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Abstract: We study a two-dimensional discrete directional maximal operator along
the set of the prime numbers. We show existence of a set of vectors, which are lattice
points in a sufficiently large annulus, for which the £2 norm of the associated maximal
operator, with supremum taken over all large scales, grows with an epsilon power in
the number of vectors. This paper is a follow-up to a prior work on the discrete
directional maximal operator along the integers by the first and third author.
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1. Introduction

A fundamental operator studied in Euclidean harmonic analysis is the
directional maximal operator over a finite set of directions in the plane.
Given a collection V' C S' of unit vectors, one defines the directional
maximal operator by

T

1 f(z —tv)dt

(1.1) My f(x) = sup sup o

veV r>0

9

where f: R? — C. The initial interest in this operator lies in its relation
to the Kakeya maximal function in the plane; see [9]. It was shown
by Katz ([6]) that, for any finite set of directions V', one has the sharp
bound

1My flaqee) < Cllog VDI flluages).

The special case when V' is uniformly distributed had been previously
settled by Strémberg [9].

In [2] Cladek and Krause investigated a discrete analogue of My f
restricted to a single dyadic scale. That is, for V' a set of lattice points
living in an annulus in R2, a function f: Z?2 — C, and ¢ a smooth
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compactly supported function on the real line, they define the single-
scale maximal operators Ay by

Z flz —nv)27*p(27Fn)

neZ

Ay f(r) = sup
veV

and study its operator norm on ¢2. By considering bumps adapted to
unit scales one sees that the sharp estimate for k close to one is given
by |V|'/2. Since the discrete problem is not scale invariant, one may ask
if one can prove an estimate in the spirit of (1.1) for all sufficiently large
scales with the threshold depending on the set of directions. While the
answer to this question seems out of reach of the current techniques,
the authors of [2] construct a collection of vectors for which this is the
case. Moreover, their construction is sufficiently robust to allow for supre-
mum over all large scales. For each N and € > 0, they construct a set of
vectors V' = V. with |[V| = N, which is contained in a large annulus of
radius and thickness about A, such that

| sup Avifllezzz) < CeNC|| flle2(z2y
E>ky

where ky = Cy log N for some large constant C; depending on €. Further-
more, in [2] the authors also consider discrete maximal operators with
Radon-type behavior where the averages are taken along polynomials P
with integer coefficients:

ADf(@) = sup | > f(z —vP(n)2 "¢(2 *n)).

vev neZ
In this case one has the bound

1AV fllezz2y Se NeIIFllez(z2),
provided k& > ky and V is the collection described above. Studying
averages along the polynomial sequences can be viewed as a discrete
version of the Furstenberg problem in the plane; see for instance [7].

In this paper we study a problem where the directional averages are
taken over prime, rather than all integer dilates of our vectors v. Let
k € N and V C Z? be a finite collection of lattice points. Let ¢ be a
compactly supported function on the real line. By P we denote the set
of all prime numbers. For a finitely supported function f: Z?> — C we
consider the directional maximal operator

Ay f(z) = sup sup Zf z —pv)27 (27 p) logp),

k>kyv veV

where ky is large depending on |V| We prove the following bound.
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Theorem 1. Let € > 0 and N > 0. There exist constants C. and Cj
depending on € so that the following holds. For any A > N° there exists
a set of vectors V. C {x € Z* : 7i5A < |z| < 100A} with |[V| = N so
that

| sup AV, fllezzzy < CeNC| fllezzey,
k>ky

provided ky > N for a sufficiently large constant Cy depending on C.

To prove Theorem 1 one first analyzes the corresponding multipliers,
which is standard using the Hardy—Littlewood circle method. See for
instance [8]. For each v in our set of directions, the corresponding mul-
tiplier may be described in terms of its coordinate in the v*-axis, and is
constant in the orthogonal direction. The corresponding one-dimensional
multiplier is supported on disjoint frequency bubbles located near cer-
tain rational numbers. This requires an analysis of multiple frequencies
simultaneously, which is a key distinguishing feature of many problems
in discrete harmonic analysis. In the case of high frequencies, we must
moreover analyze multipliers corresponding to different directions v si-
multaneously, which leads to both number theoretic and geometric con-
siderations. Using harmonic analytic techniques, we reduce the bound-
edness of the maximal function to an incidence estimate proven in [2],
which measures overlaps of certain tubes pointing in the directions given
by the vectors in our set. We only need to apply this incidence estimate
outside a ball of a fixed radius, which is sufficiently small to capture only
a single tube in each direction. Inside this ball one applies transference
arguments to extend the continuous result to the discrete result.

In contrast with the squares, in the case of the primes we are able
to prove bounds even with the further introduction of a supremum over
scales. The key is that we are able to exploit the near perfect cancella-
tion of the Ramanujan sums, which appear in the corresponding mul-
tiplier approximations. This can be seen as a quantitative consequence
of the well-known heuristic that the distribution of the primes exhibits
a high degree of randomness. Exploiting this cancellation is crucial to
our method of proof. Nevertheless, it would be interesting to see if one
can prove £2 bounds with the supremum over scales in the case of the
squares as well.

The problem studied in this paper is related to the works by Bour-
gain [1], Wierdl [10], and Mirek, Trojan, and Zorin-Kranich [8]. These
papers are concerned with maximal inequalities for discrete versions of
the Hardy-Littlewood maximal operator along the primes, motivated
by pointwise convergence of ergodic averages along the primes. The pa-
per [8] shows variational estimates for discrete maximal operators and
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for maximal truncation of singular integrals along the primes. It would
be interesting to see if a suitable modification of our arguments could
be applied to study variational estimates for discrete directional max-
imal operators and directional singular integrals. The latter have also
attracted much attention in the continuous setting; see, for instance,
Demeter [3].

Higher-dimensional versions of Theorem 1 and the results from [2] are
topics for further investigation. For the continuous analogues in higher
dimensions we refer to the works by Demeter [4], Di Plinio and Paris-
sis [5], and the references therein.

2. Proof of Theorem 1

First let us say a few words on the notation. We write e(t) = ™.

For a finitely supported function f on Z¢ we define the Fourier transform

FB) =" fn)e(=8-n),

nezd

taking values in T¢. Its inverse will be denoted by

Flg(n) = /Td g(B)e(B-n)ds.

The Fourier transform on R and its inverse will be defined with the same
symbols and we will mention their use explicitly. We will also silently use
the standard identification of functions on T with one-periodic function
on R?, i.e. functions g: R? — C satisfying g(x+vy) = g(x) for all y € Z.
We write A < B if there exists an absolute constant C such that A < CB.
If the constant depends on parameters pq,...,p,, we denote that with
a subscript, such as A 5y, 5. B. We write A ~ B if both A < B
and B < A.

The first step in the proof of Theorem 1 is to decompose the multi-
pliers of the maximal operator. For a@ € R we define

mi(a) =Y e(—pa)2 *¢(2 ¥ p) log p.
peP

Then we may view A?} f as a maximal operator with the multipliers given
by {my(v- B)}vev,
AV f(w) = sup sup |F " (my (v) f) ().
k>kyv veV
For the decomposition of the multipliers we need to define several
auxilliary functions. Let x: R — R be a non-negative smooth function
which is supported in |z| < 1/2 and equals 1 on |z| < 1/4. Then we set

Xs (a) _ X(210(S+4)a)~
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For o € R we define
V(o) = / e(2%ta)p(t) dt.
R

By u(g) and ¢(q) we denote the M&bius and totient functions, respec-
tively. A key estimate on the totient function is

(2.1) 0la) 254",

valid for any ¢ > 0. Finally, we define Ry = {0} and for s € N we set
Rs={a/qeTNQ:2° <q<2°" (a,q) =1}

We recall the following approximation result from [8].

Lemma 2. Let k > 0 be an integer. For any D > 2* there is a con-
stant C' = C(D) such that for o € R one can approzimate

my(a) = Ly(a) + Ex(a),

where

L) = ¥ bn(@) Lue(@) = X A8~ afota - a/a)
s€Ng a/qERs i

and Ey satisfies the pointwise estimate

(2.2) |E)| < Ck—P/8,

Note that Lj is a periodic function and hence can be viewed as a
function on T. Observe that, due to the support of ys, for each fixed «
the sum defining Ly, s is nonzero for at most one term.

The proof of Lemma 2 proceeds by the Hardy-Littlewood circle
method. The key step is in establishing that the multipliers m, satisfy

my(a) — ZEZ%Vk(a —a/q)| <p k7P if ae MP(ajqg)n MP,
Ime(a)| <p kP78 if aeT\MP,
where for D > 0 and k € N the major arcs are defined by
MP= U U MP/a),
1<q<kP a<q:(a,q)=1

where

M (a/q) ={a € T:|a—a/q <27k},
and the set T\ MP is the minor arc. These two estimates follow from
Propositions 3.1 and 3.2 in [8], respectively. Theorem 2 in [8] then yields
the result claimed in Lemma 2.

In all of the following we fix € > 0, N > 0. We also assume k > ky.
Because of Lemma 2 it suffices to prove ¢? bounds for the operators
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associated with the multipliers L and E}. First we prove the desired
bound for the error term E,. This follows from

H(Z sup |f1<Ek<v->f>|2)l/2

Su Sk N2 £l ez
veVy PRV

(22
Se N fllez(z2),

where we have used Plancherel’s theorem and (2.2). Therefore, in order
to prove Theorem 1 it suffices to obtain ¢? bounds for

(2.3) Ly f= sup sup [F~'(Lk(v)f)l.
k>ky vEV

Before estimating Ly f we first make a simple preliminary reduction.
The following lemma tells us that when s is small, we can replace the
localization s with the improved localization X, /100-

Lemma 3. For a € R, s € Ny, and an integer k > 0 define

@= 3 %Vk(a—a/@xh/mo(a—a/Q)-
a/qER

Then we have

Y lsup sup |[FH(Lk = L) (0) )l 2@z S NI llezey.
s<elog N k2ky vev

Proof: Note that xs — Xk, /100 vanishes on |a| 27k/10 for any k > ky
provided Cp from Theorem 1 is sufficiently large. Integrating by parts
we show the decay estimate

Via)| S (2"[al) ™ S 27*/2,

By the lower bound on the totient function (2.1) and Plancherel’s theo-
rem this immediately gives

> e ¥ (Y y

f—l( Y. Vi(v-B-a/q)

s<elog N 2s<q<2stt Me>ky veV a:a/qER s
R 2y 1/2
(e = v 1000+ 8- 0/0)F(D))| )
£2(22)
SN fllezz2),
for an absolute constant C' > 0, which implies the claim. O

The next step in estimating Ly f given in (2.3) is to split the func-
tion f into a low and high frequency part. Let ¥ be a function which is
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smooth and supported in {a € R? : |a| < A72}, where A is the constant
from Theorem 1. Writing f = f1 + f2, where we have set

fi=70, fa=f1-19),
we split accordingly

(2.4) »Cvf < »Cvfl + [,vfg.

We now briefly describe the general approach that we will use to
estimate Ly f1 and Ly fa. To deal with the high frequency part we will
use the following crucial incidence estimate from [2]. Let s > 1 be an
integer and C; an integer which is assumed to be sufficiently large. For
2% <r < 2%t and v € V we consider the sets

Koo ={B€T? |B|> A2 |v-B—bfr —m| <279
for some 0 < b<r, meZ}.

These sets arise naturally from the exponential sums which will appear
in the multiplier approximations. They consist of equally spaced tubes of
thickness about 2715 A, which are perpendicular to some v € V outside
a ball of radius A~2. The following lemma measures the overlap of these
tubes outside this ball.

Lemma 4 ([2]). Let € > 0 and N > 0. Let s > 1 be an integer. There
exist constants C. and Cy depending on € so that the following holds.

For any A > NC° there exists a set of vectors V. C {:c € 7?: ﬁA <

|z| < 100A} with |V| = N such that, for each N < 2° < N'/¢ one has

D D k..

25 <r< 25+l vEV

provided Cy = C1(A) in the definition of K, s, is chosen sufficiently
large.

< CN<,
Lo (T2)

The construction of the set V' from Lemma 4 is done by choosing
vectors in different directions such that, after an appropriate rescaling,
their components have a prime factorization structure that exhibit an
intermediate amount of randomness. An upper bound on the random-
ness allows for a certain degree of compatibility between the arithmetic
structure between vector coordinates, which gives rise to the appear-
ance of long arithmetic progressions of large prime gap length in the
corresponding intersecting sets K, ;.. A lower bound on the random-
ness allows for these long arithmetic progressions to have different prime
spacings, making it very difficult for a point to lie in the simultaneous
intersection of these sets. We refer to Appendix B for a more detailed
summary of the construction from [2].
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To deal with low frequencies we will use the following transference
lemma by Bourgain [1]. It says that if one has a maximal multiplier
operator with multipliers supported on a fundamental domain of T¢,
which is bounded on L?(R?), then the maximal operator corresponding
to the periodization of these multipliers is bounded on £2(Z4).

Lemma 5 ([1]). Suppose {¢, : k > 1} is a countable family of functions
on R? supported in [—1/2,1/2)% with supy, |¢x| < 1. Further, suppose
that for

M f(z) = sup |7~ (6 f) (@),
there exists a constant B such that for all f € L*(R?) one has
(2.5) 1M fllr2®ay < Bl fllvzme)-
Then there exists a constant C such that for all f € (2(Z%) one has
1M fll2(zey < OB flle2(z4)-

Here the use of the symbols for the Fourier transform should be in-
terpreted either in R or Z, respectively.

With these results in mind we turn to estimating Ly f; and Ly fo
in (2.4).

2.1. High frequency term Ly f3. Applying the triangle inequality
and using the lower bound on the totient function (2.1) it suffices to
estimate the #2 norm of

E 2s(0-1) E sup sup
seNo 9s<geast B2ky vEV

F (X el -alau - 5-al 9

a:a/qER s

(2.6)
X

)

where ko = ko(s) is given by
ky /100 <elog N
k’o(S):{V/ , S8 elogiy,
s, s > elog N.

Replacing the supremum in v by a square sum it suffices to estimate the
£? norm of

S 5 (X (s

s€Ny 25 <g<25+l NweV k>kv
2.7)

f—l( S V8- afg)

a:a/qER s

<o 8= 0/ Fl6)) D) -
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Since for a fixed 2° < ¢ < 25T the support of xy, is much smaller than
the size of 1/q, and Xk, = XkoXko—1, the last display can be identified
with

S0 5 (S ()7

sENg 25<ge2stl Spey N2V
2.8)

(X X vt s-ale-m)

meZ 1<a<q

(06 = ala - m) o (5)) D>/

where f, , is defined via
FonB =" Y Xne-r(v-B—b/g—m)F(B).
meZb<q:(b,q)=1

The advantage of (2.8) is that the sum runs over a < ¢ rather than only
coprime elements, which brings in additional cancellation.

To bound (2.8) we first sum the corresponding multiplier over a < g.
For fixed k, g, and v we consider

(2.9) f-l( S (0 a/q)ﬁ?(ﬂ))

with ¢g ke = D ez Ve(- — M) X (- — m). By Fourier inversion on ¢y x,
we have

(2.10) Z Pk (V- B—a/q) = Z Z ko) (n)e(—v-Bn)e(na/q).

1<a<q 1<a<gn€ezZ

Using

q, m = qj for some j € Z,
Y elna/q) = .

150%q 0, otherwise,

and splitting the sum in n in (2.10) into the cases depending on whether
n is divisible by ¢ or not, we see that (2.10) equals

4y F b (a)e(—v - Bja)-
JEZL

Therefore, (2.9) can be written as

F Prkoa(@v - B) Fan(B) = D fa(® = 1(qu)) b, (),

nez

where we have defined ¢y k.4 via F 1k ko q(n) = ¢F g ko (qn).
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Next we would like to bound these operators for each fixed ¢ and v.
For this we first show that the multipliers {¢x k,.q}k>1 are bounded
uniformly in k& and ¢g. This follows from

Ok koual < NF Drkoallerzy = 1aF " (Vixie) (@) |2 (n)
and the right-hand side is further dominated by

q27 max(k,ko) ” (27 max(k,ko)qn)*?) ||€1(”)

5 q2- max(k,ko) /(1 + |27 max(k,ko)qt|)72 dt /S 1.
R
Using boundedness of the continuous Hardy—-Littlewood maximal oper-

ator and Bourgain’s transference from Lemma 5 applied to the corre-
sponding multipliers in [—1/2,1/2) we obtain for a function g on Z

HS%P \F (k0,0 (BB 22y S Nlgllezz)-
By Lemma 6 stated and proven in Appendix A, we transfer this result

to directional averages on Z2? and obtain uniform boundedness in v of
the convolution operator

S Fao@ = 1(qV)) F~ Groq ()

ne”Z

sup S fgwllezzz).-

£2(22)

Returning to expression (2.7), we see that we have reduced the prob-
lem to estimating

1/2
(2.11) o2y (ZIfq,vaz(zz)) :

s€Np 28 <g<2stl eV

Now we split the sum in s in three regions. If s <elog N, we use Plan-
cherel’s theorem, which leaves us with having to bound

1/2
)DRELIED DINNET S 0 DECINSNNN() I et

s<elog N 25 <g<2st! 1812472 \yev

Using the incidence estimate from Lemma 4 applied to the quantity in
the bracket and the trivial estimates for the sum in ¢ and s we obtain a
bound of the last display by

Se N fllezz2),

where C' is an absolute constant. We remark that since the maximal
operator is not sensitive to modulations of the function f, in this case
one could alternatively pass to the spatial side to obtain IN¢ copies of
the problem for s = 0, to which one then applies the incidence estimate.
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dominates (2.11) by
1/2
S 2o S S llben)
which is further bounded by
1/2
(2.12) Z 9s(6-1/2) sup ( Z Z lgs ﬂ) |flle2(z2)-

If s>elog N, we first apply the Cauchy—Schwarz inequality in ¢q. This
s>elog N 25 <{g<2stlveV
s>elog N |B|1=A—2 25 <g<2s+tl vEV

Here K| ; , is defined analogously to K s, but only reduced rationals

are con81dered, ie.

K., ,={BeT? 8| = A 2:|v-B-b/g—m|<2 "
for some b < ¢, (b,q) =1, m € Z}.

If elog N < s < e !log N, we use the incidence estimate in Lemma 4
and sum a geometric series in s to obtain a bound of (2.12) by

Se NI flle2(z2)-
Finally, if e 'log N < s, we use the fact that for a fixed v one has
> Ik =T
9s<ge2stl
Therefore, we may estimate (2.12) by
N2\ flee Y, 207V SN fllees).
s>e"llog N
This finishes the proof for the high frequency term.
2.2. Low frequency term Ly f;. First we consider the case e "'log N <

s. Performing the analogous steps from (2.6) to (2.11) we see that we
have reduced the problem to estimating

_ 1/2
(213 S0 S (Sl )

s€Ng 25 <g<2stl NweV
where

Fe® =3 S xua(v-B—blg—m)fi(H).

meZb<q:(b,q)=1
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By the Cauchy—Schwarz inequality in ¢ and Plancherel’s theorem we
bound (2.13) by

1/2
> 2o s (5 S ) e,

s>ellog N [B]|<A—2 25 <g<2s+l veV
where
Ky . ={Bl<A?:|v-B—b/g—m| <27
for some b < q, (b,q) =1, m € Z}.

Therefore, we may estimate (2.13) by

Niflle@y D, 220772 SN fllee).
s>e"llog N

It remains to consider the case s < e !log N. By the lower bound on
the totient function (2.1), it suffices to bound the £2(Z?) norm of

Z 25(0-1) sup sup ]:_1( Z Z Vie(v-B—a/q)

-1 veV k>ky s s+1 g
(214) s<e~llog N 25<g<2 a:a/qER s

o~

<0 8= a/)TATD)) |

Assuming A is larger than N100/¢ it follows that for a fixed s < ¢! log N,
the ball of radius A=2 in the torus intersects the support of Vi (v - 3 —
a/q) Xk, (v-B—a/q) for at most four different values of a/q € R,. Indeed,
this observation follows from the fact that the spacing between tubes is
much larger than A~2. We may thus conclude that the multiplier corre-
sponding to (2.14) for a fixed s, i.e.

(X % nes-eaus-a)io)

25<q<25t! a:a/qER

is bounded uniformly in k£ and v. We would now like to apply Lemma 5
to each term in (2.14) with s fixed. The hypothesis (2.5) is then satisfied
with B = N€ and the Euclidean maximal operator M given by the
Euclidean directional maximal function, which satisfies the bound by [6].
Hence Lemma 5 implies that the ¢2(Z?) norm of (2.14) is bounded by

Se N\ fllezz2),

as desired. This finishes the proof.
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Appendix A. Transference argument

Lemma 6. Assume that {¢y}rez is a sequence of functions on T such
that there is a constant B such that, for any function f on Z, one has

(A1) IISlép IF o) @)llezzy < Bl flleey-

Then there is a constant C such that, for any function f on Z* and
any 0 # v € Z2, one has

(A.2) IISI;p I k() )@l @2y < OBl Fllzze)-

Proof: Passing to the spatial side, on the left-hand side of (A.2) we have
the norm of

| 37 ) Fou )|

ne”Z

U {z+nv: nEZ}—ULy,

TE€Z?
where L, are disjoint collections of points 1ndexed by conjugacy classes
of {y + nv} (i.e. we identify two lines that overlap). Observe that

T(f1r,)=1.,T(f1L,),

so by sublinearity we may estimate

Tf= T(Z f1Ly> < Z 1., T(f1L,).
Y

Y

Write

Upon taking ¢? norms and by disjointness of the lines L, we have that

TS g2y < DML, T(f 1, )l ze)
Y

=22

Yy x€Ly

(A.3) 9
Zf x —nv)F tor(n)

ne”Z

sup

For a fixed y € Z? define a function g, on Z?* by setting
f(y—av) ifzzy—(a,O),aEZ,
gy(2) = .
0 otherwise.

Every x € L, can be written as z = y — nv for some n’ € Z. Then, for
a fixed y, the right-hand side of (A.3) equals (writing ¥y = (y1,y2))

Z Z |gy n,7y2>|27

n'€Z n' €%

sup

Zgy yr —n—n',y2) Flp(n

neZ
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where we have used inequality (A.1) on the one-dimensional func-
tion gy (-, y2). Summing in y we obtain for the last display

Do gyl =) P =" Y [y —n'v)f

Yy n'€Z Yy n'€Z
= > @) = 11£122),
T€Z2
which is the desired estimate. O

Appendix B. Proof of Lemma 4

In this section we provide a short summary of the proof of Lemma 4.
This lemma originated in [2]. For more details we refer the reader to [2].

To prove Lemma 4 it suffices to choose a collection of vectors V=
{v1,v2,...,un} contained in the annulus {z € R? : 75 < |#| < 100}, so
that, for

~ 1
= C 2. A< |zl <
V =AV C {xEZ 100A7 || IOOA}7

the following holds. For any subcollection S C V with |S| = N€ and any
choice of integers {r,}yes with 2% < r, < 2571 no point is contained in

ﬂ KT@,S,'U'
Ty VES
Here we have defined

KT,S,U—{ﬁeAqr? g > AT

b
7_}/8‘ g 27C18 for some b f, AT’,ng}
r

for 2 < r < 2%F1. Note that we have restricted to b < Ar due to
periodicity. Recall that C; = C1(A) is a large constant, and so the
thickness of the tubes is very small comparable to their spacing.

Let M be a sufficiently large integer which will be determined later.
Denote by Py the smallest N¢/2 primes in [N /¢, 10NM/<]. By Stirling’s
approximation we can find an integer £ ~ 2¢~! with

€/2
(%)~
K

By adjusting our choice of k and replacing € by a suitable approximate
we may assume that N*/¢ is an integer. We define V = {vy,...,vn}
component-wise by setting, for 1 <7 < N,

i)z =m; Qi N~M*/ < pipiy - i,
(Vi)y =i Qs N™M5/€p i - pi

with the following constraints.
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For all ¢, we have 1/4 < n;/m; < 1/2 with n;, m; > 0.

For all i, we have (m;,n;) € {z € Z? : {5;N? < |z| < 10N?}.

For all i # j, we have (m;,n;)* - (mj,n;) # 0.

For all 1 <j,5" <&, j # j', we have p;, # Diy-

No two v; have the exact same collection of correspondmg primes
{Piys Digs - - apzﬁ}-

e Each Q; is a dyadic number with 27100*N =2 < @, < 2100 N =2,
chosen so that 5 < |v;| < 10.

Note that for any A 2 N 2Mr/€ o can find A which is an integer multiple

of
NMr/e H Q!
Q<1
such that A < A < 10A. Then the rescaled vectors Av; are integers
and satlsfy 100A < A\v2| < 100A.

Next we show that the above defined set of vectors yields the con-
clusion from Lemma 4. By construction, the angle between any two dis-
tinct vectors in V is at least > 1/N?. Therefore, taking Cy sufficiently
large, the intersection of any two sets KT1 s,op N Kr2 s, Delongs to an
N—C1/2_peighborhood of a grid, which is a lattice with generators par-
allel to v{- and vy . The z-coordinates of all points in this grid belong
to an O(N ~“1/2)-neighborhood of the rank 2 arithmetic progression

1] a b
(B1) oot va)| {2 0)e 4 0 )wsabez 0 S an g a2,

1 2
Therefore, (f(,.hs,vl ﬁf(,«z,swz)x is contained in an O(N~1/2) neighbor-
hood of (B.1), and we obtain an analogous result for (K, v, NKr, 5.0,)y-
Suppose now that we are given S C V with |S| = N€. By Stirling’s

. . . 2
approximation we may choose an integer K ~ N¢ /2 such that

(K> ~ N€/2.
K

Lemma 7. For any S C V with |S| = N€, one may choose at least
K distinct primes p1,pa, ..., px € Py so that the following holds. There

exist disjoint sub-collections S1,...,Sk of S, each of cardinality 2, so
that if S; = {vj,,v,,}, both
(B.2) (0,)y NMQ 1 and (vg,), NM*/ Q!

are divisible by p; for some j < K, but there exists Sy, k # j, such that
the corresponding two factors (B.2) are not divisible by p;.
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The sets S; from Lemma 7 are defined inductively as follows. If j < K,
we take S; to be any two elements not contained in Uj,<j S, such that
the associated terms (B.2) are divisible by some p; ¢ {p1,...,p;-1},
where p1, ..., pj—1 have been chosen in the previous steps of the inductive
process. That there are enough primes to make this possible follows by
a counting argument.

Given Sy, ..., Sk from the lemma, let us denote

K; = (K

Tj1,5,V5;

e 2
N Krnvsv”jz )I’ ’Cg : = {az HIOAS ch}’

where vj,, v;, are the two distinct elements of S;, and 2° < rj,,r;, <
25t1 By Lemma 7, if C; > 100Mk/€3, we have

o[l 74w, 03 ) [N g, Ky 92+ O(N=1),

The lower bound on C; guarantees that the error term does not increase
much in size. Taking N1 > A% and squaring both sides we obtain

_ _ e 9 _c,
||Uj1H 2||Uj2|| 2‘<’UjL1,Uj2>|2N2MK/ szlri KE)QPJZ-FO(N 0/5).

Since mj,, nj,, mj,, nj, are integers of size approximately N2, choosing
(1 is large enough and expanding out the scaling factor on the left-hand
side further yields
M 2 _c
|mj,nj, — n]lmh|N2 r/e rflrh IC( ) Cp;Z+ O(N 1/6).

But then it follows that for K’ < C7/1000 one has

K’ K’ -1 , K’

2 K/€
N KkP c <N2M r T Lmging, = njmy, |7, }9) (HPJ)Z
j=1 =

j=1
+ON=/),
where p1,...,pk are the distinct primes from Lemma 7. We estimate
K
N2Mr/e H(‘mjanQ nhmh‘rh h) < N2M/e*+C1/100¢
j=1

Since Hfil P 2 NC1M/(1000¢) “for M sufficiently large depending on e
we obtain

K’ _
KNgMn/eI_I(mth2 nhm]2| 5T ) (Hpj> Z\{O})’ > NC1/100,

j=1
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But NC1/100 > 910 42 if (', is sufficiently large. Since each of the sets IC§2)
is a subset of [~100042%,1000A2], it follows that

K/
ﬂ /ng) - [_N*C1/77N*01/7].
j=1

Performing a symmetric argument in the z coordinate we obtain
K/

m(f(mvsﬂ)jl N I?rjl,s,ng) C By-c114(0),
j=1

where Br(0) denotes the ball of radius R about the origin. But for C}
sufficiently large, we have By-c,/14(0) € B4-1(0). By definition any
set IN(T’S,U has empty intersection with B4-1(0), so this completes the
proof of Lemma 4.
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