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Abstract: The regular subgroup determining an induced Hopf Galois structure for a
Galois extension L/K is obtained as the direct product of the corresponding regular

groups of the inducing subextensions. We describe here the associated Hopf algebra

and Hopf action of an induced structure and we prove that they are obtained by
tensoring the corresponding inducing objects. In order to deal with their associated

orders we develop a general method to compute bases and free generators in terms

of matrices coming from representation theory of Hopf modules. In the case of an
induced Hopf Galois structure this allows us to decompose the associated order,

assuming that inducing subextensions are arithmetically disjoint.
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1. Introduction

A finite extension of fields L/K is said to be Hopf Galois if there is
a K-Hopf algebra H and a K-linear action of H in L which endows L
with an H-module structure H → EndK(L), such that the induced map
j : L⊗KH → EndK(L) is bijective. In that case, the pair formed by the
Hopf algebra and the Hopf action is said to be a Hopf Galois structure
of L/K. For simplicity, we may say that L/K is H-Galois. This notion
was introduced by Chase and Sweedler in their book [5] and it generalizes
the notion of Galois extension of fields since the group algebra of the
Galois group together with the Galois action on L provides a Hopf Galois
structure.

Although Hopf Galois structures are difficult to compute in general,
the ones of separable extensions can be labeled by objects of group theory
thanks to a theorem of Greither and Pareigis. This result was introduced

in their paper [11]. If L/K is a separable extension, let L̃ be its normal

closure, G = Gal(L̃/K), G′ = Gal(L̃/L), and X = G/G′. Let λ : G →
Perm(X) be the left translation map, namely the embedding given by
the group action of G on X by left translation.
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Theorem 1.1 (Greither–Pareigis). Hopf Galois structures of L/K are
in one-to-one correspondence with regular (i.e., simply transitive) sub-
groups of Perm(X) normalized by λ(G). Moreover, if N is some such
subgroup, the corresponding Hopf Galois structure is given by the K-Hopf

algebra L̃[N ]G and its action on L defined by( r∑
i=1

cini

)
· x =

r∑
i=1

cin
−1
i (1G)(x).

See [6, Theorem 6.8].
If a Hopf Galois structure corresponds to a group N , its type is defined

as the isomorphism class of N .
Hopf Galois theory can be used to generalize Galois module theory,

giving rise to a Hopf Galois module theory. In the approach introduced
by Leopoldt, Galois module theory studies the structure of the valuation
ring OL of a Galois extension L/K of local fields over its associated
order AK[G], defined as the maximal OK-order in K[G] that acts on OL.
If L/K is H-Galois, the associated order of OL in H is defined as

AH = {α ∈ H | α · x ∈ OL for every x ∈ OL}.
In the context of the existence of a normal integral basis it is interesting
to determine the freeness of OL as AH -module as H runs through the
different Hopf Galois structures of L/K.

In this paper we consider Hopf Galois structures of a semidirect ex-
tension L/K of fields, that is, a Galois extension whose Galois group G
is a semidirect product. We will write G = J o G′ with J a normal
subgroup of G and E = LG

′
, F = LJ , and we will focus on induced

Hopf Galois structures. These are structures built from a Hopf Galois
structure on E/K and a Hopf Galois structure on L/E. This notion was
introduced by Crespo, Rio, and Vela in their paper [10]. The type of
an induced Hopf Galois structure is the direct product of the types of
the corresponding Hopf Galois structures of L/E and E/K. As a con-
sequence, the regular subgroup N which determines such a Hopf Galois
structure is a direct product N = N1 ×N2.

Our first results show that certain properties are directly related to
the type, since we have a complete analogy with the situation of classical
Galois extensions whose Galois group is a direct product of subgroups.
For such extensions we can use standard Galois theory to prove the
following:

Proposition 1.2. Let L/K be a finite Galois extension with Galois
group G and assume that G can be written as a direct product G = J×G′.
Let E = LG

′
and F = LJ . Then:



Induced Hopf Galois and Local Modules 101

(i) E/K and F/K are Galois extensions.
(ii) L = EF and E ∩ F = K.
(iii) E/K and F/K are linearly disjoint, namely the canonical map

E ⊗K F → EF is a K-isomorphism.
(iv) K[G] = K[J ]⊗K K[G′].
(v) The Galois action of K[G] on L is the Kronecker product of the

Galois actions of K[J ] on E and K[G′] on F .

In the setting of Hopf Galois theory, Proposition 1.2 gives information
about the classical Galois structure of L/K. We shall check that induced
Hopf Galois structures of Galois extensions L/K with Galois group of
the form G = J oG′ present a similar behaviour.

We note that the condition that G′ has a normal complement J is
equivalent to the condition (from [11]) that E/K is an almost classical
Hopf Galois extension. On the other hand, L/E is Galois and therefore
Hopf Galois. By [10, Theorem 3], every choice of Hopf Galois structures
of E/K and L/E determines a Hopf Galois structure of L/K. On the
other hand, since J is normal we have that F/K is Galois and hence a
Hopf Galois extension. We shall study in Subsection 5.1 the relationship
between structures of L/E and F/K.

Theorem 1.3. Let L/K be a finite Galois extension with Galois group

G = J oG′. Let E = LG
′

and F = LJ . Then:

(i) E/K and F/K are Hopf Galois extensions.
(ii) L = EF and E ∩ F = K.
(iii) E/K and F/K are linearly disjoint.

Let E/K be H1-Galois and let L/E be H2-Galois. We consider the
corresponding induced Hopf Galois structure of L/K. Let H be its asso-
ciated Hopf algebra. Then:

(iv) H = H1 ⊗K H, where H is the Hopf algebra of the Hopf Galois
structure of F/K such that H ⊗K E = H2 (see Proposition 5.3).

L
H2

HE

H1

F

H

K

(v) The Hopf action of H on L is the Kronecker product of the Hopf
actions of H1 on E and H on F .
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The second and third items are again straightforward by using basic
Galois theory. We shall prove the remaining assertions in Section 5.

In Sections 3 and 4 we deal with the Hopf Galois module structure at
the integer level. In the sequel, K will be the quotient field of a principal
ideal domain OK , L/K will be a finite separable Hopf Galois extension,
andOL will be the integral closure ofOK in L. As in linear representation
theory, we study Hopf actions through matrices and we show how to use
matrices to obtain a basis for the associated order and to check for the
existence of a free generator of OL as module over the associated order.

When we restrict ourselves to induced Hopf Galois structures, we can
ask whether the induced Hopf Galois module structure of OL can be
described from the Hopf Galois module structures of OE and OF . With
regard to the classical Galois module structure of OL when L/K is a
direct extension (i.e., with Galois group isomorphic to a direct product),
Byott and Lettl included in [3] the following:

Proposition 1.4. Let K be the quotient field of a Dedekind domain OK
and let E/K, F/K be finite Galois extensions. Put L = EF and suppose
that E/K and F/K are arithmetically disjoint. Then:

(i) AL/F = AE/K ⊗OK
OF and AL/K = AE/K ⊗OK

AF/K .
(ii) If there exists some γ ∈ OE with OE = AE/K · γ, then OL =

AL/F · (γ ⊗ 1).
If there also exists δ ∈ OF with OF = AF/K · δ, then OL = AL/K ·
(γ ⊗ δ).

See [3, Lemma 5].
Recall that E/K and F/K are said to be arithmetically disjoint

over K if OEF = OE ⊗OK
OF or, equivalently, if their discriminants

are coprime and E is linearly disjoint from F over K. The decompo-
sition turns out to be very useful in order to study the Galois module
structure of OEF in terms of OE and OF .

Going back to the semidirect case, if we keep the condition that E/K
and F/K are arithmetically disjoint, we are able to obtain analogous
results for induced Hopf Galois structures. We will describe the induced
Hopf Galois module structure of OL by considering the corresponding
module structures of OE and OF as follows.

Theorem 1.5. Let K be the quotient field of a principal ideal do-
main OK , L/K a finite separable Hopf Galois extension, and OL the
integral closure of OK in L. Assume that the structure is an induced one
and its Hopf algebra is H = H1⊗K H. If E/K and F/K are arithmeti-
cally disjoint, then the following statements hold:
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(i) AH = AH1
⊗OK

AH .
(ii) If OE is AH1

-free and OF is AH-free, then OL is AH-free. More-
over, an AH-generator of OL is the product of an AH1

-generator
of OE and an AH-generator of OF .

Since E/K and F/K are linearly disjoint, it is well known that for
every Hopf Galois structure H1 of E/K, H1 ⊗K F is a Hopf Galois
structure of L/F . We will also describe the module structure of OL in
this Hopf Galois structures in the following way:

Theorem 1.6. Under the same hypothesis,

(i) AH1⊗KF = AH1
⊗OK

OF .
(ii) If OE is AH1-free, then OL is AH1⊗KF -free.

2. Hopf Galois linear representations

Let A be an n-dimensional K-algebra and let V be a K-vector space.
A linear representation of A in V is a K-algebra homomorphism ρ : A→
EndK(V ) or, by choosing a K-basis of V , a K-algebra homomorphism
ρ : A → Matn(K). This is the notion of A-module that we have men-
tioned in the introduction. The tensor product or Kronecker product of
two representations ρ1 : A1 → EndK(V1) and ρ2 : A2 → EndK(V2) is

ρ1 ⊗ ρ2 : A1 ⊗K A2 −→ EndK(V1 ⊗ V2)

defined by

ρ1 ⊗ ρ2(a1 ⊗ a2)(v1 ⊗ v2) = ρ1(a1)(v1)⊗ ρ2(a2)(v2).

If we have a finite field extension L/K, then L is a K-algebra and we put
1: L→ EndK(L) for the representation given by multiplication in L.

In this section we consider Hopf Galois structures from the point of
view of representations, having in mind that when we consider induced
Hopf Galois structures we will deal with the Kronecker product of actions
and also, since the Hopf action appears in the definition of the associated
order, that matrices become useful for explicit computations.

Let L/K be a Galois extension of degree n with Galois group G.
Since G acts in L we have a Galois representation ρ : G → AutK(L).
Observe that a Galois representation gives a K[G]-module structure,
that is, a linear representation of the Hopf algebra K[G], since it can
be extended to a K-linear representation ρ : K[G] → EndK(L). This
representation provides full information about the action of K[G] on L.
In fact, L/K being Galois is equivalent to (1, ρ) : L⊗KK[G]→ EndK(L),
being an isomorphism.
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In a complete analogy, a Hopf Galois structure for a field exten-
sion L/K of degree n corresponds to the existence of a K-Hopf al-
gebra H and a linear representation ρH : H → EndK(L) such that
j = (1, ρH) : L ⊗K H → EndK(L) is an isomorphism. Recall that in
the separable case, Greither and Pareigis show that L ⊗K H = L[N ]
(H is an L-form of K[N ]) with N a group of order n.

The Hopf action of H in L gives rise to a K-bilinear map

H × L −→ L
(h, x) 7−→ h · x

with values in L. Therefore, given a K-basis {wi}ni=1 of H and a K-
basis {γj}nj=1 of L, the action can be described through the n × n ma-
trix (wi · γj)ij with entries in L. We will write these elements in the
chosen basis of L and we will usually represent this matrix in a table in
order to make clear the bases under consideration. For 1 ≤ i ≤ n, the
i-th row of the table corresponds to the matrix ρH(wi) representing wi.

Example 2.1. Let L/K be a finite degree n Galois extension and let G
be its Galois group. Let us consider the classical Galois representation
ρ : K[G]→ EndK(L).

Let us write G = {σ1, . . . , σn} and take these elements as K-basis
for K[G]. On the other hand, we fix a normal basis {αj = σj(α)}nj=1

for L. We have σi(αj) = σiσj(α) and via the regular representation
of G we can identify σi with a permutation of the set {1, . . . , n}, namely
σi(j) = k if σiσj = σk. With this identification, the action of K[G] on L
is the regular representation of the group G. Hence, for every 1 ≤ i ≤ n,
ρ(σi) is an n× n permutation matrix.

Example 2.2. In the previous example assume that G ∼= Cn. Let σ be
a generator of G and take {Id, σ, . . . , σn−1} as K-basis of K[G]. Then,
the action of K[G] on L is given by:

α σ(α) . . . σn−1(α)

Id α σ(α) . . . σn−1(α)

σ σ(α) σ2(α) . . . α

. . . . . . . . . . . . . . .

σn−1 σn−1(α) α . . . σn−2(α)

and for every i ∈ Z/nZ, ρ(σi) is the circulant matrix whose first column
is the (i+ 1)-th vector of the canonical basis of Kn.
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Example 2.3. Let E=Q3(α), where α is a root of the polynomial f(x)=
x3 + 3 ∈ Q3[x]. Then E/Q3 is a non-Galois extension with normal clo-
sure L = E(z), where z =

√
−3.

The roots of f are α, ξα, ξ2α, where ξ = −1+z
2 . Let r be the Q3-au-

tomorphism of L given by r(α) = ξα and r(z) = z, and let s be the
one given by s(z) = −z and s(α) = α. As permutations of the roots
of f , r = (α, ξα, ξ2α) and s = (ξα, ξ2α). These two elements gener-
ate Gal(L/Q3), which is dihedral of order 6. Additionally, s generates
G′ = Gal(L/E).

Let X = G/G′ and consider λ : G → Perm(X) the morphism given
by the action of G on X by left translation. By the Greither–Pareigis
theorem, since Perm(X) ∼= S3 has a unique subgroup of order 3 and
it is normalized by λ(G), we know that there is a unique Hopf Galois
structure of E/Q3. The corresponding Q3-Hopf algebra H1 has Q3-basis

w1 = Id, w2 = (λ(r)− λ(r)−1)z, w3 = λ(r) + λ(r)−1.

The action of H1 on E is given by

(1)

1 α α2

w1 1 α α2

w2 0 3α −3α2

w3 2 −α −α2

Then, the matrices representing w1, w2, and w3 are1 0 0
0 1 0
0 0 1

 ,

0 0 0
0 3 0
0 0 −3

 , and

2 0 0
0 −1 0
0 0 −1

 .

On the other hand, the matrices representing multiplication by 1, α,
and α2 are1 0 0

0 1 0
0 0 1

 ,

0 0 −3
1 0 0
0 1 0

 , and

0 −3 0
0 0 −3
1 0 0

 .

By multiplying these two families we can see that we obtain nine linearly
independent matrices and explicitly check that j : E⊗Q3H1 → EndQ3(E)
is an isomorphism.

When we consider the classical Galois action, since elements of G act
as automorphisms in L, we have a canonical basis of the Hopf algebra
whose action is represented with nonsingular matrices. As we have seen
in the last example, for a general Hopf Galois action we can have elements
in a basis of the Hopf algebra which act through non invertible matrices.
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3. Associated orders of Hopf Galois actions

Let OK be a principal ideal domain with field of fractions K. Let
L/K be a separable Hopf Galois extension of degree n and let OL be the
integral closure of OK in L. If H is the Hopf algebra of a Hopf Galois
structure of L/K, then the associated OK-order to OL in H is

AH = {α ∈ H | α · x ∈ OL for all x ∈ OL}.
In this section we establish a general method to compute an OK-basis

of AH .

3.1. Motivating example. In order to compute an OK-basis of AH ,
we will use the space of solutions of a linear system with coefficient
matrix that will be called M(H,L). To motivate the construction let us
go back to Example 2.3. There, since the irreducible polynomial of α is
3-Eisenstein, we have OE = Z3[α]. An element h1w1+h2w2+h3w3 ∈ H1

belongs to the associated order if and only if (h1w1 +h2w2 +h3w3)(x1 +
x2α+ x3α

2) ∈ Z3[α] for all x1, x2, x3 ∈ Z3. This condition becomesh1
1 0 0

0 1 0
0 0 1

+ h2

0 0 0
0 3 0
0 0 −3

+ h3

2 0 0
0 −1 0
0 0 −1

x1x2
x3

 ∈ Z3
3

for all x1, x2, x3 ∈ Z3. We could write this condition as

(h1, h2, h3)

w1

w2

w3

 ∈ Mat3(Z3)

using matrix representation of the basis elements wi and considering the
second matrix as a block matrix. The condition we obtain ish1 + 2h3 0 0

0 h1 + 3h2 − h3 0
0 0 h1 − 3h2 − h3

 ∈ Mat3(Z3)

and instead of the previous action on block matrices we are going to
consider matrix actions of standard linear algebra:

1 0 2
0 0 0
0 0 0
0 0 0
1 3 −1
0 0 0
0 0 0
0 0 0
1 −3 −1



h1h2
h3

 ∈ Z9
3.
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Therefore, in the general situation, once we have fixed a K-basis of L
and a K-basis of H, we are going to use the n2 × n matrix whose j-th
column is formed by concatenating the columns of the matrix for wj .

Let us observe that in this example, after deleting zero rows, this last
condition becomes 1 0 2

1 3 −1
1 −3 −1

h1h2
h3

 ∈ Z3
3.

Now, this matrix is invertible with inverse

1

6

2 2 2
0 1 −1
2 −1 −1

 .

Then, we have that h =
∑3
i=1 hiwi ∈ AH if and only if there are some

c1, c2, c3 ∈ Z3 such thath1h2
h3

 =
1

6

2 2 2
0 1 −1
2 −1 −1

c1c2
c3

 ,

that is, if and only if

h =
1

6
(2c1 + 2c2 + 2c3)w1 +

1

6
(c2 − c3)w2 +

1

6
(2c1 − c2 − c3)w3

=
w1 + w3

3
c1 +

2w1 + w2 − w3

6
c2 +

2w1 − w2 − w3

6
c3

for some c1, c2, c3 ∈ Z3. We find a basis for the associated order

AH1
= Z3

[
w1 + w3

3
,

2w1 + w2 − w3

6
,

2w1 − w2 − w3

6

]
.

The action of this basis on the basis of OE is

(2)

1 α α2

b1 =
w1 + w3

3
1 0 0

b2 =
2w1 + w2 − w3

6
0 α 0

b3 =
2w1 − w2 − w3

6
0 0 α2

This example is related to the non-classical Hopf Galois structure
of Chase and Sweedler ([5, Section 4, pp. 35–39]). The ring Z3[α] is a
C3-graded Z3-algebra and the associated order AH1

is Z3[C3]∗ (the dual
of the group ring); Z3[C3]∗ acts on OE as bi · αj = δijα

j .
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3.2. n2 × n matrix attached to a Hopf Galois representation.
For 1 ≤ i, j ≤ n, let Eij ∈ Matn(K) be the matrix having 1 in posi-
tion (i, j) and 0 elsewhere. We consider this canonical basis of Matn(K)
in the following order: E11, E21, . . . , En1, E12, . . . , Enn. Therefore, we

have an isomorphism ϕ : Matn(K)→ Kn2

where the image of a matrix
becomes the n2 column vector formed by its ordered columns. We have

ϕ(Eij) = en(j−1)+i, vector of the canonical basis of Kn2

.

Definition 3.1. Let L/K be a degree n H-Galois field extension. Given
a K-basis {γj}nj=1 of L and a K-basis {wi}ni=1 of H, we denote by wi ∈
Matn(K) the matrix of ρH(wi) in the basis {γ1, . . . , γn}; see Section 2.
We define the matrix of the action of H on L as

M(H,L) =

 | | . . . |
ϕ(w1) ϕ(w2) . . . ϕ(wn)
| | . . . |

 ∈ Matn2×n(K),

namely, the columns of M(H,L) are obtained transforming into column
vectors the matrices of a basis of H acting on a given basis of L.

Proposition 3.2. Let L/K be a degree n Hopf Galois extension with
Hopf algebra H. Then, the matrix M(H,L) has rank n.

Proof: Since w1, . . . , wn is a K-basis of H and j : L⊗KH → EndK(L) is
an isomorphism, the corresponding matrices wi are K-linearly indepen-
dent and the same happens to the vectors ϕ(wi), which are the columns
of M(H,L).

This is a convenient way to store all the information of the Hopf action
in a single object. If we think of it as a matrix defined by blocks

M(H,L) =


M1(H,L)

· · ·

Mn(H,L)

 ,

then the block Mj(H,L) provides the action of the Hopf algebra on the
element γj of the basis, namely it is the matrix of the K-linear map

H −→ L
h 7−→ h · γj

in the chosen bases of H and L.
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3.3. Computing a basis of AH . Let us return to the problem of basis
computation for the associated order AH attached to a Hopf Galois struc-
ture of an extension L/K with the hypothesis and notations stated at the
beginning of this section, which ensure the existence of an integral basis.

We fix again a K-basis {wi}ni=1 of H, but now we take an OK-ba-
sis {γj}nj=1 of OL. This is, in particular, a K-basis of L.

Theorem 3.3. Let h =
∑n
i=1 hiwi ∈ H, hi ∈ K. Then,

h ∈ AH ⇐⇒ M(H,L)

h1...
hn

 ∈ On2

K .

Proof: By definition, h ∈ AH if and only if h · x ∈ OL for all x ∈ OL.
Fix x ∈ OL. Since {γj}nj=1 is an OK-basis of OL, we can write x =∑n
j=1 xjγj , with xj ∈ OK , 1 ≤ j ≤ n. We compute

h · x =

( n∑
i=1

hiwi

)
·
( n∑
j=1

xjγj

)

=

n∑
i=1

n∑
j=1

hixjwi · γj =

n∑
j=1

xjMj(H,L)

h1...
hn

 .

Therefore, h ∈ AH if and only if

Mj(H,L)

h1...
hn

 ∈ OnK
for all 1≤j≤n, which is equivalent to the condition of the statement.

In order to characterize elements h =
∑n
i=1 hiwi ∈ AH , we look for

an expression for the coordinate vector (h1, . . . , hn). The previous result
says that it becomes a vector of integers when multiplied by M(H,L).
If we could replace M(H,L) with an invertible matrix, we would be
able to express such vector as the inverse matrix applied to a vector
of integers. To this end we can take for example the Hermite normal
form of the integral matrix obtained from M(H,L) removing common
denominators.

Theorem 3.4 (Hermite normal form). Let A be a PID and M∈Mm×n(A)
a matrix of rank n. Then, there exists an m×m unimodular matrix U ,
that is U ∈ GLm(A), such that UM is a matrix in Hermite normal form
(in particular in row echelon form).

Proof: See [1, Chapter 5, Theorem 3.1].
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Since K is the field of fractions of OK , we can write M(H,L) = dM M
with dM ∈K and M ∈Mm×n(OK) such that the coefficients in M are
coprime. Let U ∈ GLn2(OK) be a unimodular matrix such that UM is
in Hermite normal form, and let D ∈ Matn(OK) the matrix obtained
deleting the zero rows of UM . This matrix belongs to GLn(K). Then,

h ∈ AH ⇐⇒ M(H,L)

h1...
hn

 ∈ On2

K ⇐⇒ dM M

h1...
hn

 ∈ On2

K

⇐⇒ dM UM

h1...
hn

 ∈ On2

K ⇐⇒ dMD

h1...
hn

 ∈ OnK

⇐⇒

h1...
hn

 =
1

dM
D−1

c1...
cn


for some c1, . . . , cn in OK .

Theorem 3.5. If 1
dM
D−1 = (dij)

n
i,j=1, then the elements

vi =

n∑
l=1

dliwl, 0 ≤ i ≤ n− 1,

form an OK-basis of AH . Namely, the columns of 1
dM
D−1 are coordinates

of basis elements for AH in the fixed basis of H. The action of vi ∈ AH
on OL is given by

vi · γj = Mj(H,L)

d1i...
dni

 ,

where resulting coordinates refer to the chosen OK-basis of OL.

Proof: Let h =
∑n
l=1 hlwl ∈ H. By Theorem 3.4,

h ∈ AH ⇐⇒

h1...
hn

 =
1

dM
D−1

c1...
cn

 ⇐⇒ h

=

n∑
i=1

ci

d1i...
dni

 ⇐⇒ h ∈ 〈v1, . . . , vn〉OK
.
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Then {v1, . . . , vn} is a system of generators of AH . Now, it is K-linearly
independent because 1

dM
D−1 ∈ GLn(K) and {wi}ni=1 is a K-basis, so it

is also OK-linearly independent and hence an OK-basis for AH .
As we said before, Mj(H,L) is the matrix of the K-linear map

H −→ L
h 7−→ h · γj

in the chosen basis. Therefore, in order to obtain vi · γj we just need
the coordinates of vi in the basis w1, . . . , wn and these are precisely the
elements of the i-th column of 1

dM
D−1.

Remark 3.6.We haven’t made use of the upper triangular nature of 1
dM
D−1

because the result is independent from that. For any DU ∈ Matn(K)
such that

UM(H,L) =

(
DU

O

)
with U ∈ GLn2(OK), we will have DU ∈ GLn(K) and the columns
of D−1U will provide an OK-basis for the associated order.

Example 3.7. Let L = K(
√
a ) be a quadratic Galois extension. Then,

its unique Hopf Galois structure is the classical one, which has H =
K[1, σ] with σ(

√
a) = −

√
a. Consider the basis {1, σ} of H and assume

that {1,
√
a} is an integral basis. Then the matrix of the action is

M(H,L) =


1 1
0 0
0 0
1 −1

 .

With a permutation of rows, we get

DU =

(
1 1
1 −1

)
and the columns of the inverse matrix provide the basis of the associated
order (which is the maximal order) of orthogonal idempotents

1 + σ

2
,

1− σ
2

.



112 D. Gil-Muñoz, A. Rio

On the other hand, computation of the Hermite normal form gives

D =

(
1 1
0 2

)
,

which provides the basis 1, −1+σ2 . If we transform D into(
1 −1
0 2

)
,

we obtain the basis 1, 1+σ
2 .

Example 3.8. In the above motivating example, we took a matrix U
which was just a permutation matrix acting on the rows of M(H,L) and
compute a basis using the corresponding DU . We have dM = 1 and when
we compute the Hermite normal form of M(H,L) we obtain

D =

1 0 2
0 3 3
0 0 6

 , D−1 =

1 0 −1/3
0 1/3 −1/6
0 0 1/6

 .

Therefore, another basis for the associated order would be

w1,
1

3
w2, −1

6
(2w1 + w2 − w3).

If we perform further reduction steps on the matrix D1 0 2
0 3 3
0 0 6

 −→
1 0 2

0 3 3
0 0 3

 −→
1 0 −1

0 3 0
0 0 3

 ,

we obtain yet another basis:

w1,
w2

3
,

w1 + w3

3
.

Example 3.9. Now we consider E = Q3(α) with α a root of f(x) =
x3 + 3x2 + 3 ∈ Q3[x]. As in Example 2.3, the normal closure L/Q3 is
dihedral of degree 6, and the cubic extension E/Q3 has an unique Hopf
Galois structure with Hopf algebra H1 generated by elements w1, w2,
and w3 defined in a similar way; namely, we take a 3-cycle r of Gal(L/Q3)
and z =

√
−1. With respect to this Q3-basis of H1 and the Q3-basis of L

corresponding to the powers of α, the action of H1 on E is given by

(3)

1 α α2

w1 1 α α2

w2 0 3 + 9α+ 2α2 −3− 30α− 9α2

w3 2 −3− α 9− α2



Induced Hopf Galois and Local Modules 113

Since α is a root of a 3-Eisenstein polynomial, powers of α give a Z3-basis
of OE . We can apply the previous method to compute the associated
order AH1

. We have

1 0 0 0 0 0 0 0 0
0 0 0 −1 0 2 0 0 0
0 0 0 −2 0 3 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
−1 0 0 −1 1 −3 0 0 0
0 0 0 3 0 −3 1 0 0
0 0 0 0 0 15 0 1 0
−1 0 0 −1 0 6 0 0 1





1 0 2
0 0 0
0 0 0
0 3 −3
1 9 −1
0 2 0
0 −3 9
0 −30 0
1 −9 −1


=



1 0 2
0 1 3
0 0 6
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


.

Hence,

AH1 = Z3

[
w1, w2,

−2w1 − 3w2 + w3

6

]
.

If we perform further reduction steps on matrix D1 0 2
0 1 3
0 0 6

 −→
1 0 2

0 1 3
0 0 3

 −→
1 0 −1

0 1 0
0 0 3

 ,

we obtain

AH1 = Z3

[
w1, w2,

w1 + w3

3

]
.

4. Freeness of the ring of integers over the associated
order

We keep the hypothesis of Section 3. In this section we deal with the
problem of the structure of OL as AH -module. Namely, we would like to
find conditions for the freeness of such module.

4.1. Characterization of freeness. Let H be the Hopf algebra acting
on L and let {wi}ni=1 be a K-basis of H and {γj}nj=1 an OK-basis of OL.
We proved in Theorem 3.5 that the elements

vi =

n∑
l=1

dliwl, 1 ≤ i ≤ n,

form an OK-basis of AH . Standard linear algebra yields that an ele-
ment β ∈ OL is a free generator of OL as AH -module if and only if the
elements vi · β ∈ OL form an OK-basis of OL, that is, such set is both
OK-linearly independent and an OK-system of generators of OL.
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For a given element β ∈ OL, we denote by Dβ(H,L) the matrix whose
i-th column are the coordinates of vi·β with respect to the fixedOK-basis
of OL. That is, if β =

∑n
j=1 βjγj and D−1 is the matrix whose columns

provide the basis of the associated order, then

Dβ(H,L) =

n∑
j=1

βjMj(H,L)D−1.

It is trivial that detDβ(H,L) 6= 0 is a necessary condition for the
elements vi ·β being an AH -basis of OL. However, it does not imply that
{vi ·β}ni=1 is a system of generators. What is true is that it is equivalent
to the unimodularity of Dβ(H,L). In order to prove this, we assume that
Dβ(H,L) is unimodular and we recall the following.

Proposition 4.1. Let R be a noetherian integral domain with field of
fractions K and let A ⊂ B be R-algebras which are R-orders in a finite
separable K-algebra L. Then A = B if and only if discR(A) = discR(B).

Proof: See [6, (22.4)].

In our case, AH · β ⊂ OL, and whenever the vi · β are OK-linearly
independent, AH · β is an OK-order of L. This is the case assuming
Dβ(H,L) ∈ GLn(OK). By [6, (22.2)],

discOK
(AH · β) = [OL : AH · β]2 discOK

(OL),

where [OL : AH ·β] is the generalized module index of the free OK-mod-
ules OL and AH · β as defined in [4, p. 10]. Then, the two discriminants
coincide if and only if the index [OL : AH · β] is in O∗K . We compute the
index by taking the OK-bases {vi ·β}ni=1 of AH ·β and {γj}nj=1 of OL, and
we find that [OL : AH · β] = det(Dβ(H,L)), which belongs to O∗K . Con-

versely, if {vi ·β}n−1i=0 is an OK-basis of OL, then Dβ(H,L) is a change of
basis matrix, so it is unimodular. Hence, we have the following criterion.

Proposition 4.2. An element β ∈ OL is an AH-free generator of OL
if and only if the associated matrix Dβ(H,L) is unimodular.

Example 4.3. Let L/K be a quadratic extension of p-adic fields, which
is known to have the classical Galois structure K[G] as its unique Hopf
Galois structure. When p ≥ 3, L/K is tamely ramified and then OL is
AK[G]-free. Let z ∈ L such that z /∈ K, z2 ∈ K, and OL = OK [z].
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By Example 3.7, a basis of the associated order is η1 = 1, η′2 = −1+σ
2 .

The action of this basis over L is

AK[G] 1 z

η1 1 z

η′2 0 −z

Thus,

D1+z(K[G], L) =

(
1 0
1 −1

)
which is in GLn(OK). Therefore 1 + z generates OL as AK[G]-module.

5. Induced Hopf Galois structures

Let L/K be a finite Galois extension of fields with Galois group G.
The Greither–Pareigis theorem applied to this situation gives that the
Hopf Galois structures of L/K have Hopf algebras H = L[N ]G, where
N runs through the regular subgroups of Perm(G) normalized by λ(G).
Here, λ : G→ Perm(G) is the left regular representation of G.

Assume that G decomposes as a semidirect product G = JoG′, where
J is a normal subgroup of G, normal complement for the subgroup G′.
Let us denote E = LG

′
, F = LJ , r = [E : K], u = [F : K]. We have a

lattice of intermediate fields

L

u

G′ J

r

E

r

F

u

K

with E∩F = K and L = EF . By [7, Chapter 5, Theorem 5.5], E/K and
F/K are K-linearly disjoint. Moreover, since L/K is Galois, we have that
L/E is Galois with Galois group G′. By the Greither–Pareigis theorem,
Hopf Galois structures of L/E are in one-to-one correspondence with
regular subgroups of Perm(G′) normalized by λ′(G′). Here, λ′ : G′ →
Perm(G′) is the left regular representation of G′.

On the other hand, if Ẽ/K is the normal closure of E/K in L/K,
then the Hopf Galois structures of E/K are in one-to-one correspon-

dence with the regular subgroups of Perm(X̃) normalized by λ̃(G), where

X̃ = Gal(Ẽ/K)/Gal(Ẽ/E) and λ̃ : Gal(Ẽ/K) → Perm(X̃) is given by
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the action of Gal(Ẽ/K) by left translation on left cosets. But the fun-
damental theorem of Galois theory gives us the isomorphisms

Gal(Ẽ/K) ∼= Gal(L/K)/Gal(L/Ẽ),

Gal(Ẽ/E) ∼= Gal(L/E)/Gal(L/Ẽ).

Hence, there is a bijection X̃ ∼= Gal(L/K)/Gal(L/E) =G/G′ =X ∼= J .

Taking the actions into account, the action of Gal(Ẽ/K) by left trans-
lation on left cosets corresponds to the action of G on left cosets. As for
the second isomorphism, if we let σ1, . . . , σr of J be a left transversal
of G′, then the action of an element g = στ ∈ G, with σ ∈ J and τ ∈ G′,
is the following:

στ · σiG′ = στσiτ
−1τG′ = σ(τσiτ

−1)G′.

This gives an action λc : G→ Perm(J).
We build a Hopf Galois structure of L/K from Hopf Galois structures

of L/E and E/K as follows:

Theorem 5.1 (Induction). Assume that N1 ⊆ Perm(X) = Perm(J)
is regular and normalized by λc(G), namely it gives E/K a Hopf Ga-
lois structure, and N2 ⊆ Perm(G′) is regular and normalized by λ′(G′),
namely it gives L/E a Hopf Galois structure. Then, L/K has a Hopf
Galois structure of type N1 ×N2.

Proof: See [10, Theorem 3].

Hopf Galois structures of L/K are given by the regular subgroups
of Perm(G) normalized by λ(G). The definition of such a group relies on
the following factorization of λ

G −→ Perm(J)× Perm(G′) ↪−→ Perm(G)
στ 7−→ (λc(στ), λ′(τ))

(ϕ,ψ) 7−→ ι(ϕ,ψ)

where ι(ϕ,ψ)(στ) = ϕ(σ)ψ(τ). The group N = ι(N1 × N2) provides a
Hopf Galois structure for L/K.

Remark 5.2. Let us remark that this notion of induction includes the
case when G is a direct product. By iteration we could deal for example
with families like nilpotent groups, which are direct product of their
Sylow subgroups. In this sense, Theorem 5 of [2] would say that for
nilpotent Galois extensions all Hopf Galois structures of nilpotent type
are induced.
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Although a regular subgroup of Perm(G) normalized by λ(G) is
enough to completely determine a Hopf Galois structure of L/K, our
goal is to give a more precise description of the Hopf algebra and the
Hopf action of an induced Hopf Galois structure, for a better under-
standing of how induction works and how we can apply the methods of
previous section to study associated orders and freeness of the ring of
integers.

5.1. Induced Hopf algebras. Our first aim is to describe the Hopf
algebra of an induced Hopf Galois structure of L/K in terms of the Hopf
algebras of the Hopf Galois structures from which it is built. To this end,
first of all we prove that in fact induction can also be defined in terms
of Hopf Galois structures of the subextensions with base field K.

Proposition 5.3. Let L/K be a Galois extension with Galois group G =

JoG′ and let E = LG
′
, F = LJ . Then, there is a one-to-one correspon-

dence between Hopf Galois structures of F/K and Hopf Galois structures
of L/E.

Proof: Since J is a normal subgroup of G, the extension F/K is Ga-
lois with Galois group G/J . Its Hopf Galois structures are in one to
one correspondence with regular subgroups of Perm(G/J) normalized
by λG/J(G/J), where λG/J : G/J → Perm(G/J) is the left regular rep-
resentation of this quotient group. Via the isomorphism

G/J ←→ G′

τ ←→ τ

we can identify Perm(G/J) with Perm(G′), and under this identifica-
tion λG/J(G/J) identifies with λ′(G′). Therefore regular subgroups of
Perm(G′) normalized by λ′(G′) are in one-to-one correspondence with
regular subgroups of Perm(G/J) normalized by λG/J(G/J).

If we use the same name N2 for such a regular subgroup, the corre-
sponding Hopf algebras are H = F [N2]G/J and H2 = L[N2]G

′
, so that

H2 = E ⊗K H and H = HJ
2 (see [12, Section 3] for a more general

framework).

Remark 5.4. The actions of the Hopf algebras involved work as follows:

• E ⊗K H acts on L = E ⊗K F through the product on E in the
first factor and the Hopf action in the second one.
• The action of the Hopf Galois structure H2 = L[N2]G

′
of L/E on L

is J-equivariant, namely σ(h · x) = σ(h) · σ(x) for σ ∈ J , h ∈ H2,
and x ∈ L. Indeed, J acts on L by the classical Galois action and
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on N2 by conjugation, but this last action turns out to be trivial
(see the proof of [12, Theorem 3.1]). Consequently, the restricted
action of HJ

2 on F = LJ makes sense, and this is the Hopf Galois
action of H on F .

L
H2

HE

H1

F

H

K

According to [12, Theorem 3.1], the Hopf algebra of an induced Hopf
Galois structure fits in a short exact sequence with the Hopf Galois
structures H1 and H from which it is induced. But in our case there is
a deeper relation: H is actually the tensor product H1 ⊗K H.

Proposition 5.5. Let N1⊆Perm(J) be regular and normalized by λc(G)
and let N2 ⊆ Perm(G/J) be regular and normalized by λG/J(G/J). Then
N = ι(N1 × N2) ⊆ Perm(G) gives the induced Hopf Galois structure
of L/K. Therefore, the corresponding Hopf algebras are H = L[N ]G,
H1 = L[N1]G, and H = F [N2]G/J . Then,

H = H1 ⊗K H.

Proof:

H = L[N ]G = L[ι(N1 ×N2)]G = (L[ι(N1 × 1)× ι(1×N2)])G

= (L[ι(N1 × 1)]⊗L L[ι(1×N2)])G = (L[N1]⊗L L[N2])G.

Since the action of conjugation by λ(G) on Perm(G) factors through
Perm(J)× Perm(G/J) as conjugation by λc(G) on the first component
and conjugation by λG/J(G/J) on the second one, we have

H = L[N1]G ⊗K F [N2]G/J = H1 ⊗H.

Example 5.6. Let us assume that G ∼= D2p, the dihedral group of or-
der 2p with p an odd prime, and let us fix a presentation G = 〈r, s | rp =
s2 = 1, sr = r−1s〉. Then G = J o G′ with J = 〈r〉 the unique order p
subgroup of G and G′ any of the p different order 2 subgroups G′d = 〈rds〉
with 0 ≤ d ≤ p− 1. Therefore, F = LJ/K is the unique degree 2 subex-
tension of L/K, while there are p possible degree p subextensions Ed/K
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of L/K, Ed = L〈r
ds〉 (see [9, Section 4] for further details). Hence, L/K

has p induced Hopf Galois structures, which are of cyclic type C2p and
have respective Hopf algebras

Hd = L[〈λ(r)〉]G ⊗K F [〈λ′(rds)〉]G/J , 0 ≤ d ≤ p− 1.

The action on the second factor is obtained taking the elements of G′d as
a system of representatives for G/J and make them act by conjugation.
Therefore, the action is trivial and we have the group algebra K[G/J ].
In fact, the classical Galois structure is the unique Hopf Galois structure
of a quadratic extension.

Example 5.7. Let F be an imaginary quadratic field, and let O be the
order of the conductor f in F . Let L be the ring class field associated
to O. Then L/F is an abelian extension and L/Q is Galois. By [8,
Lemma 9.3], Gal(L/Q) = Gal(L/F )oG′, where G′ is a group of order 2.

Let E = LG
′
. Then, J = Gal(L/K) is a normal complement of G′, so

the Hopf algebras of the induced Hopf Galois structures of L/Q are
H = H1 ⊗K H, where H1 gives the Hopf Galois structure of E/Q and
H is the group algebra of Gal(F/Q), since the classical one is again the
unique Hopf Galois structure of this extension.

5.2. Induced Hopf actions and their representations. In this sec-
tion we study the Hopf action of an induced Hopf Galois structure H =
L[N ]G of L/K in terms of the action of H1 = L[N1]G on E and the action
of H = F [N2]G/J on F . We prove item (v) of Theorem 1.3 in the follow-
ing result. The terminology for representations follows [13, Section 3.2]
which covers the case of G being a direct product and considering clas-
sical Galois actions.

Proposition 5.8. With the previous notations for induced Hopf Ga-
lois structures, let ρH : H → EndK(L), ρH1

: H1 → EndK(E), and
ρH : H → EndK(F ) be the representations obtained from the respective

Hopf actions. We have L = E ⊗K F , H = H1 ⊗H, and

ρH = ρH1
⊗ ρH .

That is, for w ∈ H1, η ∈ H, α ∈ E, and z ∈ F , (w ⊗ η) · (α ⊗ z) =
(w · α)⊗ (η · z).

Proof: As w ∈ L[N1]G and η ∈ F [N2]G/J , let us write

w =

r∑
i=1

cin
(1)
i , ci ∈ L, η =

u∑
j=1

djn
(2)
j , dj ∈ F,
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whereN1 ={n(1)i }ri=1 andN2 ={n(2)j }uj=1. Recall that ι(n
(1)
i , n

(2)
j )(IdG)=

n
(1)
i (IdJ)n

(2)
j (IdG′). Then:

(w ⊗ η)·(α⊗ z)=

( r∑
i=1

u∑
j=1

cidjι((n
(1)
i , n

(2)
j ))

)
· (α⊗ z)

=

r∑
i=1

u∑
j=1

cidjι((n
(1)
i , n

(2)
j ))−1(IdG)(αz)

=

r∑
i=1

u∑
j=1

cidjι(((n
(1)
i )−1, (n

(2)
j )−1))(IdG)(αz)

=

r∑
i=1

u∑
j=1

cidj(n
(1)
i )−1(IdJ)(α)(n

(2)
j )−1(IdG’)(z)

=

( r∑
i=1

ci(n
(1)
i )−1(IdJ)(α)

)( u∑
j=1

dj(n
(2)
j )−1(IdG’)(z)

)

=

( r∑
i=1

cin
(1)
i

)
· α
( u∑
j=1

djn
(2)
j

)
·z=(w · α)⊗ (η · z).

Therefore, by suitable choices of base, the matrices of the action of H
are Kronecker products of the matrices of the actions of H1 and H.

Example 5.9. We consider again Example 2.3. We have

L = Q3(α, z)

HE = Q3(α)

H1

F = Q3(z)

H

Q3

and the action of H1 on E and the action of H on F are given by

(4)

1 α α2

w1 1 α α2

w2 0 3α −3α2

w3 2 −α −α2

1 z

η1 1 z

η2 1 −z
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respectively. The Hopf action of the induced structure is immediately
computed from these two actions. One can also check that the structure
is given by N = 〈g〉 ⊆ Perm(G), where g = (1, rs, r2, s, r, r2s), and the
Hopf action goes as follows:

1 z α αz α2 α2z

id = w1 ⊗ η1 1 z α αz α2 α2z

g3 = w1 ⊗ η2 1 −z α −αz α2 −α2z

z(g−2 − g2) = w2 ⊗ η1 0 0 3α 3αz −3α2 −3α2z

z(g − g−1) = w2 ⊗ η2 0 0 3α −3αz −3α2 3α2z

g2 + g−2 = w3 ⊗ η1 2 2z −α −αz −α2 −α2z

g + g−1 = w3 ⊗ η2 2 −2z −α αz −α2 α2z

By fixing the basis {1, z, α, αz, α2, α2z} of L, we can compute the matrix
representing the element wi⊗ηj from the previous table, which coincides
with the Kronecker product of the ones representing wi and ηj . For
example, the matrix representing w2 ⊗ η2 is

0 0 0 0 0 0
0 0 0 0 0 0
0 0 3 0 0 0
0 0 0 −3 0 0
0 0 0 0 −3 0
0 0 0 0 0 3

 =

0 0 0
0 3 0
0 0 −3

⊗ (1 0
0 −1

)
.

5.3. Associated order of an induced Hopf Galois action. Let us
assume that L/K is any field extension with an induced Hopf Galois

structure. We recall the setting of Subsection 5.1: G = J oG′, E = LG
′
,

and F = LJ , with E/K being H1-Galois and F/K being H-Galois, and
we have H = H1 ⊗K H.

We assume that the Hopf Galois structure is induced and has H =
H1 ⊗K H. First of all we analyze the behaviour of the matrix of the
action with respect to the tensor product. Let us fix a K-basis {wi}ri=1

of H1 and a K-basis {ηj}uj=1 of H. We also fix K-bases {αk}rk=1 of E
and {zl}ul=1 of F .

Theorem 5.10. We consider product bases in H and L. Then, there
exists a permutation matrix P of size n2 such that

PM(H,L) = M(H1, E)⊗M(H,F ).

Proof: Since H = H1 ⊗K H, {wiηj | 1 ≤ i ≤ r, 1 ≤ j ≤ u} is a K-basis
of H. As we have seen in Proposition 5.8, ρH = ρH1 ⊗ ρH . Considering
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the fixed bases of E and F we can identify wi and ηj with matrices
in Matr(K) and Matu(K) respectively. Then, fixing the K-basis {αkzl}
of L, the matrix of wiηj ∈ H is

wiηj = wi ⊗ ηj .

For the block matrix of the action of H we have
w1 ⊗ η1
. . .

w1 ⊗ ηu
w2 ⊗ η1
. . .

wr ⊗ ηu

 =


w1

w2

. . .
wr

 ◦

η1
η2
. . .
ηu

 ,

which is the Tracy–Singh product of partitioned matrices. To obtain the
matrix of the action, we have to take coordinates with respect to the
canonical basis of the respective matrix spaces: M(H,L) has columns

ϕ(wiηj) = ϕn(wi⊗ηj) ∈ Kn2

whileM(H1, E) has columns ϕr(wi) ∈ Kr2

and M(H,F ) has columns ϕu(ηj) ∈ Ku2

.
Working with canonical bases of matrices and vectors we find the

permutation.

ϕ(Erab⊗Eucd) = ϕ(Enu(a−1)+c,u(b−1)+d)=enu(b−1)+n(d−1)+u(a−1)+c ∈ Kn2

.

Here, we use em for vectors of the canonical basis ofKn2

and Era,b denotes

the r×r matrix having a 1 in position (a, b) and coefficients 0 elsewhere.
Notations for the other matrices are analogous. On the other hand, if

we indicate with superindices vectors of the canonical basis of Kr2 and

Ku2

respectively,

ϕr(E
r
ab)⊗ϕu(Eucd) = err(b−1)+a⊗ e

u
u(d−1)+c = enu(b−1)+u2(a−1)+u(d−1)+c.

Therefore, P is the permutation matrix which places the row nu(b−1)+
n(d− 1) + u(a− 1) + c in position nu(b− 1) + u2(a− 1) + u(d− 1) + c
for 1 ≤ a, b ≤ r and 1 ≤ c, d ≤ u.

For example, if r = u = 2, then the matrix P has size 16 and cor-
responds to the permutation (3, 5)(4, 6)(11, 13)(12, 14) ∈ S16. If r = 3,
u = 2, then the matrix P has size 36 and corresponds to the permutation
(3 5 9 7)(4 6 10 8)(15 17 21 19)(16 18 22 20)(27 29 33 31)(28 30 34 32) ∈
S36.

Now we assume the hypothesis of Section 3 and we deal with an
induced Hopf Galois structure with H = H1 ⊗K H. In this context we
will think of P as an unimodular matrix.
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We consider the three Hopf actions involved and the corresponding
associated orders AH , AH1

, and AH of OL, OE , and OF , respectively. In
what follows we study the relationship between these objects. The main
goal is to prove the following:

Theorem 5.11. If E/K and F/K are arithmetically disjoint, then

AH = AH1
⊗OK

AH .

The idea is to use the previous method to compute bases of the as-
sociated orders involved and prove that the product of suitable bases
of AH1 and AH gives a basis for AH .

We fix an OK-basis {αk}rk=1 of OE and an OK-basis {zl}ul=1 of OF .
Since we assume that E/K and F/K are arithmetically disjoint, we
have OL = OE ⊗OK

OF , so the products {αkzl}k,l form an OK-basis
of OL. These integral bases are also K-bases for the respective fields and
Theorem 3.3 applies.

Proposition 5.12. Let us write M(H,L)=dMM with dM ∈K and M ∈
Mn(OK) with coprime coefficients. The integral matrices 1

dM
M(H,L)

and 1
dM

(M(H1, E)⊗M(H,F )) have the same Hermite normal form.

Proof: We apply Theorem 5.10 and observe that since the product by P
is just a permutation of the rows, the content dM does not change.

We have an unimodular matrix U ∈ GLn(OK) such that

UM(H,L) = dM

(
D
O

)
,

where D has coefficients in OK and is in Hermite normal form. Then,

UP−1 PM(H,L) = dM

(
D
O

)
.

Since UP−1 is unimodular and the Hermite normal form is unique, we
have obtained the Hermite normal form of 1

dM
(M(H1, E) ⊗M(H,F )).

Proposition 5.13. If 1
d1
M(H1, E) and 1

d
M(H,F ) have integral co-

prime coefficients, then dM = d1d up to multiplication by a unit and
if

U1M(H1, E) = d1

(
D1

O

)
, UM(H,F ) = d

(
D
O

)
with U1 ∈ GLr2(OK), U ∈ GLu2(OK), and D1, D in Hermite normal
form, then

D = D1 ⊗D.
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Proof: The relation between dM , d1, and d comes from the fact that
the Kronecker product of matrices with coprime coefficients is also a
matrix with coprime coefficients. Since dM , d1, and d are determined
themselves up to multiplication by a unit, the equality also holds up to
multiplication by a unit. We have

(U1M(H1, E))⊗ (UM(H,F )) = (U1 ⊗ U)(M(H1, E)⊗M(H,F ))

by the mixed product property of the Kronecker product. Therefore,

d1

(
D1

O

)
⊗ d

(
D
O

)
= (U1 ⊗ U)PM(H,L),

dM

(
D1 ⊗D
O

)
= (U1 ⊗ U)PM(H,L).

Since (U1 ⊗ U)P ∈ GLn2(OK) and D1 ⊗D is in Hermite normal form,
unicity gives D = D1 ⊗D.

Corollary 5.14. If for a matrix U1 ∈ GLr2(OK) we have

U1M(H1, E) =

(
D1

O

)
with D1 ∈ GLr(K), and for a matrix U ∈ GLu2(OK) we have

UM(H,F ) =

(
D
O

)
with D ∈ GLu(K), then

(U1 ⊗ U)PM(H,L) =

(
D1 ⊗D
O

)
with (U1 ⊗ U)P ∈ GLn2(OK) and D = D1 ⊗D ∈ GLn(K).

Either in Hermite normal form or in general form, since

(D1 ⊗D)−1 = D−11 ⊗D
−1

and the columns of the corresponding matrices provide bases for AH ,
AH1

, and AH respectively, this finishes the proof of Theorem 5.11.

Example 5.15. In Example 3.9 the normal closure of E is L = Q3(α, z),
where z =

√
−1. In analogy with Example 5.9, if we set F = Q3(z), then

L = EF and we can induce a Hopf Galois structure H of L/K from the
Hopf Galois structure H1 of E/Q3 and H of F/Q3.
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Since F/Q3 is unramified, the extensions E/Q3 and F/Q3 are arith-
metically disjoint and we can obtain the associated order to the induced
Hopf Galois structure of L/Q3 using the above method. We take

D1 =

1 0 −1
0 1 0
0 0 3

 , D =

(
1 −1
0 2

)
.

AH1 1 α α2

w1 1 α α2

w2 0 3 + 9α+ 2α2 −3− 30α− 9α2

w′3 =
w1 + w3

3
1 −1 3

AH 1 z

η1 1 z

η′2 =
η1 + η2

2
1 0

Then,

D = D1 ⊗D =


1 −1 0 0 −1 1
0 2 0 0 0 −2
0 0 1 −1 0 0
0 0 0 2 0 0
0 0 0 0 3 −3
0 0 0 0 0 6

 ,

D−1 =


1 1/2 0 0 1/3 1/6
0 1/2 0 0 0 1/6
0 0 1 1/2 0 0
0 0 0 1/2 0 0
0 0 0 0 1/3 1/6
0 0 0 0 0 1/6


gives

AH = Z3

[
w1η1,

w1η1 + w1η2
2

, w2η1,
w2η1 + w2η2

2
,
w1η1 + w3η1

3
,

w1η1 + w1η2 + w3η1 + w3η2
6

]
,

AH = Z3[w1η1, w1η
′
2, w2η1, w2η

′
2, w

′
3η1, w

′
3η
′
2].

Taking the basis 1, z, α, αz, α2, α2z for OL we can compute the action
of AH using the tables above.
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5.4. Induced Hopf Galois module structure. Our aim is to relate
the freeness of OL as AH -module with the freeness of OE as AH1

-module
and the freeness of OF as AH -module.

Theorem 5.16. Let us assume that E/K and F/K are arithmetically
disjoint. If OE is AH1

-free and OF is AH-free, then OL is AH-free.
Moreover, if γ is a AH1

-free generator of OE and δ is a AH-free
generator of OF , then γδ is a AH-free generator of OL.

Proof: Let {vi}ri=1 be an OK-basis of AH1 and let {µj}uj=1 be an OK-ba-
sis of AH . Then, {vi · γ}ri=1 is an OK-basis of OE and {µj · δ}uj=1 is an
OK-basis of OF . Since OL = OE ⊗OK

OF , the product of these bases is
an OK-basis of OL. But that basis is formed by the elements

(vi · γ)(µj · δ) = (viµj) · (γδ), 1 ≤ i ≤ r, 0 ≤ j ≤ u.
Since AH = AH1

⊗OK
AH , this amounts to say that γδ is a AH -free

generator of OL.

Example 5.17. Let us consider once again the situation of Example 3.9.
We know by Example 5.15 that the action of the associated order overOE
is given by

(5)

AH1
1 α α2

w1 1 α α2

w2 0 3 + 9α+ 2α2 −3− 30α− 9α2

w′3 0 −1 3

Hence, for an element β = β0 + β1α+ β2α
2 ∈ OE , we have:

w1 · β = β0 + β1α+ β2α
2,

w2 · β = 3(β1 − β2) + (9β1 − 30β2)α+ (2β1 − 9β2)α2,

w′3 · β = β0 − β1 + 3β2.

If we take β = α, the associated matrix is

Dα(H1, E) =

0 3 −1
1 9 0
0 2 0

 ,

which has determinant −2. Then, α is a generator of OE as AH1
-module

and since F/Q3 is quadratic, by Example 4.3, 1 + z is an AH -generator
of OF . We know by Example 5.15 that E/Q3 and F/Q3 are arithmeti-
cally disjoint. Then, we can apply Theorem 5.16 to obtain that OL is
AH -free with generator α(1 + z).

5.5. Freeness after tensoring by OF . We finally compute the asso-
ciated order of OL in H1⊗KF and discuss the freeness of OL in AH1⊗KF .
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Note that this is actually a Hopf Galois structure of L/F because H1 is
a Hopf Galois structure of E/K and F is K-flat. Moreover, the action
of H1⊗KF on L is obtained by F -linearly extending the one of H1 on E.

We study the relation between AH1
and AH1⊗KF , as well as the

AH1 -freeness of OE and the AH1⊗KF -freeness of OL. In order to do
this, we need a suitable description of elements of OL. For this reason,
we make again the hypothesis that E/K and F/K are arithmetically
disjoint, which implies that OL = OE ⊗OK

OF .
Let {αi}ri=1 be an OK-basis of OE and let {zj}uj=1 be an OK-basis

of OF . Since OL = OE ⊗OK
OF , {αizj}i,j is an OK-basis of OL.

Proposition 5.18. If E/K and F/K are arithmetically disjoint, then
AH1⊗KF = AH1

⊗OK
OF .

Proof: Let H(1) = H1⊗K F . First, we prove that AH1
⊗OK

OF ⊂ AH(1) .
It is clearly contained in H1 ⊗OK

F = H1 ⊗K F = H(1). On the other
hand, it acts OK-linearly on OL componentwise since OL = OE⊗OK

OF .
This proves the claim.

For the reverse inclusion, let h ∈ AH(1) . Trivially, h ∈ H(1) = H1⊗KF .
Since {zj}uj=1 is a K-basis of F and H1 is K-flat, it is also an H1-basis

of H(1). Then,

h =

u∑
j=1

h(j)zj , h(j) ∈ H1.

The result will follow from the fact that h(j) ∈ AH1
for all 1 ≤ j ≤ u.

In order to prove this, we may check that h(j) · γ ∈ OE for all γ ∈ OE .
Take any such γ ∈ OE . In particular γ ∈ OL, and since h ∈ AH(1) , we
have that h ·L γ ∈ OL. But

h ·L γ =

( u∑
j=1

h(j)zj

)
·L γ =

u∑
j=1

(h(j) ·E γ)zj ∈ OL.

Now, {zj}uj=1 is an OE-basis of OL because OE is OK-flat. Hence, the

previous expression yields that h(j) ·E γ ∈ OE for all 1 ≤ j ≤ u.

With this result, we have determined how the associated order
changes when we tensor with an arithmetically disjoint extension. Now,
we move to the question of the freeness of OL as AH1⊗KF -module. We
will prove (ii) of Theorem 1.6.

Corollary 5.19. Assume that E/K and F/K are arithmetically dis-
joint. If OE is AH1

-free, then OL is AH1⊗KF -free.

Proof: Since OF is OK-flat, OE ⊗OK
OF = OL is AH1

⊗OK
OF -free. By

the previous result, AH1
⊗OK

OF = AH1⊗KF and the claim follows.
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