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Abstract: Given a compact Riemannian manifold (Mn, g) with boundary ∂M , we

give an estimate for the quotient
∫
∂M f dµg∫
M f dµg

, where f is a smooth positive function

defined on M that satisfies some inequality involving the scalar Laplacian. By the

mean value lemma established in [39], we provide a differential inequality for f which,
under some curvature assumptions, can be interpreted in terms of Bessel functions.

As an application of our main result, a new inequality is given for Dirichlet and Robin

Laplacian. Also, a new estimate is established for the eigenvalues of the Dirac operator
that involves a positive root of Bessel function besides the scalar curvature. Indepen-

dently, we extend the Robin Laplacian on functions to differential forms. We prove

that this natural extension defines a self-adjoint and elliptic operator whose spectrum
is discrete and consists of positive real eigenvalues. In particular, we characterize its

first eigenvalue and provide a lower bound of it in terms of Bessel functions.

2010 Mathematics Subject Classification: 53C27, 53C21, 58J60, 35P15, 34B09,
33C10.

Key words: Bessel functions, eigenvalues, Dirac operator, Yamabe operator, Robin
Laplacian.

1. Introduction

Let (Mn, g) be an n-dimensional compact Riemannian manifold with
nonempty smooth boundary ∂M . Denote by ν the inward unit normal
along the boundary and by ∆f := − tr(∇2f) the Laplace operator ap-
plied to a smooth function f on M . The aim of this paper is twofold.
First, we study the spectrum of some differential operators that arise
naturally on manifolds with boundary and are closely related to the
Laplacian. Second, we generalize the Robin eigenvalue problem, which
consists of solving ∆f = λf on M with boundary condition ∂νf = τf
on ∂M , for some fixed positive parameter τ , to differential forms on the
manifold. In particular, we aim at establishing sharp lower bounds for
the smallest eigenvalue that depend on new invariants.

Our first fundamental result deals with the relationship between the
integrals

∫
M
f dµg and

∫
∂M

f dµg, where dµg denotes the Riemannian
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density on either M or ∂M . Namely, we prove that, as soon as the
Ricci curvature of M is nonnegative and the (inward) mean curvature
of ∂M is positive, for any positive smooth function f on M satisfying

∆f ≤ λf on M for some sufficiently small λ > 0, the quotient
∫
∂M

f dµg∫
M
f dµg

can be bounded below solely in terms of Bessel functions of λ and a lower
bound for the mean curvature; see Theorem 3.1. Note in particular that
no boundary condition is required on f here.

This central inequality has numerous important consequences. Namely,
applying Theorem 3.1 to a first eigenfunction of the Laplace operator,
we prove inequalities for the Dirichlet (Corollary 3.4) and Robin (Corol-
lary 3.8) eigenvalue problems assuming only nonnegative Ricci curvature
on M and positive mean curvature along ∂M . The latter is an imme-
diate consequence of a new lower bound for the first Robin eigenvalue
(Corollary 3.7) and was proven by A. Savo in [40, Theorem 4] in a con-
text where more general curvature bounds are allowed. Note that both
differ from the Faber–Krahn-inequality proved in [9, Theorem 2] and by
D. Daners [11, Theorem 1.1] for domains in Rn since those only depend
on the measure of the domain and not on any curvature assumption.

Surprisingly enough, Theorem 3.1 can also be applied to eigenvalue
problems for differential operators that can be considered as “far” from
the scalar Laplacian. For instance, new lower eigenvalue bounds for the
Dirac operator are derived in Theorem 4.1 and Corollary 4.4 under sev-
eral boundary conditions. The former is a direct application of Theo-
rem 3.1 choosing f to be the squared length function of some Dirac-
eigenspinor; the latter combines a so-called Hijazi-type estimate due to
S. Raulot [35, Theorem 1] with a new lower eigenvalue bound for the
Yamabe operator we obtain in Theorem 4.3. All lower bounds for the
Dirac operator involve the scalar curvature of M as well as the mean
curvature of ∂M , as can be expected because of the central role of the
Schrödinger–Lichnerowicz formula relating the squared Dirac operator
with the associated rough Laplacian. Moreover, our lower bounds en-
hance and rely on former ones due to D. Chen [10, Theorem 3.1] for
the so-called gAPS boundary condition (generalizing [23, Theorem 4]
dealing with the APS boundary condition), O. Hijazi, S. Montiel, and
A. Roldán for the so-called CHI [22, Theorem 3] as well as the MIT
bag boundary conditions [22, Theorem 4], and that of D. Chen again
[10, Theorem 3.3] for the so-called mgAPS boundary condition (gener-
alizing [22, Theorem 5] dealing with the mAPS boundary condition).
It is worth mentioning here that, while our curvature assumptions are
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stronger than those required by the authors cited above, the estimates
we obtain are also stronger since they allow for nontrivial bounds even
in case the scalar curvature of M vanishes at one point.

Coming back to the Robin eigenvalue problem, we show that it can
be generalized in a natural way to differential forms by requiring the
boundary conditions

(1) ι∗(νy dω) = τι∗ω and ι∗(νyω) = 0

for an eigenform ω of the Laplace operator ∆ := dδg + δgd on p-forms.
Here, and in the following, ι : ∂M → M denotes the inclusion map.
As for the case of functions, both the so-called absolute and Dirichlet
boundary conditions can be seen as particular cases of (1), the former
setting τ := 0, and the latter letting τ → ∞. We first check in The-
orem 5.2 that, assuming τ > 0, the Laplacian ∆ is a self-adjoint and
elliptic operator with trivial kernel. Relying on [42, Chapter 5, Sec-
tion 9], we also give in Proposition 5.3 a variational characterization of
its first eigenvalue λ1,p(τ). As a first consequence, we prove in Propo-
sition 5.4 that the first eigenvalue of the Robin Laplacian always lies
between the corresponding absolute and Dirichlet ones. With the help of
the Bochner formula, we deduce from Theorem 3.1 an estimate for the
first eigenvalue λ1,p(τ) in terms of Bessel functions; see Theorem 5.5. As
a by-product, we can also derive a lower bound for the gap between Robin
eigenvalues on differential forms (Theorem 5.8) and a Gallot–Meyer-type
estimate in case the curvature operator of M is positive (Theorem 5.9).

The article is organized as follows. After introducing the necessary
preliminaries and notations in Section 2, we prove the main inequal-
ity (7) and derive its first consequences in Section 3. Sections 4 and 5
are devoted to the application of the main result to the Dirac and the
nonscalar Robin eigenvalue problems respectively. Definitions and some
of the basic properties of Bessel functions are recalled in the appendix.
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2. Preliminaries

Let (Mn, g) be a compact Riemannian manifold of dimension n with
nonempty smooth boundary ∂M . We denote by ρ : M → [0,∞[ the func-
tion defined as ρ(x) := d(x, ∂M). Let us first recall basic properties of
this function ρ which mainly are contained in [39] and are also well ex-
plained in [19], [37]. It is not difficult to check, by the triangle inequality,
that the function ρ is Lipschitz and its gradient has unit norm a.e. on M .
In general, the function ρ is not of class C1 and therefore its Laplacian
does not exist as a smooth function. Throughout this paper, we denote
by ν the inward unit normal vector field to the boundary. We denote
by Cut(∂M) the so-called cut-locus of ∂M in M , which is defined as the
set of points in M from which more than one minimizing geodesic to the
boundary exists.

This set is closed and has measure zero and moreover the function ρ
is smooth on its complement (that is usually called the set of regular
points); see e.g. [39, Theorem D.1]. To be more precise, the function ρ
is smooth on the set ρ−1[0, inj(∂M)[ where inj(∂M) = d(∂M,Cut(∂M))
is the injectivity radius. In this case, it is proved in [39, Subsection 3.2]
that the Laplacian of ρ splits “in the distributional sense” into a regular
part ∆regρ and a positive singular part (with support in the cut-locus)
that can be both computed in terms of the local normal coordinates [39,
equation 5]. More explicitly, if we denote by (r, x) the normal coordinates
of any regular point (r being the distance of that regular point to x ∈
∂M), one has ∆regρ(r, x) = − 1

θ
∂θ
∂r (r, x), where θ denotes the density of

the pull-back of the volume form (via the local normal exponential map)
in normal coordinates.

Given now any smooth function f on M , we define for any r ≥ 0 the
function F (r) :=

∫
{ρ>r} f dµg. Clearly, the function F is Lipschitz and

is smooth on the interval [0, inj(∂M)[. Moreover, by the co-area formula,
its derivative is given by F ′(r) = −

∫
{ρ=r} f dµg a.e. on [0,∞[; see [39,

Lemma 2.4] for a detailed proof. The mean value lemma expresses the
second derivative F ′′(r) in terms of the Laplacian of f through a differ-
ential equation that is valid in the sense of distributions. Namely ([39,
Theorem 2.5]),

(2) F ′′(r) = −
(∫
{ρ>r}

∆f dµg

)
+ ρ∗(f∆ρ)(r),

where ρ∗(f∆ρ) denotes the push-forward of f∆ρ by ρ, that is, for any
test-function ψ on [0,∞[ we have

(3) (ρ∗(f∆ρ), ψ) :=

∫ ∞
0

ψ(r)

(∫
{ρ=r}

∆ρ(r, x)f(x) dµg

)
dr.
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In order to estimate the push-forward in the mean value lemma by
some geometric quantities, we require the manifold M to have (n− 1)K
as a lower bound of the Ricci curvature and H0 as a lower bound of
the mean curvature of the boundary. In this case and by the Heintze–
Karcher volume inequalities [20], one gets in the sense of distributions
that

(4) ∆ρ ≥ −Θ′

Θ
◦ ρ,

where Θ is the function defined by Θ(r) = (s′K(r)−H0sK(r))n−1 with

sK(r) :=


1√
K

sin(r
√
K) if K > 0,

r if K = 0,
1√
|K|

sinh(r
√
|K|) if K < 0.

Therefore if the function f is nonnegative on M , then it follows from (3)
that (see also [37, p. 10])

(5) ρ∗(f∆ρ) ≥ Θ′

Θ
F ′,

on the half line. We point out that when M is a geodesic ball in the
simply connected manifold MK of constant curvature K, then equality
holds in (5) (as well in (4)) for every smooth function f . Also, if we let
R := max{d(x, ∂M) | x ∈ M} be the so-called inner radius of M , then
the function Θ is positive on [0, R[ and Θ(R) = 0 if and only if M is a
geodesic ball in MK . Moreover, denoting by R̄ the first positive zero of
the function r 7→ s′K(r) −H0sK(r), we have R ≤ R̄ and equality holds
if and only if M is a ball in MK [24, Theorem A].

In this paper we are interested in studying solutions of the differential
equality (2) in case f is a positive smooth function satisfying ∆f ≤ λf
for some λ ≥ 0 (or later a first eigenfunction of the Laplacian). An easy
computation using (2) and (5) shows that the corresponding differential
inequation arising from such an f is (still in the sense of distributions)

(6) F ′′(r)− Θ′

Θ
F ′(r) + λF (r) ≥ 0,

with F (0) =
∫
M
f dµg and F ′(0) = −

∫
∂M

f dµg. Keep in mind here that
the manifold M is always assumed to have (n − 1)K and H0 as lower
bounds of the Ricci curvature and mean curvature, respectively. It is
well-known from the general theory of differential equations (Grönwall
Lemma) that the solution F of (6) is always bigger than or equal to
that of the corresponding differential equality – that is, when (6) is
an equality – with the same initial conditions. However, such differen-
tial equations cannot be explicitly solved in general as the term in Θ
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is hard to control. A first step in controlling that term was performed

by A. Savo and P. Guerini who compute the infimum of r 7→ −Θ′

Θ (r)
over all r running in [0, R[ (remember that F ′(r) is nonpositive). In this
case and under some further curvature condition [19, equation 3.1], this
infimum turns out to be (n−1)H0 and (6) can be reduced to an inequal-
ity with constant coefficients whose corresponding differential equality
can be explicitly solved. As a consequence, they find a lower bound for

the quotient
∫
∂M

f dµg∫
M
f dµg

in terms of H0 and the inner radius R [19, The-

orem 3.1]. They also deduce well-known sharp estimates for the first
eigenvalue of the Dirichlet Laplacian (when f is an eigenfunction) [19,
Corollary 3.2], such as McKean [30] and Li–Yau [29] inequalities.

A second step was initiated by S. Raulot and A. Savo who consider
subharmonic functions (i.e. λ = 0). In this particular case, the corre-
sponding differential equation associated to (6) is a linear first order
differential equation in F ′ and the solution can be expressed in terms

of Θ. Namely, they prove that the quotient
∫
∂M

f dµg∫
M
f dµg

is bounded from

below by 1∫R
0

Θ(r) dr
[37, Theorem 10]. This leads to an estimate for the

first eigenvalue of the so-called biharmonic Steklov operator originally
introduced in [26] and [32].

As we said before, the expression of Θ which involves sine and hyper-
bolic sine is difficult to manage, and we shall therefore restrict ourselves

to the case where K = 0. In this case, the term Θ′

Θ becomes equal

to − (n−1)H0

1−rH0
. Therefore, if we make the change of variable s = 1− rH0

and assume moreover that H0 > 0, the corresponding differential equal-
ity of (6) becomes an equation of Bowman type (see equation (A3) in
the appendix) that can be solved in terms of Bessel functions. It turns
out that, depending on the dimension of the manifold, we get solutions
depending on Bessel functions of first and second kind.

3. Laplacian on functions

In this section we establish an eigenvalue estimate for the Dirichlet and

the Robin Laplacian. As we said before, we express the quotient
∫
∂M

f dµg∫
M
f dµg

in terms of Bessel functions with the help of the mean value lemma. Here
f denotes a positive smooth function satisfying some inequality in terms
of the Laplacian. Note that no boundary condition is required on f to
estimate this quotient. In the following, we will denote by Jν the Bessel
function of order ν (see the appendix) and by jν,k the k-th positive zero
of Jν for k > 0.
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Theorem 3.1. Let (Mn, g) be a compact Riemannian manifold with
smooth boundary. Assume that the Ricci curvature is nonnegative and
the mean curvature is bounded from below by H0 > 0. Assume also that
there exists a positive smooth function f satisfying ∆f ≤ λf with λ > 0.

Then, if
√
λ

H0
< jn

2 ,1
, we have

(7)

∫
∂M

f dµg ≥
√
λ
Jn

2−1

(√
λ

H0

)
Jn

2

(√
λ

H0

) ∫
M

f dµg.

If equality holds in (7), then (Mn, g) is isometric to a geodesic ball in Rn
of radius R = 1

H0
. Conversely, if M is a geodesic ball of radius 1

H0
in Rn

and ∆f = λf for some smooth function f with
√
λ

H0
< jn

2 ,1
, then we have

equality in (7).

Proof: Since Ric ≥ 0, we then consider Θ(r) = (1 − rH0)n−1. Using
inequality (6), we find that

(8) F ′′(r) +
(n− 1)H0

1− rH0
F ′(r) + λF (r) ≥ 0.

Now, we consider the corresponding differential equation y(r) satisfying

y′′(r) +
(n− 1)H0

1− rH0
y′(r) + λy(r) = 0

with the same initial conditions as F . Namely,

F (0) = y(0) =

∫
M

f dµg and F ′(0) = y′(0) = −
∫
∂M

f dµg.

By making a change of variable s = 1 − rH0, the above differential
equation transforms into a Bowman equation; see equation (A3) in the
appendix where we let γ := 1, β2 := λ

H2
0

, and α := m := n
2 . Thus the

solution is given by

y(r) =



(1− rH0)
n
2

(
AJn

2

(√
λ

H0
(1− rH0)

)
+BYn

2

(√
λ

H0
(1− rH0)

))
if n is even,

(1− rH0)
n
2

(
AJn

2

(√
λ

H0
(1− rH0)

)
+BJ−n2

(√
λ

H0
(1− rH0)

))
if n is odd.
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We will first consider the case when n is odd. Taking into account
the initial conditions of y, the constants A and B must solve the linear
system

AJn
2

(√
λ

H0

)
+BJ−n2

(√
λ

H0

)
=

∫
M

f dµg,

−A
√
λJn

2−1

(√
λ

H0

)
+B
√
λJ−n2 +1

(√
λ

H0

)
= −

∫
∂M

f dµg.

For the second equation in the above system, we use the fact that the

derivative of the function r 7→ (1 − rH0)
n
2 Jn

2

(√
λ

H0
(1 − rH0)

)
is equal

to −
√
λ(1− rH0)

n
2 Jn

2−1

(√
λ

H0
(1− rH0)

)
from the third equation in (A1).

Also we use the fourth equation in (A1) to compute the derivative of

the function r 7→ (1 − rH0)
n
2 J−n2

(√
λ

H0
(1 − rH0)

)
. This linear system

has clearly a solution (A,B) since from the first equation in (A2) the
determinant of the corresponding matrix is equal to 2H0

π sin
(
πn
2

)
6= 0, as

n is assumed to be odd. Therefore, we deduce that

A =
π

2H0 sin
(
πn
2

)(J−n2(
√
λ

H0

)∫
∂M

f dµg +
√
λJ−n2 +1

(√
λ

H0

)∫
M

f dµg

)
and

B =
π

2H0 sin
(
πn
2

)(−Jn
2

(√
λ

H0

)∫
∂M

f dµg +
√
λJn

2−1

(√
λ

H0

)∫
M

f dµg

)
.

Now inequality (8) allows to deduce that, in the sense of distributions,
F (r) ≥ y(r). Therefore R ≥ R0 where R0 is the first positive zero of y
(such an R0 exists since F (R) = 0). As Θ is positive on [0, R[, two cases
may occur for Θ(R0), which is nonnegative:

Case where Θ(R0) = 0: In this case, R0 is the unique positive zero of Θ
(recall that Θ(r) = (1− rH0)n−1). Hence, from [37, Proposition 14] (see
also [24, Theorem A]) we deduce that R0 ≥ R and thus R = R0 =
1
H0

. The manifold M is then isometric to the geodesic ball in Rn of
radius R. Now, from the series expansion of the Bessel function in the

appendix, we have that the term (1−rH0)
n
2 Jn

2

(√
λ

H0
(1−rH0)

)
tends to 0

and (1 − rH0)
n
2 J−n2

(√
λ

H0
(1 − rH0)

)
tends to the constant term of the

series

( √
λ

2H0

)−n
2

Γ
(
−n2 +1

) 6= 0 when r → 1
H0

. Thus, the fact that y(R0) = y
(

1
H0

)
=

0 yields B = 0 and we deduce the equality in (7).
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Case where Θ(R0)>0: As y(R0)=0, we get that−A
B =

J−n
2

(√
λ

H0
(1−R0H0)

)
Jn

2

(√
λ

H0
(1−R0H0)

) .

We notice here that we can assume B 6= 0 since otherwise we get the
equality in (7). Also, by assumption, the inequalities

(9) 0 <

√
λ

H0
Θ(R0)

1
n−1 =

√
λ

H0
(1−R0H0) <

√
λ

H0
< jn

2 ,1

assure that Jn
2

(√
λ

H0
(1 − R0H0)

)
6= 0. Now, an easy computation that

uses equations (A1) and (A2) in the appendix shows that
(J−ν
Jν

)′
(x) =

−2 sinπν
πxJ2

ν
for all real ν. In particular, for ν = n

2 , the function x 7→
J−n

2

Jn
2

(x)

is increasing (resp. decreasing) when n−1
2 is odd (resp. even) on (0,∞) \

{zeros of Jn
2
}. But using the expressions of A and B, we deduce from (9)

that the following inequality

J−n2
(√

λ
H0

)∫
∂M

f dµg +
√
λJ−n2 +1

(√
λ

H0

)∫
M
f dµg

Jn
2

(√
λ

H0

)∫
∂M

f dµg −
√
λJn

2−1

(√
λ

H0

)∫
M
f dµg

<
J−n2

(√
λ

H0

)
Jn

2

(√
λ

H0

) (resp. >)

holds when n−1
2 is odd (resp. even). Taking the common denominator

yields

(10)

√
λ ·
(
J−n2 +1

(√
λ

H0

)
Jn

2

(√
λ

H0

)
+Jn

2−1

(√
λ

H0

)
J−n2

(√
λ

H0

))
·
∫
M
f dµg

Jn
2

(√
λ

H0

)
·
(
Jn

2

(√
λ

H0

) ∫
∂M

f dµg −
√
λJn

2−1

(√
λ

H0

) ∫
M
f dµg

) < 0

(resp. > 0).

But (A2) implies that J−n2 +1

(√
λ

H0

)
Jn

2

(√
λ

H0

)
+ Jn

2−1

(√
λ

H0

)
J−n2

(√
λ

H0

)
=

2H0

π
√
λ

sin
(
nπ
2

)
. If n is odd (resp. even), then sin

(
nπ
2

)
< 0 (resp. > 0)

and therefore the numerator of (10) is negative (resp. positive), from
which positivity of the denominator of (10) follows in both cases. Be-

cause of the assumption
√
λ

H0
< jn

2 ,1
, we have Jn

2

(√
λ

H0

)
> 0 and therefore

Jn
2

(√
λ

H0

)∫
∂M

f dµg−
√
λJn

2−1

(√
λ

H0

) ∫
M
f dµg > 0, which is inequality (7).

The case when n is even is similar to the odd case where J−n2 is
replaced by Yn

2
. In this case, the linear system becomes

AJn
2

(√
λ

H0

)
+BYn

2

(√
λ

H0

)
=

∫
M

f dµg,

−A
√
λJn

2−1

(√
λ

H0

)
−B
√
λYn

2−1

(√
λ

H0

)
= −

∫
∂M

f dµg,
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which clearly admits a solution since the determinant of the system is
equal to − 2H0

π < 0 by the second equation in (A2). The constants A
and B are then equal to

A =
−π
2H0

(
Yn

2

(√
λ

H0

)∫
∂M

f dµg −
√
λYn

2−1

(√
λ

H0

)∫
M

f dµg

)
and

B =
−π
2H0

(
−Jn

2

(√
λ

H0

)∫
∂M

f dµg +
√
λJn

2−1

(√
λ

H0

)∫
M

f dµg

)
.

Now we proceed as in the odd case, i.e. two cases occur as well. When

Θ(R0) = 0, we deduce that B = 0 as (1− rH0)
n
2 Yn

2

(√
λ

H0
(1− rH0)

)
tends

to the constant term of the series − 1
π

(
n
2 −1

)
!
( √

λ
2H0

)−n2 6= 0. Thus, we get

the equality in (7). When Θ(R0) > 0, we have −A
B =

Yn
2

(√
λ

H0
(1−R0H0)

)
Jn

2

(√
λ

H0
(1−R0H0)

) .

An easy computation that uses equations (A1) and (A2) in the appen-

dix shows that
(
Yν
Jν

)′
(x) = 2

πxJ2
ν

which is always positive on (0,∞) \
{zeros of Jν}. Hence x 7→ Yν

Jν
(x) is increasing and thus for ν = n

2 , we

find after using inequalities (9) that

Yn
2

(√
λ

H0

) ∫
∂M

f dµg −
√
λYn

2−1

(√
λ

H0

) ∫
M
f dµg

Jn
2

(√
λ

H0

) ∫
∂M

f dµg −
√
λJn

2−1

(√
λ

H0

) ∫
M
f dµg

<
Yn

2

(√
λ

H0

)
Jn

2

(√
λ

H0

) ,
which leads to the same result as before by the second equation in (A2).
In the rest of the proof, we discuss the equality case of inequality (7).
Namely, assume that equality holds in (7), and then B = 0. Next, we
prove that Θ(R0) > 0 (recall that R0 is the first positive root of y) cannot
occur in this case, so that we are just left with Θ(R0) = 0 which means
M is a geodesic ball of radius 1

H0
in Rn. Indeed, because y(R0) = 0, we

write

0 = y(R0) = A(1−R0H0)
n
2 Jn

2

(√
λ

H0
(1−R0H0)

)
.

Since Jn
2

(√
λ

H0
(1 − R0H0)

)
6= 0 because of (9), if we assume by contra-

diction that Θ(R0) > 0, then the above equality gives A = 0. Thus we
get y = 0 which contradicts the fact that y(0) =

∫
M
f dµg > 0. To finish

the last part of the equality case, let M be a geodesic ball of radius 1
H0

in Rn. As mentioned before, the inequality in (5), as well as in (8), are
in this case equalities. Therefore, we get that F (r) = y(r) and R = R0.
Because on the ball we have that Θ(R) = 0, we deduce that B = 0.
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Remark 3.2. (i) In view of the properties of the function x 7→ Jν+1(x)
Jν(x)

in the appendix, inequality (7) does not provide any new informa-
tion on the interval ]jn

2−1,1, jn2 ,1[.
(ii) The case where H0 = 0 was handled in [19, Theorem 3.1] but

we just add the result for completeness. If
√
λR < π

2 , then the
corresponding inequality is∫

∂M

f dµg ≥
√
λ cot(

√
λR)

∫
M

f dµg.

In this case, one can deduce estimates for the first eigenvalues of
the Dirichlet and Robin Laplacian; see [19, Corollary 3.2], [40,
Corollary 3], [29], [30].

An immediate consequence of Theorem 3.1 is when the function f is
subharmonic (i.e. ∆f ≤ 0). Namely, we have

Corollary 3.3. Let (Mn, g) be a compact Riemannian manifold with
smooth boundary. Assume that the Ricci curvature of (Mn, g) is nonneg-
ative and the mean curvature of ∂M is bounded from below by H0 > 0.
Let f be any positive and subharmonic function. Then

(11)

∫
∂M

f dµg∫
M
f dµg

≥ nH0.

Equality holds if and only if M is isometric to the geodesic ball BH0
of

radius 1
H0

. In particular, for f = 1, one has

(12)
Vol(∂M)

Vol(M)
≥ nH0,

where equality holds if and only if M is isometric to BH0
.

Proof: By applying Theorem 3.1 to the function f , we deduce from in-

equality (7) that for any λ > 0 with
√
λ

H0
< jn

2 ,1
we have∫

∂M
f dµg∫

M
f dµg

≥
√
λ
Jn

2−1

(√
λ

H0

)
Jn

2

(√
λ

H0

) = H0x
Jn

2−1(x)

Jn
2

(x)

with x :=
√
λ

H0
. Using the asymptotic behavior of the function x 7→

Jν(x)
Jν+1(x) , for ν = n

2 − 1, as x → 0 in the appendix, we get the result.

The equality case follows also directly from Theorem 3.1.

We point out that inequality (11) is weaker than Raulot–Savo’s esti-
mate [37, Theorem 10] which states that∫

∂M
f dµg∫

M
f dµg

≥ 1∫ R
0

Θ(r) dr
=

nH0

1− (1−RH0)n
.
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This is due to the different solution of the differential equation in [37]
which does not involve the Bessel functions. Also, we notice that in-
equality (12) is also weaker than the estimate in [20], [38], known as
Heintze–Karcher–Ros, which is∫

∂M

1

H
dµg ≥ nVol(M),

where H is the mean curvature.

Using the properties of the function x 7→
Jn

2
(x)

Jn
2
−1(x) listed in the ap-

pendix, we obtain the following estimate for the first eigenvalue of the
Dirichlet Laplacian, whose assumptions differ from the original Faber–
Krahn inequality [13], [25] (see [9]):

Corollary 3.4. Let (Mn, g) be a compact Riemannian manifold with
smooth boundary. Assume that the Ricci curvature of (Mn, g) is non-
negative and the mean curvature of ∂M is bounded from below by H0 >
0. Let BH0

be the geodesic ball of radius 1
H0

in the Euclidean space.

Then the first eigenvalue of the Dirichlet Laplacian λD1 satisfies λD1 ≥
λD1 (BH0

) = H2
0 j

2
n
2−1,1. Equality is attained if and only if M is isometric

to the ball BH0 .

Proof: Let f be a positive eigenfunction of Dirichlet Laplacian associated

to the first eigenvalue λD1 . If
√
λD1 < H0jn2−1,1 < H0jn2 ,1, then we get

from inequality (7) that

0 =

∫
∂M

f dµg ≥
√
λD1

Jn
2−1

(√λD1
H0

)
Jn

2

(√λD1
H0

) ∫
M

f dµg > 0.

This leads to a contradiction. If now equality is realized, then we still

have

√
λD1
H0

< jn
2 ,1

and thus the inequality

0 =

∫
∂M

f dµg ≥
√
λD1

Jn
2−1

(√λD1
H0

)
Jn

2

(√λD1
H0

) ∫
M

f dµg = 0

becomes an equality. Therefore, we deduce the result from the charac-
terization of the equality case in Theorem 3.1. This ends the proof.

In the following, we are interested in estimating the eigenvalues of
the Robin Laplacian. Recall that this boundary problem is defined as
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follows: Fix a positive parameter τ and consider the boundary value
problem

(13)

{
∆f = λf on M,

∂f
∂ν = τf on ∂M,

where ν is the inward normal vector field to the boundary. It is well-
known that the eigenvalues of the Robin Laplacian form an increasing
sequence 0 < λ1(τ,M) < λ2(τ,M) ≤ · · · (counted with multiplicities)
and depend continuously on τ . When τ tends to zero, the Robin Lapla-
cian reduces to the Neumann Laplacian while it is the Dirichlet Laplacian
when τ →∞. Using Theorem 3.1, we will establish an estimate for the
first eigenvalue of the Robin Laplacian in terms of the zeros of Bessel
functions. First observe that, for any eigenfunction f associated to an
eigenvalue λ of problem (13), we have

(14) λ

∫
M

f dµg =

∫
M

∆f dµg =

∫
∂M

∂f

∂ν
dµg = τ

∫
∂M

f dµg.

Therefore, the quotient
∫
∂M

f dµg∫
M
f dµg

is just equal to λ
τ whenever

∫
M
f dµg >

0. Taking this fact into account, we get the following:

Corollary 3.5. Let (Mn, g) be a compact Riemannian manifold with
smooth boundary. Assume that the Ricci curvature of (Mn, g) is nonneg-
ative and the mean curvature of ∂M is bounded from below by H0 > 0.

If

√
λ1(τ,M)

H0
< jn

2 ,1
, then

√
λ1(τ,M) ≥ τ

Jn
2−1

(√λ1(τ,M)

H0

)
Jn

2

(√λ1(τ,M)

H0

) .

If

√
λ1(τ,M)

H0
< jn

2−1,1, equality is realized if and only if M is isometric
to the ball BH0

.

Remark 3.6. From the characterization of the equality case of inequal-
ity (7), for which B = 0 as was shown in the proof of Theorem 3.1,
and in view of (14), we deduce that on a geodesic ball BH0 in Rn any
eigenvalue λ(τ,BH0

) of the Robin Laplacian associated with an eigen-
function f satisfies the equality[
Jn

2

(√
λ(τ,BH0

)

H0

)√
λ(τ,BH0

)− τJn
2−1

(√
λ(τ,BH0

)

H0

)]∫
BH0

f dµg=0.

Hence, for the first positive eigenvalue λ1(τ,BH0
) (in this case f is pos-

itive), the term

√
λ1(τ,BH0

)

H0
is a root of the function x 7→

Jn
2

(x)

Jn
2
−1(x) −
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τ
H0x

which is defined on R \ {zeros of Jn
2−1} and increases from −∞

to ∞ on ]0, jn
2−1,1[. It is indeed the first positive zero on that interval;

see [3, Remark 2.9], [4, p. 4] for more details. Therefore, we deduce that√
λ1(τ,BH0

)

H0
lies in the interval ]0, jn

2−1,1[.

Using the above corollary, we have the following estimate:

Corollary 3.7. Let (Mn, g) be a compact Riemannian manifold with
smooth boundary. Assume that the Ricci curvature of (Mn, g) is nonneg-
ative and the mean curvature of ∂M is bounded from below by H0 > 0.

Fix any positive number τ0 < jn
2−1,1 and set α =

∑
k≥1

2τ2
0

j2n
2
−1,k
−τ2

0
. If

τ ≥ αH0, then
λ1(τ,M) ≥ H2

0 τ
2
0 .

Equality is realized if and only if M is isometric to BH0
and τ=αH0.

Proof: Assume that
√
λ1(τ,M) < H0τ0 < H0jn2−1,1. Then, by Corol-

lary 3.5 we get

√
λ1(τ,M) ≥ τ

Jn
2−1

(√λ1(τ,M)

H0

)
Jn

2

(√λ1(τ,M)

H0

) > τ

√
λ1(τ,M)

αH0
,

with α = τ0
Jn

2
(τ0)

Jn
2
−1(τ0) =

∑
k≥1

2τ2
0

j2n
2
−1,k
−τ2

0
. The last inequality comes from

the properties of the function x 7→ xJν+1(x)
Jν(x) on the interval ]0, τ0[, for ν =

n
2 − 1, in the appendix that allow to deduce that

Jn
2

(x)

Jn
2
−1(x) <

α
x . This

leads to a contradiction. Assume now that the equality is attained. Then

we still have that

√
λ1(τ,M)

H0
< jn

2−1,1 and the inequality in Corollary 3.5

H0τ0 =
√
λ1(τ,M) ≥ τ

Jn
2−1

(√λ1(τ,M)

H0

)
Jn

2

(√λ1(τ,M)

H0

) = τ
Jn

2−1(τ0)

Jn
2

(τ0)
= τ

τ0
α
≥ H0τ0

becomes an equality. Therefore, we deduce that M is isometric to BH0

and τ = αH0. Conversely, on the geodesic ball BH0 we have equality in
the estimate of Corollary 3.5. Hence we write, for τ = αH0,

√
λ1(τ,BH0

) = τ
Jn

2−1

(√λ1(τ,BH0
)

H0

)
Jn

2

(√λ1(τ,BH0
)

H0

) ≤ αH0

Jn
2−1(τ0)

Jn
2

(τ0)
= τ0H0.

Here, we use the fact that the function x 7→ Jν
Jν+1

(x) is decreasing. Hence,

we get the other side of the estimate and thus equality is attained.
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Using the previous result, we will compare the first eigenvalue of the
Robin Laplacian on M to the one on the ball BH0

. We obtain the follow-
ing result (see [11, Theorem 1.1] and [40, Theorem 4]) in full generality:

Corollary 3.8. Let (Mn, g) be a compact Riemannian manifold with
smooth boundary. Assume that the Ricci curvature of (Mn, g) is nonneg-
ative and the mean curvature of ∂M is bounded from below by H0 > 0.
Let BH0

be the geodesic ball of mean curvature H0. Then

λ1(τ,M) ≥ λ1(τ,BH0
).

Equality is realized if and only if M is isometric to the geodesic ball BH0
.

Proof: In view of Remark 3.6, we have that

√
λ1(τ,BH0

)

H0
< jn

2−1,1. There-

fore, we set τ0 :=

√
λ1(τ,BH0

)

H0
in Corollary 3.7. In this case, we get that

α = τ0
Jn

2
(τ0)

Jn
2−1(τ0)

=

√
λ1(τ,BH0)

H0

τ√
λ1(τ,BH0)

=
τ

H0
.

Hence Corollary 3.7 finishes the proof of the result.

Remark 3.9. According to [33], the best possible lower bound for jν,1
(for ν > 0) is the positive number τ0 = ν − a1

2
1
3
ν

1
3 where a1 ' −2.3381

is the first negative zero of the Airy function. Therefore for ν = n
2 − 1

with n ≥ 3, one can easily check that τ0 >
n
2 . Thus if we choose τ ≥ αH0,

one gets

λ1(τ,M) ≥ τ2
0H

2
0 >

n2

4
H2

0 > nH0τ − τ2 > (n− 1)H0τ − τ2.

The last lower bound has been obtained in [5] under the further assump-
tion that II + τ > 0, where II denotes the second fundamental form of
the boundary.

4. Eigenvalue estimates for the Dirac operator

In this section we give, under curvature assumptions, new estimates
for the first eigenvalue of the Dirac operator defined on compact mani-
folds with boundary. These estimates are expressed in terms of zeros of
Bessel functions and a lower bound of the scalar curvature. They improve
Friedrich-type estimates originally established on closed manifolds [15]
and generalized later on manifolds with boundary; see e.g. [22] or [18,
Chapter 4] for references.

We assume here the smooth compact Riemannian manifold (Mn, g)
to be spin with fixed spin structure. For more details on spin manifolds
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we refer to e.g. [6], [16], [28, Chapters 1 and 2], [7, Chapter 1], [18,
Chapter 1]. Under that assumption, there exists a smooth Hermitian
vector bundle ΣM →M called the spinor bundle ofM on which TM acts
by Clifford multiplication. We denote by X ⊗ ψ 7→ X · ψ that Clifford
multiplication. There exists on ΣM a metric connection that preserves
the Clifford multiplication and that we denote by ∇ΣM . The Clifford
trace of that connection is the first-order differential operator called the
Dirac operator. Formally, for any section ψ of ΣM , we have Dψ =∑n
j=1 ej · ∇ΣM

ej ψ, where (ej)1≤j≤n is an arbitrary local g-o.n.b. of TM .
Recall also that a spin structure onM induces a spin structure on ∂M via
the inner unit normal vector field ν along ∂M . This provides a unitary
isomorphism

ΣM|∂M −→

{
Σ∂M if n is odd,

Σ∂M ⊕ Σ∂M if n is even,

for which a Gauß-type-formula relates the compatible connections on ΣM
and Σ∂M . In particular, the following formula holds along ∂M for
any ψ ∈ Γ(ΣM) (see e.g. [18, equation (1.22)]):

(15) Dψ = ν · ∇ΣM
ν ψ + ν ·

(
D∂Mψ − (n− 1)H

2
ψ

)
,

where H := 1
n−1 tr(II) is the mean curvature of ∂M in M and D∂M is

either the Dirac operator on ∂M (if n is odd) or its symmetrization (if n is
even); we refer to e.g. [18, Subsection 1.4] for details. Here II := −∇Mν
denotes the Weingarten map of the boundary.

The Dirac operator is known to admit the following four elliptic
boundary conditions: CHI, MIT bag, gAPS, and mgAPS; see e.g. [22]
or [18, Subsection 1.5] for a survey. Recall first that the corresponding
boundary value problem consists in solving Dψ = λψ on M where ψ
lies in the kernel of the boundary operator B corresponding to one of
the boundary condition listed above. It is proved in [22, Proposition 1]
that, under these boundary conditions, the spectrum of the Dirac oper-
ator consists of a discrete unbounded sequence of eigenvalues with finite
dimensional eigenspaces. For the CHI, gAPS, and mgAPS boundary con-
ditions, the spectrum is real, however for the MIT bag condition it is
contained in the upper half of the complex line C.

Let us now recall briefly these boundary conditions. The CHI bound-
ary condition is associated to the so-called chirality operator, defined
by the endomorphism BCHI := 1

2 (Id−ν · G), where ν is the unit nor-
mal vector field to ∂M and G is the restriction on ∂M of the endo-
morphism G : ΣM → ΣM which is involutive, unitary, parallel, and
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anticommuting with Clifford multiplication on M (it corresponds to the
complex volume form for n even). The MIT bag condition is defined
by the operator BMIT := 1

2 (Id−iν·). For the gAPS, known as general-
ized Atiyah–Patodi Singer, the boundary operator BgAPS is defined as
the L2-orthogonal projection onto the subspace generated by the eigen-
vectors of the Dirac operator on ∂M (if n is even or its symmetriza-
tion if n is odd) corresponding with eigenvalues not smaller than some
number β ≤ 0. Finally, the boundary operator BmgAPS for the condi-
tion, known as modified generalized Atiyah–Patodi–Singer, is defined as
BmgAPS := BgAPS(Id +ν·).

In [22] the authors provide a Friedrich-type lower bound involving
scalar curvature [15] for the first eigenvalue of the Dirac operator and
for each of the above boundary conditions (see also [10], [23]). They
also discuss the equality case of those estimates which turns out not
to be always achieved depending on the imposed boundary condition;
moreover, for the cases where equality is realized, the boundary has to
be minimal. We notice here that the positivity of the scalar curvature
as well as the nonnegativity of the mean curvature of the boundary are
required in this context in order for the lower bound to be positive.
In the following, we will give a new estimate for the eigenvalues of the
Dirac operator under the boundary conditions mentioned above (except
the MIT bag) by using the result in Theorem 3.1. The new fact in our
estimate is that the lower bound not only depends on the minimum
of the scalar curvature (as for Friedrich’s lower bound) but also on a
positive root of some function involving Bessel functions. In particular,
this estimate still gives us information on the spectrum when the scalar
curvature of the manifold vanishes at one point.

Theorem 4.1. Let (Mn, g) be any smooth compact Riemannian spin
manifold with nonempty boundary ∂M . Assume Ric ≥ 0 on M and H ≥
H0 on ∂M for some positive constant H0. Let λ be any eigenvalue of the
Dirac operator of M endowed with any of the CHI, gAPS, or mgAPS

boundary conditions. Let τ0 be the only zero of x 7→ x
Jn

2
(x)

Jn
2
−1(x) − (n− 1)

on ]0, jn
2−1,1[. Then

(16) λ2 >
n

4(n− 1)
min
M

(S) +
nH2

0 τ
2
0

2(n− 1)
,

where S is the scalar curvature of (Mn, g).

Proof: We consider the nonnegative function f := 1
2 |ψ|

2 on M , where ψ
is any spinor field on ΣM . It is elementary to show that, with the help
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of the Schrödinger–Lichnerowicz formula D2 = (∇ΣM )∗∇ΣM + S
4 Id, the

following identity holds for ψ:

(17) ∆f = −S
2
f + Re(〈D2ψ,ψ〉)− 1

n
|Dψ|2 − |Pψ|2,

where P : Γ(ΣM) → Γ(T ∗M ⊗ ΣM) is the so-called Penrose operator,
defined by Pψ = ∇ΣM

X ψ+ 1
nX ·Dψ for any vector field X∈TM . Taking

ψ to be a nonzero Dirac-eigenspinor associated to the eigenvalue λ (recall
that λ is real under the imposed boundary conditions), we obtain

∆f = −S
2
f + λ2|ψ|2 − λ2

n
|ψ|2 − |Pψ|2

= −S
2
f + 2λ2f − 2λ2

n
f − |Pψ|2

=
2(n− 1)

n

(
λ2 − n

4(n− 1)
S

)
f − |Pψ|2

≤ 2(n− 1)

n

(
λ2 − n

4(n− 1)
min
M

(S)

)
f,

(18)

that is, ∆f ≤ µf where µ := 2(n−1)
n

(
λ2− n

4(n−1) minM (S)
)
. Notice that,

by all the eigenvalue estimates proved in [22] for the boundary conditions
assumed in our theorem, we have µ > 0 (recall that H ≥ H0 > 0). On
the other hand, using Gauß formula (15), we compute∫

M

∆f dµg =

∫
∂M

∂νf dµg

=

∫
∂M

Re(〈∇ΣM
ν ψ,ψ〉) dµg

(15)
=

∫
∂M

Re(〈−ν ·Dψ −D∂Mψ +
(n− 1)H

2
ψ,ψ〉) dµg

= −λ
∫
∂M

Re(〈ν · ψ,ψ〉)︸ ︷︷ ︸
0

dµg

−
∫
∂M

〈D∂Mψ,ψ〉 dµg +
n− 1

2

∫
∂M

H|ψ|2 dµg

= −
∫
∂M

〈D∂Mψ,ψ〉 dµg + (n− 1)

∫
∂M

Hf dµg.



New Eigenvalue Estimates Involving Bessel Functions 699

Now since by assumption H ≥ H0, f ≥ 0 along ∂M , and∫
∂M

〈D∂Mψ,ψ〉 dµg ≤ 0

for any of the boundary conditions under consideration (see e.g. [18,
Chapter 4]), we obtain

(19)

∫
M

∆f dµg ≥ (n− 1)H0

∫
∂M

f dµg.

Notice here that no condition on the Ricci curvature is required to get

inequalities (18) and (19). By contradiction let us now assume that
√
µ

H0
<

τ0, where τ0 is the only zero of x 7→ x
Jn

2
(x)

Jn
2
−1(x) − (n − 1) on ]0, jn

2−1,1[.

Since in particular
√
µ

H0
< jn

2−1,1 and by assumption Ric ≥ 0 on M and
H ≥ H0 > 0 on ∂M , Theorem 3.1 can be applied to f and yields∫

∂M

f dµg ≥
√
µ
Jn

2−1

(√µ
H0

)
Jn

2

(√µ
H0

) ∫
M

f dµg.

Note that in particular the function f cannot vanish identically on the
boundary. But (19) together with ∆f ≤ µf implies µ

∫
M
f dµg ≥ (n −

1)H0

∫
∂M

f dµg, so that∫
∂M

f dµg ≥
√
µ
Jn

2−1

(√µ
H0

)
Jn

2

(√µ
H0

) · (n− 1)H0

µ

∫
∂M

f dµg,

from which 1
n−1 ≥

Jn
2
−1

(√
µ

H0

)
√
µ

H0
Jn

2

(√
µ

H0

) follows. By assumption on µ and since x 7→

Jn
2
−1(x)

xJn
2

(x) is decreasing on ]0, jn
2−1,1[ as listed in the appendix, we deduce

that 1
n−1 >

Jn
2
−1(τ0)

τ0Jn
2

(τ0) = 1
n−1 , which is a contradiction. Therefore

√
µ ≥

H0τ0, which concludes the proof of inequality (16). Next we prove that
the equality in (16) cannot be realized. Assume it were the case, then we
would have equalities in all the above inequalities and from Theorem 3.1
the manifold M must be isometric to a geodesic ball. Furthermore, the
spinor field ψ is a Killing spinor (as a consequence of being a twistor
spinor and an eigenspinor) with Killing constant −λn . But since on the
one hand the scalar curvature of a manifold with such a Killing spinor
must be equal to 4

n (n−1)λ2 and M is Ricci- and hence scalar-flat on the
other hand, we deduce that λ = 0. This contradicts µ > 0 and concludes
the proof of Theorem 4.1.
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Let us now discuss the Dirac spectrum under the MIT bag boundary
condition. As we mentioned before, the eigenvalues of the Dirac operator
are in this case complex numbers with positive imaginary part. This fact
follows directly from the relation ([22, p. 386])

(20) 2 Im(λ)

∫
M

|ψ|2 dµg =

∫
∂M

|ψ|2 dµg,

which holds for any eigenspinor ψ associated with an eigenvalue λ. Now,
if we come back to equality (17) with f = 1

2 |ψ|
2, we get after using the

nonnegativity of |Pψ|2 that

∆f = −S
2
f + 2 Re(λ2)f − 2

|λ|2

n
f − |Pψ|2

≤ −S
2
f + 2(Re(λ2)− |λ|2)f +

2(n− 1)

n
|λ|2f

≤ 2(n− 1)

n

(
|λ|2 − n

4(n− 1)
min
M

(S)− 2n

n− 1
Im(λ)2

)
f.

(21)

However, we do not have any control on the sign of the r.h.s. of in-
equality (21) in order to deduce an estimate for the eigenvalues using
Theorem 3.1 as we did for the other boundary conditions. Notice that
S. Raulot established in [34, Theorem 1] a lower bound for the first
eigenvalue of the Dirac operator with MIT bag condition that involves
the imaginary part of λ and a lower bound of the mean curvature (as-
sumed to be positive) but unfortunately it still does not provide any new
information on the sign of the r.h.s. of (21). We can however give a new
and short proof of Raulot’s estimate [34, Theorem 1]:

Theorem 4.2 (S. Raulot [34]). Let (Mn, g) be a compact Riemannian
spin manifold whose boundary satisfies H > 0. Then any eigenvalue λ of
the Dirac operator of M , under the MIT bag boundary condition, satisfies

|λ|2 ≥ n

4(n− 1)
min
M

(S) + nH0 Im(λ),

where H0 is the infimum of the mean curvature. Equality holds if and
only if the associated eigenspinor is an imaginary Killing spinor and the
boundary is totally umbilical with constant mean curvature.
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Proof: We follow the same steps as we did in Theorem 4.1 to get inequal-
ity (19). Indeed, taking into account the boundary condition iν · ψ = ψ
on ∂M , we compute∫

M

∆f dµg
(15)
=

∫
∂M

Re(〈−ν ·Dψ −D∂Mψ +
(n− 1)H

2
ψ,ψ〉) dµg

=

∫
∂M

Re(−λ〈ν · ψ,ψ〉) dµg

−
∫
∂M

〈D∂Mψ,ψ〉 dµg +
n− 1

2

∫
∂M

H|ψ|2 dµg

≥ ((n− 1)H0 − 2 Im(λ))

∫
∂M

f dµg.

Here, as before, we use the fact that
∫
∂M
〈D∂Mψ,ψ〉 dµg ≤ 0 which is

also valid for the MIT bag boundary condition [22]. Integrating inequal-
ity (21) over M yields the desired inequality after using identity (20).
If now equality holds, then the eigenspinor is a Killing spinor of Killing
number −λn . But as λ is a complex number (recall that its imaginary part
is positive), it must be purely imaginary (see e.g. [7, Chapter 8] or [18,
Subsection A.4]) which implies that ψ is an imaginary Killing spinor.
The last part follows from differentiating the boundary condition along
any vector field tangent to the boundary; see e.g. [34, pp. 142–143]. This
finishes the proof.

As we see from Theorem 4.2, if one assumes H0 >
2

n−1 Im(λ), then the

r.h.s. of inequality (21) is in this case positive and therefore Theorem 3.1
can be applied. However, we think that it is unnatural to require such
a bound on the mean curvature as it depends on the eigenvalue λ in
question.

Another way for estimating the eigenvalues of the Dirac operator is to
look at a conformal class of metrics; we refer to e.g. [7, Subsections 2.3
and 5.4] or [18, Subsection 3.3] for general facts on the subject. In this
case, the spectrum of the Dirac operator is known to be related to the
spectrum of the so-called Yamabe operator through the so-called Hijazi
estimate [21]. In [35] S. Raulot proved that, under the CHI or the MIT
bag condition, any eigenvalue λ of the Dirac operator satisfies, for n ≥ 3,

(22) |λ|2 ≥ n

4(n− 1)
µ1(Y ),

where the inequality is strict for the MIT bag condition and character-
izes in its limiting case the half round sphere for the CHI condition.
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Here, µ1(Y ) denotes the first positive eigenvalue of the Yamabe problem
originally defined by Escobar in [12]:

(23)

Y (f) := 4(n−1)
n−2 ∆f + Sf = µ1(Y )f on M,

∂f
∂ν = n−2

2 Hf on ∂M.

Recall that ν denotes the inward unit normal vector field along ∂M .
If the mean curvature is nonnegative, then it is easy to check, after
multiplying the first equation in (23) involving a first eigenfunction f
with f itself and integrating over M , that the inequality µ1(Y ) ≥ min

M
(S)

holds, with equality if and only if S is constant on M and H = 0 on ∂M .
We will use this last fact to apply Theorem 3.1 to an eigenfunction of the
Yamabe operator in order to deduce an estimate for µ1(Y ) in terms of
zeros of Bessel functions. This will allow later to derive a new estimate
for the Dirac operator.

Theorem 4.3. Let (Mn, g) be a compact Riemannian manifold of di-
mension n ≥ 3 with smooth boundary. Assume that the Ricci curva-
ture of M is nonnegative and the mean curvature is bounded from below

by H0 > 0. Let τ1 be the only positive zero of x 7→ x
Jn

2
(x)

Jn
2
−1(x) −

n−2
2

on ]0, jn
2−1,1[. Then

(24) µ1(Y ) ≥ min
M

(S) +
4(n− 1)

n− 2
τ2
1H

2
0 .

Equality is realized if and only if the manifold M is isometric to a round
ball in Rn.

Proof: Let f be an eigenfunction of problem (23) associated with the
eigenvalue µ1(Y ). Recall that f cannot change its sign, so that f can be
assumed to be positive in the interior of M . Then we have

∆f =
n− 2

4(n− 1)
(µ1(Y )− S)f ≤ n− 2

4(n− 1)
(µ1(Y )−min

M
(S))f.

Let µ := n−2
4(n−1) (µ1(Y ) −minM (S)). Notice that µ > 0 since H cannot

vanish. If by contradiction
√
µ

H0
< τ1, then from Theorem 3.1 we deduce

that

(25)

∫
∂M

f dµg ≥
√
µ
Jn

2−1

(√µ
H0

)
Jn

2

(√µ
H0

) ∫
M

f dµg.
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Note that this implies that
∫
∂M

f dµg 6= 0. Integrating the inequal-
ity ∆f ≤ µf along with∫

M

∆f dµg =

∫
M

∂f

∂ν
dµg ≥

n− 2

2
H0

∫
∂M

f dµg

yields 2
n−2 ≥

Jn
2
−1

(√
µ

H0

)
√
µ

H0
Jn

2

(√
µ

H0

) . Finally, as we did in the proof of Theorem 4.1,

we use the fact that the function x 7→
Jn

2
−1(x)

xJn
2

(x) is decreasing on ]0, jn
2−1,1[

to get the contradiction. This proves (24). If (24) is an equality, then

because of
√
µ

H0
= τ1 ∈ ]0, jn

2−1,1[, inequality (25) still applies and must
be an equality, therefore M must be isometric to a round ball in Rn
by Theorem 3.1. Conversely, if M is a round ball in Rn of radius 1

H0
,

then the two inequalities involving ∆f and used in the proof of (24) are
equalities since scalar and mean curvatures are constant. Moreover, for
a round ball in Rn, problem (23) reduces to the Robin boundary value
problem (13) for the first eigenvalue µ := n−2

4(n−1)µ1(Y ) and where τ :=
n−2

2 H0 > 0. As was already noticed in Remark 3.6, the first eigenvalue of
the Robin boundary value problem on a round ball of Rn always satisfies√
µ

H0
∈ ]0, jn

2−1,1[ ⊂ ]0, jn
2 ,1

[. Therefore (25) applies and is actually an
equality again by Theorem 3.1. On the whole, all three inequalities used
in the proof of (24) are equalities for a round ball, therefore (24) itself
must be an equality. This shows the equivalence for the limiting case and
concludes the proof of Theorem 4.3.

Combining inequality (22) with (24), we deduce the following:

Corollary 4.4. Let (Mn, g) be a compact Riemannian spin manifold of
dimension n ≥ 3 with smooth boundary. Assume that the Ricci curvature
of (Mn, g) is nonnegative and the mean curvature of ∂M is bounded from

below by H0 > 0. Let τ1 be the only positive zero of x 7→ x
Jn

2
(x)

Jn
2
−1(x) −

n−2
2

on ]0, jn
2−1,1[. Then, under the CHI or the MIT bag conditions, any

eigenvalue λ of the Dirac operator satisfies

(26) |λ|2 > n

4(n− 1)
min
M

(S) +
n

n− 2
τ2
1H

2
0 .

Note that equality cannot hold in (26) since for the MIT bag boundary
condition (22) is anyway strict, while for the CHI boundary condition
equality in (22) implies minimality of ∂M in M .

As we can see from Theorem 4.1 and Corollary 4.4, there are two
different but analogous estimates for the first eigenvalue of the Dirac
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operator under the CHI boundary condition. One might ask if there is
a way to compare the numbers n

2(n−1)τ
2
0 and n

n−2τ
2
1 in order to check

which estimate is better. Recall here that τ0 and τ1 are, respectively,

the first positive zeros of the functions x 7→ x
Jn

2
(x)

Jn
2
−1(x) − (n − 1) and

x 7→ x
Jn

2
(x)

Jn
2
−1(x)−

n−2
2 on ]0, jn

2−1,1[. It turns out that ([14]), for any n ≥ 3,

(27)

(
τ1
τ0

)2

≥ (n+ 1)(n+ 1−
√

4n+ 1)

n(n− 1)
,

which implies that
(
τ1
τ0

)2
> n−2

2(n−1) , i.e. n
n−2τ

2
1 > n

2(n−1)τ
2
0 . Therefore,

(26) is better than (16) for any n ≥ 3. Moreover, because of τ1 < τ0,

inequality (27) implies that τ1
τ0
−→
n→∞

1, which means that
n
n−2 τ

2
1

n
2(n−1)

τ2
0
−→
n→∞

2:

asymptotically as n → ∞, the lower bound in (26) is even much better
than (16). This could be explained by the fact that less information is
lost upon proving (22) and (24) than proving (16) directly.

5. Robin Laplacian for differential forms

We first recall the so-called Lopatinskĭı–Shapiro criterion for ellipticity
of boundary value problems; see e.g. [41, Subsection 1.6] to which we
shall stay close. Let (Mn, g) be any Riemannian manifold with nonempty
boundary ∂M . Let P be any kth-order linear differential operator acting
on sections of some Riemannian or Hermitian vector bundle E →M . A
boundary condition will be considered here as the direct sum

⊕l
j=1Bj

of linear differential operators Bj : Γ(M,E)→ Γ(∂M,Ej) of order kj <
k, where Ej → ∂M , 1 ≤ j ≤ l, are Riemannian or Hermitian vector
bundles. We consider the following boundary value problem: for any f ∈
Γ(M,E) and uj ∈ Γ(∂M,Ej), 1 ≤ j ≤ l, find u ∈ Γ(M,E) solving

(28)

{
Pu = f on M,

Bju = uj on ∂M, ∀ 1 ≤ j ≤ l.

Let σP and σBj be the principal symbols of the operators P and Bj
respectively, 1 ≤ j ≤ l. In our convention, for any smooth function f
defined in a neighbourhood of a point x,

σP (dxf) := [· · · [[P, f ], f ], . . . , f ]︸ ︷︷ ︸
k pairs of brackets

∈ Hom(Ex, Ex)
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and analogously for Bj ; of course, σB = B if B has vanishing order.
In order to formulate the Lopatinskĭı–Shapiro ellipticity condition, the
following space must be defined: given any x ∈ ∂M and v ∈ Tx∂M , let

M+
v := {bounded solutions y = y(t) on R+

to the ODE σP ((−iv, ∂t))y = 0}.

Here, the map σP ((−iv, ∂t)) must be understood as follows: considering
σP pointwise as a homogeneous polynomial of degree k on TxM , we apply
it to the one-form −iv[+∂t ·ν[, where ν is the inner unit normal at x and
where we see ∂t as a coefficient; what we obtain at the end is a kth-order
linear differential operator in one variable and with constant coefficients.
In particular the ODE σP ((−iv, ∂t))y = 0 has a k-dimensional space
of solutions which are defined on R. The following definition is taken
from [41, Definition 1.6.1]:

Definition 5.1. The boundary value problem (28) is called elliptic if
and only if both following conditions are satisfied:

(i) The differential operator P is itself elliptic, that is, for any x ∈M
and ξ ∈ T ∗xM , the map σP (ξ) : Ex → Ex is an isomorphism.

(ii) For all x ∈ ∂M and v ∈ Tx∂M , the map

M+
v −→

l⊕
j=1

(Ej)x

y 7−→ (σB1
((−iv, ∂t))y, . . . , σBl((−iv, ∂t))y)(0)

is an isomorphism.

Now we look at the following setting where E = ΛpT ∗M , E1 =
ΛpT ∗∂M , E2 = Λp−1T ∗∂M , P = ∆ = dδg + δgd, B1ω = ι∗(νy dω− τω),
and B2ω = ι∗(νyω) for any given p ∈ {0, 1, . . . , n}, τ ∈ R, and any ω ∈
Ωp(M). Recall that ι : ∂M → M denotes the inclusion map. The prin-
cipal symbols are given by

σP (ξ)ω = −|ξ|2 · ω,
σB1

(ξ)ω = ξν · ι∗ω − ξT ∧ ι∗(νyω),

σB2(ξ)ω = ι∗(νyω),

where ξ = ξνν
[ + ξT ∈ R · ν[ ⊕ T ∗x∂M for any ξ ∈ T ∗xM and x ∈ ∂M .
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Theorem 5.2. Let (M, g) be a compact Riemannian manifold with
smooth boundary. Fix a real number τ and consider the eigenvalue prob-
lem

(29)


∆ω = λω on M,

ι∗(νy dω − τω) = 0 on ∂M,

ι∗(νyω) = 0 on ∂M.

Then, we have

(i) The boundary value problem (29) is elliptic in the sense of Defini-
tion 5.1 and self-adjoint. As a consequence, it admits an increas-
ing unbounded sequence of real eigenvalues with finite multiplicities
λ1,p(τ) ≤ λ2,p(τ) ≤ · · · .

(ii) Actually, if τ > 0, then λ1,p(τ) > 0 holds, i.e. (29) has trivial
kernel.

Proof: The Laplace operator on forms is clearly elliptic since for any non-
vanishing ξ ∈ T ∗M the map −|ξ|2 · Id is an isomorphism. Moreover, for
any v ∈ T ∗∂M , we can write σ∆((−iv, ∂t)) = −〈(−iv, ∂t), (−iv, ∂t)〉 =
|v|2 − ∂2

t , so that the set M+
v is in that case given by

M+
v = {e−t|v| · ω0, ω0 ∈ ΛpT ∗xM}.

On the other hand, σB1
((−iv, ∂t))ω = ∂t(ι

∗ω) + iv[ ∧ ι∗(νyω) and
σB2

((−iv, ∂t))ω = ι∗(νyω), so that if y = e−t|v| · ω0 is any element
of M+

v , then

(σB1((−iv, ∂t))y, σB2((−iv, ∂t))y)(0)

= (−|v|ι∗ω0 + iv[ ∧ ι∗(νyω0), ι∗(νyω0)).

If the r.h.s. of that identity vanishes, then ι∗(νyω0) = 0 and therefore
|v|ι∗ω0 = 0, which under the assumption v 6= 0 yields ι∗ω0 = 0 and thus

ω0 = 0. This shows that the mapM+
v →

⊕2
j=1(Ej)x of Definition 5.1 is

injective and hence an isomorphism by equality of the dimensions. This
shows (29) to be elliptic in the sense of Definition 5.1. To show self-
adjointness, we need to prove that, for any compactly-supported smooth
p-forms ω, ω′ on M satisfying the boundary conditions B1ω = B2ω =
B1ω

′ = B2ω
′ = 0, the identity

∫
M
〈∆ω, ω′〉 dµg =

∫
M
〈ω,∆ω′〉 dµg holds.

But using the partial integration formula∫
M

〈dα, β〉 dµg =

∫
M

〈α, δgβ〉 dµg −
∫
∂M

〈ι∗α, νyβ〉 dµg
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that is valid for all α ∈ Ωp(M) and β ∈ Ωp+1(M), we obtain∫
M

〈∆ω, ω′〉 dµg =

∫
M

〈dδgω, ω′〉 dµg +

∫
M

〈δg dω, ω′〉 dµg

=

∫
M

〈δgω, δgω′〉 dµg −
∫
∂M

〈ι∗δgω, νyω′〉 dµg

+

∫
M

〈dω, dω′〉 dµg +

∫
∂M

〈νy dω, ι∗ω′〉 dµg

=

∫
M

〈dω, dω′〉 dµg + 〈δgω, δgω′〉 dµg

+

∫
∂M

〈ι∗(νy dω), ι∗ω′〉 dµg

− 〈ι∗δgω, ι∗(νyω′)︸ ︷︷ ︸
0

〉 dµg

=

∫
M

〈dω, dω′〉 dµg + 〈δgω, δgω′〉 dµg

+

∫
∂M

τ〈ι∗ω, ι∗ω′〉 dµg,

(30)

which is clearly symmetric in (ω, ω′) because of τ ∈ R. This shows (29)
to be self-adjoint. As a consequence, the spectrum of the Robin operator
consists of a nondecreasing unbounded sequence of real eigenvalues of
finite multiplicities which we denote by λ1,p(τ) ≤ λ2,p(τ) ≤ · · · . More-
over, if τ > 0, then for any differential p-form ω on M , we can deduce
from the above computation the equality

(31)

∫
M

〈∆ω, ω〉 dµg =

∫
M

(|dω|2 + |δgω|2) dµg + τ

∫
∂M

|ι∗ω|2 dµg ≥ 0.

Therefore, the spectrum of the Robin operator for τ > 0 must be non-
negative. Note that, by Courant’s nodal domain theorem, the first eigen-
value λ1,0(τ) is simple and every associated eigenfunction cannot change
its sign on M . This shows claim (i). Next we show that 0 is not an eigen-
value when τ > 0. Let ω lie in the kernel of ∆. From the formula above,
we obtain dω = δgω = 0 on M and ι∗ω = 0 on ∂M . But using the iden-
tity |ω|2 = |ι∗ω|2 + |νyω|2 at any point on the boundary, we deduce that
ω = 0 on ∂M . Now by [2, Théorème, p. 445], any harmonic form on M
that vanishes along ∂M must vanish identically, and therefore ω = 0.
This proves claim (ii) and concludes the proof.
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Proposition 5.3. Let (M, g) be a compact Riemannian manifold with
smooth boundary. Let τ be a positive number. Then the first eigen-
value λ1,p(τ) of the Robin boundary problem (29) can be characterized
as follows:

λ1,p(τ) = inf

{∫
M

(|dω|2 + |δgω|2) dµg + τ
∫
∂M
|ι∗ω|2 dµg∫

M
|ω|2 dµg

}
,

where ω runs over all non-identically vanishing p-forms on M such that
νyω = 0.

Proof: We have seen that identity (31) holds as soon as ω satisfies the
boundary conditions ι∗(νy dω) = τι∗ω and ι∗(νyω) = 0. In particular,
this proves the variational characterization

λ1,p(τ)= inf
ω∈Ωp(M)\{0}

ι∗(νy dω)=τι∗ω, ι∗(νyω)=0

{∫
M

(|dω|2+|δgω|2) dµg+τ
∫
∂M
|ι∗ω|2dµg∫

M
|ω|2 dµg

}
.

We next show that the boundary condition ι∗(νy dω) = τι∗ω can ac-
tually be dropped off in the infimum above. We follow [42, Chapter 5,
Section 9]. Define the standard Sobolev spaces:

Hk(M,Λp) := {ω ∈ L2(M,ΛpT ∗M) |

∇lω ∈ L2(M,⊗lT ∗M ⊗ ΛpT ∗M), for any 1 ≤ l ≤ k}.
As in [42, Subsection 5.9], we define the following closed subspaces
of Hk(M,Λp):

H1
Rob(M,Λp) := {ω ∈ H1(M,Λp) | ι∗(νyω) = 0 on ∂M},

H2
Rob(M,Λp) := {ω ∈ H2(M,Λp) |

ι∗(νyω) = 0 and ι∗(νy dω)− τι∗ω = 0 on ∂M}.
Note that the conditions defining those subspaces make sense because
of the existence of a continuous extension H1(M,Λp) → L2(∂M,Λp) of
the trace map ω 7→ ω|∂M . Consider, for any ω ∈ H1

Rob(M,Λp), the linear
operator

ω′ 7−→ (LRobω)(ω′) :=

∫
M

(〈dω, dω′〉+ 〈δgω, δgω′〉) dµg

+ τ

∫
∂M

〈ι∗ω, ι∗ω′〉 dµg
(32)

on H1
Rob(M,Λp). Note that this operator just differs from the one in [42,

equation 9.21] by the boundary term involving τ . Clearly, LRob defines
a bounded linear operator

LRob : H1
Rob(M,Λp) −→ H1

Rob(M,Λp)∗,
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where H1
Rob(M,Λp)∗ denotes the topological dual of H1

Rob(M,Λp). This
can be proved by estimating the boundary term in (32) using Cauchy–
Schwarz inequality and the trace theorem. Moreover, there exists a pos-
itive constant C0 such that, for every ω ∈ H1

Rob(M,Λp),

(33) ((LRob + C0)ω, ω) ≥ C‖ω‖2H1

for some further positive constant C. Inequality (33) follows in a straight-
forward way from [42, equation 9.24] since the boundary term coming
from (32) is positive because of τ > 0 by assumption. Now inequal-
ity (33) not only shows that LRob + C0 is injective with closed range
but also that it is bijective; see e.g. [42, Proposition 9.5]. We denote
by TRob : H1

Rob(M,Λp)∗ → H1
Rob(M,Λp) the inverse map as well as the

induced map TRob : L2(M,Λp) → L2(M,Λp). Note here that there is a
compact embedding H1

Rob(M,Λp) → L2(M,Λp), since the embedding
H1(M,Λp)→ L2(M,Λp) is already compact. The operator TRob on the
L2-level is compact and, being selfadjoint and positive, has a discrete
spectrum which can be described as a nonincreasing sequence of positive
eigenvalues of finite multiplicity converging to 0. Moreover, there exists
an L2-orthonormal basis (ωj)j∈N of L2(M,Λp) consisting of eigenvectors
for TRob: for every j ∈ N, we have TRobωj = µjωj . Note that necessarily
ωj ∈ H1

Rob(M,Λp) holds for every j since the range of TRob actually
lies in H1

Rob(M,Λp) by definition. By construction, (ωj)j∈N is an L2-or-
thonormal basis of eigenvectors for LRob since LRobωj =

(
1
µj
− C0

)
ωj

holds for every j. The central remark is now the following: for every
ω ∈ L2(M,Λp), actually u := TRobω ∈ H2

Rob(M,Λp) must hold. To see
this, we shall divide the proof into several steps whose technical details
will be ignored since they are completely analogous to those from the
proof of [42, Proposition 9.6].

Step 1: Due to the ellipticity of the operator LRob (see e.g. [42, Propo-
sition 7.2] for the corresponding estimate), we have that u = TRobω lies
in H2(M,Λp).

Step 2: We must prove that the boundary condition ι∗(νy du)−τι∗u = 0
holds for u if and only if the boundary term∫

∂M

〈ι∗(νy du)− τι∗u, ι∗ω′〉 dµg

vanishes for all ω′ ∈ H1
Rob(M,Λp). Note that this is not obvious since

a priori the range of the trace map restricted to H1
Rob(M,Λp) is not

a dense subspace of L2(∂M,Λp). To prove that the condition is suffi-
cient, we extend the pointwise homomorphism field νy : Λp+1T ∗M|∂M →
ΛpT ∗M|∂M along ∂M to a smooth homomorphism field σ : Λp+1T ∗M →



710 F. El Chami, N. Ginoux, G. Habib

ΛpT ∗M on M . Pick any α ∈ Ωp+1(M) and put ω′ :=σα∈Ωp(M). Note
that ι∗(νyω′) = ι∗(νy νyα) = 0 holds along ∂M , and therefore ω′ ∈
H1

Rob(M,Λp). Moreover,∫
∂M

〈ι∗(νy du)− τι∗u, ι∗ω′〉 dµg = 0

⇐⇒
∫
∂M

〈ν ∧ (ι∗(νy du)− τι∗u), ι∗α〉 dµg = 0.

This holds for all α ∈ Ωp+1(M). Therefore ν ∧ (ι∗(νy du) − τι∗u) = 0
along ∂M . Now, taking the interior product with ν allows to deduce that
ι∗(νy du)− τι∗u = 0, as claimed.

Step 3: We want to show that ∆(TRobω) = ω−C0TRobω holds in the dis-
tributional sense. Recall that TRob = (LRob + C0)−1. Taking the scalar
product of the relation (LRob +C0)(u) = ω with any ω′ ∈ H1

Rob(M,Λp),
we get∫

M

〈ω, ω′〉 dµg =

∫
M

〈LRobu, ω
′〉 dµg + C0

∫
M

〈u, ω′〉 dµg

=

∫
M

(〈du, dω′〉+ 〈δgu, δgω′〉) dµg

+ τ

∫
∂M

〈ι∗u, ι∗ω′〉+ C0

∫
M

〈u, ω′〉 dµg

(30)
=

∫
M

〈∆u, ω′〉 dµg −
∫
∂M

〈ι∗(νy du), ι∗ω′〉 dµg

+ τ

∫
∂M

〈ι∗u, ι∗ω′〉 dµg + C0

∫
M

〈u, ω′〉 dµg.

This means that∫
M

〈(∆ + C0)TRobω, ω
′〉 dµg =

∫
M

〈ω, ω′〉 dµg

+

∫
∂M

〈ι∗(νy du− τu), ι∗ω′〉 dµg.
(34)

But this holds for any ω′ ∈ H1
Rob(M,Λp). In particular, if we choose

ω′ ∈ Ωp(M) with support away from ∂M (see [42, p. 407]), we deduce
that ∆(TRobω) = ω − C0TRobω as required. This ensures the boundary
term in (34) has to vanish for all ω′ ∈ H1

Rob(M,Λp). Therefore, by Step 2
the boundary condition ι∗(νy du)− τι∗u = 0 must be fulfilled.

To conclude the proof, every eigenvector ωj of LRob is an eigenvector
for the Laplace operator on M and, since it belongs to the range of
TRob, it must lie in H2

Rob(M,Λp), and in particular satisfies the boundary
condition of first order.
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From now on, unless otherwise stated, we assume τ > 0. Recall the
absolute boundary conditions

(35)


∆ω = λNω on M,

ι∗(νy dω) = 0 on ∂M,

ι∗(νyω) = 0 on ∂M,

which generalize the Neumann boundary problem for functions. The
spectrum of this Laplacian is discrete and consists of eigenvalues (λNi,p)i
such that λN1,p ≤ λN2,p ≤ · · · . The Hodge star operator exchanges the
absolute boundary conditions and the relative ones which are given by

(36)


∆ω = λRω on M,

ι∗ω = 0 on ∂M,

ι∗(δgω) = 0 on ∂M.

By the min-max principle, the first eigenvalue λN1,p of the Laplacian is
characterized by

λN1,p = inf

{∫
M

(|dω|2 + |δgω|2) dµg∫
M
|ω|2 dµg

}
,

where ω runs over all non-identically vanishing p-forms such that νyω =
0. Mind that the Robin eigenvalue problem (35) might have a kernel,
which is then given by the absolute de Rham cohomology Hp

A(M) defined
by

Hp
A(M) = {φ ∈ Ωp(M) | dφ = δgφ = 0 on M and νyφ = 0 on ∂M}.

We also have a similar characterization for the first eigenvalue λR1,p of
the Laplacian for the relative conditions with the corresponding relative
cohomology Hp

R(M) given by

Hp
R(M) = {φ ∈ Ωp(M) | dφ = δgφ = 0 on M and ι∗φ = 0 on ∂M}.

By duality, the first eigenvalue for the boundary value problem (35) on
p-forms coincides with the first eigenvalue for the boundary value prob-
lem (36) on (n− p)-forms [19]. Another boundary problem of interest is
the Dirichlet eigenvalue problem{

∆ω = λDω on M,

ω = 0 on ∂M.

For that problem, the first eigenvalue λD1,p – which is necessarily positive
by [2, Théorème, p. 445] – is characterized by

λD1,p = inf

{∫
M

(|dω|2 + |δgω|2) dµg∫
M
|ω|2 dµg

, ω ∈ Ωp(M) \ {0} and ω|∂M = 0

}
.
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One can easily see that when τ → 0, the Robin boundary problem (29)
reduces to the absolute boundary conditions. Also, when τ →∞, prob-
lem (29) reduces to the Dirichlet Laplacian. Now, we have the following
bounds for the first eigenvalue λ1,p(τ) of the Robin Laplacian on differ-
ential p-forms.

Proposition 5.4. Let (Mn, g) be a compact Riemannian manifold with
nonempty boundary. Then, for any τ > 0 and all p ∈ {0, . . . , n− 1}, we
have the double inequality

λN1,p ≤ λ1,p(τ) ≤ λD1,p.

Proof: The proof is based on the variational characterization of the
first eigenvalue of each boundary value problem. First, since τ > 0,
for any ω ∈ Ωp(M) with νyω = 0, we have∫

M

(|dω|2 + |δgω|2) dµg + τ

∫
∂M

|ι∗ω|2 dµg ≥
∫
M

(|dω|2 + |δgω|2) dµg,

from which the left inequality follows. Moreover, for any ω ∈ Ωp(M)
with ω|∂M = 0, we have∫

M

(|dω|2 + |δgω|2) dµg + τ

∫
∂M

|ι∗ω|2 dµg =

∫
M

(|dω|2 + |δgω|2) dµg

because of ι∗ω = 0. Therefore λD1,p is the minimum of the same functional
as that characterizing λ1,p(τ) but taken on a smaller space (for ω|∂M = 0
implies νyω = 0), which shows the right inequality.

Next we establish a lower bound for the first eigenvalue of the Robin
Laplacian on differential p-forms λ1,p(τ) based on Theorem 3.1. The
lower term of the estimate depends on the so-called p-curvatures whose
definition we recall. Let η1(x), . . . , ηn−1(x) be the principal curvatures
(i.e. eigenvalues of the Weingarten map II) at a point x of the bound-
ary ∂M which can be assumed to satisfy η1(x) ≤ η2(x) ≤ · · · ≤ ηn−1(x)
up to reordering. For any integer p ∈ {1, . . . , n− 1}, we define the p-cur-
vatures σp as σp(x) = η1(x)+ · · ·+ηp(x). Clearly, one can check that for

any two integer numbers p and q with p ≤ q, we have that
σp(x)
p ≤ σq(x)

q

with equality if and only if η1(x) = η2(x) = · · · = ηq(x). From that

remark the inequality H ≥ σp(x)
p for the mean curvature H and for

any p ∈ {1, . . . , n − 1} follows. The Weingarten-endomorphism-field II
admits a canonical extension II [p] to ΛpT ∗∂M as follows: Given any
p-form ϕ on ∂M , we define

(37) (II [p]ϕ)(X1, . . . , Xp) =

p∑
i=1

ϕ(X1, . . . , II(Xi), . . . , Xp),
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where Xi are vector fields on ∂M for i = 1, . . . , p. By a straightforward
computation, it can be easily checked that the inequality

(38) 〈II [p]ϕ,ϕ〉x ≥ σp(x)|ϕ|2x
holds pointwise. In the next theorem we will denote by σp as the infimum
of σp(x) over all x ∈ ∂M . We have

Theorem 5.5. Let (Mn, g) be a compact Riemannian manifold with
smooth boundary. Assume that M has a nonnegative curvature operator
and, for some p ∈ {1, . . . , n−1}, the p-curvature of ∂M is bounded from
below by σp > 0. Fix any positive number τ0 < jn

2−1,1 and as before set

α := τ0
Jn

2
(τ0)

Jn
2
−1(τ0) =

∑
k≥1

2τ2
0

j2n
2
−1,k
−τ2

0
. Then there exists an ε > 0 such

that, if τ > σp
(
α
2p − 1

)
− ε, we have

λ1,p(τ) >
σ2
p

2p2
τ2
0 .

Proof: We follow the idea of [19, Theorem 3.3]. First of all by following
the same steps as in [19, Lemma 4.10], it can be proved that, for any
differential p-form ω satisfying the boundary conditions in (29), we have

〈∇νω, ω〉 = 〈II [p](ι∗ω), ι∗ω〉+ τ |ι∗ω|2,

where II [p] is the canonical extension of the endomorphism II defined
previously. Using estimate (38), we obtain∫

M

∆(|ω|2) dµg =

∫
∂M

∂

∂ν
(|ω|2) dµg

= 2

∫
∂M

〈∇νω, ω〉 dµg ≥ 2(σp + τ)

∫
∂M

|ω|2 dµg.
(39)

Recall now the Bochner formula for p-forms: ∆ = ∇∗∇ + W
[p]
M , where

W
[p]
M is the zero-order curvature term. It is elementary to deduce from

that formula the following scalar identity that is valid for any p-form ω:

(40) 〈∆ω, ω〉 = |∇ω|2 +
1

2
∆(|ω|2) + 〈W [p]

M (ω), ω〉.

Therefore, if ω is an eigenform associated to the eigenvalue λ1,p(τ), then

using the nonnegativity of W
[p]
M (which is a consequence of that of the

curvature operator of M), as well as |∇ω|2, we obtain

(41) ∆(|ω|2) ≤ 2λ1,p(τ)|ω|2.
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Therefore, we are in the situation of Theorem 3.1 with f = |ω|2. Recall
here that the condition of the nonnegativity of the curvature operator
on M implies in particular that the Ricci curvature of M is nonnegative.
Also the mean curvature is bounded from below by H0 :=

σp
p > 0. Let

us from now on assume that
√

2λ1,p(τ) < H0τ0. Then, we deduce from
Theorem 3.1 that∫

∂M

|ω|2 dµg ≥
√

2λ1,p(τ)
Jn

2−1

(√2λ1,p(τ)

H0

)
Jn

2

(√2λ1,p(τ)

H0

) ∫
M

|ω|2 dµg.

Note that
∫
∂M
|ω|2 dµg cannot vanish since ω does not vanish iden-

tically by assumption. But integrating (41) over M and using (39), we
obtain √

2λ1,p(τ) ≥ 2(σp + τ)
Jn

2−1

(√2λ1,p(τ)

H0

)
Jn

2

(√2λ1,p(τ)

H0

) .

As we did in Corollary 3.7, we use the fact that the function x 7→
xJν+1

Jν
(x), for ν = n

2 − 1, is increasing on ]0, jn
2−1,1[ as stated in the

appendix to obtain

√
2λ1,p(τ) ≥ 2(σp + τ)

Jn
2−1

(√2λ1,p(τ)

H0

)
Jn

2

(√2λ1,p(τ)

H0

) > 2(σp + τ)

√
2λ1,p(τ)

αH0
,

which implies σp
(
α
2p − 1

)
> τ . This contradicts the assumption on τ .

Therefore

√
2λ1,p(τ)

H0
≥ τ0. The equality case of the latter estimate would

provide equalities in all the above inequalities. This means in particular
that the form ω has to be parallel, that is, λ1,p(τ) = 0, which contradicts

the fact that the Robin Laplacian has no kernel. Therefore

√
2λ1,p(τ)

H0
>

τ0. But since that inequality is strict, by continuity of τ 7→ λ1,p(τ), there

must exist an ε > 0 such that, if τ > σp
(
α
2p − 1

)
− ε, then

√
2λ1,p(τ)

H0
> τ0

keeps holding. This concludes the proof of Theorem 5.5.

Remark 5.6. By choosing τ0 = ν − a1

2
1
3
ν

1
3 for ν = n

2 − 1 with n ≥ 3, one

has that τ0 >
n
2 as in Remark 3.9. Therefore, for τ > σp

(
α
2p − 1

)
, we

have

(42) λ1,p(τ) >
σ2
p

2p2
τ2
0 >

n2σ2
p

8p2
.
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For Euclidean strictly p-convex domains (i.e. σp > 0), we can easily
see that the first eigenvalue λN1,p is positive. This follows directly from
integrating the Bochner formula (40) over M and using (39) for τ = 0,
since a parallel form vanishing on the boundary must vanish identically.
Combining the left inequality in Proposition 5.4 with the estimate λN1,p >
σ2
p

8 established in [19, p. 329] and which is valid for such domains, we

get that λ1,p(τ) >
σ2
p

8 which is weaker than estimate (42).

In the following, we will use the notation for the first eigenvalue of
the Robin Laplacian on 0-forms (which corresponds to functions) as
λ1,0(τ) = λ1(τ,M). We have

Corollary 5.7. Let (Mn, g) be a compact Riemannian manifold with
smooth boundary. Assume that M has a nonnegative curvature operator
and the p-curvature of ∂M is bounded by σp > 0 for some p ∈ {1, . . . , n−
1}. Then, we get the estimate

λ1,p(τ) >
λ1(τ,BH0

)

2
,

where λ1(τ,BH0
) is the first eigenvalue of the scalar Robin Laplacian on

the Euclidean ball whose boundary has mean curvature H0 :=
σp
p .

Proof: Fix any τ > 0. Recall that 0 <

√
λ1(τ,BH0

)

H0
< jn

2−1,1; see Re-

mark 3.6. Let τ0 :=

√
λ1,0(τ,BH0

)

H0
. Then α = τ0

Jn
2

(τ0)

Jn
2
−1

(τ0) = τ0 · τ
H0τ0

=

pτ
σp

by Corollary 3.8. Therefore σp
(
α
2p − 1

)
= τ

2 − σp, and in particu-

lar τ > σp
(
α
2p − 1

)
. It remains to apply Theorem 5.5 to conclude the

proof.

Next, we estimate the gap between the first eigenvalues of the Robin
Laplacian for different degrees when the manifold is isometrically im-
mersed into the Euclidean space. We mainly follow [19, Theorem 2.3],
[36, Theorem 4], and [31]. In the following, for any given smooth unit
normal vector field ν to M in Rn+m, we let IIν be the associated Wein-
garten map, that is, it is the endomorphism field of TM defined by

〈IIν(X), Y 〉 = 〈ν, II(X,Y )〉
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for all X, Y tangent to M , where II is the second fundamental form
of the immersion. We denote by T [p] the following endomorphism field
of ΛpT ∗M : given any local orthonormal basis {ν1, . . . , νm} of T⊥M , we
let

T [p] :=

m∑
k=1

(II [p]
νk

)2,

where each II
[p]
νk is the standard extension of the above IIνk to ΛpT ∗M

as in (37). By [19, Section 2], the operator T [p] is well-defined, i.e inde-
pendent on the chosen o.n.b. of T⊥M , and furthermore self-adjoint as
well as nonnegative.

Theorem 5.8. Let Mn → Rn+m be an isometric immersion where
(Mn, g) is a compact Riemannian manifold with p-convex boundary ∂M ,
that is, σp ≥ 0 for some p ∈ {1, . . . , n− 1}. Then, for all τ > 0, we have

λ1,p(τ)− λ1,p−1(τ) ≥ 1

p
inf
M

(W
[p]
M − T

[p]),

where W
[p]
M is the Bochner operator in (40). In particular, for a Euclidean

p-convex domain M ⊂ Rn, we have

λ1,p(τ) ≥ λ1,p−1(τ).

Proof: Let ω be any eigenform of the Robin p-Laplacian associated
with λ1,p(τ). Recall the boundary conditions νyω = 0 and νy dω = τι∗ω
valid for the form ω onM . For each i = 1, . . . , n+m, the unit parallel vec-
tor field ∂xi on Rn+m splits into ∂xi = (∂xi)

T +(∂xi)
⊥ where (∂xi)

T is the
tangent part in TM and (∂xi)

⊥ is the orthogonal one in T⊥M . Consider
the (p−1)-form (∂xi)

T yω on M which clearly satisfies νy ((∂xi)
T yω) = 0

and apply to it the variational characterization in Proposition 5.3. We
get, for each i,

λ1,p−1(τ)

∫
M

|(∂xi)T yω|2 dµg ≤
∫
M

(|d((∂xi)
T yω)|2

+ |δg((∂xi)T yω)|2) dµg

+ τ

∫
∂M

|(∂xi)T yω|2 dµg.

(43)
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Now we want to sum over i. We handle each term separately. First, for
any p-form α on M and any local o.n.b. {e1, . . . , en} of TM , we have

n+m∑
i=1

|∂Txiyα|
2 =

n+m∑
i=1

n∑
k,l=1

〈∂Txi , ek〉〈∂
T
xi , el〉〈ekyα, elyα〉

=

n+m∑
i=1

n∑
k,l=1

〈∂xi , ek〉〈∂xi , el〉〈ekyα, elyα〉 since ∂⊥xi ⊥ TM

=

n∑
k,l=1

〈ek, el〉〈ekyα, elyα〉 since (∂xi)i is an o.n.b. of Rn+m

=

n∑
k=1

〈ekyα, ekyα〉〈α,
n∑
k=1

ek ∧ (ekyα)〉

=p|α|2 since

n∑
k=1

ek ∧ (ekyα) = pα.

(44)

Note that this remains valid pointwise, in particular also along ∂M . To
compute the term involving the exterior derivative, we make use of the
Cartan formula and write, for each i,

d(∂Txiyω) = L∂Txi
ω − ∂Txiy dω.

By [19, equation (4.3)], we can split the Lie derivative as follows:

(45) L∂Txi
ω = ∇∂Txiω + II

[p]

∂⊥xi
ω.

As a first consequence, choosing (ek)1≤k≤n and (νs)1≤s≤m to be local
o.n.b. of TM and T⊥M respectively,

n+m∑
i=1

|L∂Txiω|
2 =

n+m∑
i=1

|∇∂Txiω|
2 + |II [p]

∂⊥xi
ω|2 + 2〈∇∂Txiω, II

[p]

∂⊥xi
ω〉

=

n+m∑
i=1

n∑
k,l=1

〈∂Txi , ek〉〈∂
T
xi , el〉〈∇ekω,∇elω〉

+

n+m∑
i=1

m∑
s,t=1

〈∂⊥xi , νs〉〈∂
⊥
xi , νt〉〈II

[p]
νs ω, II

[p]
νt ω〉

+ 2

n+m∑
i=1

n∑
k=1

m∑
s=1

〈∂Txi , ek〉〈∂
⊥
xi , νs〉〈∇ekω, II

[p]
νs ω〉.
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As above, we can ignore the tangent and normal symbols in the sums on
the r.h.s. and use the fact that (∂xi)i is an o.n.b. of Rn+m:

n+m∑
i=1

|L∂Txiω|
2 =

n+m∑
i=1

n∑
k,l=1

〈∂xi , ek〉〈∂xi , el〉〈∇ekω,∇elω〉

+

n+m∑
i=1

m∑
s,t=1

〈∂xi , νs〉〈∂xi , νt〉〈II [p]
νs ω, II

[p]
νt ω〉

+ 2

n+m∑
i=1

n∑
k=1

m∑
s=1

〈∂xi , ek〉〈∂xi , νs〉〈∇ekω, II [p]
νs ω〉

=

n∑
k=1

|∇ekω|2 +

m∑
s=1

〈II [p]
νs ω, II

[p]
νs ω〉

+ 2

n∑
k=1

m∑
s=1

〈ek, νs〉︸ ︷︷ ︸
0

〈II [p]
νs ω, II

[p]
νt ω〉

= |∇ω|2 + 〈T [p]ω, ω〉.

Because of (44), we know that

n+m∑
i=1

|∂Txiy dω|
2 = (p+ 1)| dω|2.

Moreover, still using the same local o.n.b.’s of TM and T⊥M and de-
compositions of the ∂xi , we have

n+m∑
i=1

〈L∂Txiω, ∂
T
xiy dω〉

(45)
=

n+m∑
i=1

〈∇∂Txiω, ∂
T
xiy dω〉+ 〈II [p]

∂⊥xi
ω, ∂Txiy dω〉

=

n+m∑
i=1

〈∂Txi ∧∇∂Txiω, dω〉

+

n+m∑
i=1

n∑
k=1

m∑
s=1

〈∂⊥xi , νs〉〈∂
T
xi , ek〉〈II

[p]
νs ω,∇ekω〉

= |dω|2 +

n∑
k=1

m∑
s=1

〈νs, ek〉︸ ︷︷ ︸
0

〈II [p]
νs ω,∇ekω〉

= |dω|2.
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It remains to notice that, since ∂xi is parallel on Rn+m, the covariant
derivative ∇(∂Txi) is a symmetric endomorphism of TM and therefore

δg((∂xi)
T yω) = −(∂xi)

T y δgω. Summing up (44) over i, we obtain

λ1,p−1(τ)p

∫
M

|ω|2dµg≤
∫
M

n+m∑
i=1

|L∂Txiω|
2+|∂Txiy dω|

2−2〈L∂Txiω, ∂
T
xiy dω〉 dµg

+(p− 1)

∫
M

|δgω|2 dµg + τp

∫
∂M

|ω|2 dµg

≤
∫
M

|∇ω|2 + 〈T [p]ω, ω〉+ (p+ 1)| dω|2 − 2| dω|2

+(p− 1)

∫
M

|δgω|2 dµg + τp

∫
∂M

|ω|2 dµg

≤
∫
M

(|∇ω|2+〈T [p]ω, ω〉+(p−1)(|dω|2+|δgω|2)) dµg

+τp

∫
∂M

|ω|2 dµg.

Applying formula (40) and using (39), we deduce that

λ1,p−1(τ)p

∫
M

|ω|2 dµg

(40)

≤
∫
M

(
〈∆ω, ω〉 − 1

2
∆(|ω|2)− 〈W [p]

M ω, ω〉+ 〈T [p]ω, ω〉
)
dµg

+ (p− 1)

∫
M

(|dω|2 + |δgω|2) dµg + τp

∫
∂M

|ω|2 dµg

(39)

≤ λ1,p(τ)

∫
M

|ω|2 dµg − (σp + τ)

∫
∂M

|ω|2 dµg

+

∫
M

〈(T [p] −W [p]
M )ω, ω〉 dµg

+ (p− 1)

∫
M

(|dω|2 + |δgω|2)) dµg + τp

∫
∂M

|ω|2 dµg

(31)

≤ λ1,p(τ)

∫
M

|ω|2 dµg − (σp + τ)

∫
∂M

|ω|2 dµg

+

∫
M

〈(T [p] −W [p]
M )ω, ω〉 dµg

+ (p− 1)

(
λ1,p(τ)

∫
M

|ω|2 dµg − τ
∫
∂M

|ω|2 dµg
)

+ τp

∫
∂M

|ω|2 dµg

≤ pλ1,p(τ)

∫
M

|ω|2 dµg − σp
∫
∂M

|ω|2 dµg −
∫
M

〈(W [p]
M − T

[p])ω, ω〉 dµg.
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After regrouping the terms and getting rid of the boundary term using
the condition σp ≥ 0, we deduce the desired inequality. Finally, when M

is a Euclidean domain, both W
[p]
M and T [p] vanish. This ends the proof

of Theorem 5.8.

Independently of the above results, we establish a Gallot–Meyer-type
estimate for the first eigenvalue of the Robin Laplacian. Recall that the
Steklov (or Dirichlet-to-Neumann) operator on p-forms is the pseudo-
differential operator DNp on ΛpT ∗∂M defined for any p-form ω on ∂M
by

DNpω := −νy dω̂,
where ω̂ ∈ Ωp(M) is the unique p-form on M such that ∆ω̂ = 0 on M
with the boundary conditions ι∗ω̂ = ω as well as νy ω̂ = 0 on ∂M ;
see [36, Subsection 1.1]. It can be shown ([36, Theorem 11]) that the
operator DNp is elliptic and essentially selfadjoint and in particular it
has a discrete real spectrum consisting only of eigenvalues of finite mul-
tiplicities. Its smallest eigenvalue ν1,p can be characterized by ([36, The-
orem 11])

ν1,p = inf

{∫
M

(|dω|2 + |δgω|2) dµg∫
∂M
|ω|2 dµg

}
,

where ω runs over all non-identically vanishing p-forms on M such that
νyω = 0. We have

Theorem 5.9. Let (Mn, g) be a compact Riemannian manifold with
nonempty smooth boundary. Assume that the curvature operator of M
is bounded from below by some γ > 0. Let τ ≥ − c

c−1 · σp for some

p ∈ {1, . . . , n− 1} where σp is the p-curvature of ∂M and c = max(p+
1, n− p+ 1). Then

λ1,p(τ) ≥ p(n− p) c

c− 1
γ.

If τ < − c
c−1 · σp, we have

λ1,p(τ) ≥ p(n− p)(ν1,p + τ)
c−1
c ν1,p − σp

γ,

where ν1,p is the first eigenvalue of the Steklov operator defined on dif-
ferential p-forms.

Proof: We follow mainly the proof as in the usual case. Let ω ∈ Ωp(M)
be an eigenform associated to the eigenvalue λ1,p(τ). Combining the

Bochner formula, the pointwise inequality W
[p]
M ≥ p(n − p)γ and the
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estimate |∇ω|2 ≥ 1
p+1 |dω|

2 + 1
n−p+1 |δgω|

2 which is valid for any p-

form ω [17], we have:

λ1,p(τ)

∫
M

|ω|2 dµg =

∫
M

〈∆ω, ω〉 dµg =

∫
M

|∇ω|2 dµg

+
1

2

∫
M

∆(|ω|2) dµg +

∫
M

〈W [p]
M (ω), ω〉 dµg

≥
∫
M

1

p+ 1
|dω|2 dµg +

1

n− p+ 1
|δgω|2 dµg

+
1

2

∫
M

∆(|ω|2) dµg + p(n− p)γ
∫
M

|ω|2 dµg

(39)

≥ 1

c

∫
M

(|dω|2 + |δgω|2) dµg + (σp + τ)

∫
∂M

|ω|2 dµg

+ p(n− p)γ
∫
M

|ω|2 dµg

(31)
=

1

c

∫
M

〈∆ω, ω〉 dµg −
τ

c

∫
∂M

|ω|2 dµg

+ (σp + τ)

∫
∂M

|ω|2 dµg + p(n− p)γ
∫
M

|ω|2 dµg.

Thus, we deduce that

(46) λ1,p(τ)

(
1− 1

c

)∫
M

|ω|2 dµg

≥
(
σp + τ − τ

c

)∫
∂M

|ω|2 dµg + p(n− p)γ
∫
M

|ω|2 dµg.

Note that σp + τ − τ
c ≥ 0 if and only if τ ≥ − c

c−1σp. This concludes the
proof of the first part. To prove the other part of the theorem, pick any
eigenform ω of the Robin Laplacian associated to the eigenvalue λ1,p(τ).
Then we get after using equation (31) that

(ν1,p + τ)

∫
∂M

|ω|2 dµg ≤ λ1,p(τ)

∫
M

|ω|2 dµg.

Now if τ < − c
c−1 ·σp, we combine the last inequality with the one in (46)

to get

λ1,p(τ)

(
1− 1

c

)
≥
(
σp + τ − τ

c

)
λ1,p(τ)

ν1,p + τ
+ p(n− p)γ,

which is the desired estimate. Notice that the condition required on τ
gives in particular that σp < 0.



722 F. El Chami, N. Ginoux, G. Habib

Appendix

In this section we review some basic facts on Bessel functions of the
first and second kind and their properties. For more details, we can refer
to [1], [8], [43].

The following differential equation, known as Bessel’s equation

x2y′′ + xy′ + (x2 − ν2)y = 0

has the general solution

y = AJν(x) +BYν(x),

where Jν , called Bessel function of first kind, is given by the series

Jν(x) =

∞∑
k=0

(−1)k
(
x
2

)ν+2k

k!Γ(ν + k + 1)
,

where Γ is the gamma function. The Bessel function of the second kind Yν
is related to the first kind by the formula

Yν(x) =
Jν(x) cos(νπ)− J−ν(x)

sin(νπ)
.

It is given by the following expansion

Yν(x)=
2

π
Jν(x)

(
ln
x

2
+ γ

)
− 1

π

ν−1∑
k=0

(ν − k − 1)!

k!

(
x

2

)2k−ν

+

∞∑
k=0

(−1)k−1[(1+ 1
2 + · · ·+ 1

k )+(1 + 1
2 + · · ·+ 1

k+ν )]

k!(k + ν)!

(
x

2

)2k+ν

,

where γ ' 0.5772157 is the Euler constant.
For integer values of ν, we take the limit ν → n. In this particular

case, Jν and J−ν are not linearly independent. Indeed, one has J−ν(x) =
(−1)νJν(x) and Y−ν(x) = (−1)νYν(x). For all real values of ν, the Bessel
functions can be expressed in terms of Bessel functions of lower orders
by the formulas

(A1)



Jν+1(x) = 2ν
x Jν(x)− Jν−1(x),

J ′ν(x) = 1
2 (Jν−1(x)− Jν+1(x)),

J ′ν(x) = Jν−1(x)− ν
xJν(x),

J ′ν(x) = ν
xJν(x)− Jν+1(x).

Note that equations (A1) imply both (xνJν)′= xνJν−1 and (x−νJν)′=
−x−νJν+1. The functions Yν satisfy the same equations above as Jν .
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We also have the following identities, known as Lommel’s formulas [43,
pp. 46 and 77], which relate Bessel functions of different orders. Namely,

(A2)

{
Jν−1(x)J−ν(x) + Jν(x)J−ν+1(x) = 2 sinπν

πx ,

Yν(x)Jν+1(x)− Yν+1(x)Jν(x) = 2
πx .

A transformed version of the Bessel differential equation shows that the
Bowman equation ([8, p. 117])

(A3) y′′(x)− 2α− 1

x
y′ +

(
β2γ2x2γ−2 +

α2 −m2γ2

x2

)
y = 0

has the following solution

y(r) =

{
xα(AJm(βxγ) +BYm(βxγ)) for integer m,

xα(AJm(βxγ) +BJ−m(βxγ)) for noninteger m.

At several places in the article, we consider the function x 7→ xJν+1(x)
Jν(x) .

First, the quotient of two consecutive Bessel functions is given by the
series ([43, p. 498])

Jν+1(x)

Jν(x)
=
∑
k≥1

2x

j2
ν,k − x2

,

for any ν > −1. Hence, for such ν, the function x 7→ Jν+1(x)
Jν(x) – and

therefore x 7→ xJν+1(x)
Jν(x) as well – increases on R \ {zeros of Jν}. Recall

from [1], [43] that the zeros of Jν and Jν+1 satisfy jν,1 < jν+1,1 < jν,2 <

jν+1,2 < · · · . As a consequence, the function x 7→ Jν+1(x)
Jν(x) is positive

on ]0, jν,1[ and negative on ]jν,1, jν+1,1[. Moreover, Jν(x)
Jν+1(x) ≈

2(ν+1)
x for

small x ([27, p. 192]).
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