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REVERSE FABER–KRAHN INEQUALITY FOR A

TRUNCATED LAPLACIAN OPERATOR

Enea Parini, Julio D. Rossi, and Ariel Salort

Abstract: In this paper we prove a reverse Faber–Krahn inequality for the principal
eigenvalue µ1(Ω) of the fully nonlinear eigenvalue problem{

−λN (D2u) = µu in Ω,

u = 0 on ∂Ω.

Here λN (D2u) stands for the largest eigenvalue of the Hessian matrix of u. More
precisely, we prove that, for an open, bounded, convex domain Ω ⊂ RN , the inequality

µ1(Ω) ≤
π2

[diam(Ω)]2
= µ1(Bdiam(Ω)/2),

where diam(Ω) is the diameter of Ω, holds true. The inequality actually implies a

stronger result, namely, the maximality of the ball under a diameter constraint.
Furthermore, we discuss the minimization of µ1(Ω) under different kinds of con-

straints.
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1. Introduction

Given a bounded domain Ω ⊂ RN , we consider the fully nonlinear
eigenvalue problem {

−λN (D2u) = µu in Ω,

u = 0 on ∂Ω,

where µ ∈ R is the eigenvalue, D2u is the Hessian matrix of a func-
tion u : Ω → R, and λ1(D2u), . . . , λN (D2u) are the ordered eigenvalues
of D2u, so that

λ1(D2u) ≤ · · · ≤ λN (D2u).
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Following the celebrated approach by Berestycki, Nirenberg, and
Varadhan [3], it is possible to define the first eigenvalue µ1(Ω) as

(1) µ1(Ω):=sup{µ∈R : ∃ϕ∈LSC(Ω), ϕ>0 in Ω s.t. −λN (D2ϕ)≥µϕ},
where LSC(Ω) is the set of lower semicontinuous functions in Ω, and the
inequality −λN (D2ϕ) ≥ µϕ is understood in the viscosity sense. When
the domain Ω is assumed to be strictly convex, the existence of a strictly
positive eigenfunction associated with µ1(Ω) has been proven in [4]. It is
still unknown whether the assumptions on the domain can be weakened
to (not strict) convexity; however, it should be observed that, if u is a
positive eigenfunction, then it holds, in the viscosity sense, that

λ1(D2u) ≤ · · · ≤ λN (D2u) ≤ 0,

which implies the negative semidefiniteness of D2u, and hence the con-
cavity of u. The fact that Ω = {u > 0} implies the convexity of Ω. For
this reason, unless otherwise stated, we will always suppose that Ω is a
convex domain.

The operator P+
N (D2u) := λN (D2u) belongs to the class of so-called

truncated Laplacian operators, which are defined as the sum of a finite
number of consecutive eigenvalues of D2u. More precisely, this class of
operators is defined, for k = 1, . . . , N , as

P+
k (D2u) :=

N∑
i=N−k+1

λi(D
2u), P−k (D2u) :=

k∑
i=1

λi(D
2u)

and received some attention recently; see [4, 5, 7, 8, 6, 11, 12, 13].
These highly degenerate elliptic operators first appeared in the context
of differential geometry; see [1, 19, 20].

A natural question arising in spectral theory is the following: which
domain minimizes or maximizes the first eigenvalue of a differential oper-
ator, under some geometric constraint on the domain? A classic example
is given by the Laplacian operator

∆u = tr(D2u) =

N∑
i=1

λi(D
2u).

In this case, the well-known Rayleigh–Faber–Krahn inequality states that
the first eigenvalue µ∆

1 of −∆ under Dirichlet boundary conditions is
uniquely minimized, among domains with fixed volume, by the ball.
More precisely, if Ω ⊂ RN , and Br is a ball of radius r such that |Ω| =
|Br|, then

µ∆
1 (Br) ≤ µ∆

1 (Ω),

and equality holds if and only if Ω = Br.
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However, if we consider the Monge–Ampère operator, which is the
fully nonlinear operator defined as

det(D2u) =

N∏
i=1

λi(D
2u),

the situation is completely different. Indeed, among all bounded, convex
domains with fixed volume, the (unique) eigenvalue is maximized by the
ball [16, Theorem 1.4], while it is conjectured that the N -dimensional
regular simplex is a minimizer.

Concerning the truncated Laplacian operator P+
N , Birindelli, Galise,

and Ishii conjectured in [5] the validity of a reverse Faber–Krahn in-
equality, namely, that the ball maximizes µ1(Ω) among convex domains
with fixed volume. The conjecture was supported by some partial results
proven in [5]:

• The hypercube has the largest first eigenvalue among hyperrectan-
gles of given measure.
• The ball has a larger first eigenvalue than the hypercube with the

same volume.

In this paper we prove the validity of the conjectured reverse Faber–
Krahn inequality. More precisely, we first prove the following theorem.

Theorem 1.1. For an open, bounded, convex domain Ω ⊂ RN , the
inequality

µ1(Ω) ≤ π2

[diam(Ω)]2
,

where diam(Ω) is the diameter of Ω, holds true.

Theorem 1.1 readily implies that the ball maximizes µ1(Ω) under a
diameter constraint, and, as a consequence, we obtain the reverse Faber–
Krahn inequality.

Theorem 1.2 (Reverse Faber–Krahn inequality). Let Ω ⊂ RN be
an open, bounded, convex set. Let Br be a ball such that |Ω| = |Br|.
Then,

µ1(Ω) ≤ µ1(Br),

and equality holds if and only if Ω = Br.

Although the techniques we have employed to prove these theorems
are of a rather elementary nature, we believe that the results are among
the first examples of isoperimetric inequalities for fully nonlinear opera-
tors, apart from the case of the well-known Monge–Ampère operator.
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Finally, let us briefly discuss the minimization problem for µ1(Ω).
We will see in Section 2 that the minimization problem for µ1(Ω) un-
der a volume constraint does not admit a solution, since there exists a
sequence of hyperrectangles {Rn}n∈N that degenerate to a line keeping
fixed volume such that µ1(Rn)→ 0 as n→ +∞. Nevertheless, it is pos-
sible to consider the same minimization problem under a perimeter or
a diameter constraint. In Section 4 we provide some preliminary results
and we state some conjectures.

Acknowledgements. This article was started during a visit of the third
author to Aix-Marseille University in the context of the MSCA Project
GHAIA (ref: 777822).

2. Preliminary results

Notations. For a measurable set Ω ⊂ RN , we will denote by |Ω| its vol-
ume, which corresponds to its N -dimensional Lebesgue measure, while
P (Ω) will stand for the perimeter of Ω. Since we will be dealing mainly
with convex sets, we can define P (Ω) as

P (Ω) := HN−1(∂Ω),

whereHN−1 is the (N−1)-dimensional Hausdorff measure. The diameter
of Ω will be denoted by diam(Ω),

diam(Ω) := sup{|x− y| |x, y ∈ Ω}.

For r > 0, the symbol Br will stand for an open ball of radius r.

The eigenvalue problem. Let Ω ⊂ RN be an open, bounded domain.
It is clear from the definition of µ1(Ω) in (1) that the function

Ω 7→ µ1(Ω)

is monotone decreasing with respect to set inclusion, that is,

Ω1 ⊂ Ω2 ⇒ µ1(Ω1) ≥ µ1(Ω2).

Moreover, µ1(Ω) enjoys the following scaling property: for a given open,
bounded set Ω ⊂ RN , and t > 0, define

tΩ := {x ∈ RN | x/t ∈ Ω}.

Then,

µ1(tΩ) =
1

t2
µ1(Ω).
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When Ω ⊂ RN is a strictly convex domain, it is possible to show the ex-
istence of a strictly positive viscosity solution u ∈ C(Ω) to the eigenvalue
problem {

−λN (D2u) = µu in Ω,

u = 0 on ∂Ω,

for µ = µ1(Ω) (see [4]). It is still an open problem whether (not strictly)
convex domains also admit a positive first eigenfunction. However, con-
vexity turns out to be a necessary condition. If u ∈ C(Ω) is a positive
eigenfunction, then it satisfies, in the viscosity sense, λ1(D2u) ≤ · · · ≤
λN (D2u) ≤ 0 and hence u is concave. Hence, the fact that Ω = {u > 0}
implies the convexity of Ω.

For some particular domains, the eigenvalue µ1(Ω) and its associated
eigenfunction has been computed in [5]:

• When Ω = Br ⊂ RN is the ball of radius r, it holds that

(2) µ1(Br) =
π2

4r2

and the associated eigenfunction is given by

u(x) = cos
( π

2r
|x|
)
.

It is worth noticing that the eigenvalue and the eigenfunction do
not depend on the space dimension N .

• In the hyperrectangle R =
∏N
i=1(−αi, αi) ⊂ RN the first eigenvalue

is given by

µ1(R) =
π2

4(α2
1 + · · ·+ α2

N )

and the associated eigenfunction has the form

u(x) =

N∏
i=1

[
cos

(
π

2αi
xi

)] 1
pi+1

for some suitable values of pi > −1.

These examples have some significant consequences. First of all, it
follows by monotonicity that the quantity µ1(Ω) is well defined and fi-
nite for every open, bounded set, since there exists a sufficiently small
ball Br ⊂ Ω, so that

µ1(Ω) ≤ µ1(Br) < +∞.

Moreover, the case of the hyperrectangle shows that the problem of
minimizing µ1(Ω) under a volume constraint does not have a solution:



446 E. Parini, J. D. Rossi, A. Salort

fix c > 0, and take that {Rn}n∈N is a sequence of hyperrectangles defined
as

Rn = (0, n)× (0, 1)× · · · × (0, 1)︸ ︷︷ ︸
(N−2) times

×
(

0,
c

n

)
.

Then, it is straightforward to verify that |Rn| = c for every n and

lim
n→+∞

µ1(Rn) = 0.

3. Maximization of the first eigenvalue under constraints

In this section we will deal with the problem of maximizing the first
eigenvalue µ1(Ω) among convex sets, under various different constraints.

The key result is the following estimate for µ1(Ω), which is reminiscent
of a similar result (with reversed inequality) obtained by Payne and
Weinberger for the first nontrivial eigenvalue of the Laplacian under
Neumann boundary conditions; see [18].

Proposition 3.1. Let Ω ⊂ RN be an open, bounded, convex domain.
Then,

(3) µ1(Ω) ≤ π2

[diam(Ω)]2
,

where diam(Ω) is the diameter of Ω.

Proof: Let {xn}n∈N and {yn}n∈N be two sequences of points in Ω such
that

dn := dist(xn, yn)→ diam(Ω) as n→ +∞.
By convexity, Ω contains, for εn ∈

(
0, 1

n

)
sufficiently small, a hyper-

rectangle R of sides of length εn (N − 1 times) and dn (one time). By
monotonicity of µ1, we obtain

µ1(Ω) ≤ µ1(R) =
π2

(N − 1)ε2
n + d2

n

.

Passing to the limit n→ +∞, we obtain

µ1(Ω) ≤ π2

[diam(Ω)]2
,

as we wanted to show.

As an immediate corollary we have the following.
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Corollary 3.2. Let Ω ⊂ RN be a convex set which is contained in a ball

of radius diam(Ω)
2 . Then,

µ1(Ω) =
π2

[diam(Ω)]2
.

Proof: The result follows by the monotonicity of µ1(Ω) with respect to
set inclusion, Proposition 3.1, and the explicit expression of µ1(Ω) for
the ball.

Examples of convex sets satisfying the conditions of Corollary 3.2
include regular polygons in R2 with an even number of sides, or hyper-
cubes in RN . However, not every convex set enjoys this property: for
instance, an equilateral triangle cannot be contained in a disk of radius

smaller than diam(Ω)√
3

. Nevertheless, by Jung’s Theorem [15] we obtain

the following lower bound:

(4) µ1(Ω) ≥ N + 1

2N
· π2

[diam(Ω)]2
,

for any open, bounded, convex set Ω ⊂ RN .
In view of these considerations, one might wonder whether there ac-

tually exist domains such that inequality (3) is strict. In the next propo-
sition we show, under a smoothness assumption on the eigenfunction,
that this is indeed the case for the Reuleaux triangle. We observe that,
if R ⊂ R2 is the Reuleaux triangle generated by the open equilateral
triangle T ⊂ R of unit side length, then it holds that diam(R) = 1.

T

Figure 1. The Reuleaux triangle generated by an equilateral triangle.
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Proposition 3.3. Let R ⊂ R2 be the Reuleaux triangle generated by the
open equilateral triangle T ⊂ R of unit side length. Suppose that the first
eigenfunction is in C2(R) ∩ C(R). Then,

µ1(R) < π2.

Proof: Let u ∈ C2(R)∩C(R) be a positive eigenfunction associated with
the first eigenvalue µ1(R). We know, by Proposition 3.1, that

µ1(R) ≤ π2.

Suppose by contradiction that µ1(R) = π2. Let A, B, and C be the
vertices of T , and let P ∈ T be a point. Let D ∈ ∂R be the intersection
of the line passing through A and P with ∂R. Let AD be the segment,
of unit length, parametrized as

AD = {x ∈ R | x = tD + (1− t)A, t ∈ [0, 1]}.

Set e1 := AD ∈ S1. Let v be the restriction of u to the segment AD,
namely,

v(t) := u(tD + (1− t)A).

The function v satisfies v(0) = v(1) = 0, and

−v′′(t) = −〈D2u(tD + (1− t)A) · e1, e1〉
≥ −λ2(D2u)(tD + (1− t)A)

= π2u(tD + (1− t)A) = π2v(t).

(5)

By Proposition A.1 we have v(t) = c sin (πt) for some c > 0. Therefore,
equality holds in (5), which implies, in particular,

−〈D2u(P ) · e1, e1〉 = π2u(P ),

e1 being an eigenvector associated with λ2(D2u(P )). Repeating the same
reasoning with the line passing through B and P , we would obtain that,
for a unit vector e2 ∈ S1 different from e1, it holds that

−〈D2u(P ) · e2, e2〉 = π2u(P ).

Therefore, the matrix −D2u(P ) admits two linearly independent eigen-
vectors associated with the same eigenvalue π2u(P ). As a consequence,
−D2u(P ) is a multiple of the identity matrix I, so that

−D2u(P ) = π2u(P )I

for every P ∈ T . The conditions

−uxx = −uyy = π2u
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imply, after solving the two differential equations −uxx = π2u and
−uyy = π2u subsequently, that u is of the form

u(x, y) = (a1 sinπx+ b1 cosπx)(a2 sinπy + b2 cosπy).

Imposing the remaining condition

uxy = 0

we obtain that

a1 = a2 = b1 = b2 = 0,

a contradiction to the fact that u > 0 in T .

Remark 3.4. In the proof of Proposition 3.3, we made the assumption
that the eigenfunction belongs to C2(R)∩C(R). While the few explicit
examples currently known (balls and hyperrectangles) support the con-
jecture that eigenfunctions belong to C∞(Ω) ∩ C(Ω), the optimal reg-
ularity of eigenfunctions of the truncated Laplacian is far from being
understood, due to the high degeneracy of the differential operator. It
is worth mentioning that, in the case of the Monge–Ampère operator,
which is also fully nonlinear, but enjoys particular structural properties,
eigenfunctions belong to C∞(Ω) ∩ C0,β(Ω) for every β ∈ (0, 1) (see [16,
Theorem 1.1]).

Proposition 3.1 readily implies that the ball of radius d
2 maximizes

µ1(Ω) among convex domains with fixed diameter diam(Ω) = d > 0. The
maximizer is not unique, since every other convex set with diameter d,
contained in B d

2
, has the same eigenvalue.

We will denote by KN the set

KN := {Ω ⊂ RN | Ω open, bounded and convex}.

Proposition 3.5. Fix d > 0. Then, the ball is a solution of the maxi-
mization problem

sup{µ1(Ω) | Ω ∈ KN , diam(Ω) = d}.

Proof: By Proposition 3.1 and (2) we have

µ1(Ω) ≤ π2

d2
= µ1(B d

2
)

for every convex domain Ω with diam(Ω) = d.

Proposition 3.5 directly implies that the ball maximizes µ1(Ω) under
a perimeter or a volume constraint.



450 E. Parini, J. D. Rossi, A. Salort

Proposition 3.6. The ball is a solution of the maximization problem

sup{µ1(Ω) | Ω ∈ KN , P (Ω) = c},

where c > 0 is fixed. Moreover, if N ≥ 3, then the ball is the unique
maximizer.

Proof: The proof is a consequence of Proposition 3.5, and the fact that
the ball maximizes the perimeter under a diameter constraint among con-
vex sets, being the unique maximizer if N ≥ 3 (see [17, Theorem 5]).

Proposition 3.7 (Reverse Faber–Krahn inequality). The ball is
the unique maximizer of the maximization problem

sup{µ1(Ω) | Ω ∈ KN , |Ω| = c},

where c > 0 is fixed.

Proof: The proof follows from Proposition 3.5 and the fact that, by the
isodiametric inequality, the ball uniquely maximizes the volume under
a diameter constraint among convex sets (see, for instance, [17, Re-
mark 7]).

4. Minimization of the first eigenvalue under constraints

In Section 2 we have seen that the problem of minimizing µ1(Ω) among
bounded, convex sets of fixed volume does not have a solution. This holds
since a minimizing sequence is given by a sequence of hyperrectangles
whose diameter tends to infinity. Then, it is natural to wonder whether
it makes sense to consider the minimization problem under other kinds of
constraints. In this section we will mainly restrict to planar, convex sets,
Ω ⊂ R2, and we will provide some results which support the following
conjectures.

Conjecture 4.1. The minimization problem

inf{µ1(Ω) | Ω ∈ K2, P (Ω) = c} (c > 0)

does not admit a solution. A minimizing sequence is given by a sequence
of rectangles of constant perimeter, with one side length tending to zero.

Conjecture 4.2. The minimization problem

(6) inf{µ1(Ω) | Ω ∈ K2, diam(Ω) = d} (d > 0)

admits a solution.

Conjecture 4.3. The Reuleaux triangle is a minimizer for problem (6).
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We refer to [14, Chapter 2.2] for the basic definitions and notions that
we will use in this section. Our first result is the continuity of Ω 7→ µ1(Ω)
with respect to the Hausdorff convergence of open sets.

Proposition 4.4. Let {Ωn} be a sequence of nonempty, open convex
sets which converge, with respect to the Hausdorff convergence of open
sets, to the nonempty, open convex set Ω ∈ KN . Then,

lim
n→+∞

µ1(Ωn) = µ1(Ω).

Proof: Since the eigenvalue problem is translation invariant, we can as-
sume, without loss of generality, that 0 ∈ Ω. Let {Ωn}n∈N be a sequence
in KN which converges, with respect to the Hausdorff convergence of
open sets, to Ω ∈ KN . Then, there exists a sequence {εn} with εn → 0
such that

(1− εn)Ω ⊂ Ωn ⊂ (1 + εn)Ω

(see, for instance, [10, p. 359]). Due to the monotonicity and the scaling
properties of µ1, we have

1

(1 + εn)2
µ1(Ω) ≤ µ1(Ωn) ≤ 1

(1− εn)2
µ1(Ω).

This implies

lim
n→+∞

µ1(Ωn) = µ1(Ω),

which is the claim.

The next result concerns the asymptotic behaviour of a shrinking
sequence of convex, planar sets.

Proposition 4.5. Let {Ωn}n∈N be a sequence of convex, open sets in R2

such that diam(Ωn)→ d > 0 and |Ωn| → 0 as n→ +∞. Then,

lim
n→+∞

µ1(Ωn) =
π2

d2
.

Proof: Set dn := diam(Ωn). Without loss of generality, we can translate
and rotate the sets Ωn in such a way that the points (0, 0) and (dn, 0)
are on ∂Ωn. Let

ε(1)
n := max{y ≥ 0 | (x, y) ∈ ∂Ωn},

ε(2)
n := min{y ≤ 0 | (x, y) ∈ ∂Ωn}.
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Since the sets Ωn are convex, and |Ωn| → 0 as n→ +∞, it must hold that

ε
(1)
n , ε

(2)
n → 0 as n→ +∞. Moreover, Ωn is contained in a rectangle Rn

of sides dn and ε
(1)
n + ε

(2)
n . By monotonicity,

µ1(Ωn) ≥ µ1(Rn) =
π2

d2
n + (ε

(1)
n + ε

(2)
n )2

⇒ lim inf
n→+∞

µ1(Ωn) ≥ π2

d2
.

On the other hand, by Proposition 3.1,

µ1(Ωn) ≤ π2

d2
n

⇒ lim sup
n→+∞

µ1(Ωn) ≤ π2

d2
.

Hence, we have obtained that

lim
n→+∞

µ1(Ωn) =
π2

d2
,

as we wanted to show.

Let us now discuss the minimization problem in R2

inf{µ1(Ω) | Ω ∈ K2, diam(Ω) = d} =: m.

First, we observe that

m ≥ 3

4
· π

2

d2
> 0

by (4). Let {Ωn}n∈N be a minimizing sequence. Since the functional Ω 7→
µ1(Ω) is translation invariant, we can suppose, without loss of generality,
that the whole sequence is contained in a fixed ball Br ⊂ RN . If |Ωn| →
0, by Proposition 4.5 it would hold that

m =
π2

d2
,

which would contradict Proposition 3.3 if we knew that the eigenfunction
in the Reuleaux triangle is smooth. Therefore, by Blaschke’s selection
principle, there exists Ω ∈ K2 with |Ω| > 0 and a subsequence (still
denoted by {Ωn}n∈N) such that

Ωn
H→ Ω

in the Hausdorff distance. Now, Proposition 4.4 implies that

lim
n→+∞

µ1(Ωn) = µ1(Ω) = m.

Moreover, by continuity of the diameter with respect to the Hausdorff
convergence of convex sets (see, for instance, [2]), it holds that

diam(Ω) = d
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so that Ω would be a minimizer. In this case, it is possible to show the
existence of a minimizer which is a body of constant width. Indeed, let
Ω be a minimizer. By [9, p. 138] there exists a convex set Ω̂ of constant

width such that diam(Ω̂) = d and Ω ⊂ Ω̂. This implies µ1(Ω̂) ≤ µ1(Ω)

by monotonicity, and therefore Ω̂ is also a minimizer. We conjecture
that the Reuleaux triangle is a minimizer, since it is generated from a
regular polygon, and among all Reuleaux polygons it is the “farthest”
from being a ball.

It is possible to perform similar reasonings for the minimization prob-
lem

inf{µ1(Ω) | Ω ∈ K2, P (Ω) = c}.
In this case, we conjecture that the infimum is not attained, and that a
minimizing sequence is given by any sequence of rectangles as in Propo-
sition 4.5.

Appendix A. A technical result

In this appendix we prove a technical result which was used in the
proof of Proposition 3.3.

Proposition A.1. Let I = (0, 1), and let v ∈ C2(I) ∩ C(I) satisfy

−v′′ ≥ π2v in I, v(0) = v(1) = 0.

Then, v satisfies

−v′′ = π2v in I.

Proof: Let ϕ1 be defined as ϕ1(x) = sin (πx). We observe that ϕ1 is

a positive eigenfunction of the differential operator − d2

dx2 in I under
Dirichlet boundary conditions. It holds that

(7)

∫ 1

0

ϕ1[v′′ + π2v] =

∫ 1

0

[ϕ′′1 + π2ϕ1]v = 0.

Since ϕ1 > 0 and v′′+π2v ≤ 0 in I, (7) implies v′′+π2v = 0 in I, which
is the claim.
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