˆ ω2 P Ω, ω3 “ 2p´ω1 ´ ω2q as before and I is a dyadic
interval of length |ω|´1. Sets Pj for j “ 1, 2, 3 are referred to as tiles.
Given a tri-tile P we denote by IP the interval I above; we also denote
by ωpP q “ ω1pP q ˆ ω2pP q the frequency square associated to the tri-
tile P , and similarly we write ω3pP q for ω3. Finally, given a collection of
tiles P we denote by ΩpPq the collection of frequency squares on which P
is supported, namely

ΩpPq :“ tω P Ω s.t. ω “ ωpP q for some P P Pu.

Using Hölder’s inequality on each summand above, we have

ˇ

ˇ

ˇ

ˇ

|ω|´1̂
1

0

f ˚}1ω1p|ω|
´1pn`zqqg˚}1ω2p|ω|

´1pn`zqqhω˚}χω3p|ω|
´1pn`zqqdz

ˇ

ˇ

ˇ

ˇ

ď }f ˚}1ω1
}L2pIP q}g ˚

}1ω2
}L2pIP q}hω ˚}χω3

}L8pIP q,

where the tri-tile P is given by

IP “ r|ω|
´1n, |ω|´1pn` 1qs

and

P “ pIP ˆ ω1, IP ˆ ω2, IP ˆ ω3q.

Now, fix a parameter r0 such that 2 ă r0 ă r. This will be fixed

throughout the rest of the paper. Going back to writing πωf for f ˚|1ω,
we notice that again by Hölder’s inequality we have

}πω1pP qf}L2pIP q ď |IP |
1{2

ˆ 
IP

|πω1pP qf |
r0

˙1{r0

,



52 F. Bernicot, M. Vitturi

and similarly for g. This may seem arbitrary at this point, but will
be useful later in avoiding logarithmic-type losses in our estimates (see
Remark 2.15). We introduce the shorthand notation

fpP1q :“

ˆ 
IP

|πω1pP qf |
r0

˙1{r0

,

gpP2q :“

ˆ 
IP

|πω2pP qg|
r0

˙1{r0

,

hpP3q :“ }hωpP q ˚}χω3
}L8pIP q.

We have therefore shown that if P denotes the collection of all possible
tri-tiles (obtained by letting ω range in Ω and n P Z, in the above
notation), the trilinear form Λ is bounded by the discretized sum

|Λpf, g,hq| ď ΛPpf, g,hq :“
ÿ

PPP
fpP1qgpP2qhpP3q|IP |.

The reason for this unusual choice of coefficients will become clear later
in light of Lemma 2.7 and Proposition 2.13 below (see particularly Re-
marks 2.14 and 2.15). In the rest of the section we will concentrate on
bounding the discretized sum.

2.2. Columns and rows. We introduce here some structured collec-
tions of tri-tiles, originating from [2], that will be fundamental to our
analysis of the trilinear form Λ. They are to be thought of as the ana-
logue for our setup of trees, in the language of classical time-frequency
analysis.

Definition 2.2. A collection of tri-tiles C is a column if there exists a
tri-tile T P C, referred to as the top of C, such that for every P P C

ω1pP q Ě ω1pT q

and
IP Ď IT .

Analogously, a collection of tri-tiles R is a row if there exists a tri-
tile T P R, referred to as the top of R, such that for every P P R

ω2pP q Ě ω2pT q

and
IP Ď IT .

Given a column or row T we will use ToppT q to denote its top.

Remark 2.3. Observe that if C is a column then the collection of tiles
tP1 s.t. P P Cu is overlapping, while the tiles P2 for P P C are all dis-
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joint, and in particular if ωpP q ‰ ωpP 1q then P2 and P 12 are disjoint in
frequency. The reverse holds for a row. This will be important later on.

We show below that when C is a column we can give a good bound
on ΛC (and similarly for rows). In particular, we argue similarly to [2]
and bound the discretized sum restricted to C as follows:

ÿ

PPC
fpP1qgpP2qhpP3q|IP | ď psup

PPC
fpP1qq

ÿ

PPC
gpP2qhpP3q|IP |

ď psup
PPC

fpP1qq

ˆ

ÿ

PPC
gpP2q

r|IP |

˙1{r

ˆ

ˆ

ÿ

PPC
hpP3q

r1 |IP |

˙1{r1

.

Then, for the term in g we bound
ˆ

ÿ

PPC
gpP2q

r|IP |

˙1{r

“

ˆ

ÿ

PPC
gpP2q

r´r0 ¨ gpP2q
r0 |IP |

˙1{r

ď psup
PPC

gpP2qq
pr´r0q{r

ˆ

ÿ

PPC
|IP |gpP2q

r0

˙1{r

“ psup
PPC

gpP2qq
pr´r0q{r

ˆ

ÿ

PPC

ˆ
IP

|πω2pP qg|
r0

˙1{r

(notice we have introduced the same type of quantity that controls the
contribution of f in here). As for the term in h, we observe that

|IP |hpP3q
r1 “ |IP | sup

yPIP

|hω ˚}χω3
pyq|r

1

ď |IP |

ˆ

sup
yPIP

ˆ
|hωpzq||}χω3

py ´ zq| dz

˙r1

À |IP |

ˆ

sup
yPIP

ˆ
|hωpzq|

ˆ

1`
|y ´ z|

|IP |

˙´M
dz

|IP |

˙r1

ď |IP |

ˆˆ
|hωpzq| sup

yPIP

ˆ

1`
|y ´ z|

|IP |

˙´M
dz

|IP |

˙r1

À

ˆ
|hωpzq|

r1ΦIP pzqdz,

where M ą 0 is a large number and ΦI denotes some rapidly decaying
function concentrated in the interval I. Now observe that for each fixed ω
the tiles P which have ω as their frequency support have space support
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of fixed size |IP | “ |ω|
´1, hence the intervals IP are all disjoint. Define

then for an interval I of length greater or equal to |ω|´1 the function

ΦωI pxq :“
ÿ

J dyadic s.t. JĎI,
|J||ω|“1

ΦJpxq;

notice ΦωI is essentially„ 1 inside I and decays like p1`|ω|distpI, xqq´M`1

outside of it (see Remark 2.12 for why we need to introduce such func-
tions). We can thus bound

ÿ

PPC
hpP3q

r1 |IP | À
ÿ

PPC

ˆ
|hωpP qpzq|

r1ΦIP pzqdz

À
ÿ

ω

ˆ
|hω|

r1ΦωIC dz.

To summarize, we introduce sizes:

Definition 2.4 (Sizes). For any collection of tri-tiles P define

Size1
f pPq :“ sup

PPP
fpP1q “ sup

PPP

ˆ 
IP

|πω1pP qf |
r0 dx

˙1{r0

,

Size2
gpPq :“ sup

PPP
gpP2q “ sup

PPP

ˆ 
IP

|πω2pP qg|
r0 dx

˙1{r0

,

Size3
hpPq :“ sup

T ĂP

ˆ

1

|IT |

ÿ

ωPT

ˆ
|hω|

r1ΦωIT dz

˙1{r1

,

where the last supremum is taken over sub-collections T of P which are
either rows or columns.

With this notation, what has been shown in this section can be sum-
marized as

Proposition 2.5. Let C be a column of tri-tiles, then

|ΛCpf, g,hq| À

ˆ

1

|IC |

ÿ

PPC

ˆ
IP

|πω2pP qg|
r0

˙1{r

ˆ Size1
f pCqrSize2

gpCqspr´r0q{r Size3
hpCq|IC |,

and similarly, if R is a row of tri-tiles, we have

|ΛRpf, g,hq| À

ˆ

1

|IC |

ÿ

PPR

ˆ
IP

|πω1pP qf |
r0

˙1{r

ˆ rSize1
f pRqspr´r0q{r Size2

gpRqSize3
hpRq|IR|.



Bilinear RdF with Non-Smooth Squares 55

2.3. Size bounds. We have the following immediate bounds for the
sizes introduced above:

Proposition 2.6. Let P be a collection of tri-tiles, then

Size1
f pPq À sup

PPP

ˆ 
IP

|C f |r0 dx

˙1{r0

,

where C is the Carleson operator. The analogous inequality holds for Size2
g

as well.

Proof: Obvious.

We do not state an analogous proposition for Size3 since this size is
already in a convenient form.

Later on we will also need the following simple bound in terms of
Varr0 C , the variational Carleson operator as defined in Example 2.

Lemma 2.7. Let C be a column of tri-tiles. Then

1

|IC |

ÿ

PPC

ˆ
IP

|πω2pP qg|
r0 dx ď

 
IC

|Varr0 C g|r0 dx.

Clearly, an analogous statement holds for rows.

Proof: If we rewrite the expression on the left hand side as 
IC

ÿ

PPC
|πω2pP qgpxq|

r01IP pxqdx,

then it follows from the definition of column (see Remark 2.3) that we
can bound pointwise

ˆ

ÿ

PPC
|πω2pP qgpxq|

r01IP pxq

˙r0

ď Varr0 C g,

and the lemma follows.

2.4. Energies and energy estimates. In this subsection we introduce
the energies that will allow us to run a time-frequency argument for the
trilinear form Λ. We prelude a definition of disjointness (taken from [2])
for collections of columns and collections of rows that is needed to state
the definition of energies.

Definition 2.8. Given a collection C of columns, we say that the columns
in C are mutually disjoint if they are disjoint as sets of tri-tiles and if
the sets ToppCq1 are disjoint (in the time-frequency plane) as C ranges
over C.
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Analogously, given a collection R of rows, we say that the rows in R
are mutually disjoint if they are disjoint as sets of tri-tiles and if the
tiles ToppRq2 are disjoint (in the time-frequency plane) as R ranges
over R.

Now we can state the definition of Energies.

Definition 2.9 (Energies). We denote

Energy1
f pPq :“ sup

nPZ
sup
C

2n
ˆ

ÿ

CPC
|IToppCq|

˙1{r0

,

where the inner supremum runs over the collections C of mutually disjoint
columns in P such that for any column C P C and for any P P C it is

fpP1q ě 2n.

Define analogously Energy2
gpPq with respect to rows of tri-tiles in the

obvious way.
Finally, we denote

Energy3
hpPq :“ sup

nPZ
sup
T

2n
ˆ

ÿ

T PT
|IToppT q|

˙1{r1

,

where the inner supremum runs over the collections T of mutually dis-
joint rows and columns in P such that for every T P T it is

ˆ

1

|IToppT q|

ˆ
ÿ

ωPT
|hω|

r1ΦωIToppT q dx

˙1{r1

ě 2n.

Remark 2.10. Notice that we are using Lr0-type energies for f and g,
instead of L2-type energies as in [2]. However, this is not the only
difference. Even if one were to let r0 “ 2 above, our definition of Energy1

would still be slightly different from the corresponding one of [2] (in
particular it’s somewhat relaxed) because in our arguments we won’t
have to resort to Bessel-type inequalities.

We must show that these quantities are well-behaved in order for the
machinery of time-frequency analysis to work. In particular, we ought
to show that the energies can be controlled in terms of Lp norms of the
functions. This is what we do next. First of all, we have the simple

Proposition 2.11. For any collection of tri-tiles P and for any h P

Lr
1

p`r
1

q we have

Energy3
hpPq À }h}Lr1 p`r1 q.
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Proof: We may assume for simplicity that the collection P is finite, since
our argument will not depend on its cardinality. Let n P Z and T
be a collection of disjoint maximal rows and columns that realize the
supremum in the definition of Energy3, that is

Energy3
hpPqr

1

“ 2r
1n

ÿ

T PT
|IToppT q|.

By definition we then have

Energy3
hpPqr

1

À
ÿ

T PT

ÿ

ωPT

ˆ
|hω|

r1ΦωIToppT q dx

“
ÿ

ωPΩ

ˆ
|hω|

r1
ÿ

T PT:
T Qω

ΦωIToppT q dx;

but the collection T is maximal with respect to inclusion and therefore
for a fixed ω the intervals IToppT q are disjoint, hence by the rapid decay
of the functions Φω we have

ÿ

T PT:
T Qω

ΦωIToppT q À 1,

and this concludes the proof.

Remark 2.12. Two things should be noticed. Firstly, that in the last
lines of the above proof we crucially needed the decay of the functions ΦωI
away from I to be controlled by |ω|´1 rather than by the larger |I|, which
justifies their introduction and the subsequent definition of Size3.

Secondly, the maximality we appealed to above means the following:
given a column (or row) C such that

1

|IToppCq|

ˆ
ÿ

ωPΩpCq

|hω|
r1ΦωIToppCq

dx ě 2r
1n,

we can enlarge C by adjoining all tri-tiles P P P such that ωpP q P ΩpCq
and IP Ď IToppCq, and doing so will not change the left hand side of the

inequality at all. In other words, the only information Size3
h is sensitive

to is the space support of columns or rows T and the squares ω P ΩpT q.

Next we look at a bound for Energyj for j “ 1, 2.

Proposition 2.13. For any collection of tri-tiles P and for any f P Lr0

we have that

Energyjf pPq À }f}Lr0 , j “ 1, 2.
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Proof: We let j “ 1 in here, the proof for j “ 2 being identical. Let
n P Z and C be a collection of mutually disjoint columns that realize the
supremum in the definition of Energy1

f pPq within a factor of 2, that is

Energy1
f pPqr0 „ 2r0n

ÿ

CPC
|IToppCq|.

Then by definition of energy this implies

Energy1
f pPqr0 À

ÿ

CPC

ˆ
IC

|πω1pCqf |
r0 dx,

where we have abused notation by writing C in place of ToppCq to ease
readability. We rewrite the latter quantity asˆ

ÿ

CPC
|πω1pCqfpxq|

r01IC pxqdx.

Since by definition of Energy1 the tiles ToppCq1 are disjoint in time-
frequency, we can bound the sum pointwise (cf. the proof of Lemma 2.7)
in terms of the variational Carleson operator, namely

ÿ

CPC
|πω1pCqfpxq|

r01IC pxq ď pVarr0 C fpxqqr0 .

We know from [18] that Varr0 C is Lp Ñ Lp bounded for p ą r10, and
therefore (as r0 ą 2) our quantity above is bounded byˆ

|Varr0 C f |r0 dx À }f}r0Lr0 ,

which finishes the proof.

Remark 2.14. Lemma 2.7 and the above proposition are the reason for
our choice of working with the coefficients fpP1q, gpP2q, hpP3q. Indeed,
it is their form and precise localization (that is, the Lr0 averages don’t
involve weights supported everywhere on R) that allow us to introduce
pointwise estimates of the relevant quantities in terms of variational
Carleson operators.

Remark 2.15. The choice of introducing the parameter r0 satisfying
2 ă r0 ă r is motivated by Proposition 2.13 and Lemma 2.7. Indeed,
the problem here is that the variational Carleson operator Varr0 C is
only bounded when r0 ą 2. If we were to choose r0 “ 2 then, to ar-
gue by pointwise domination as above, we’d be forced to introduce a
logarithmic-type loss (in the cardinality of Ω) in our estimates, since the
best one could say would then be that for any ε ą 0

ÿ

CPC
|πω1pCqfpxq|

r01IC pxq ď p#ΩqεpVar
2

1´ε C fpxqq2
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(by Hölder’s inequality). The introduction of the parameter r0 allows
us to bypass this problem, at the cost of slightly reducing the range in
which certain of our estimates hold (see Proposition 2.21). This however
won’t be a problem in itself, in light of our use of interpolation in §2.7.

2.5. Decomposition lemmas. The decomposition lemma for Size1 is
well known and perhaps immediate. An identical result holds for Size2

by replacing columns with rows.

Lemma 2.16 (Decomposition lemma for Size1). Let P be a collection
of tiles and let n be such that

Size1
f pPq ď 2´n Energy1

f pPq.
Then we can decompose P “ Plow \ Phigh such that

Size1
f pPlowq ď 2´n´1 Energy1

f pPq
and Phigh can be organized into a collection C of mutually disjoint
columns C such that

ÿ

CPC
|IC | À 2r0n.

Proof: The proof is a simple stopping time argument. Let Pstock be
initialized to

Pstock :“ tP P P s.t. fpP1q ą 2´n´1 Energy1
f pPqu,

and let C be initialized to C :“ H. We set right away

Plow :“ PzPstock,

which will not be changed throughout the algorithm. The size property
is then immediate from the definition of (the initial state of) Pstock.
As for the organization of Phigh :“ PzPlow into columns, we proceed as
follows. Let Pmax be the tri-tile in Pstock such that P1 is the leftmost,
higher tile in the collection. Then we let C be the maximal column
in Pstock with top Pmax and update C to be C Y tCu and update Pstock

to be Pstockz
Ť

PPCtP u. Repeat the process until Pstock is empty and the
algorithm stops. Then we see that by maximality the columns in C are
mutually disjoint, and as for the bound on

ř

CPC |IC | notice that we have
for each C and for each P P C

fpP1q ą 2´n´1 Energy1
f pPq

and therefore just by definition of energy (and its monotonicity)

2´n´1 Energy1
f pPq

ˆ

ÿ

CPC
|IC |

˙1{r0

À Energy1
f pPhighq ď Energy1

f pPq,

which proves the claim.
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The decomposition lemma for Size3 is entirely similar (we have re-
placed the constant 2 with γ in view of its application to the proof of
Lemma 2.18 below).

Lemma 2.17 (Decomposition lemma for Size3). Let γ “ 2r0{r
1

. Let P
be a collection of tiles and let n be such that

Size3
hpPq ď γ´n Energy3

hpPq.

Then we can decompose P “ Plow \ Phigh such that

Size3
hpPlowq ď γ´n´1 Energy3

hpPq

and Phigh can be organized into a collection T of mutually disjoint
columns and rows T such that

ÿ

T PT
|IT | À γr

1n “ 2r0n.

The proof is quite similar to the one given above for Size1, and is thus
omitted.

Finally, by applying the decomposition lemmas simultaneously and
then iterating one can achieve a global decomposition of a given collec-
tion P with good control of the sizes of the sub-collections. In particular

Lemma 2.18 (global decomposition). Let P be a collection of tri-tiles.
Then there exists a partition P “

Ů

npPcol
n \ Prow

n q with the properties:

i) Size1
f pPcol,row

n q À minp2´n Energy1
f pPq,Size1

f pPqq,
ii) Size2

gpPcol,row
n q À minp2´n Energy2

gpPq,Size2
gpPqq,

iii) Size3
hpPcol,row

n q À minp2´r0n{r
1

Energy3
hpPq,Size3

hpPqq,
iv) Pcol

n is organized into a collection Cn of disjoint columns,

v) Prow
n is organized into a collection Rn of disjoint rows,

vi)
ř

CPCn |IC | À 2r0n,

vii)
ř

RPRn |IR| À 2r0n.

The collection Pcol
n is empty if n is such that

2´n Á
Size1

f pPq
Energy1

f pPq
and 2´r0n{r

1

Á
Size3

hpPq
Energy3

hpPq
,

and similarly the collection Prow
n is empty if n is such that

2´n Á
Size2

gpPq
Energy2

gpPq
and 2´r0n{r

1

Á
Size3

hpPq
Energy3

hpPq
.
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Proof: Initialize Pstock :“ P and apply iteratively the decomposition
Lemmas 2.16 and 2.17, in the order given by whichever of the quantities

Size1
f pPstockq

Energy1
f pPq

,
Size2

gpPstockq

Energy2
gpPq

,

ˆ

Size3
hpPstockq

Energy3
hpPq

˙r1{r0

is largest, sorting columns and rows into the current Pcol, Prow respec-
tively and updating Pstock at the end of each step to be the collec-
tion pPstockqlow resulting from the last application of a decomposition
lemma. We omit the details.

2.6. General estimate for ΛP. In this section we prove the following
general estimate, which will then be the main ingredient in the proof of
Proposition 2.21 in §2.7.

Lemma 2.19. Let Ω, Λ be as above and let P be a collection of tri-tiles.
Let σ “ r´r0

r and denote for shortness

Size1
f pPq “: S1, Energy1

f pPq “: E1,

Size2
gpPq “: S2, Energy2

gpPq “: E2,

Size3
hpPq “: S3, Energy3

hpPq “: E3.

Then we have

|ΛPpf, g,hq|À

„

sup
PPP

 
IP

|Varr0 C g|r0
1{r

ˆS2σθ1
1 E1´2σθ1

1 S2σθ2
2 Eσ´2σθ2

2 S2σθ3r
1
{r0

3 E1´2σθ3r
1
{r0

3

`

„

sup
PPP

 
IP

|Varr0 C f |r0
1{r

ˆS2σξ1
1 Eσ´2σξ1

1 S2σξ2
2 E1´2σξ2

2 S2σξ3r
1
{r0

3 E1´2σξ3r
1
{r0

3

(7)

for any θj, ξj such that θ1`θ2`θ3 “ 1 and respectively ξ1`ξ2`ξ3 “ 1,
and

0 ď θ1 ď minp1, p2σq´1q,

0 ď θ2 ď
1

2
,

0 ă θ3 ď 1,

0 ď ξ1 ď
1

2
,

0 ď ξ2 ď minp1, p2σq´1q,

0 ă ξ3 ď 1.

Proof: Apply the global decomposition lemma (Lemma 2.18) to the col-
lection P, thus obtaining a partition P “

Ů

n Pcol
n \ Prow

n . It suffices to
consider the collections Pcol

n (which correspond to the first term in (7)),
the proof for the collections Prow

n being entirely analogous. Since Pcol
n is
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organized into a collection Cn of disjoint columns, using Proposition 2.5
we can bound

|ΛPcol
n
pf, g,hq| ď

ÿ

CPCn

|ΛCpf, g,hq|

À
ÿ

CPCn

ˆ

1

|IC |

ÿ

PPC

ˆ
IP

|πω2pP qg|
r0

˙1{r

Size1
f pCqlrSize2

gpCqsσ Size3
hpCq|IC |

À
ÿ

CPCn

ˆ

1

|IC |

ÿ

PPC

ˆ
IP

|πω2pP qg|
r0

˙1{r

minp2´nE1,S1qrminp2´nE2,S2qs
σ

ˆminp2´r0n{r
1

E3,S3q|IC |;

by Lemma 2.7 term
`

1
|IC |

ř

PPC
´
IP
|πω2pP qg|

r0
˘1{r

can be replaced with

sup
PPP

„ 
IP

|Varr0 C g|r0
1{r

,

which then factors out of the sum. By definition of Pcol
n , what remains

is controlled by

minp2´nE1,S1qrminp2´nE2,S2qs
σ minp2´r0n{r

1

E3,S3q2
r0n,

and therefore it suffices to show that the sum over n of all these contri-
butions is controlled by the corresponding product of sizes and energies
in the first term of the right hand side of (7). This requires a tedious
but easy case by case analysis. Assume that

(8)
S1

E1
ă

S2

E2
ă

ˆ

S3

E3

˙r1{r0

,

the other cases being similar and thus omitted. We have

Case 1: 2´n ď S1

E1
ă S2

E2
ă

`S3

E3

˘r1{r0
. In this case the sum we have to

bound becomes
ÿ

n:2´nďS1E´1
1

2´nE12´nσEσ2 2´r0n{r
1

E32r0n

“ E1Eσ2 E3

ÿ

n:2´nďS1E´1
1

2´np1`σ´r0{rq,

and since 1` σ ´ r0{r “ 2σ the above evaluates to

S2σ
1 E1´2σ

1 Eσ2 E3,

which by assumption (8) is clearly controlled by the desired

S2σθ1
1 E1´2σθ1

1 S2σθ2
2 Eσ´2σθ2

2 S2σθ3r
1
{r0

3 E1´2σθ3r
1
{r0

1 .
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Case 2: S1

E1
ă 2´n ď S2

E2
ă

`S3

E3

˘r1{r0
. In this case the sum becomes

ÿ

n:S1E´1
1 ă2´nďS2E´1

2

S12´nσEσ2 2´r0n{r
1

E32r0n

“ S1Eσ2 E3

ÿ

n:S1E´1
1 ă2´nďS2E´1

2

2´npσ´r0{rq,

and σ ´ r0{r “ 2σ ´ 1. Thus we have further sub-cases:

i) 2σ ´ 1 ă 0. In this case the sum is controlled by

S1Eσ2 E3

ˆ

S1

E1

˙2σ´1

“ S2σ
1 E1´2σ

1 Eσ2 E3,

which we have already established is fine;
ii) 2σ ´ 1 ą 0. In this case the sum is controlled by

S1Eσ2 E3

ˆ

S2

E2

˙2σ´1

“ E1

ˆ

S1

E1

˙2σθ1

Eσ2 E3

ˆ

S1

E1

˙1´2σθ1ˆS2

E2

˙2σ´1

,

and since by assumption 1 ´ 2σθ1 ě 0 we can further bound this
by

E1

ˆ

S1

E1

˙2σθ1

Eσ2 E3

ˆ

S2

E2

˙1´2σθ1ˆS2

E2

˙2σ´1

“ E1

ˆ

S1

E1

˙2σθ1

Eσ2 E3

ˆ

S2

E2

˙2σθ2`2σθ3

,

which is clearly controlled by the desired quantity;
iii) 2σ ´ 1 “ 0. In this case the sum is controlled by

S1Eσ2 E3 log

ˆ

S2

E2
¨
E1

S1

˙

À S1Eσ2 E3

ˆ

S2

E2
¨
E1

S1

˙2σpθ2`θ3q

“ E1

ˆ

S1

E1

˙1´2σpθ2`θ3q

Eσ2
ˆ

S2

E2

˙2σpθ2`θ3q

E3,

which is again the desired quantity since for this value of σ it is
1´ 2σpθ2 ` θ3q “ 2σθ1.
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Case 3: S1

E1
ă S2

E2
ă 2´n ď

`S3

E3

˘r1{r0
. In this case the sum becomes

ÿ

n:S2E´1
2 ă2´nďSr

1{r0
3 E´r

1{r0
2

S1Sσ2 2´r0n{r
1

E32r0n

“ S1Sσ2 E3

ÿ

n:S2E´1
2 ă2´nďSr

1{r0
3 E´r

1{r0
2

2r0n{r;

since r0{r “ 1´ σ, this is controlled by

S1Sσ2 E3

ˆ

S2

E2

˙σ´1

“ S1Eσ2 E3

ˆ

S2

E2

˙2σ´1

,

which we have encountered in a previous case and is therefore fine too.
Thus the proof is concluded.

2.7. Proof of the main theorem. We are now ready to prove the
main theorem (Theorem 1.2). It will be obtained by interpolation be-
tween the two extreme situations, namely r “ 8 and r close to 2.

For the first case, we only use the Carleson operator which is bounded
on all Lp spaces for p P p1,8q to deduce the following:

Proposition 2.20. The bilinear operator T8Ω given by

T8Ω pf, gqpxq :“ sup
ωPΩ

|πωpf, gqpxq|

is bounded from LpˆLq to Ls for all 1 ă p, q ă 8, where 1{p`1{q “ 1{s.

Proof: As observed in Example 2, the operator T8Ω is bounded pointwise
by

T8Ω pf, gqpxq ď C fpxq ¨ C gpxq,

and the result then follows from the Carleson–Hunt theorem.

For the second case, we will prove the following proposition, whose
statement is identical to that of Theorem 1.2 except for the smaller range
of p, q (namely p, q ą r0 ą 2 here, and hence s ą 1 too).

Proposition 2.21. Let r ą r0 ą 2 be fixed (for interpolation purposes,
r should be thought of as being very close to 2). Then for all p, q, s such
that

1

p
`

1

q
“

1

s

and

r0 ă p, q ă r, r0{2 ă s ă r{2,
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and for every arbitrary collection Ω of disjoint dyadic squares in xR2, the
estimate

(9)

›

›

›

›

ˆ

ÿ

ωPΩ

|πωpf, gqpxq|
r

˙1{r›
›

›

›

Ls
Àp,q,r,r0 }f}Lp}g}Lq

holds true for every f P Lp, g P Lq.

Remark 2.22. Clearly, since the choice of r0 ą 2 is arbitrary, the above
proposition also holds all the way down to r0 “ 2. The definitions of
Sizes and Energies have to change accordingly. However, for presentation
purposes, we prefer to work with a fixed choice of Size and Energy since
this doesn’t affect the range one obtains after the interpolation argument
that follows.

Theorem 1.2 follows from Propositions 2.20 and 2.21 by multilinear
interpolation of vector-valued operators. More precisely, it will follow
from a straightforward application of the next lemma (due to Silva, [20]),
which we state after a definition.

Definition 2.23. Let Λpf, g,hq be a trilinear form and let pα1, α2, α3; tq
be such that 0 ď α1, α2 ď 1, α3 ď 1, α1 ` α2 ` α3 “ 1, and t ě 1.
We say that Λ is of generalized restricted weak type pα1, α2, α3; tq if for
every measurable subsets F , G, H of R of finite measure there exists a
subset H 1 Ď H, called major subset, such that |H 1| „ |H| and for all
functions f , g, h such that

|f | ď 1F , |g| ď 1G,

ˆ

ÿ

k

|hk|
t

˙1{t

ď 1H1

the inequality

|Λpf, g,hq| À |F |α1 |G|α2 |H|α3

holds true.

Lemma 2.24 ([20]). Let Λ be a trilinear form of generalized restricted
weak type pα1, α2, α3; t0q and pβ1, β2, β3; t1q, with the property that the
major subset doesn’t depend on the α’s or β’s. Then for all θ such that
0 ă θ ă 1, with

αθj “ p1´ θqαj ` θβj , j “ 1, 2, 3

and
1

tθ
“

1´ θ

t0
`
θ

t1
,

it holds that Λ is of generalized restricted weak type pαθ1, α
θ
2, α

θ
3, tθq.



66 F. Bernicot, M. Vitturi

Proof: The lemma is a particular case of a more general interpolation
lemma originating from [20] (specifically Lemma 4.3). We sketch the
proof here for the reader’s convenience.

We argue by complex interpolation. Let F , G, H, H 1, f , g, θ be given
and let h be such that

ˆ

ÿ

k

|hk|
tθ

˙1{tθ

ď 1H1 .

For z P C with Re z P r0, 1s define hz by

hzkpxq :“ |hkpxq|
tpzq

for every k, where

tpzq “ p1´ zq
tθ
t0
` z

tθ
t1
.

When Re z “ 0 we have |hzk|
t0 “ |hk|

tθ , and when Re z “ 1 we have
|hzk|

t1 “ |hk|
tθ ; hence by assumption we have for Re z “ 0

|Λpf, g,hzq| À |F |α1 |G|α2 |H|α3 ,

and for Re z “ 1 we have

|Λpf, g,hzq| À |F |β1 |G|β2 |H|β3 .

Since the function Φpzq :“ Λpf, g,hzq is easily seen to be holomorphic
in the open strip S “ tz P C s.t. 0 ă Re z ă 1u, continuous in its
closure and bounded, we can apply to it Hadamard’s three-lines-lemma
and conclude that since hθ`i0 “ h we have

|Λpf, g,hq| À |F |α
θ
1 |G|α

θ
2 |H|α

θ
3 ,

as desired.

Theorem 1.2 follows by taking t1 “ 8 and t0 sufficiently close to 2
and applying Lemma 2.24 above to the trilinear form Λ in (6). The hy-
potheses are verified by Propositions 2.20 and 2.21, and we thus get that
for a given r ą 2 the trilinear form Λ in (6) is of generalized restricted
weak type pα1, α2, α3; rq for all 1{r ă α1, α2 ă 1{r1; hence the trilinear
form Λr in (5) is of generalized restricted weak type (in the classical
sense) pα1, α2, α3q for the same range of α’s. Finally, the strong type
estimates for T rΩ follow by classical multilinear interpolation.

Remark 2.25. The crucial point in the above reasoning is that for r
sufficiently close to 2 Proposition 2.21 gives us a range of boundedness
arbitrarily close to L2 ˆ L2 Ñ L1.



Bilinear RdF with Non-Smooth Squares 67

1{p

1{q

1

11{r 1{r0 1{r1

1{r

1{r0

1{r1

Figure 1. The darker square corresponds to the p, q range given

by Proposition 2.21; interpolation with Proposition 2.20 extends

the range to that corresponding to the additional lighter area.

We end the proof of Theorem 1.2 by proving the last remaining propo-
sition.

Proof of Proposition 2.21: The proof follows a standard argument orig-
inating from [17] (although implicitly present in previous work).

By multilinear interpolation, it suffices to prove restricted weak type
estimates, that is it suffices to prove that if F , G, H are measurable
subsets of R of finite measure, then there exists a subset H 1 of H such
that |H 1| „ |H| and if

|f | ď 1F , |g| ď 1G,

ˆ

ÿ

ωPΩ

|hω|
r1
˙1{r1

ď 1H1 ,

then it holds that for any collection of tri-tiles P it is

(10) |ΛPpf, g,hq| Àp,q,r,r0 |F |
1{p|G|1{q|H|1{s

1

.

Given sets F , G, H and functions f , g as above, we fix two large num-
bers p, q " r0, and we define the exceptional set E to be

E :“

"

x P R s.t. Mp|C f |pqpxq Á
|F |

|H|

*

Y

"

x P R s.t. Mp|C g|qqpxq Á
|G|

|H|

*

Y

"

x P R s.t. Mp|Varr0 C f |r0qpxq Á
|F |

|H|

*

Y

"

x P R s.t. Mp|Varr0 C g|r0qpxq Á
|G|

|H|

*

,
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where M is the dyadic Hardy–Littlewood maximal function. Define
H 1 :“ HzE; we claim that if we choose the implicit constants in the
definition of E to be large enough, we have |H 1| „ |H|. Indeed, this
follows from the L1 Ñ L1,8 boundedness of M and the boundedness of
the relevant operators for the given exponents, for example
ˇ

ˇ

ˇ

ˇ

"

x P R s.t. Mp|C f |pqpxq Á
|F |

|H|

*
ˇ

ˇ

ˇ

ˇ

À
}C fp}L1

|F |
|H|

“
}C f}pLp

|F |
|H| Àp

}f}pLp

|F |
|H| ! |H|,

where we have used the Carleson–Hunt theorem in the second to last
inequality. The same holds for the other terms in the definition of E,
where in particular one also has to invoke the Lr0 Ñ Lr0 boundedness
of Varr0 C proven in [18].

Now, we partition the collection P into

Psmall :“ tP P P s.t. IP Ć Eu,

Plarge :“ PzPsmall,

and will estimate separately the trilinear forms ΛPsmall
and ΛPlarge

.
We start with Psmall. Since p ą r0 we have

ˆ 
IP

|C f |r0
˙1{r0

ď

ˆ 
IP

|C f |p
˙1{p

,

so given P P Psmall we observe that since IP Ć E we must have (see
Proposition 2.6)

Size1
f pPsmallq Àp

ˆ

|F |

|H|

˙1{p

.

Similarly, we see that

sup
PPPsmall

 
IP

|Varr0C f |r0 À
|F |

|H|
,

Size2
gpPsmallq Àq

ˆ

|G|

|H|

˙1{q

,

sup
PPPsmall

 
IP

|Varr0C g|r0 À
|G|

|H|
;

moreover, we have trivially

Size3
hpPsmallq À 1.
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Combining this information with the general estimate in Lemma 2.19
(for which we set θj “ ξj for j “ 1, 2, 3, thus forcing the condition 0 ď
θ1, ξ1, θ2, ξ2 ď 1{2) and the energy estimates in Propositions 2.11, 2.13,
we obtain after some algebra (recall that σ “ pr ´ r0q{r)

|ΛPsmall
pf, g,hq| Àp,q

„

|G|

|H|

1{rˆ
|F |

|H|

˙2σθ1{p

|F |p1´σθ1q{r0

ˆ

ˆ

|G|

|H|

˙2σθ2{q

|G|pσ´2σθ2q{r0 ¨ 1¨ |H|1{r
1
´2σθ3{r0

`

„

|F |

|H|

1{rˆ
|F |

|H|

˙2σθ1{p

|F |pσ´2σθ1q{r0

ˆ

ˆ

|G|

|H|

˙2σθ2{q

|G|p1´σθ2q{r0 ¨ 1¨ |H|1{r
1
´2σθ3{r0

“ |F |1{r0´2σp1{r0´1{pqθ1 |G|1{r0´2σp1{r0´1{qqθ2

ˆ |H|1{r
1
´1{r´2σθ3{r0´2σθ1{p´2σθ2{q.

(11)

By choosing p, q large enough, we obtain (10) for any choice of expo-
nents in the stated range. Notice that in order to prove Theorem 1.2
by interpolation we don’t need the full range of exponents provided by
Proposition 2.21; it suffices to take p, q large but fixed for each r, so
that the hypotheses of the interpolation Lemma 2.24 apply, to conclude
Theorem 1.2.

Now we are left with showing that (11) holds for ΛPlarge
as well. In

order to do so, we decompose Plarge into
Ů

dPN Pd where

Pd :“

"

P P Plarge s.t. 1`
distpIP , E

cq

|IP |
„ 2d

*

;

it then suffices to prove that the contribution of ΛPd is summable in d
and the sum is bounded by (11). Let then d be fixed and observe that
if P P Pd then 2d`Op1qIP Ć E, thus as seen above we must have (up to
finding a dyadic interval I that contains 2d`Op1qIP and has comparable
length, which is always possible) 

2d`Op1qIP

|C f |p À
|F |

|H|
,

and therefore  
IP

|C f |p À 2d
|F |

|H|
,
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and hence by Proposition 2.6 and Hölder’s inequality

Size1
f pPdq Àp 2d{p

ˆ

|F |

|H|

˙1{p

.

Similarly we have

sup
PPPd

 
IP

|Varr0C f |r0 Àε 2d
|F |

|H|
,

Size2
gpPdq Àq 2d{q

ˆ

|G|

|H|

˙1{q

,

sup
PPPd

 
IP

|Varr0C g|r0 Àε 2d
|G|

|H|
.

However, for Size3
h we now have a better estimate, namely for any P P Pd

it must be
1

|IP |

ˆ
ÿ

ωPΩ

|hω|
r1ΦωIP À 2´dM

for a large M ą 0 of our choice, thanks to the fast decay of the func-
tions ΦωIP (here for convenience we are writing ΦωI for ΦI even when

|I| ă |ω|´1), and this estimate in turn implies the bound

Size3
hpPdq À 2´dM{r

1

.

If we apply the general estimate of Lemma 2.19 to Pd as done before we
then get

|ΛPdpf, g,hq| Àp,q 2´M
1d|F |1{r0´2σp1{r0´1{pqθ1 |G|1{r0´2σp1{r0´1{qqθ2

ˆ |H|1{r
1
´1{r´2σθ3{r0´2σθ1{p´2σθ2{q

for some large M 1 ą 0 depending on M , r. As this is summable in d,
the proof is concluded.

Remark 2.26. We comment here on why, aside from the logarithmic
loss, we cannot recover the same range for Λ as in Theorem 1.1 ([2]),
in which the bilinear frequency projections onto the ω’s are taken to be
smooth. If one uses the appropriate version of the above argument in
that context, the range obtained is symmetric with respect to 2, that
is one gets estimates for all r1 ă p, q ă r directly, without the need
to appeal to interpolation results like Lemma 2.24. The reason behind
this is two-fold: firstly there’s the fact that in that case all sizes satisfy
SizejpPq À 1 a priori for j “ 1, 2, 3 (and with this information alone
one already obtains the range 2 ă p, q ă r); and secondly the sizes
are controlled by L1-averages instead of Lr0-averages as in our case (see
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Proposition 2.6). Thus in the smooth case of [2] one can effectively bound
Size1

f pPsmallq À minp1, |F |{|H|q and similarly for Size2, which then yields
the wider range described above. Our use of the p, q powers essentially
amounts to a substitute for the condition SizejpPq À 1, hence the smaller
range.

Finally, the full range p, q ą r1 in [2] is obtained by a further argument
involving the localization of sizes and energies; alternatively, one can
obtain it by considering the formal adjoints of the bilinear operator. In
the non-smooth case both approaches fail: our sizes and energies don’t
localize well, since we are controlling them with non-local operators; and
the formal adjoints cannot be simply reduced to the original operator, so
that the analysis developed in here doesn’t extend to them automatically.

3. Application to bilinear multipliers

Let Ω be a collection of dyadic frequency squares, not necessarily
finite and not necessarily disjoint, and let a “ taωuωPΩ be a sequence of
complex coefficients; form then the bilinear multiplier T given by

Tapf, gqpxq :“
ÿ

ωPΩ

aωπωpf, gqpxq.

We are interested in finding conditions on Ω and taωuωPΩ which ensure
the Lp ˆLq Ñ Ls boundedness of T in some range of exponents p, q, s.

Consider the following situation: assume that for some β P p0, 2q we
have }a}`β ă 8, and moreover the coefficients aω satisfy the Carleson
Condition

(12)
ÿ

ω1PΩ,
ω1Ăω

|aω1 |
β ď C|aω|

β , @ω P Ω.

Then we argue that the bilinear multiplier Ta is bounded from Lp ˆ Lq

into Ls with 1{p`1{q “ 1{s for β ă p, q ă β1, where β1 is replaced by 8
if β ď 1. Indeed, we partition the collection Ω as follows: let n P N and
define the sub-collection

Ωn :“ tω P Ω s.t. |aω| „ 2´n}a}`βu;

then clearly

(13) #Ωn À 2βn

and moreover every collection Ωn is the union of Op1q collections of
disjoint dyadic squares. This last fact is due to the Carleson Condition,
since for every ω0 P Ωn it must be by definition

C|aω0
|β ě

ÿ

ωPΩn,
ωĂω0

|aω|
β „ |aω0

|β#tω P Ωn s.t. ω Ă ω0u;
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thus if we do a generational decomposition of Ωn (starting from the
collection of maximal elements with respect to inclusion and so on), we
will encounter at most Op1q generations, which proves the claim.

Assume henceforth for the sake of clarity that for each n the collec-
tion Ωn consists of disjoint dyadic squares only. If we take r P p2, β1q we
can bound

ˇ

ˇ

ˇ

ˇ

ÿ

ωPΩ

aωπωpf, gqpxq

ˇ

ˇ

ˇ

ˇ

ď
ÿ

nPN

ˆ

ÿ

ωPΩn

|aω|
r1
˙1{r1ˆ

ÿ

ωPΩn

|πωpf, gqpxq|
r

˙1{r

„
ÿ

nPN
2´n}a}`β p#Ωnq

1{r1T rΩnpf, gqpxq.

By Theorem 1.2 and triangle inequality we then have that

}Tapf, gq}Ls Àp,q }a}`β }f}Lp}g}Lq
ÿ

nPN
2´np#Ωnq

1{r1 ,

but by (13) the sum is bounded by
ÿ

nPN
2´n2βn{r

1

À 1,

thanks to our choice of r.

Remark 3.1. The Carleson Condition (12) is introduced to enforce the
fact that the collections Ωn are made of essentially disjoint squares, and
in particular they can be decomposed into at most Op1q collections of
disjoint squares. But actually, if we had that for some δ ă 1 each Ωn
can be decomposed into at most Op#Ωδnq collections of disjoint squares,
we could still bound the multiplier in a (smaller) range.

References

[1] C. Benea, Vector-valued Extensions for Singular Bilinear Operators and Appli-

cations, Ph.D. thesis, Cornell University (2015). https://ecommons.cornell.

edu/handle/1813/40903.
[2] C. Benea and F. Bernicot, A bilinear Rubio de Francia inequality for arbitrary

squares, Forum Math. Sigma 4 (2016), e26, 34 pp. DOI: 10.1017/fms.2016.21.
[3] C. Benea and C. Muscalu, Multiple vector-valued inequalities via the helicoidal

method, Anal. PDE 9(8) (2016), 1931–1988. DOI: 10.2140/apde.2016.9.1931.
[4] C. Benea and C. Muscalu, Rubio de Francia theorems revisited: linear and

bilinear case, Unpublished preprint (2017).
[5] F. Bernicot, Lp estimates for non-smooth bilinear Littlewood–Paley square

functions on R, Math. Ann. 351(1) (2011), 1–49. DOI: 10.1007/s00208-010-

0588-1.

[6] F. Bernicot and S. Shrivastava, Boundedness of smooth bilinear square func-
tions and applications to some bilinear pseudo-differential operators, Indiana
Univ. Math. J. 60(1) (2011), 233–268. DOI: 10.1512/iumj.2011.60.4527.

https://ecommons.cornell.edu/handle/1813/40903
https://ecommons.cornell.edu/handle/1813/40903
http://dx.doi.org/10.1017/fms.2016.21
http://dx.doi.org/10.2140/apde.2016.9.1931
https://doi.org/10.1007/s00208-010-0588-1
https://doi.org/10.1007/s00208-010-0588-1
http://dx.doi.org/10.1512/iumj.2011.60.4527


Bilinear RdF with Non-Smooth Squares 73

[7] J. Bourgain, On square functions on the trigonometric system, Bull. Soc. Math.

Belg. Sér. B 37(1) (1985), 20–26.
[8] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta

Math. 116 (1966), 135–157. DOI: 10.1007/BF02392815.

[9] L. Carleson, On the Littlewood–Paley theorem, Inst. Mittag-Leffler report
(1967).
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