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1. Introduction

In the early 1920’s, in the seminal article [15], G. H. Hardy obtained
inequalities of the form

(1.1)

∫ ∞
0

|u(x)|p

xp
dx ≤

(
p

p− 1

)p ∫ ∞
0

|u′(x)|p dx,

where p>1 and u is a nonnegative measurable function defined on (0,∞).
Throughout the decades that followed, many authors contributed to

characterize the family of weights v, w and powers p, q for which in-
equalities of the type(∫ ∞

0

|u(x)|pv(x) dx

) 1
p

≤ CH

(∫ ∞
0

|u′(x)|qw(x) dx

) 1
q

are valid for a suitable positive constant CH independent of u. See for
instance the pioneering works [7, 30, 31]. We also refer to the seminal
books [22, 26].

Orlicz spaces play a fundamental role when describing phenomena
with non-standard growth. See [19, 21, 28]. Generalizations of Hardy
type inequalities to the Orlicz space structure provide for a family of
inequalities admitting behaviors more general than powers. In recent
years many authors have undertaken the task of characterizing the class
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of admissible weights v, w, a, b and Young functions P , Q for which an
inequality as follows is valid:

Q−1

(∫ ∞
0

Q(a(x)|Tu(x)|)v(x) dx

)
≤ CHP

−1

(∫ ∞
0

P (b(x)|u(x)|)w(x) dx

)
,

where Tu(x) =
∫ x

0
K(x, y)u(y) dy is the generalized Hardy operator and

CH is a positive constant independent of u. For more details we refer
to [4, 6, 16, 23] and references therein. In contrast with the Lp case,
Hardy inequalities in integral form may differ from norm inequalities.
See [4, 8].

Nonlocal Hardy inequalities have been a subject of study in recent
years. The nonlocal counterpart of (1.1), for suitable values of p > 1
and s ∈ (0, 1), takes the form∫ ∞

0

|u(x)|p

xsp
dx ≤ CH

∫ ∞
0

∫ ∞
0

|u(x)− u(y)|p

|x− y|1+sp
dx dy

for functions in an appropriate Sobolev space. Hardy inequalities for the
fractional p-Laplacian date back to the early 1960’s and were derived
independently in [14] and [18]. For the case p = 2 see also [1, 3]. See
also [20] for a different approach.

To our knowledge, the only research to have been done on Hardy
inequalities in a nonlocal framework with nonstandard growth is [2], for
values of s ∈ (0, 1) close to 0. See also [24]. Therefore, the main scope of
this paper is to study the validity of these inequalities in the fractional
order Orlicz–Sobolev spaces introduced in [2, 12], in both integral and
norm form for large values of s ∈ (0, 1), that is, when s > 1/p−, where
p− > 1 is a fixed constant.

In order to state our results, recall that a Young function G is a
continuous, nonnegative, strictly increasing, and convex function on
R+ := [0,∞) (see Section 2), for which we assume the growth condi-
tion

(L) 1 < p− ≤ tg(t)
G(t) ≤ p

+ <∞ for all t > 0

for fixed constants p±, where g = G′. Given a Young function G, we
define

LG(R+) := {u : R+ → R measurable : ΦG(u) <∞}.
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The modular and the Luxemburg norm of u ∈ LG(R+), respectively, are
defined as

ΦG(u) =

∫ ∞
0

G(|u(x)|) dx and ‖u‖G := inf
{
λ > 0: ΦG

(u
λ

)
≤ 1
}
.

Given s∈(0, 1), we define the fractional Orlicz–Sobolev space as (see [12])

W s,G(R+) :=
{
u ∈ LG(R+) such that Φs,G(u) <∞

}
.

Here the fractional modular of u ∈W s,G(R+) is defined as

Φs,G(u) :=

∫ ∞
0

∫ ∞
0

G

(
|u(x)− u(y)|
|x− y|s

)
dx dy

|x− y|
.

These spaces are endowed with the so-called Luxemburg norm, defined
as

‖u‖s,G := ‖u‖G + [u]s,G,

where the (s,G)-Gagliardo semi-norm reads as

[u]s,G := inf
{
λ > 0: Φs,G

(u
λ

)
≤ 1
}
.

We now describe our results. As we will see, the proof of our nonlocal
modular inequality is based on an astute application of the following
modular Hardy inequality for the local Orlicz–Sobolev space W 1,G(R+)
(see Lemma 3.4 for details):

(1.2)

∫ ∞
0

G

(∣∣∣∣ 1

xs

∫ x

0

u(t)

t
dt

∣∣∣∣) dx ≤ CH

∫ ∞
0

G

(
|u(x)|
xs

)
dx.

Following [5], inequality (1.2) can be obtained from the local norm in-
equalities studied in [25, 27].

Finally, for simplicity in our notation, given a Young function G sat-
isfying (L) we define the functions

(1.3) ψG(x) =

{
xp

+

if x ≥ 1,

xp
−

if x < 1,
and φG(x) =

{
x1/p− if x ≥ 1,

x1/p+ if x < 1.

With these preliminaries, our first result reads as follows.

Theorem 1.1. Let G be a Young function satisfying (L) and let s ∈
(0, 1) be such that sp− > 1. Then for all u ∈ W s,G(R+) such that
limx→0

1
x

∫ x
0
u(x) dx = u0, the following inequality holds:∫ ∞

0

G

(
|u(x)− u(x0)|

xs

)
dx ≤ CHΦs,G(u), CH := C(1 + CH),

where CH is given in (1.2) and C := 2p+ is the doubling constant for G.
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Remark 1.2. The constant CH in Theorem 1.1 can be computed explic-
itly as

CH = C(1 + CH) = 2p
+

(
1 + ψG

(
p−

sp− − 1

))
.

Remark 1.3. Observe that u ∈ W s,G(R+) is in fact continuous in a
neighborhood O of the origin when sp− > 1 due to the embedding

of W s,G(O) into the space C0,s−1/p−(O) of Hölder continuous functions
(see Proposition 2.2).

From the modular inequality it is easy to deduce a norm inequality.

Corollary 1.4. With the same assumptions of Theorem 1.1,∥∥∥∥u− u0

xs

∥∥∥∥
G

≤ φG(CH)[u]s,G,

where φG is given in (1.3) and CH is the constant given in Theorem 1.1.

From Theorem 1.1 and Remark 1.3 the following consequence can
easily be deduced.

Corollary 1.5. Let G be a Young function satisfying (L) and let s ∈
(0, 1) be such that sp− > 1. Then for all u ∈W s,G(R+) such that u(0) =
0 it holds that∫ ∞

0

G

(
|u(x)|
xs

)
dx ≤ CHΦs,G(u),

∥∥∥ u
xs

∥∥∥
G
≤ φG(CH)[u]s,G,

where φG is given in (1.3) and CH is the constant given in Theorem 1.1.

Although a norm inequality can be deduced from Theorem 1.1, it can
also be obtained independently of the modular inequality. In fact, the
following result provides for a more accurate constant.

Theorem 1.6. Let G be a Young function satisfying (L) and let s ∈
(0, 1) be such that sp− > 1. Then∥∥∥ u

xs

∥∥∥
G
≤ (1 + s)p− − 1

sp− − 1
[u]s,G

for all u ∈W s,G(R+).

Sharpness of the Hardy constant is known both in the local and non-
local case when G is a power; see [13, 17] for instance. However, in the
Orlicz setting it is unknown even in the local case.
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2. Preliminary results

2.1. Young functions. A Young function is an applicationG : R+→R+

which is continuous, nonnegative, strictly increasing, convex on [0,∞),

and admits the integral formulation G(t) =
∫ t

0
g(s) ds. For some fixed

constants p± we assume that G satisfies the growth condition (L).

The complementary Young function G̃ of a Young function G is de-
fined as

G̃(t) = sup{tw −G(w) : w > 0}.
We introduce some well-known results on Young functions. See [21,

28] for details.

Lemma 2.1. Let G be a Young function satisfying (L) and a, t ≥ 0.
Then

min{ap
−
, ap

+

}G(t) ≤ G(at) ≤ max{ap
−
, ap

+

}G(t),(G1)

G(a+ t) ≤ C(G(a) +G(t)) with C := 2p
+

.(G2)

Condition (G2) is known as the ∆2 condition or doubling condition.

It can be proved that (L) implies that both G and G̃ satisfy (G2). See
[21, Theorem 3.4.4 and Theorem 3.13.9].

Young functions include for instance powers (when g(t) = tp−1, p± =

p > 1, and hence G(t) = tp

p ) and logarithmic perturbations of powers

(when g(t) = t log(b + ct), where p− = 1 + a, p+ = 2 + a). See [21] for
more examples.

2.2. Fractional Orlicz–Sobolev spaces. Given a Young function G,
a fractional parameter s ∈ (0, 1), and an open interval Ω ⊆ R, we have
already defined the fractional Orlicz–Sobolev space W s,G(Ω) in the in-
troduction. We also define the following related space:

W s,G
0 (Ω) := {u ∈W s,G(R) : u = 0 a.e. in R \ Ω},

which coincides with the closure of C∞c functions with respect to the
‖ · ‖s,G norm, and is the natural space for the well-posedness of Dirichlet
problems.

For a further generalization of these spaces we refer to [9].
The following result characterizes continuous functions in fractional

Orlicz–Sobolev spaces.

Proposition 2.2. Let G be a Young function satisfying (L) and let
s∈ (0, 1) be such that sp− > 1. Then, given an open and bounded inter-

val Ω ⊂ R, it holds that W s,G(Ω) ⊂ C0,s−1/p−(Ω).
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Proof: From [11, Proposition 2.9 and Proposition 2.7], for any u ∈
W s,G(Ω) we get

[u]
W s,p−

reg (Ω)
+ ‖u‖Lp− (Ω) ≤ C([u]W s,G(Ω) + ‖u‖LG(Ω)),

where

[u]
W s,p−

reg (Ω)
=

(∫∫
Ω×Ω

|u(x)− u(y)|p−

|x− y|n+sp−
dx dy

) 1
p

.

Moreover, by [10, Theorem 8.2], ‖u‖C0,s−1/p− (Ω) ≤ C([u]
W s,p−

reg (Ω)
+

‖u‖Lp− (Ω)) and the result follows.

3. One-dimensional Hardy inequalities

In this section we prove our main results. First, following [5], we link
norm inequalities for linear operators with integral inequalities.

Proposition 3.1. Let G be a Young function satisfying (L). Suppose
that the inequality ‖Tu‖εG ≤ C‖u‖εG holds for all ε > 0 with C inde-

pendent of ε, where ‖u‖εG = inf
{
λ :
∫∞

0
G
( |u(x)|

λ

)
ε dx ≤ 1

}
and T is a

linear operator. Then it holds that∫ ∞
0

G(|Tu(x)|) dx ≤
∫ ∞

0

G(C|u(x)|) dx.

Proof: Given u ∈ LG(R+), define the number ε =
(∫∞

0
G(|u|) dx

)−1
and

observe that ‖u‖εG ≤ 1. Therefore, ‖Tu‖εG ≤ C‖u‖εG ≤ C, and then,
by definition of the Luxemburg norm we get∫ ∞

0

G

(
|Tu|
C

)
dx ≤ 1

ε

∫ ∞
0

G

(
|Tu|
‖Tu‖εG

)
ε dx ≤ 1

ε
=

∫ ∞
0

G(|u|) dx.

Finally, since T is linear, replacing u with Cu the result follows.

In order to apply Proposition 3.1 we use the following inequality due
to [27] (cf. also [25, Corollary 4]).

Proposition 3.2. Given I = (0, `), 0 < ` ≤ ∞, if θ ∈ R is such that
θ < 1/(p−)′, then, for xθu(x) ∈ LG(I),∥∥∥∥xθ−1

∫ x

0

u(t) dt

∥∥∥∥
LG(I)

≤ (p−)′

1− θ(p−)′
‖xθu(x)‖LG(I),

where (p−)′ is the conjugated exponent of p−.
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Corollary 3.3. Given I = (0, `), 0 < ` ≤ ∞, and s ∈ (0, 1),

(i) if θ = 1− s and x1−su(x) ∈ LG(I), for sp− > 1 it holds that

(3.1)

∥∥∥∥ 1

xs

∫ x

0

u(t) dt

∥∥∥∥
LG(I)

≤ p−

sp− − 1
‖x1−su(x)‖LG(I),

(ii) if θ = −s and x−su(x) ∈ LG(I), for (1 + s)p− > 1 it holds that

(3.2)

∥∥∥∥ 1

x1+s

∫ x

0

u(t) dt

∥∥∥∥
LG(I)

≤ p−

(1 + s)p− − 1
‖x−su(x)‖LG(I).

We now prove a key lemma for our arguments.

Lemma 3.4. Let G be a Young function satisfying (L) and let s ∈ (0, 1)
be such that sp− > 1. Given u such that x−su(x) ∈ LG(R+), then we
have that

(3.3)

∫ ∞
0

G

(∣∣∣∣ 1

xs

∫ x

0

u(t)

t
dt

∣∣∣∣) dx ≤ CH

∫ ∞
0

G

(
|u(x)|
xs

)
dx.

The constant CH is given by CH = ψG
(

p−

sp−−1

)
, where ψG is given

in (1.3).

Proof: Given G satisfying (L), we define the Young function Gε := εG
for some ε > 0. It is immediate that Gε satisfies (L) with the same
constants as G.

Let u be a fixed function such that x−su(x) ∈ LG(R+), then also
x−su(x)∈LεG(R+). Hence, by applying (3.1) in Corollary 3.3 to x−1u(x)
we find that

(3.4)

∥∥∥∥ 1

xs

∫ x

0

u(t)

t
dt

∥∥∥∥
Gε

≤ p−

sp− − 1

∥∥∥ u
xs

∥∥∥
Gε

∀ε > 0.

Since (3.4) holds with constant independent of ε, from Proposition 3.1
we get that∫ ∞

0

G

(∣∣∣∣ 1

xs

∫ x

0

u(t)

t
dt

∣∣∣∣) dx ≤ ∫ ∞
0

G

(
p−

sp− − 1

|u(x)|
xs

)
dx

and the result follows by using condition (G1).

We are ready to prove our main result.

Proof of Theorem 1.1: We assume without loss of generality that

lim
x→0

1

x

∫ x

0

u(x) dx = 0.

Then, the general case will follow by applying Theorem 1.1 to u− u0.
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Given u ∈W s,G(R+) we consider the auxiliary function

v(x) = u(x)− 1

x

∫ x

0

u(t) dt.

For 0 < a < b < ∞, using integration by parts it is straightforward to
see that∫ b

a

v(x)

x
dx =

∫ b

a

u(x)

x
dx−

∫ b

a

1

x2

∫ x

0

u(s) ds dx

=

∫ b

a

u(x)

x
dx+

1

x

∫ x

0

u(s) ds
∣∣∣b
a
−
∫ b

a

u(x)

x
dx

=
1

b

∫ b

0

u(x) dx− 1

a

∫ a

0

u(x) dx.

Taking b = t and a → 0 in the last expression we get
∫ t

0
v(x)
x dx =

1
t

∫ t
0
u(x) dx, and

(3.5) u(x) = v(x) +

∫ x

0

v(t)

t
dt.

We now prove that x−sv(x) ∈ LG(R+). Indeed, by definition of v we
have that∫ ∞

0

G

(
|v(x)|
xs

)
dx =

∫ ∞
0

G

( |u(x)− 1
x

∫ x
0
u(t) dt|

xs

)
dx.

Now, by using Jensen’s inequality we get∫ ∞
0

G

( |u(x)− 1
x

∫ x
0
u(t) dt|

xs

)
dx ≤

∫ ∞
0

G

(
1

x

∫ x

0

|u(x)− u(t)|
xs

dt

)
dx

≤
∫ ∞

0

1

x

∫ x

0

G

(
|u(x)− u(t)|

xs

)
dt dx,

and the last term in the inequality above can be bounded as∫ ∞
0

1

x

∫ x

0

G

(
|u(x)− u(t)|

xs

)
dt dx ≤

∫ ∞
0

∫ x

0

G

(
|u(x)− u(y)|
|x− y|s

)
dy dx

|x− y|

≤
∫ ∞

0

∫ ∞
0

G

(
|u(x)− u(y)|
|x− y|s

)
dy dx

|x− y|
.

Since x−sv(x) ∈ LG(R+), we are in a position to apply Lemma 3.4
to v, obtaining

(3.6)

∫ ∞
0

G

(∣∣∣∣ 1

xs

∫ x

0

v(t)

t
dt

∣∣∣∣) dx ≤ CH

∫ ∞
0

G

(
|v(x)|
xs

)
dx.
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Therefore, from (3.5), property (G2), and (3.6), we find that∫ ∞
0

G

(
|u(x)|
xs

)
dx ≤ C

∫ ∞
0

G

(
|v(x)|
xs

)
dx+C

∫ ∞
0

G

(
1

xs

∣∣∣∣∫ x

0

v(t)

t
dt

∣∣∣∣) dx
≤ C(1 + CH)

∫ ∞
0

G

(
|v(x)|
xs

)
dx

≤ C(1 + CH)Φs,G(u),

giving the desired inequality.

As a corollary, we obtain the Hardy inequality for norms stated in
Corollary 1.4.

Proof of Corollary 1.4: We assume without loss of generality that

lim
x→0

1

x

∫ x

0

u(x) dx = 0.

Then, the general case will follow by applying the inequality to u− u0.
By using Theorem 1.1 together with (G1) one gets that ΦG( uxs ) ≤

Φs,G(C̃Hu) for u∈W s,G(R+), where C̃H =max
{
C

1

p−

H ,C
1

p+

H

}
. Then, given

u∈W s,G(R+), from the last expression we find that ΦG(u/C̃H [u]s,Gx
s)≤

Φs,G(u/[u]s,G) ≤ 1. Hence, by definition of the Luxemburg norm we get∥∥∥ u
xs

∥∥∥
G

= inf
{
λ : ΦG

( u

λxs

)
≤ 1
}
≤ C̃H [u]s,G

and the proof concludes.

Now, we provide for the proof of the norm inequality given in Theo-
rem 1.6.

Proof of Theorem 1.6: Given u ∈ W s,G(R+), by using the triangular
inequality for the Luxemburg norm we obtain that∥∥∥ u

xs

∥∥∥
G
≤
∥∥∥∥u− 1

x

∫ x
0
u(y) dy

xs

∥∥∥∥
G

+

∥∥∥∥ 1

x1+s

∫ x

0

u(y) dy

∥∥∥∥
G

:= (i) + (ii).

Let us find a bound for (i). By using Jensen’s inequality we get∫ ∞
0

G

( |u(x)− 1
x

∫ x
0
u(t) dt|

xs

)
dx ≤

∫ ∞
0

G

(
1

x

∫ x

0

|u(x)− u(t)|
xs

dt

)
dx

≤
∫ ∞

0

1

x

∫ x

0

G

(
|u(x)− u(t)|

xs

)
dt dx

≤
∫ ∞

0

∫ x

0

G

(
|u(x)− u(y)|
|x− y|s

)
dy dx

|x− y|

≤ Φs,G(u).
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The inequality above applied to u/[u]s,G gives that∫ ∞
0

G

( |u(x)− 1
x

∫ x
0
u(y) dy|

xs[u]s,G

)
dx ≤ Φs,G

(
u

[u]s,G

)
≤ 1,

from where, from the definition of the Luxemburg norm, we obtain that
(i) is bounded by [u]s,G. Expression (3.2) from Corollary 3.3 gives that

(ii) is less than p−

(1+s)p−−1

∥∥ u
xs

∥∥
G

. From these two relations we get that∥∥∥ u
xs

∥∥∥
G
≤ [u]s,G +

p−

(1 + s)p− − 1

∥∥∥ u
xs

∥∥∥
G
.

Finally, the condition sp− > 1 leads to

CH =

(
1− p−

(1 + s)p− − 1

)−1

=
(1 + s)p− − 1

sp− − 1
> 0

and the desired inequality is obtained.

4. Applications and examples

4.1. Lower bound of Dirichlet eigenvalues. Given a Young func-
tion G satisfying (L) and a fractional parameter s ∈ (0, 1) such that
sp− > 1, consider the eigenvalue problem for the fractional g-Laplacian
operator in an open and bounded interval Ω ⊂ R+ (see [12, 29]):

(4.1)

{
(−∆g)

su = λg(u)u in Ω,

u = 0 in R \ Ω.

This operator is well defined between W s,G(R) and its dual, and acts as

(−∆g)
su(x) := 2p.v.

∫ ∞
−∞

g(|Dsu|)
Dsu

|Dsu|
dy

|x− y|1+s
,

whereDsu(x, y) = u(x)−u(y)
|x−y|s . The following representation formula holds:

〈(−∆g)
su, v〉 =

∫ ∞
−∞

∫ ∞
−∞

g(|Dsu|)
Dsu

|Dsu|
Dsv

dxdy

|x− y|
∀v ∈W s,G(R).

The natural space for solutions of (4.1) is W s,G
0 (Ω), i.e., functions in

W s,G(R) such that u = 0 in R \ Ω.
Due to the possible lack of homogeneity of the problem, eigenpairs

depend strongly on the normalization: for each α > 0, uα ∈ Xα :=

{W s,G
0 (Ω) : ΦG(u) = α} is an eigenfunction of (4.1) with eigenvalue λα

if it holds that

〈(−∆g)
suα, v〉 = λα

∫
Ω

g(uα)uα
uα
|uα|

v dx ∀v ∈W s,G
0 (Ω).
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On the other hand, for each α > 0 we define the minimizer (see [11,
Theorem 2.12])

(4.2) Λα := inf{Φs,G(u)/ΦG(u) : u ∈ Xα}.

In [29] it is proved that for each α > 0 the infimum in (4.2) is attained
for some function uα ∈ Xα, and then, by a Lagrange multiplier argu-
ment, the existence of an eigenvalue λα of (4.1) with eigenfunction uα is
deduced. However, in contrast with the case of powers, in general λα does
not admit a variational characterization and λα 6= Λα. Both constants

are comparable with each other. Indeed, p−

p+ Λα ≤ λα ≤ p+

p− Λα.

Using Lemma 2.1 it is easy to see that for any function u ∈ Xα it
holds that∫

Ω

G(|u|) dx≤
∫

Ω

G

(
|u(x)|
xs

diam(Ω)

)
dx≤ψG(diam(Ω))

∫
Ω

G

(
|u(x)|
xs

)
dx,

where ψG is given in (1.3). Hence, from Theorem 1.1 we get that

(ψG(diam(Ω))CH)−1 ≤ Λα ≤
p+

p−
λα.

4.2. Lower bound of weighted eigenvalues. With the same ideas
of [29], we can consider eigenvalues λα and minimizers Λα of the weighted
problem

(4.3)

{
(−∆g)

su = λ
|x|s g

( |u|
xs

)
u
|u| in Ω,

u = 0 in R \ Ω,

where Ω ⊂ R+ is an open and bounded interval. Given α > 0, a
number λα is an eigenvalue of (4.3) with eigenfunction uα ∈ Xα :={
W s,G

0 (Ω) :
∫

Ω
G
( |u(x)|

xs

)
dx = α

}
if it holds that

〈(−∆g)
suα, v〉 = λα

∫
Ω

g

(
|uα(x)|
|x|s

)
uα(x)

|uα(x)|
v(x)

xs
dx ∀v ∈W s,G

0 (Ω).

We also define the number Λα :=inf
{

Φs,G(u)/
∫

Ω
G
( |u(x)|

xs

)
dx : u ∈ Xα

}
.

We have again in this case that p−

p+ Λα ≤ λα ≤ p+

p− Λα. As a direct

consequence of Theorem 1.1 we get 1
CH
≤ Λα ≤ p+

p−λα.
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