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Abstract: We prove that for any LQ-valued Schwartz function f defined on Rd, one

has the multiple vector-valued, mixed-norm estimate

‖f‖LP (LQ) . ‖Sf‖LP (LQ)

valid for every d-tuple P and every n-tupleQ satisfying 0 < P,Q <∞ componentwise.

Here S := Sd1 ⊗ · · · ⊗ SdN is a tensor product of several Littlewood–Paley square

functions Sdj defined on arbitrary Euclidean spaces Rdj for 1 ≤ j ≤ N , with the

property that d1 + · · · + dN = d. This answers a question that came up implicitly

in our recent works [2], [3], [5] and completes in a natural way classical results of
Littlewood–Paley theory. The proof is based on the helicoidal method introduced by

the authors in the aforementioned papers.

2020 Mathematics Subject Classification: 42B20.

Key words: multi-parameter Littlewood–Paley theory, multi-parameter Hardy spaces,

mixed-norm estimates, weighted estimates and Littlewood–Paley theory.

1. Introduction

Let us start by recalling that a sequence of L1-bounded Schwartz func-
tions (ψk)k∈Z defined on the Euclidean space Rm is called a Littlewood–
Paley sequence, if its Fourier transform satisfies1

(1) supp ψ̂k ⊆ [2k−1, 2k+1], |∂αψ̂k(ξ)| . 2−|α|k
(

1 +
|ξ|
2k

)−100m

for every ξ ∈ Rm and sufficiently many multi-indices α, and if one also
has

1 =
∑
k∈Z

ψ̂k.

C. Muscalu is also a Member of the Simion Stoilow Institute of Mathematics of the
Romanian Academy in Bucharest.
1Here and throughout the article we use the standard notation A . B, meaning that
A ≤ CB for some constant C > 0 which can be universal or dependent on several

implicit parameters derived from the specific context.
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In particular, any Schwartz function f defined on Rm admits the Little-
wood–Paley decomposition

f =
∑
k∈Z

f ∗ ψk.

To any Littlewood–Paley sequence, one can also associate a Little-
wood–Paley square function Smf , defined by

(2) Smf(x) :=
(∑
k∈Z
|f ∗ ψk(x)|2

)1/2

.

Moreover, for any N ≥ 1 such Littlewood–Paley sequences (ψjk)k∈Z de-

fined on Rdj for 1 ≤ j ≤ N , one defines an N -parameter one (Ψk)k∈ZN
on Rd := Rd1 × · · · × RdN by

(3) Ψk := ψ1
k1 ⊗ · · · ⊗ ψ

N
kN

for k = (k1, . . . , kN ), where

ψ1
k1 ⊗ · · · ⊗ ψ

N
kN (x1, . . . , xN ) := ψ1

k1(x1) · . . . · ψNkN (xN ).

Here we think of the generic variable x ∈ Rd as being identified with the
vector (x1, . . . , xN ) with xj ∈ Rdj for 1 ≤ j ≤ N .

In particular, any Schwartz function on Rd admits the decomposition

f =
∑
k∈ZN

f ∗Ψk.

One can then also define the N -parameter square function Sf by the
formula

(4) Sf(x) :=
( ∑
k∈ZN

|f ∗Ψk(x)|2
)1/2

for x ∈ Rd. This is the square function that will be studied in the present
article.

To complete the presentation of the main notations that we will use,
we also recall that given any n ≥ 1 σ-finite measurable spaces (Aj ,Σj , µj)
for 1 ≤ j ≤ n and R = (r1, . . . , rn), an n-tuple of positive real numbers,
one can define the iterated (or mixed-norm) Lebesgue space LR(A,Σ, µ)
to be the space containing those functions g which are measurable on
the product space

(A,Σ, µ) :=
( n∏
j=1

Aj ,

n∏
j=1

Σj ,

n∏
j=1

µj

)
and for which the (quasi)-norm ‖g‖R defined by

‖g‖R :=‖g‖LR(A,Σ,µ) =‖. . .‖g(a1, . . . , an)‖Lrn (An,Σn,µn) . . . ‖Lr1 (A1,Σ1,µ1)

is finite.
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Classical Littlewood–Paley theory states that the inequalities

(5) ‖f‖Lp(Rm) . ‖Smf‖Lp(Rm) . ‖f‖Lp(Rm)

are true, provided that 1 < p < ∞ and that, in addition, the left-hand
side of (5)

(6) ‖f‖Lp(Rm) . ‖Smf‖Lp(Rm)

is in fact available in the whole range 0 < p < ∞; see for instance [19]
and [20].

Standard duality and vector-valued arguments for singular integrals
allow one to extend (5) very easily to the setting of mixed-norm spaces
and N -parameter square functions. This implies that the inequalities

(7) ‖f‖LP (LQ) . ‖Sf‖LP (LQ) . ‖f‖LP (LQ)

are true for LQ-valued Schwartz functions defined in Rd for every n-tu-
ple Q and d-tuple P satisfying 1 < P,Q <∞ componentwise.

To be more specific, the space LP above is considered with respect to
the product Lebesgue measure in Rd, and as before, by ‖h‖LP (LQ) one
means the mixed (quasi)-norm given by

‖h‖LP (LQ) := ‖ ‖h(x, a)‖LQ(A,Σ,µ) ‖LP (Rd).

The main result of the present article proves an extension of the esti-
mate (6).

Theorem 1.1. The estimate

(8) ‖f‖LP (LQ) . ‖Sf‖LP (LQ)

is true, for every LQ-valued Schwartz function f on Rd, as long as the
n-tuples Q and the d-tuples P satisfy the condition 0 < P,Q <∞ com-
ponentwise.

As we will see, unlike (7), the proof of Theorem 1.1 is far from be-
ing routine, and it is based on the helicoidal method developed by the
authors in [2], [3], [5]. The question addressed and answered by The-
orem 1.1 surfaced quite naturally in our recent works [2], [3] and it
is related to an open problem of Kenig on mixed-norm estimates for
paraproducts on polydisks. See also our recent expository work [4], in
particular Theorem 5 there. We also refer the reader to Sections 5 and 6
of [2], where scalar and Banach-valued versions of Theorem 1.1 are used
to prove mixed-norm estimates for multi-parameter operators. Thus the
vector-valued extension in (8) for the multi-parameter square function
is essential for widening the range of boundedness of those operators,
although certain endpoints are still excluded.
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Some particular cases of (8) were known in the scalar case, that is,
when LQ = C. The case when all the entries of the d-tuple P are equal
to each other is the well-known multi-parameter case studied by Gundy
and Stein in [12]. More recently, Hart, Torres, and Wu proved the case
when N = 1 and d = 2, again, in the scalar situation [13]. Even more
recently, the case N = 1 was extended in [14] to arbitrary dimensions,
also in an anisotropic setting.

The central point of the paper will be the proof of our main Theo-
rem 1.1 based on techniques from [2], [3], and [5]. The LP (Rd) mixed-
norms, the iterated Lebesgue spaces LQ(A,Σ, µ), and the N parameters
could make the result seem convoluted, but several simplifications are
attainable. We will first focus on the situation when LP (Rd) = Lp(Rd),
leaving out the mixed-norms in a first instance; the same principle used
for proving vector-valued extensions will be useful for proving the mixed-
norm estimates as well, since both problems boil down to a change of
(quasi)-norm. With this simplification, we are reduced to proving the
vector-valued extension for the N -parameter square function

(9) ‖f‖Lp(LQ) . ‖Sf‖Lp(LQ),

for any 0 < p,Q < ∞. Following the viewpoint of [2], multi-parameter
operators can be treated using vector-valued extensions of operators de-
pending on fewer parameters. Since our vector spaces are precisely it-
erated Lebesgue spaces, the treatment of the N -parameter square func-
tion is reduced eventually to multiple vector-valued estimates for the
one-parameter square function.

In order to ease the presentation even more, we consider in the first
part of the paper the case when all the square functions Sdj for 1 ≤
j ≤ N are one-dimensional, that is, when d1 = · · · = dN = 1; all
the objects considered have unequivocal higher-dimensional analogues,
and this reduction does not produce a loss of generality. Notice that
this situation corresponds numerically to N = d. The proof of this case
represents the core of the present article.

Under this assumption, we first show in Section 2 that the N -param-
eter estimate (8) follows easily, by induction, from the one-parameter
case at the cost of increasing the complexity of the vector-valued spaces
considered. Notice that in this situation, (8) becomes a multiple vector-
valued extension of the well-known (scalar) inequality (6). Then, in Sec-
tion 3, we explain how this multiple vector-valued case is implied by a
certain discrete analogue of it.

Next, in Section 4, which is more involved, we describe the proof of
this discrete case, by using ideas that lie at the heart of our helicoidal
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method in [2], [3], [5]. In Section 5 we explain how one can modify the
proof presented up to now in order to deal with the general, mixed-norm
case of Theorem 1.1.

Lastly, in the final Section 6, we will see how Theorem 1.1 can also be
obtained through extrapolation from a weighted, scalar version of Theo-
rem 1.1, which appeared in the context of weighted Hardy spaces in [9].
Since we are outside the Banach setting, the extrapolation needed con-
cerns A∞ weights and pairs of functions. For the mixed-norm estimates,
we need to adapt a result of Kurtz [15].

That the vector-valued result of Theorem 1.1 allows also for a proof
based on extrapolation and weighted theory should not be surprising:
the helicoidal method yields vector-valued results that can be obtained
also through extrapolation, once weighted estimates for the correct class
of weights are known. This was the case also with the bilinear Hilbert
transform (see [2], [5], [6], [16]). For completeness, in Subsection 6.2 we
show how to deduce the weighted version of Theorem 1.1 by using the
helicoidal method: the same maximal inequality used in Section 4 plays
a central role, and only the stopping time algorithm changes.

Acknowledgements. C. Benea was partially supported by ERC Project
FAnFArE no. 637510. C. Muscalu was partially supported by NSF Grant
DMS 1500262. He also acknowledges partial support through a grant
from the Ministry of Research and Innovation of Romania, CNCS - UE-
FISCDI, project PN-III-P4-ID-PCE-2016-0823 within PNCDI - III. Dur-
ing the spring semester of 2017, C. Muscalu was a member of the MSRI
in Berkeley, as part of the Program in Harmonic Analysis, and during
the fall semester of 2017 he was a visiting Simons Fellow at the Mathe-
matics Department of Université Paris-Sud Orsay. He is grateful to both
institutions for their hospitality, and to the Simons Foundation for their
generous support.

The authors are grateful to Dachun Yang for pointing out the results
in [14].

2. Reduction to the multiple vector-valued case

As mentioned above, we first study the case when d1 = · · · = dN = 1.
From now on, until Section 5, we work under this assumption.

And as also mentioned in the introduction, in this section we show
that Theorem 1.1 follows by induction, from its particular case d = 1.
Recall also that d = N now. Let us therefore assume that Theorem 1.1
is true for dimensions smaller than or equal to d− 1 and we will explain
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how to deduce the d-dimensional case. The argument is based on the
identity

(10) Sf =
(∑
k∈Z
|S(x1,...,xd−1)(f ∗ ψdk)|2

)1/2

,

where S(x1,...,xd−1)(g) denotes the (d− 1)-dimensional part of the square
function, taken with respect to the variables x1, . . . , xd−1, and explicitly
given by

(11) S(x1,...,xd−1)(g)(x) :=
( ∑
k1,...,kd−1

|g ∗ (ψ1
k1 ⊗ · · · ⊗ ψ

d−1
kd−1

)(x)|2
)1/2

for x ∈ Rd. The first convolution in (10) is a one-dimensional one, taken
with respect to the last variable xd, while the convolution in (11) is
a (d − 1)-dimensional one, taken with respect to the first d − 1 vari-
ables x1, . . . , xd−1. Using (10) one can write ‖Sf‖LP (LQ) as∥∥∥(∑

k∈Z
|S(x1,...,xd−1)(f ∗ ψdk)|2

)1/2∥∥∥
LP (LQ)

= ‖(S(x1,...,xd−1)(f ∗ ψdk))k‖LP (LQ(`2))

= ‖(S(x1,...,xd−1)(f ∗ ψdk))k‖LP̃ (Lpd (LQ(`2))),

where P̃ := (p1, . . . , pd−1).
Here, one can use the induction hypothesis in the (d− 1)-dimensional

case to conclude that the above expression is larger than

‖(f ∗ ψdk)k‖LP̃ (Lpd (LQ(l2))) =
∥∥∥(∑

k

|f ∗ ψdk|2
)1/2∥∥∥

LP̃ (Lpd (LQ))
.

Finally, by using the one-dimensional case and Fubini, we see that this
is also greater than

‖f‖LP̃ (Lpd (LQ)) = ‖f‖LP (LQ),

which ends the argument.

3. The discrete multiple vector-valued case

Now that we know that Theorem 1.1 (in the special situation when
d1 = · · · = dN = 1) can be reduced to its d = 1 particular case, we
show in this section that a further reduction is possible. The multiple
vector-valued d = 1 case can be reduced to a discrete variant of it that
will be described next.
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Let us pause briefly and recall that a sequence of Schwartz func-
tions (φI)I on the real line, indexed by dyadic intervals I, is called an
Lp normalized lacunary sequence (for some p ∈ (0,∞]), if and only if
the following estimates hold:

(12) |∂αφI(x)| . 1

|I|1/p
1

|I|α
(

1 +
dist(x, I)

|I|

)−100

for x ∈ R, 0 ≤ α ≤ 10, and also if
´
R φI(x) dx = 0.

Now let (φ1
I)I and (φ2

I)I be two such L2-normalized lacunary se-
quences, indexed by an arbitrary finite subset of dyadic intervals. The
following discrete variant of the one-dimensional case of Theorem 1.1 is
true.

Theorem 3.1. For every 0 < p <∞ and tuple Q as before, one has

(13)
∥∥∥∑

I

〈f, φ1
I〉φ2

I

∥∥∥
Lp(LQ)

.
∥∥∥(∑

I

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Lp(LQ)

.

Observation 3.2. The function f above depends on the variables
(a1, . . . , an) ∈ A and on x ∈ R. Sometimes we will write this explic-
itly as f(a1,...,an)(x). It is important to emphasize that, as we will see
from the proof of Theorem 3.1, the estimate (13) holds also in the more
general case when the families (φ1

I)I and (φ2
I)I depend on the variables

(a1, . . . , an) ∈ A as well, in a uniform manner, with respect to the im-
plicit constants of (12).

We will now explain why Theorem 3.1 implies the one-dimensional
case of Theorem 1.1. The argument is based on an idea that we learned
from the article [13], and which goes back to the work of Frazier and
Jawerth [11].

Proposition 3.3. There exists a large universal constant N such that,
given any sequence of intermediate points xI ∈ I, there exists (ψ̃I)I , an
L∞ normalized lacunary sequence, so that every Schwartz function h on
the real line can be decomposed as

(14) h =
∑
k

∑
|I|=2−k

(h ∗ ψk−N )(xI)ψ̃I .

In (14), the sequence (ψl)l is any a priori fixed Littlewood–Paley se-
quence. We prove Proposition 3.3 in detail later on. In what follows, we
describe how it helps reduce the d = 1 case of Theorem 1.1 to its discrete
analogue from Theorem 3.1.
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Fix f(= f(a1,...,an)(x)). For every (a1, . . . , an) ∈ A pick xI ∈ I, a
number with the property that

inf
y∈I
|(f(a1,...,an) ∗ ψk−N )(y)| = |(f(a1,...,an) ∗ ψk−N )(xI)|,

where I is a dyadic interval with |I| = 2−k. Clearly, xI depends on f
and also, implicitly, on (a1, . . . , an) ∈ A.

Using Proposition 3.3, one can write

(15) ‖f‖Lp(LQ)=
∥∥∥∑
k

∑
|I|=2−k

(f(a1,...,an)∗ψk−N )(xI)ψI,(a1,...,an)(x)
∥∥∥
Lp(LQ)

.

Using now the general form of Theorem 3.1 (see Observation 3.2 that
followed it) one can majorize the above expression (15) further by∥∥∥(∑

k

∑
|I|=2−k

|(f(a1,...,an) ∗ ψk−N )(xI)|21I(x)
)1/2∥∥∥

Lp(LQ)
,

and using the definition of the sequence (xI)I above, one can immediately
see that this is smaller than∥∥∥(∑

k

|(f(a1,...,an)∗ψk−N )(x)|2
)1/2∥∥∥

Lp(LQ)
=
∥∥∥(∑

k

|f ∗ψk|2
)1/2∥∥∥

Lp(LQ)
,

as desired.

3.1. Proof of Proposition 3.3. We now describe the proof of Propo-
sition 3.3 using the ideas from [11].

Start by writing, for a generic function of a variable f :

f =
∑
k

f ∗ ψk =
∑
k

f ∗ ψk−N .

We will prove that for every k ∈ Z, a family of functions (ψ̃I)I as in
Proposition 3.3 exists2, so that

(16) f ∗ ψk−N =
∑
|I|=2−k

(f ∗ ψk−N )(xI)ψ̃I .

Clearly, this would be enough. Since the argument is scale-invariant,
we will prove this in the particular case when k = N . In this case,
(16) becomes

(17) f ∗ ψ0 =
∑

|I|=2−N

(f ∗ ψ0)(xI)ψ̃I .

2This time all the intervals I have the same length, |I| = 2−k.
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Now consider ψ̃, a Schwartz function such that
̂̃
ψ = 1 on the support

of ψ̂0 and having the property that supp
̂̃
ψ ⊆ [1/4, 8].

Then, one can write

f ∗ ψ0(x) = (f ∗ ψ0) ∗ ψ̃(x) =

ˆ
R
f ∗ ψ0(y)ψ̃(x− y) dy

=
∑

|I|=2−N

ˆ
R
f ∗ ψ0(y)ψ̃(x− y)1I(y) dy

=
∑

|I|=2−N

f ∗ ψ0(xI)

ˆ
R
ψ̃(x− y)1I(y) dy + Rest1(x)

=
∑

|I|=2−N

f ∗ ψ0(xI)φ
1
I(x) + Rest1(x),

(18)

where φ1
I := ψ̃ ∗ 1I(x) and

Rest1(x) =:
∑

|I|=2−N

Rest1,I(x)

=
∑

|I|=2−N

ˆ
R

[f ∗ ψ0(y)− f ∗ ψ0(xI)]ψ̃(x− y)1I(y) dy.
(19)

The above inner expression can be estimated by

f ∗ ψ0(y)− f ∗ ψ0(xI) =

ˆ
R
f(z)[ψ0(y − z)− ψ0(xI − z)] dz

=

ˆ
R
f(z)ψ′0(#− z)(y − xI) dz,

where # is a point lying inside the interval I and depending on y, xI ,
and z. Since both y and xI belong to I, it is easy to see that the above
expression is at most C 2−N‖f‖∞. Using this in (19) we obtain that

|Rest1,I(x)| ≤ CM̃2−N‖f‖∞(1 + dist(x, I))−M̃ |I|,

which implies further

|Rest1(x)| ≤ C‖f‖∞2−N .

We see these calculations as providing a first approximation towards the
desired (17). To summarize, so far we have shown that

(20) f ∗ ψ0(x) =
∑

|I|=2−N

f ∗ ψ0(xI)φ
1
I(x) + Rest1(x),

where |Rest1(x)| ≤ C ‖f‖∞2−N and (φ1
I)I is a lacunary family.
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We now iterate this fact carefully. Fix J with |J | = 2−N and recall
the expression

(21) Rest1,J(x) =

ˆ
R
[f ∗ ψ0(y)− f ∗ ψ0(xJ)]ψ̃(x− y)1J(y) dy.

Using (20) for x = y and x = xJ in (21) we obtain a decomposition
of Rest1,J(x) of the type∑
|I|=2−N

f ∗ ψ0(xI)

ˆ
R

[φ1
I(y)− φ1

I(xJ)]ψ̃(x− y)1J(y) dy

+
∑

|I|=2−N

ˆ
R

[Rest1,I(y)− Rest1,I(xJ)]ψ̃(x− y)1J(y) dy.

Summing over |J | = 2−N , we obtain the formula

Rest1(x) =
∑

|I|=2−N

f ∗ ψ0(xI)φ
2
I + Rest2(x),

where

φ2
I(x) :=

∑
|J|=2−N

ˆ
R

[φ1
I(y)− φ1

I(xJ)]ψ̃(x− y)1J(y) dy,

while
Rest2(x) =

∑
|I|=2−N

Rest2,I(x)

and

Rest2,I(x) :=
∑

|J|=2−N

ˆ
R

[Rest1,I(y)− Rest1,I(xJ)]ψ̃(x− y)1J(y) dy.

Arguing exactly as before, given that both y and xJ belong to the inter-
val J , it is not difficult to see that (φ2

I)I is a lacunary family satisfying

‖φ2
I‖∞ ≤ C 2−N , while ‖Rest2 ‖∞ ≤ C2 2−2N‖f‖∞,

where, as always, C is a universal constant. In other words, at our second
approximation step, we obtain the decomposition

f ∗ ψ0(x) =
∑

|I|=2−N

f ∗ ψ0(xI)(φ
1
I(x) + φ2

I(x)) + Rest2(x).

Iterating this an arbitrary number of times, we obtain that f ∗ψ0(x) can
be written as

(22) f ∗ ψ0(x) =
∑

|I|=2−N

f ∗ ψ0(xI)(φ
1
I(x) + · · ·+ φlI(x)) + Restl(x),

where (φjI)I is a lacunary family satisfying

‖φjI‖∞ ≤ C
j−12−(j−1)N while ‖Restl‖∞ ≤ Cl2−lN‖f‖∞.
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Thus, if N is large enough so that C 2−N <1, by letting l go to∞ in (22),

we obtain the desired decomposition (17) with ψ̃I given by

ψ̃I(x) :=

∞∑
l=1

φlI(x).

Strictly speaking, the families (φlI)I are naturally associated to intervals
of length 1, not 2−N , but since N is a fixed universal constant, it is
not difficult to see that they satisfy the estimates (12) as well, at the
expense of losing a harmless constant of the type 21000N . This completes
the proof of Proposition 3.3.

4. Proof of Theorem 3.1

Recall that our goal now is to prove that

(23)
∥∥∥∑
I∈I
〈f, φ1

I〉φ2
I

∥∥∥
Lp(LQ)

.
∥∥∥(∑

I∈I

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Lp(LQ)

for every 0 < p < ∞ and every n-tuple Q of positive real numbers.
Also, I is a fixed finite collection of dyadic intervals. Of course, the
implicit constant in (23) is meant to be independent of the cardinality
of I. We also denote by I the collection of all dyadic intervals J having
the property that there exists I ∈ I such that I ⊆ J and satisfying
|J | ≤ 2M0 for some large fixed positive integer M0. Sometimes we refer
to the intervals in I as being the relevant dyadic intervals.

Now let E ⊆ R be a measurable subset. To prove (23) it is necessary
to prove a more refined version of it given by

(24)
∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
1E

∥∥∥
Lp(LQ)

.
∥∥∥(∑

I∈I

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Lp(LQ)

· (sizeI 1E)1/p−ε,

where ε > 0 is arbitrarily small while

(25) sizeI 1E := sup
I∈I

1

|I|

ˆ
R

1E(x)
(

1 +
dist(x, I)

|I|

)−100

dx

is essentially the supremum over all L1 averages of 1E(x) over the in-
tervals of I. The ε in the right-hand side of (24) represents a small loss
in the information corresponding to the localizing function 1E , which
will be traded later in (47) for the overall summability of the informa-
tion corresponding to the level sets. The reader familiar with our earlier
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“helicoidal papers” [2], [3], and [5] will find our desire to prove (24)
natural.

Clearly, (24) implies (23) since one can take E to be the whole real
line R.

Using interpolation arguments (see Proposition 4.1), it is enough to
prove a weaker version of (24), namely

(26)
∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
1E

∥∥∥
Lp,∞(LQ)

.
∥∥∥(∑

I∈I

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Lp(LQ)

· (sizeI 1E)1/p−ε.

Such interpolation arguments will in fact be freely used throughout the
section, until the end of it, when they will be proved in detail.

Let us denote by P(n) the statement which says that (26) holds in full
generality, for 0 < p < ∞ and Q n-tuple of positive real numbers. We
will prove P(n) by induction for every n ≥ 0.

4.1. Proof of P(0). This is the scalar case, which now reads as

(27)
∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
1E

∥∥∥
Lp,∞

.
∥∥∥(∑

I∈I

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Lp
· (sizeI 1E)1/p−ε.

Let s be any positive real number with the property s ≤ min(1, p). To
estimate the left-hand side of (27) we dualize the expression through Ls,
as explained in [3]. Given also the scale invariance of the inequality, this
amounts to proving that for every F ⊆ R measurable set with |F | = 1,

there exists a subset of it F̃ ⊆ F with |F̃ | > 1/2 such that

(28)
∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
1E1F̃

∥∥∥
Ls

.
∥∥∥(∑

I∈I

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Lp
· (sizeI 1E)1/p−ε.

To construct the subset F̃ , we start by defining an exceptional set Ω as
follows.

First, for every integer k ≥ 0 we define

Ωk := {x : Sf(x) > C210k/p‖Sf‖p}.
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Here, and from now on, by Sf(x) we mean the“discrete” Littlewood–
Paley square function given by

(29) Sf(x) :=
(∑
I∈I

|〈f, φ1
I〉|2

|I|
1I(x)

)1/2

.

When we need to emphasize that the square function above depends on
the collection I, we write SI .

It is not difficult to see that

|Ωk| ≤
1

210k

1

Cp
.

After that we set

Ω̃k := {x : M(1Ωk)(x) > 1/2k},

where M is the Hardy–Littlewood maximal operator, and finally

(30) Ω :=

∞⋃
k=0

Ω̃k.

Clearly,

|Ω̃k| ≤ C̃ 2k|Ωk| ≤ C̃ 2k
1

210k

1

Cp
=

C̃

Cp
1

29k

and in particular this implies that |Ω| < 1/10 if C is a large enough
constant3.

In the end we set F̃ := F \Ω, which is a major subset of F , in the sense

that it satisfies |F̃ | ∼ 1. Now, using a result from [18], we decompose
the functions φ2

I as

(31) φ2
I =

∞∑
`=0

2−M̃ `φ2
I,`,

where M̃ is arbitrarily large and for each ` ≥ 0, (φ2
I,`)I is still a lacunary

family with the additional property that

suppφ2
I,` ⊆ 2`I.

In particular, one can estimate the left-hand side of (28) by

(32)
∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
1E1F̃

∥∥∥s
s
.
∞∑
`=0

2−M̃s `
∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I,`

)
1E1F̃

∥∥∥s
s
.

3The constant C̃ is the boundedness constant of M : L1 → L1,∞.
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The right-hand side of (32) can also be rewritten as

∞∑
`=0

2−M̃s`/2
∥∥∥(∑

I∈I
〈f, φ1

I〉φ̃2
I,`

)
1E1F̃

∥∥∥s
s
,

where φ̃2
I,` := 2−M̃ `/2φ2

I,`. We will see in what follows that for each ` ≥ 0
one has

(33)
∥∥∥(∑

I∈I
〈f, φ1

I〉φ̃2
I,`

)
1E1F̃

∥∥∥s
s
. 2L`‖Sf‖sp · (sizeI 1E)(1/p−ε)s,

where L is some constant depending on s and p. However, because of
the large constant M̃ in (32), this will be enough to complete our proof.
We will prove (33) in detail in the main case when ` = 0 and then we
will explain how to modify the argument to obtain (33) in general.

In other words, the goal for us now is to prove that

(34)
∥∥∥(∑

I∈I
〈f, φ1

I〉φ̃2
I,0

)
1E1F̃

∥∥∥s
s
. ‖Sf‖sp · (sizeI 1E)(s/p−ε).

Recall that now, since

supp φ̃2
I,0 ⊆ I,

one must have I ∩ Ωc 6= ∅, which in particular implies that I ∩ Ωc0 6= ∅.
From the definition of Ω0, one can see that this set admits a natural
decomposition as a disjoint union of maximal dyadic intervals denoted
by Imax. In particular, our dyadic intervals I have the property that they
are either disjoint from all these Imax or they contain strictly at least
one of them. In either case, it is not difficult to see that one has the
pointwise estimate

(35)
( ∑
I∈I:I∩Ωc0 6=∅

|〈f, φ1
I〉|2

|I|
1I(x)

)1/2

≤ C̃‖Sf‖p,

where C̃ is a universal constant. To prove (34) we will combine two
stopping time arguments, one performed with the help of averages of
the type

(36)
1

|I0|1/p
∥∥∥(∑

I⊆I0

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Lp

and the other one with the help of averages of the type

(37)
1

|I0|

ˆ
R

1E∩F̃ (x)
(

1 +
dist(x, I0)

|I0|

)−100

dx.
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The latter will be denoted from now on by ave1
I0

(1E∩F̃ ). Clearly, because
of the pointwise bound (35), averages such as the ones in (36) cannot be

larger than C̃ ‖Sf‖p, while averages of the type (37) cannot be larger
than sizeI(1E∩F̃ ).

We now describe in detail the first stopping time.
We start by selecting maximal dyadic intervals I0 ∈ I with the prop-

erty that I0 ∩ Ωc0 6= ∅ and such that

(38)
1

|I0|1/p
∥∥∥(∑

I⊆I0

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Lp
≥ C̃

2
‖Sf‖p.

Of course, as pointed out before, we implicitly assume that all the
intervals I that participate in the summation above have the prop-
erty I ∩ Ωc0 6= ∅. It is also important to observe that these selected
intervals I0 are all disjoint, as a consequence of their maximality. Then,
we disregard all the relevant dyadic intervals that lie inside one of these
selected intervals and consider only those that are left. They are either
disjoint from the selected ones or they contain at least one of the selected
ones.

After this, among those that are left, we pick those maximal ones,
still denoted by I0, for which

(39)
1

|I0|1/p
∥∥∥(∑

I⊆I0

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Lp
≥ C̃

22
‖Sf‖p

and so forth. The maximal intervals selected at the first step are collected

in I(1)
1 , those selected at the second step are collected in I(1)

2 and so on,

obtaining the collections (I(1)
n1 )n1

. Clearly, there are only finitely many
such steps, since our initial collection of intervals was finite.

After that, independently, we perform a similar stopping time, but
one that involves the averages ave1

I0
(1E∩F̃ ) instead. We start by selecting

those maximal intervals I0 for which

ave1
I0(1E∩F̃ ) >

1

2
sizeI(1E∩F̃ )

then, among those that are left (more specifically, those that are not
inside any of the previously selected I0) we again pick those maximal I0
for which

(40) ave1
I0(1E∩F̃ ) >

1

22
sizeI(1E∩F̃ )

and so on, exactly as before. In this way, one obtains a sequence of

collections of maximal dyadic intervals I0 denoted by (I(2)
n2 )n2 .
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In the end, we combine them to be able to estimate (34). One can
write

(41)
∥∥∥( ∑

I∈I,I∩Ωc0 6=∅

〈f, φ1
I〉φ̃2

I,0

)
1E1F̃

∥∥∥s
s

≤
∑

n1,n2≥0

∑
I1∈I(1)n1

,I2∈I(2)n2

∥∥∥( ∑
I∈I(1)n1

(I1)∩I(2)n2
(I2)

〈f, φ1
I〉φ̃2

I,0

)
1E1F̃

∥∥∥s
s
,

where I(1)
n1 (I1) contains all the relevant dyadic intervals I with the prop-

erty that I ⊆ I1 but such that I is not contained in any of the previously

selected intervals in I(1)
l for 0 ≤ l ≤ n1 − 1, and similarly for I(2)

n2 (I2).
Clearly, any interval I participating in the summation (41) must satisfy
I ⊆ I1 ∩ I2. Now, for every I1, I2 as before, the corresponding Ls quasi-
norm in (41) can be estimated by

(42)
∥∥∥( ∑

I⊆I1∩I2

〈f, φ1
I〉φ̃2

I,0

)
1E1F̃

∥∥∥
1
· |E ∩ F̃ ∩ I1 ∩ I2|

1−s
s

by using Hölder, since s ≤ 1. The L1 norm in (42) can be dualized and
estimated by ∑

I⊆I1∩I2

〈f, φ1
I〉〈1E∩F̃ g, φ̃

2
I,0〉

for some function g with the property ‖g‖∞ = 1. Using Cauchy–Schwarz
this can be further estimated by

1

|I1 ∩ I2|1/2
∥∥∥( ∑

I⊆I1∩I2

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
2

× 1

|I1 ∩ I2|1/2
∥∥∥( ∑

I⊆I1∩I2

|〈1E∩F̃ g, φ̃
2
I,0〉|2

|I|
1I

)1/2∥∥∥
2
· |I1 ∩ I2|.

Now using John–Nirenberg twice (see Theorem 2.10 in [19] for this ro-
bust, discrete variant of it) together with the standard local estimate
of weak-L1 averages (which can be found in Lemma 2.16 of [19], for
instance), this can be further majorized by

(43)
(

sup
J1⊆I1∩I2

1

|J1|1/p
∥∥∥(∑

I⊆J1

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
p

)
× ( sup

J2⊆I1∩I2
ave1

J2(1E∩F̃ )) · |I1 ∩ I2|.
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If one raises these estimates to the power s, as required by (41), one
can see that the corresponding expression there is smaller than(

sup
J1⊆I1∩I2

1

|J1|1/p
∥∥∥(∑

I⊆J1

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
p

)s
× ( sup

J2⊆I1∩I2
ave1

J2(1E∩F̃ ))s · |I1 ∩ I2|s

× (ave1
I1∩I2(1E∩F̃ ))1−s · |I1 ∩ I2|1−s,

(44)

which is smaller still than

(45)
(

sup
J1⊆I1∩I2

1

|J1|1/p
∥∥∥(∑

I⊆J1

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
p

)s
× ( sup

J2⊆I1∩I2
ave1

J2(1E∩F̃ )) · |I1 ∩ I2|.

Using these estimates in (41), the expression there can be estimated
further by

(46)
∑

n1,n2≥0

∑
I1∈I(1)n1

, I2∈I(2)n2

(2−n1C̃‖Sf‖p)s(2−n2 sizeI(1E∩F̃ ))|I1 ∩ I2|.

On the other hand the expression∑
I1∈I(1)n1

, I2∈I(2)n2

|I1 ∩ I2|

is smaller than ∑
I1∈I(1)n1

|I1| . 2n1p

and also smaller than∑
I2∈I(2)n2

|I2| . 2n2(sizeI(1E∩F̃ ))−1,

given that |F̃ | ∼ 1. This implies that∑
I1∈I(1)n1

, I2∈I(2)n2

|I1 ∩ I2| . 2n1pθ12n2θ2(sizeI(1E∩F̃ ))−θ2

for every 0 ≤ θ1, θ2 ≤ 1 so that θ1 + θ2 = 1. Using this in (46) one can
majorize that expression by

(47) ‖Sf‖sp(sizeI(1E∩F̃ ))1−θ2
∑

n1,n2≥0

2−n1(s−pθ1)2−n2(1−θ2).
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The geometric series on the left-hand side above are convergent pro-
vided θ1 < s/p and θ2 < 1, which is equivalent to

0 < θ1 <
s

p
.

If θ1 is taken to be very close to s/p, this gives an upper bound of the
type

‖Sf‖sp · (sizeI 1E)s/p−ε,

as desired in (34).
To prove (33) for arbitrary ` > 0 one proceeds similarly. The obser-

vation now is that since supp φ̃2
I,` ⊆ 2`I one must have

2`I ∩ Ωc 6= ∅

and it is not difficult to see that this implies that

I ∩ Ωc` 6= ∅.

Indeed, if this were not true, then I ⊆ Ω`, which means that 2`I ⊆ Ω̃` ⊆
Ω, a contradiction. Here we can see the connection between the initially
independent decomposition (31) of the functions φ2

I and the level sets Ωk
and Ω̃k used in (30) to define the exceptional set Ω.

Now one simply repeats the previous argument. One difference is
that the first Lp averages of the square function can be as large as
C210`/p‖Sf‖p, a bound which is responsible for the positive constant L
in (33). Another difference is in the estimate (42), whose analogue now
contains a factor of the type

|E ∩ F̃ ∩ 2`(I1 ∩ I2)|
1−s
s .

However, the small constant 2−M̃`/2 in the definition of φ̃2
I,` gets multi-

plied by it, and this allows one to write

2−M̃`/2|E∩F̃∩2`(I1∩I2)|
1−s
s .

(ˆ
R
1E∩F̃ (x)

(
1+

dist(x, I1∩I2)

|I1 ∩ I2|

)−100

dx
)1−s
s

and everything continues as before, if M̃ is large enough. This completes
the proof of P(0).
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4.2. The proof of P(n− 1) implies P(n). Recall that what we need
to prove now is the estimate

(48)
∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
1E

∥∥∥
Lp,∞(LQ)

.
∥∥∥(∑

I∈I

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Lp(LQ)

· (sizeI 1E)1/p−ε

for every 0 < p < ∞ and Q, an n-tuple of positive real numbers, as-
suming that even the stronger version of it, namely (24), holds true for
(n−1)-tuples Q. Again, here we are implicitly assuming that the proof of
the strong Lp(LQ) estimate in (48) will follow by standard interpolation
arguments, which we will describe later on, as promised.

Define qj0 := min
1≤j≤n

qj and let s be any positive real number such that

s ≤ min(1, p, qj0). Then, one can dualize the weak-Lp quasi-norm on the
left-hand side of (48) through Ls, as explained in [3]. As before, this
amounts to proving that for every F ⊆ R measurable set with |F | = 1,

there exists a subset F̃ ⊆ F with |F̃ | > 1/2 such that

(49)
∥∥∥∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
1E1F̃

∥∥∥
Q

∥∥∥
s
. ‖Sf‖Lp(LQ) · (sizeI 1E)1/p−ε.

To construct F̃ , one first constructs an exceptional set Ω, as in the scalar
case, with the only difference that the corresponding Ωk is now given by

Ωk := {x : ‖Sf(x)‖Q > C 210k/p‖‖Sf‖Q‖p}.

After that, exactly as before, one defines F̃ := F \Ω, which is clearly a
major subset of F , in the sense that it has a comparable measure. Then,
again one uses the decomposition (31) to reduce matters to proving the
analogue of (33), which is now given by

(50)
∥∥∥∥∥∥(∑

I∈I
〈f, φ1

I〉φ̃2
I,k

)
1E1F̃

∥∥∥
Q

∥∥∥s
s
. 2Lk‖‖Sf‖Q‖sp ·(sizeI 1E)(1/p−ε)s.

Recall from [3] that s ≤ min(1, p, qj0) implies that the expression on the
left-hand side of (50) is now subadditive. As before, we will describe the
proof of (50) in the main case k = 0, the changes in the general case
being similar to the ones in the scalar case. We therefore want to show
that

(51)
∥∥∥∥∥∥(∑

I∈I
〈f, φ1

I〉φ̃2
I,0

)
1E1F̃

∥∥∥
Q

∥∥∥s
s
. ‖‖Sf‖Q‖sp · (sizeI 1E)(1/p−ε)s.
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To estimate the left-hand side of (51) we combine, as before, two stopping
times. The first one selects iteratively maximal dyadic intervals I0 for
which one has

(52)
1

|I0|1/p
∥∥∥∥∥∥(∑

I⊆I0

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Q

∥∥∥
Lp
>

C̃

2n1
‖Sf‖Lp(LQ)

for various n1 ≥ 0, while the second is identical to the one used in the
scalar case – see (40) and its natural generalizations. This allows us to
estimate the left-hand side of (51) by

(53)
∑
n1,n2

∑
I1∈I(1)n1

,I2∈I(2)n2

∥∥∥∥∥∥( ∑
I∈I(1)n1

(I1)∩I(2)n2
(I2)

〈f, φ1
I〉φ̃2

I,0

)
1E1F̃

∥∥∥
Q

∥∥∥s
s
.

Now fix I1 and I2 and consider the corresponding term on the right-hand
side of (53). Given variables (a1, . . . , an) ∈ A denote ã := (a2, . . . , an)

and given Q = (q1, . . . , qn) denote Q̃ := (q2, . . . , qn). Using these nota-
tions, the expression becomesˆ

R

∥∥∥(∑
I

〈f, φ1
I〉φ̃2

I,0

)
1I1∩I21E1F̃

∥∥∥s
Q

(x) dx

=

ˆ
R

(ˆ
A1

∥∥∥(∑
I

〈f(a1,ã), φ
1
I〉φ̃2

I,0

)
1E1F̃

∥∥∥q1
LQ̃
ã

(x)d a1

)s/q1
dx

=

ˆ
R

(ˆ
A1

∥∥∥(∑
I

〈f(a1,ã), φ
1
I〉φ̃2

I,0

)
1E1F̃

∥∥∥q1
LQ̃
ã

(x)d a1

)s/q1
× 1I1∩I2(x)1E(x)1F̃ (x) dx.

Since s/q1 ≤ 1 one can apply Hölder and estimate the above expres-
sion by

(54)
(ˆ

R

ˆ
A1

∥∥∥(∑
I

〈f(a1,ã), φ
1
I〉φ̃2

I,0

)
1E1F̃

∥∥∥q1
LQ̃
ã

(x)d a1 dx
)s/q1

× |E ∩ F̃ ∩ I1 ∩ I2|(1−s/q1)

also using the fact that all the intervals I are now inside I1 ∩ I2. Then,
one can use Fubini and integrate first with respect to the x variable
in (54). This allows one to use the induction hypothesis locally (i.e. with

respect to the collection I(1)
n1 (I1) ∩ I(2)

n2 (I2)) in the case p = q1, and
estimate (54) by

(55)
(ˆ

R

ˆ
A1

‖Sf(x)‖q1
Q̃
d a1 dx

) s
q1 · (sizeI(1)n1

(I1)∩I(2)n2
(I2)

(1E∩F̃ ))( sq1
−ε)

× |E ∩ F̃ ∩ I1 ∩ I2|(1−
s
q1

).
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We emphasize that in (55)) the implicit sum in the definition of the
square function Sf(x) runs over the intervals I inside the local collec-

tion I(1)
n1 (I1) ∩ I(2)

n2 (I2).
It is then not difficult to see that the last expression in (55) can be

rewritten and majorized by

(56)
( 1

|I1 ∩ I2|1/q1
∥∥∥∥∥∥( ∑

I⊆I1∩I2

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Q

∥∥∥
Lq1

)s
× (sizeI(1)n1

(I1)∩I(2)n2
(I2)

(1E∩F̃ ))1−ε · |I1 ∩ I2|.

Using once again the John–Nirenberg inequality from [19] (which
works equally well in our multiple vector-valued setting), we find that
(56) is smaller than

(57) sup
J⊆I1∩I2

( 1

|J |1/p
∥∥∥∥∥∥(∑

I⊆J

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Q

∥∥∥
Lp

)s
× (sizeI(1)n1

(I1)∩I(2)n2
(I2)

(1E∩F̃ ))1−ε · |I1 ∩ I2|.

Using these, we can go back to (53) and majorize that expression by∑
n1,n2≥0

(2−n1‖Sf‖Lp(LQ))
s(2−n2 sizeI 1E∩F̃ )(1−ε)

∑
I1∈I(1)n1

,I2∈I(2)n2

|I1 ∩ I2|.

As before, one can estimate ∑
I1∈I(1)n1

,I2∈I(2)n2

|I1 ∩ I2|

in two distinct ways, by taking advantage of the stopping time decom-
positions performed earlier.

First, we can estimate it by 2n1p and secondly, by 2n2(sizeI 1E∩F̃ )−1

given that |F̃ | ∼ 1. In particular, this allows one to estimate the whole
expression by

‖Sf‖sLp(LQ)(sizeI 1E∩F̃ )(1−θ2−ε)
∑

n1,n2≥0

2−n1(s−pθ1)2−n2(1−ε−θ2)

as in the scalar case, for every 0 ≤ θ1, θ2 ≤ 1 with θ1 + θ2 = 1. Then,
if one chooses θ1 < s/p but very close to it, this double sum becomes
smaller than

‖Sf‖sLp(LQ) · (sizeI 1E)
s
p−ε,

as desired. And this completes our proof.
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The only thing left is the interpolation argument that we used implic-
itly several times.

4.3. Interpolation. Our interpolation result is somewhat unusual, in
the sense that the collection I of dyadic intervals is as important as the
operator it defines, the square function associated to it from (29). The
result and its proof generalize straight away to collections of cubes in Rd,
and to arbitrary measures.

Proposition 4.1. Consider 0 < p1 < p < p2 < ∞ and let Ĩ be a
collection of dyadic intervals. Assume that, for any subcollection I ⊆ Ĩ
of dyadic intervals and any LQ-valued Schwartz function f on R, we
have for j = 1, 2

(58)
∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
1E

∥∥∥
Lpj,∞(LQ)

≤ Kj

∥∥∥(∑
I∈I

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Lpj (LQ)

with the constants Kj independent of I. Then for any I ⊆ Ĩ we have
the strong bound

(59)
∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
1E

∥∥∥
Lp(LQ)

≤ K
∥∥∥(∑

I∈I

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Lp(LQ)

,

where K . (Kp1
1 +Kp2

2 )
1
p .

Observation 4.2. As mentioned before, the interpolation result in Propo-
sition 4.1 can be stated in a more general setting, as the interested reader
can verify. Our choice of presentation is motivated by the fact that in
the present paper we need precisely the form presented above. The con-
stants Kj in (58) do not depend on any of the subcollections I of in-
tervals, but they could (and in most applications they do) depend on

the general collection Ĩ and on the set E appearing on the left-hand
side of (58); as a consequence, K is not dependent upon any of the

subcollections I, but could depend on Ĩ and on the set E.
We use the interpolation result above in order to deduce (24)

from (26); notice that in that case

Kj = (sizeĨ 1E)
1
pj
−ε

for j = 1, 2.

Hence (24) follows immediately from (26) after interpolating carefully in
a small neighborhood of the desired index 0 < p <∞.

On the other hand, in the proof of the interpolation result we will
assume that E is the entire real line since it plays no role in the inter-
polation argument.
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Proof of Proposition 4.1: Let I ⊆ Ĩ be a subcollection of dyadic inter-
vals, and denote by F (x) the LQ-valued function

F (x) :=
∑
I∈I
〈f, φ1

I〉φ2
I(x).

Our goal is to control ‖F‖Lp(LQ) by ‖SIf‖Lp(LQ), where SIf is the
associated square function:

SIf(x) :=
(∑
I∈I

|〈f, φ1
I〉|2

|I|
1I(x)

)1/2

.

The proof that we are about to provide will involve a partitioning of
the collection I according to level sets of the “global” square function SI .
First, for any α > 0 and any k ≥ 0, we define

(60) S(k, α) :=
{
x : ‖SIf(x)‖LQ >

α

Ck

}
,

where C is a constant that will be determined later. Notice that the
sets S(k, α) are nested:

S(0, α) ⊆ S(1, α) ⊆ · · ·S(k, α) ⊆ · · ·

Each of the sets S(k, α) can be written as a disjoint union of maximal
dyadic intervals:

S(k, α) :=
⋃

Ikmax∈Mk

Ikmax, ∀ k ≥ 0.

These will be used for the formerly mentioned partition:

• the collection I0 will consist of all intervals I ∈ I that are contained
inside some maximal interval I0

max:

I0 := {I ∈ I : there exists some I0
max ∈M0 with I ⊆ I0

max ⊂ S(0, α)};

• for any k ≥ 1, Ik is defined as

Ik := {I ∈ I : ∃Ikmax ∈Mk with I ⊆ Ikmax ⊂ S(k, α)

and I * I`max for all 0 ≤ ` < k}.

That is, Ik consists of all the intervals in I contained in some Ikmax ∈
Mk, which were not previously selected in any other I` with 0 ≤
` ≤ k − 1.
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Then we have I =
⋃
k≥0

Ik and if Fk denotes the LQ-valued function

Fk(x) :=
∑
I∈Ik

〈f, φ1
I〉φ2

I(x),

we have the decomposition F (x) =
∑
k≥0

Fk(x).

Notice that for all k ≥ 0

supp(SIkf) ⊆
⋃
I∈Ik

I ⊆
⋃

Ikmax∈Mk

Ikmax = S(k, α).

For any k ≥ 1, if I ∈ Ik and Ik−1
max ∈Mk−1 are such that I∩Ik−1

max 6= ∅,
then necessarily I ) Ik−1

max . Given the maximality condition based on
which Ik−1

max was selected in Mk−1, all intervals I ∈ Ik intersect S(k −
1, α)c and

(61) ‖SIkf(x)‖LQ ≤ ‖SIf(x)‖LQ · 1S(k−1,α)c(x) ≤ α

Ck−1
,

a feature that will be exploited later on.
Since Q is an arbitrary n-tuple of positive real numbers, there is no

certainty that ‖·‖LQ satisfies the triangle inequality; however, for s small
enough (the condition that s ≤ min(1, min

1≤j≤n
qj) suffices), ‖·‖sLQ becomes

subadditive. As a result,{
x :
∥∥∥∑
k≥0

Fk(x)
∥∥∥s
LQ

> αs
}
⊆
⋃
k≥0

{
x : ‖Fk(x)‖sLQ >

αs

2k+1

}
.

Moreover,∣∣∣{x :
∥∥∥∑
k≥0

Fk(x)
∥∥∥
LQ

> α
}∣∣∣ =

∣∣∣{x :
∥∥∥∑
k≥0

Fk(x)
∥∥∥s
LQ

> αs
}∣∣∣

≤
∑
k≥0

∣∣∣{x : ‖Fk(x)‖sLQ >
αs

2k+1

}∣∣∣=∑
k≥0

∣∣∣{x : ‖Fk(x)‖LQ >
α

2(k+1)/s

}∣∣∣.
Such an inequality is important because it allows us to estimate

‖F‖Lp(LQ):

‖F‖p
Lp(LQ)

= p

ˆ ∞
0

αp−1
∣∣∣{x :

∥∥∥∑
k≥0

Fk(x)
∥∥∥
LQ

> α
}∣∣∣ dα

≤
∑
k≥0

p

ˆ ∞
0

αp−1
∣∣∣{x : ‖Fk(x)‖LQ >

α

2(k+1)/s

}∣∣∣ dα.(62)

We note that the functions Fk above depend in fact on the variable α
(the collections of intervals Ik are determined by the level sets S(k, α));
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this is the main difficulty in proving the interpolation result, and which
differentiates Proposition 4.1 from standard interpolation results.

First, we deal with the case corresponding to k = 0, by invoking the
weak-type hypothesis (58) for the collection I0:ˆ ∞

0

αp−1
∣∣∣{x : ‖F0(x)‖LQ >

α

21/s

}∣∣∣ dα
≤
ˆ ∞

0

αp−1
( α

21/s

)−p1
Kp1

1

∥∥∥(∑
I∈I0

|〈f, φ1
I〉|2

|I|
· 1I
) 1

2
∥∥∥p1
Lp1 (LQ)

dα

≤ 2p1/sKp1
1

ˆ ∞
0

αp−p1−1

ˆ
S(0,α)

‖SI0f(x)‖p1
LQ

dx dα.

The term above can be bounded by an expression involving only the
“global” square function SI , which depends on neither the subcollec-
tion I0 nor on α, given by

2p1/sKp1
1

ˆ ∞
0

αp−p1−1

ˆ
{‖SIf‖LQ>α}

‖SIf(x)‖p1
LQ

dx dα.

Now we apply the usual trick which consists in changing the order of
integration, obtaining in this wayˆ ∞

0

αp−1
∣∣∣{x :‖F0(x)‖LQ >

α

21/s

}∣∣∣ dα
≤ 2

p1
s Kp1

1

ˆ
R
‖SIf(x)‖p1

LQ

ˆ ‖SIf(x)‖
LQ

0

αp−p1−1 dα dx

=
2
p1
s Kp1

1

p− p1
‖SIf‖pLp(LQ)

.

Next we deal with a generic term involving Fk for some k ≥ 1; we use
the assumption (58) applied to the collection Ik:ˆ ∞

0

αp−1
∣∣∣{x : ‖Fk(x)‖LQ >

α

2(k+1)/s

}∣∣∣ dα
≤
ˆ ∞

0

αp−1
( α

2(k+1)/s

)−p2
Kp2

2

∥∥∥(∑
I∈Ik

|〈f, φ1
I〉|2

|I|
· 1I
) 1

2
∥∥∥p2
Lp2 (LQ)

dα

= 2p2
k+1
s Kp2

2

ˆ ∞
0

αp−p2−1

ˆ
S(k,α)

‖SIkf(x)‖p2
LQ

dx dα.

Changing the order of integration will not be helpful in this case
because the collections on intervals I0, I1, . . . depend on the variable α,
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and lower4 bounds for SIk independent of α are not available. Instead, we
use the pointwise inequality ‖SIkf(x)‖LQ ≤ α

Ck−1 from (61). Recalling
also the definition of S(k, α), we have

2p2
k+1
s Kp2

2

ˆ ∞
0

αp−p2−1

ˆ
S(k,α)

‖SIkf(x)‖p2
LQ

dx dα

≤ 2p2
k+1
s Kp2

2

ˆ ∞
0

αp−p2−1|S(k, α)|
( α

Ck−1

)p2
dα

≤ 2p2
k+1
s Kp2

2 C−(k−1)p2

ˆ ∞
0

αp−1
∣∣∣{x : ‖SIf(x)‖LQ >

α

Ck

}∣∣∣ dα.
Making a change of variable we obtainˆ ∞
0

αp−1
∣∣∣{x : ‖Fk(x)‖LQ >

α

2(k+1)/s

}∣∣∣ dα
≤ 2p2

k+1
s Kp2

2 C−(k−1)p2Ckp
ˆ ∞

0

λp−1
∣∣∣{x : ‖SIf(x)‖LQ > λ}

∣∣∣ dλ
≤ 1

p
2p2

k+1
s Cp2Kp2

2 C−k(p2−p)‖SIf‖pLp(LQ)
.

Now it remains to put everything together and to sum in k ≥ 0: due
to (62),∥∥∥∑

I∈I
〈f, φ1

I〉φ2
I

∥∥∥p
Lp(LQ)

≤
( p

p− p1
2
p1
s Kp1

1 + 2p2/sKp2
2 Cp2

∑
k≥1

(2p2/sC−(p2−p))k
)
‖SIf‖pLp(LQ)

.

Since p2−p > 0, if C is large enough so that 2p2/sC−(p2−p) < 1 (which
is equivalent to C > 2p2/s(p2−p)), the series above is finite. We obtain in
this way (59) with

Kp .p1,p2,s K
p1
1 +Kp2

2 .

Observation 4.3. In the statement of Proposition 4.1, we could allow K1

and K2 to depend on the collection I, which will yield an upper bound
for K that also depends on I. Thus, assuming that

(63)
∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
1E

∥∥∥
Lpj,∞(LQ)

≤Kj(I)
∥∥∥(∑

I∈I

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Lpj (LQ)

4Classically the strong-type estimates are obtained from the weak-type ones via an
identity similar to (62) by splitting the function into two pieces, one where the func-
tion is small and another one where the function is large (relative to the parameter α).
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holds for all collections I of dyadic intervals, for 0 < p1 < p < p2 < ∞,
we deduce the strong bound

(64)
∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
1E

∥∥∥
Lp(LQ)

≤ K(I)
∥∥∥(∑

I∈I

|〈f, φ1
I〉|2

|I|
1I

)1/2∥∥∥
Lp(LQ)

,

where this time K(I) . ( sup
I′⊆I

K1(I ′)p1 + sup
I′⊆I

K2(I ′)p2)
1
p .

5. Proof of Theorem 1.1 in the general case

Recall that our goal is to prove that

(65) ‖f‖LP (LQ) . ‖Sf‖LP (LQ),

where the d-tuple P = (p1, . . . , pd) and the n-tuple Q = (q1, . . . , qn)
satisfy 0 < P,Q <∞ componentwise. Recall also that the N -parameter
square function S is defined by

S := Sd1 ⊗ · · · ⊗ SdN
while d1 + · · · + dN = d. So far we have proved this in the particular
situation when d1 = · · · = dN = 1. The goal of this section is to explain
that similar ideas can handle the general case as well. First of all, let us
observe that using a similar inductive argument to that in Section 2, it
is enough to prove the particular case when N = 1. In other words, from
now on, our square function Sf is a one-parameter square function in Rd
and the task is to prove multiple vector-valued, mixed-norm estimates
for it, in the form of

(66) ‖f‖LP (LQ) . ‖Sdf‖LP (LQ).

It is now important to observe that when p1 = · · · = pd = p, then
(66) becomes a multiple vector-valued Lp(Rd) estimate, which can be
proved exactly as in the one-dimensional case d = 1 treated before. This
is because all of our previous arguments have natural higher-dimensional
analogues. Instead of doing analysis with dyadic intervals, one does anal-
ysis with dyadic cubes of the corresponding dimension, in precisely the
same way.

It will be more convenient to modify the notation a bit, in order to
obtain a statement more suitable for the upcoming inductive argument.
We will think of the Euclidean space Rd as being decomposed into

(67) Rd = Rn1 × · · · × Rnm

and consequently the mixed-norm space LP (Rd) being unfolded as

(68) LP (Rd) = Lp1(Rn1)(Lp2(Rn2)(. . . (Lpm(Rnm)) . . . )).
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In other words, we implicitly assume that the first n1 indices of the d-
tuple P are all equal to p1, the next n2 indices of P are all equal to p2,
and so on, until the last nm set of indices of P , which are all equal to pm.

The plan is to prove the corresponding (66) by induction with respect
to the parameter m. As pointed out before, (66) is already known when
m = 1 and we aim to show that it is also true for m = d, when all the
entries of P are possibly different from each other.

As in the one-dimensional case, it is not difficult to see that things
can be reduced to proving a discrete analogue of (66), namely

(69)
∥∥∥∑
R∈R
〈f, φ1

R〉φ2
R

∥∥∥
LP (LQ)

.
∥∥∥(∑

R∈R

|〈f, φ1
R〉|2

|R|
1R

)1/2∥∥∥
LP (LQ)

.

This is because the methods in Section 3 have natural equivalents in
higher dimensions. The families (φ1

R)R and (φ2
R)R in (69) are two lacu-

nary families, L2 normalized, indexed by a finite collection R of dyadic
cubes in Rd. And also as in the one-dimensional case, the statement of
Observation 3.2 remains valid, in the sense that the two families of func-
tions may depend on the implicit variables (a1, . . . , an) of the space LQ.

Using a higher-dimensional analogue of (31) we decompose each φ2
R

as

(70) φ2
R =

∞∑
`=0

2−#`φ2
R,` =:

∞∑
`=0

2−( #
2 )`φ̃2

R,`,

where
supp(φ2

R,`) ⊆ 2`R

as before and where # is arbitrarily large. Using this in (69), it will be
enough to show

(71)
∥∥∥∑
R∈R
〈f, φ1

R〉φ̃2
R,`

∥∥∥
LP (LQ)

. 2L`
∥∥∥(∑

R∈R

|〈f, φ1
R〉|2

|R|
1R

)1/2∥∥∥
LP (LQ)

for some large but fixed number L. The main case is when ` = 0 and we
will concentrate on it from now on (by this we mean that the general case
follows by standard modifications as in the one-dimensional situation
– see the proof of Theorem 3.1). Then (71) reads as

(72)
∥∥∥∑
R∈R
〈f, φ1

R〉φ̃2
R,0

∥∥∥
LP (LQ)

.
∥∥∥(∑

R∈R

|〈f, φ1
R〉|2

|R|
1R

)1/2∥∥∥
LP (LQ)

.

We think of the dyadic cubes R as being of the form

R = R1 × · · · ×Rm

to match the decomposition (67), where each Rj is a dyadic cube in Rnj
of the same side length as R itself for 1 ≤ j ≤ m.
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Following the same earlier strategy for the estimate (72), one needs
in fact to prove a more localized variant of it given by

(73)
∥∥∥∑
R∈R
〈f, φ1

R〉φ̃2
R,01E

∥∥∥
LP (LQ)

.
∥∥∥(∑

R∈R

|〈f, φ1
R〉|2

|R|
1R

)1/2∥∥∥
LP (LQ)

· (sizeR1
1E)1/p1−ε,

where

R1 := {R1 : R = R1 × · · · ×Rm ∈ R}
and sizeR1 1E is the corresponding n1-dimensional size generalizing nat-
urally the one-dimensional (25). In (73) the set E is an arbitrary mea-
surable subset of Rn1 .

The plan is to prove (73) by induction with respect to the parame-
ter m. Notice that when m = 1, then R1 = R and the corresponding
(73) is known, as we pointed out before (its proof is identical to the one
in the one-dimensional case). In particular, all one has to do is to prove
that the case m− 1 implies the case m, for every m ≥ 2. We claim that
this can be done by an argument similar to the one used earlier in the
proof of “P(n− 1) implies P(n)” (see Subsection 4.2).

First of all, we like to see the left-hand side of (73) as being

(74)
∥∥∥∑
R∈R
〈f, φ1

R〉φ̃2
R,01E

∥∥∥
Lp1 (LP̃ (LQ))

,

where for P = (p1, . . . , pm) we define P̃ := (p2, . . . , pm). As before, by
interpolation it would be enough to estimate the weaker analogue of it,
namely

(75)
∥∥∥∑
R∈R
〈f, φ1

R〉φ̃2
R,01E

∥∥∥
Lp1,∞(LP̃ (LQ))

by the same right-hand side of (73). As explained previously, we dualize
the Lp1,∞ quasi-norm through Ls, where s is a positive real number
smaller than all the entries of P , of Q, and also smaller than 1. By scale
invariance (in the ambient space Rd) this amounts to proving that for

every subset F ⊂ Rn1 with |F | = 1 there exists a major subset F̃ ⊆ F

with |F̃ | ≥ 1/2 such that

(76)
∥∥∥∑
R∈R
〈f, φ1

R〉φ̃2
R,01E1F̃

∥∥∥
Ls(LP̃ (LQ))

. RHS(73).
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The subset F̃ is defined as usual by F̃ := F \Ω for a certain exceptional
set Ω ∈ Rn1 . This exceptional set is constructed as before with the only
difference that the corresponding Ωk are now given by

(77) Ωk := {x1 ∈ Rn1 : ‖Sf(x1)‖LP̃ (LQ) > C210k/p1‖Sf‖LP (LQ)}.

In the above (77), by Sf one denotes the discrete square function given
by the inner expression in the right-hand side of (69). Also, we now think
of a generic variable in Rd as being of the form (x1, . . . , xm) with xj ∈ Rnj
for 1 ≤ j ≤ m. In particular, Sf(x1) can be thought of as a function
depending on the rest of the variables (x2, . . . , xm) in an obvious way:

Sf(x1)(x2, . . . , xm) := Sf(x1, x2, . . . , xm).

To estimate (76) one needs to perform (again) two carefully designed
stopping times. The second one involves averages over dyadic cubes,
and it is essentially a higher-dimensional analogue of the one before. The
first one, on the other hand, selects maximal dyadic cubes R0

1 in Rn1 for
which the corresponding averages

(78)
1

|R0
1|1/p1

∥∥∥( ∑
R∈R:R1⊆R0

1

|〈f, φ1
R〉|2

|R|
1R

)1/2∥∥∥
Lp1 (LP̃ (LQ))

are large (larger than C 2−κ1‖Sf‖LP (LQ), for κ1, some positive integer),
also as in the one-dimensional multiple vector-valued case. The way one
uses these two together is similar to the way explained in the earlier
“P(n− 1) implies P(n)” situation. At some point, exactly as before, one
uses Hölder locally, to be able to rely on the induction hypothesis (as in
the previous (54)) in the particular case when p1 = p2. More precisely,
this amounts to estimating expressions of the type∥∥∥∑

R

〈f, φ1
R〉φ̃2

R,01E

∥∥∥
Lp2 (LP̃ (LQ))

locally, and here the induction hypothesis can be applied since the new
P tuple is now P = (p2, p2, . . . , pm), and in particular, one can think of
Rd as being split as Rd = Rn1+n2×· · ·×Rnm and this now contains only
m − 1 factors. There are only two observations that one needs to make
in order to realize that the earlier argument goes through smoothly in
our case as well.

The first is that the John–Nirenberg inequality is still available in
this context. More explicitly, this means that the supremum over R0

1 of
averages of the type

1

|R0
1|1/p2

∥∥∥( ∑
R∈R:R1⊆R0

1

|〈f, φ1
R〉|2

|R|
1R

)1/2∥∥∥
Lp2 (LP̃ (LQ))

,
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which appear naturally after one applies the induction, is controlled by
the corresponding supremum of averages of the type

1

|R0
1|1/p1

∥∥∥( ∑
R∈R:R1⊆R0

1

|〈f, φ1
R〉|2

|R|
1R

)1/2∥∥∥
Lp1 (LP̃ (LQ))

,

which are the ones needed to capitalize on the stopping time procedure.
To prove this, one just has to observe that the above inner expressions
can also be seen as∑
R∈R:R1⊆R0

1

|〈f, φ1
R〉|2

|R|
1R(x1, x2, . . . , xm)=

∑
R1⊆R0

1

|aR1
(x2, . . . , xm)|2

|R1|
1R1(x1),

where in general

aC(x2, . . . , xm) :=
( ∑
R:R1=C

|〈f, φ1
R〉|2

|R2 × · · · ×Rm|
1R2×···×Rm

(x2, . . . , xm)
) 1

2

,

and after that to realize that BMO expressions of the type

(79) sup
C0

1

|C0|1/q
∥∥∥( ∑

C⊆C0

|aC |2

|C|
1C

) 1
2
∥∥∥
Lq(B)

are all equivalent to each other for every 0 < q < ∞ even when B is a
quasi-Banach lattice.

And the second observation is that

sizeR1×2
1E . sizeR1

1E ,

as one can easily check. By R1×2 one means

R1×2 := {R1 ×R2 : R = (R1, R2, . . . , Rm) ∈ R}
and they appear naturally after the application of the induction hypoth-
esis in Rd = Rn1+n2 ×· · ·×Rnm . This concludes our proof of the weaker
estimate (76).

After that the induction argument works exactly as before, allowing
one to complete the proof of the desired discrete estimate (73).

6. Connections to weighted theory and extrapolation

In the present section we discuss a certain weighted version of inequal-
ity (6), which eventually yields an alternative proof of Theorem 1.1, upon
adapting existing extrapolation results. Assuming such a weighted esti-
mate, in Subsection 6.1, we detail this proof by extrapolation. In the
second part, Subsection 6.2, we review the weighted estimates (which
are indispensable for extrapolation) and provide a proof for them based
on a sparse domination result implied by the helicoidal method.
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Although the weighted estimates (either in the one-parameter or the
multi-parameter setting) are not difficult to deduce in all their gener-
ality from certain particular cases via extrapolation, they do not seem
to have appeared previously in the literature. For this reason, we will
provide a self-contained proof of the weighted estimates, which relies on
localization and stopping times.

A weighted, scalar version of (6) can be formulated in the following
way: if f is a Schwartz function and w is “regular enough”,

(80) ‖f‖Lp(w) . ‖Sf‖Lp(w).

For 0 < p ≤ 1, this inequality is related to the theory of weighted Hardy
spaces and it was stated in [9]. There, the authors study the bounded-
ness of singular integrals on such spaces, which was known previously
under more stringent conditions on the weights (they were assumed to
be A1 weights). In [9], a theory of weighted Hardy spaces and bounded-
ness of singular integrals is developed for A∞ weights. Central to their
theory is the inequality (80), which is stated for A∞ weights. Starting
from this and using a certain type of extrapolation (regarding collec-
tions of pairs of functions, rather than operators, and A∞ weights), we
recover the multiple vector-valued results of Theorem 1.1; the mixed-
normed estimates are obtained through a generalization of a result of
Kurtz [15].

On the other hand, we will see once again that a local estimate similar
to (24) and a change in the direction of the stopping time will yield
a (multiple vector-valued) sparse5 estimate, and in consequence, also
(multiple vector-valued) weighted estimates, in the one-parameter case.
The weighted estimates obtained in this way are similar to (80) and to
those of [9], and hence they are interconnected to weighted Hardy spaces.

Before proceeding, we briefly recall a few definitions and results about
weights. For 1 < p < ∞, the classes Ap(Rm) consist of measurable
functions w : Rm → [0,∞] for which

[w]Ap := sup
Q⊂Rm
Q cube

( 
Q

w(x) dx
)( 

Q

w1−p′(x) dx
)p−1

< +∞.

If p = 1, then w ∈ A1(Rm) provided there exists a constant C such that
Mw(x) ≤ C w(x) for almost every x ∈ Rm. Then A∞(Rm) is defined as

A∞(Rm) :=
⋃

1≤p<∞

Ap(Rm).

5While this is defined more precisely in Definition 6.7, one should think of a sparse
estimate as one in which the information is concentrated on a “thin” collection.
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For the classes Ap,Rectangle(Rd1×· · ·×RdN ), the collection of cubes is re-
placed by the collection of rectangles with sides parallel to the coordinate
axes, and in the case p = 1, the Hardy–Littlewood maximal function is
replaced by the strong maximal function MS . For p > 1, it is well known
that w(x1, . . . , xN ) ∈ Ap,Rectangle(Rd1 × · · · × RdN ) if and only if

w(·, x2, . . . , xN ) ∈ Ap(Rd1), . . . , w(x1, . . . , xN−1, ·) ∈ Ap(RdN )

uniformly with respect to the fixed variables.

6.1. Weighted Hardy spaces and extrapolation. Let 0 < p < ∞.
If w ∈ A∞(Rm), then the weighted Hardy space Hp

w consists of

(81) Hp
w := {f : Rm → C : Smf ∈ Lpw(Rm)}.

Setting ‖f‖Hpw := ‖Smf‖Lpw , Hp
w becomes a quasi-Banach space, for

which we have, whenever s ≤ min(p, 1),

‖f + g‖sHpw ≤ ‖f‖
s
Hpw

+ ‖g‖sHpw .
By making use of a certain discrete Calderón reproducing formula,

it was shown in [9, Theorem 3.5] that, for any w ∈ A∞(Rm) and any
0 < p ≤ 1,

(82) ‖f‖Lpw(Rm) ≤ C‖f‖Hpw(Rm) = C ‖Smf‖Lpw(Rm).

The method of the proof does not immediately generalize to the
case p > 1. Instead, in this situation the Lpw(Rm) boundedness (which
requires the stronger condition that w ∈ Ap) of the square function Sm
is invoked to deduce, by means of duality, an estimate similar to (82).
Hence, for p > 1, Ding et al. [9] state the inequality (82) only for
weights w ∈ Ap.

Alternatively, one can use the A∞ extrapolation developed in [7] (sim-
ilarly, see [8, Corollary 3.15]) applied to the pairs of functions (f, Sm(f)).
This will imply that (82) is valid for any 0 < p < ∞, and for any w ∈
A∞(Rm). The same extrapolation result yields multiple vector-valued
weighted inequalities: for any 0 < p < ∞, any n-tuple Q, and any
weight w ∈ A∞(Rm),

(83) ‖f‖Lp(LQ)(w) ≤ C‖Sm(f)‖Lp(LQ)(w).

Theorem 3.5 in [9] remains valid in the context of multi-parameter
Hardy spaces, and Theorem 2.1 in [7] holds for weights associated to
Muckenhoupt bases. This simple observation extends the inequality in [9]
and as a result, the multi-parameter multiple vector-valued inequality
holds:

(84) ‖f‖Lp(LQ)(w) ≤ C‖Sd1 ⊗ · · · ⊗ SdN (f)‖Lp(LQ)(w),
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where 0 < p < ∞, Q = (q1, . . . , qn) with 0 < qj < ∞ for all 1 ≤ j ≤ n,
and w ∈ A∞,Rectangle(Rd1 × · · · × RdN ).

In order to obtain the full mixed-norm estimates of Theorem 1.1, we
need an extrapolation result from [15] suited for mixed-norm spaces. The
result extends without any important modification to pairs of functions,
in which case the operator T is being disregarded. Once inequality (84) is
deduced as above, the plan is to apply it to product weights and deduce
the mixed-norm estimates from Theorem 6.1 below.

We recall the following reformulation of Kurtz’s result, in a slightly
more general setting, although the proof remains the same:

Theorem 6.1 (Similar to Theorem 2 of [15]). Let 0 < s0 < ∞ and
assume that there exists s0 < s <∞ such that

(85)

ˆ
Rd1×Rd2

|f(x, y)|sw(x, y) dy dx≤C
ˆ
Rd1×Rd2

|g(x, y)|sw(x, y) dy dx

for all pairs (f, g) in a certain collection of functions F , and for all
w ∈ A s

s0
,Rectangle(Rd1 × Rd2), with the constant C depending only on

[w]A s
s0
,Rectangle

. Then for any s0 < p, q <∞, and any weights w(x, y) of

the type w(x, y) = u(x) v(y) such that

u
p
q ∈ A p

s0
(Rd1), v ∈ A q

s0
(Rd2),

we have for any pair (f, g) ∈ F :
ˆ
Rd1

(ˆ
Rd2
|f(x, y)|qw(x, y) dy

) p
q

dx

≤ C([u]A p
s0

, [v]A q
s0

)

ˆ
Rd1

(ˆ
Rd2
|g(x, y)|qw(x, y) dy

) p
q

dx.

In particular, if w(x, y) ≡ 1, mixed-norm estimates are implied by
extrapolation, once the weighted result (85) is known.

Remark 6.2. In [15], one is in fact looking for a necessary and sufficient
condition on weights w(x, y) so that the strong maximal function MS

satisfiesˆ
Rd1

(ˆ
Rd2
|MSf(x, y)|qw(x, y) dy

) p
q

dx

≤ C
ˆ
Rd1

(ˆ
Rd2
|f(x, y)|qw(x, y) dy

) p
q

dx.

While a necessary condition was found (the classes Ap(Aq) from [15,
Definition 2]), sufficiency is proved only in the particular case of prod-
uct weights w(x, y) = u(x) v(y). Since we are mainly interested in the
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unweighted, multiple vector-valued case, we do not elaborate on the
properties of the classes of weights Ap(Aq), but instead focus on the
extrapolation result, which is also known to be true only for product
weights.

We also disregard how the constants appearing in the inequalities
above depend on the weights involved or on their characteristics.

Next, we generalize Theorem 6.1 to mixed-norm Lp spaces involving
κ variables (with κ ≥ 2), and A∞ weights.

Theorem 6.3. Assume there exists some 0 < s <∞ such that

(86)

ˆ
Rd1×···×Rdκ

|f(x1, . . . , xκ)|sw(x1, . . . , xκ) dx1 . . . dxκ

≤ C
ˆ
Rd1×···×Rdκ

|g(x1, . . . , xκ)|sw(x1, . . . , xκ) dx1 . . . dxκ

for all w∈A∞,Rectangle(Rd1×· · ·×Rdκ) and for all pairs of functions (f, g)
belonging to a certain collection F . Then for any 0 < p1, . . . , pκ < ∞
and for any weight w(x1, . . . , xκ) = w1(x1) · . . . ·wκ(xκ) such that w

pl
pκ

l ∈
A∞(Rdl) for all 1 ≤ l ≤ κ and all (f, g) ∈ F , we have

(87)
(ˆ

Rd1
. . .
(ˆ

Rdκ
|f(x1, . . . , xκ)|pκw(x1, . . . , xκ) dxκ

)pκ−1
pκ

. . . dx1

) 1
p1

≤C
(ˆ

Rd1
. . .
(ˆ

Rdκ
|g(x1, . . . , xκ)|pκw(x1, . . . , xκ) dxκ

)pκ−1
pκ
. . . dx1

) 1
p1
,

for all (f, g) ∈ F .

Proof: We present a proof by induction over κ. If κ = 2, the statement is

a reformulation of Theorem 6.1: the assumption that w
p1
p2
1 , w2 ∈ A∞ will

be rewritten so that w
p1
p2
1 ∈ A p1

s0

, w2 ∈ A p2
s0

, for a suitable 0 < s0 <∞.

Since 0 < p1, p2 < ∞ and w
p1
p2
1 ∈ A∞, w2 ∈ A∞, there exists 1 ≤

s1, s2 <∞ such that

w
p1
p2
1 ∈ As1 , w2 ∈ As2 .

We pick s0 with 0 < s0 ≤ s with s1 ≤ p1
s0

, s2 ≤ p2
s0

(these conditions

reduce to s0 ≤ min
(
p1
s1
, p2s2 , s

)
). Because the weight classes are nested, we

have in this situation w
p1
p2
1 ∈ A p1

s0

, w2 ∈ A p2
s0

.
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The hypothesis (86) holds for all weights w ∈ A∞,Rectangle, and in
particular also for w ∈ A s

s0
,Rectangle; the inequality in (87) then follows

from Theorem 6.1.
Next, we assume that the result holds true when κ − 1 variables

are involved and will prove it for κ variables as well. We fix a κ-tuple

(p1, . . . , pκ) and weights w1, . . . , wκ satisfying w
pl
pκ

l ∈ A∞(Rdl) for all 1 ≤
l ≤ κ. Denote

F (x1, x2) := ‖f(x1, . . . , xκ)‖Lp3x3 ...Lpκxκ (w3·...·wκ),

G(x1, x2) := ‖g(x1, . . . , xκ)‖Lp3x3 ...Lpκxκ (w3·...·wκ).

We want to show thatˆ
Rd1

(ˆ
Rd2
|F (x1, x2)|p2w

p2
pκ
1 (x1)w

p2
pκ
2 (x2) dx2

) p1
p2
dx1

≤ C
ˆ
Rd1

(ˆ
Rd2
|G(x1, x2)|p2w

p2
pκ
1 (x1)w

p2
pκ
2 (x2) dx2

) p1
p2
dx1,

given that w
p1
pκ
1 ∈ A∞ and w

p2
pκ
2 ∈ A∞.

If we denote

W (x1, x2) := w
p2
pκ
1 (x1)w

p2
pκ
2 (x2) := U(x1)V (x2),

we have U
p1
p2 ∈ A∞ and V ∈ A∞. The problem is reduced to the case κ =

2, and it remains to check that the hypothesis (86) is satisfied. That
is, we need to check that there exists 0 < s < ∞ such that for all
weights W0 ∈ A∞,Rectangle(Rd1 × Rd2)

(88)

ˆ
Rd1×Rd2

|F (x1, x2)|sW0(x1, x2) dx1 dx2

≤ C
ˆ
Rd1×Rd2

|G(x1, x2)|sW0(x1, x2) dx1 dx2.

The case of (κ − 1) iterated Lebesgue spaces applied to the tuple
(p̃2, p3, . . . , pκ) for some 0 < p̃2 < ∞ yields, for weights of the form

w(x1, x2, . . . , xκ) = w̃2(x1, x2) · w3(x3) · . . . · wκ(xκ) such that w
pl
pκ

l ∈

A∞(Rdl) for all 3 ≤ l ≤ κ and w̃
p̃2
pκ
2 (x1, x2) ∈ A∞(Rd1+d2), the estimate(ˆ

Rd1+d2

. . .
(ˆ

Rdκ
|f(x1, x2, . . . , xκ)|pκw(x1, . . . , xκ) dxκ

)pκ−1
pκ . . . dx1 dx2

) 1
p̃2

≤C
(ˆ

Rd1+d2

. . .
(ˆ

Rdκ
|g(x1, x2, . . . , xκ)|pκw(x1, . . . , xκ) dxκ

)pκ−1
pκ . . . dx1 dx2

) 1
p̃2 .
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If the functions f and g and the weights w3, . . . , wκ are precisely those

we started with, we obtain, for any weight w̃2 such that w̃2(x1, x2)
p̃2
pκ ∈

A∞(Rd1+d2), the estimate

(89)

ˆ
Rd1×Rd2

|F (x1, x2)|p̃2w̃2(x1, x2) dx1 dx2

≤ C
ˆ
Rd1×Rd2

|G(x1, x2)|p̃2w̃2(x1, x2) dx1 dx2.

We want (88) for some 0 < s < ∞ and all weights W0(x1, x2) ∈
A∞,Rectangle(Rd1 × Rd2). Instead, the (k − 1) induction case yields the
similar estimate (89) for any 0 < p̃2 < ∞ and any weight w̃2 such that

w̃2(x1, x2)
p̃2
pκ ∈ A∞(Rd1+d2). We get the desired estimate by choosing

s = pκ and by noting that the class of weights for which the supremum
over rectangles is finite is a subcollection of the class of weights for which
the supremum over cubes is finite:

A∞,Rectangle(Rd1 × Rd2) ⊂ A∞(Rd1+d2).

Proof of the main Theorem 1.1. Now we want to deduce the general
inequality

‖f‖LP (LQ) . ‖S(f)‖LP (LQ).

By extrapolating the scalar result of [9], we obtain the multiple vector-
valued estimate of (84). Then we apply Theorem 6.3 in the case of d =
d1 + · · ·+dN variables, to obtain the mixed-norm, multiple vector-valued
result.

6.2. Obtaining the weighted result by using the helicoidal
method. As previously mentioned, we can obtain the weighted result
directly from a sparse domination estimate, which follows from a local
maximal inequality. A similar strategy was used in [5].

6.2.1. The localization lemma. For the weighted result, it is more
suitable to work with locally integrable functions than with characteristic
functions, the reason being that the characteristic function cannot play
the role of an A∞ weight.

We recall a few notations, for convenience:

Notation. If I is a collection of cubes in Rd and I0 ⊆ Rd is a fixed
dyadic cube, then

I(I0) := {I ∈ I : I ⊆ I0} and I+(I0) := I(I0) ∪ {I0}.
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For any cube I ⊂ Rd, χ̃I(x) denotes a function that decays fast away
from I:

(90) χ̃I(x) :=
(

1 +
dist(x, I)

|I|

)−M̃
,

where M̃ can be as large as we wish.

Remark 6.4. For statements involving a weight w ∈ A∞, the decaying
factor M̃ in the definition (90) might depend on w. More exactly, if
w ∈ A∞, then we know that w ∈ Aqw for some qw > 1; we will need, in

certain situations, to make sure that d qw < M̃ .

Lemma 6.5. Let 0 < p ≤ 1. Let I be a finite collection of dyadic
squares in Rd, I0 a fixed dyadic square, f : Rd → C a Schwartz function,
and w a positive locally integrable function. Then for any 0 < p1 <∞,∥∥∥ ∑

I∈I(I0)

〈f,φ1
I〉φ2

I

∥∥∥p
Lp(w)

.
(

sup
J1∈I(I0)

1

|J1|
1
p1

∥∥∥( ∑
I∈I(I0)
I⊆J1

|〈f, φ1
I〉|2

|I|
· 1I
) 1

2
∥∥∥
p1

)p

×
(

sup
J2∈I+(I0)

1

|J2|

ˆ
R
w · χ̃J2 dx

)
· |I0|,

(91)

with an implicit constant independent of the collection I and of the func-
tions f and w.

Proof: If 0 < p < 1, then ‖ · ‖pp is subadditive. In this case, we have for
some 0 < τ <∞

1

p
= 1 +

1

τ
.

First, we note that
∥∥ ∑
I∈I(I0)

〈f, φ1
I〉φ2

I

∥∥
Lp(w)

=
∥∥( ∑
I∈I(I0)

〈f, φ1
I〉φ2

I

)
·

w
1
p

∥∥
Lp

. We let v1 := w and v2 := w
1
τ , so that

w
1
p =v1·v2 and

∥∥∥ ∑
I∈I(I0)

〈f, φ1
I〉φ2

I

∥∥∥
Lp(w)

=
∥∥∥( ∑

I∈I(I0)

〈f, φ1
I〉φ2

I

)
v1·v2

∥∥∥
Lp
.
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We also use the previous decomposition (31) φ2
I(x) :=

∑̀
≥0

2−
` M̃
2 φ̃2

I,`(x),

so that it suffices to show instead of (91) the similar inequality, for every
` ≥ 0:∥∥∥( ∑

I∈I(I0)

〈f, φ1
I〉φ̃2

I,`

)
v1 · v2

∥∥∥p
Lp

. 210`dp
(

sup
J1∈I(I0)

1

|J1|
1
p1

∥∥∥( ∑
I∈I(I0)
I⊆J1

|〈f, φ1
I〉|2

|I|
· 1I
) 1

2
∥∥∥
p1

)p

×
(

sup
J2∈I+(I0)

1

|J2|

ˆ
Rd
w · χ̃J2 dx

)p
· |I0|.

(92)

We recall that the families
(
φ̃2
I,`

)
I∈I are all lacunary, L2-normalized,

and supp φ̃2
I,` ⊆ 2`I for all I ∈ I. As before, we only present the case ` =

0, since the general case follows from almost identical arguments.
By Hölder’s inequality and the fact that all the functions φ̃2

I,0 are
supported on I ⊆ I0, we have

(93)
∥∥∥( ∑

I∈I(I0)

〈f, φ1
I〉φ̃2

I,0

)
v1 · v2

∥∥∥
Lp

.
∥∥∥( ∑

I∈I(I0)

〈f, φ1
I〉φ̃2

I,0

)
v1

∥∥∥
L1
· ‖v2 · 1I0‖τ .

The first expression can be rewritten asˆ
Rd

( ∑
I∈I(I0)

〈f, φ1
I〉φ̃2

I,0(x)
)
v1(x) · g(x) dx =

∑
I∈I(I0)

〈f, φ1
I〉〈v1 · g, φ̃2

I,0〉,

for a certain function g ∈ L∞ satisfying ‖g‖∞ = 1. Next, we apply the
Cauchy–Schwarz and John–Nirenberg inequalities to get∣∣∣ ∑
I∈I(I0)

〈f, φ1
I〉〈v1 · g, φ̃2

I,0〉
∣∣∣

.
(

sup
J1∈I(I0)

1

|J1|
1
p1

∥∥∥( ∑
I∈I(I0)
I⊆J1

|〈f, φ1
I〉|2

|I|
· 1I
) 1

2
∥∥∥
p1

)

×
(

sup
J2∈I+(I0)

1

|J2|
1
p2

∥∥∥( ∑
I∈I(I0)
I⊆J2

|〈v1 · g, φ̃2
I,0〉|2

|I|
· 1I
) 1

2
∥∥∥
p2,∞

)
|I0|,

or any 0 < p1, p2 <∞.
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Setting p2 = 1 and using the L1 → L1,∞ boundedness of the square
function (see also [19, Lemma 2.13]) we obtain∥∥∥( ∑

I∈I(I0)

〈f, φ1
I〉φ̃2

I,`

)
v1

∥∥∥
L1

.
(

sup
J1∈I(I0)

1

|J1|
1
p1

∥∥∥( ∑
I∈I(I0)
I⊆J1

|〈f, φ1
I〉|2

|I|
· 1I
)1

2
∥∥∥
p1

)

×
(

sup
J2∈I+(I0)

1

|J2|

ˆ
Rd
v1 · χ̃J2 dx

)
· |I0|.

Recalling that v1 = w and ‖v2 · 1I0‖τ =
(

1
|I0|‖w · 1I0‖1

) 1
τ · |I0|

1
τ , the

above estimate and (93) imply that∥∥∥( ∑
I∈I(I0)

〈f, φ1
I〉φ̃2

I,0

)
v1 · v2

∥∥∥
Lp

.
(

sup
J1∈I(I0)

1

|J1|
1
p1

∥∥∥( ∑
I∈I(I0)
I⊆J1

|〈f, φ1
I〉|2

|I|
· 1I
) 1

2
∥∥∥
p1

)

×
(

sup
J2∈I+(I0)

1

|J2|

ˆ
Rd
w · χ̃J2 dx

)
· |I0| ·

( 1

|I0|
‖w · 1I0‖1

) 1
τ · |I0|

1
τ .

Raising the inequality to the power p we obtain exactly (92) in the
case ` = 0.

For ` ≥ 1, the difference will consist in replacing (93) by∥∥∥( ∑
I∈I(I0)

〈f, φ1
I〉φ̃2

I,`

)
v1 · v2

∥∥∥
Lp

.
∥∥∥( ∑

I∈I(I0)

〈f, φ1
I〉φ̃2

I,`

)
v1

∥∥∥
L1

× 2
` M̃1
τ

( 1

|I0|

ˆ
Rd
vτ2 · χ̃I0 dx

) 1
τ

and using the L1 → L1,∞ boundedness of the modified square function

g 7→
( ∑
I∈I(I0)
I⊆J2

|〈g, φ̃2
I,`〉|2

|I|
· 1I
) 1

2

,

which satisfies the same Lp estimates as the classical discretized square
function of [19], uniformly in ` ≥ 0.

The inequality remains true if p = 1; in that case τ = ∞ and there
will be no second term on the right-hand side of (93).

Remark 6.6. The local estimate in Lemma 6.5 should be compared to
the maximal inequality in Theorem 19 of [5].
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6.2.2. The stopping time. Further, Theorem 12 in [5] explains how to
deduce sparse estimates from a local estimate such as (91) of Lemma 6.5.
The procedure in [5] is stated for averages of functions, but the same
is true when averages of square functions are concerned. A similar algo-
rithm, based on the helicoidal method, was used in [1] to deduce a result
on sparse domination by averages of localized square functions.

Definition 6.7. A collection of dyadic cubes S is said to be sparse if
there exists 0 < η < 1 such that for each Q ∈ S we have∑

P∈chS(Q)

|P | ≤ (1− η)|Q|,

where chS(Q) is the collection of direct descendants of Q in S – the
maximal elements of S that are strictly contained in Q

chS(Q) = {P ( Q : P ∈ S and if P ′ ∈ S, P ⊂ P ′ ( Q, then P ′ = P}.

Our result, making use of sparse collections as defined above, reads
as follows:

Theorem 6.8. Let I be a collection of dyadic squares, 0 < p, p1 < ∞,
and w a positive locally integrable function. Then, for any εp > 0 and any
Schwartz function f , there exists a sparse collection S of cubes (which
depends on the functions f , w, the exponent p) such that∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
·w

1
p

∥∥∥p
p
.
∑
Q∈S

( 1

|Q|
1
p1

∥∥∥(∑
I∈I
I⊆Q

|〈f, φ1
I〉|2

|I|
· 1I
) 1

2
∥∥∥
p1

)p

×
( 1

|Q|

ˆ
Rd
w1+εp χ̃Q dx

) 1
1+εp · |Q|.

(94)

However, if 0 < p ≤ 1, the above inequality is true for εp = 0.

Proof: We briefly sketch the proof for completeness, which consists of a
rather standard argument, first in the case 0 < p ≤ 1. As per usual, the
collection S :=

⋃
k≥0

Sk, where the cubes in the subcollection Sk+1 are to

be understood as the “descendants” of the dyadic cubes in the previous
generation Sk:

Sk+1 :=
⋃
Q∈Sk

chS(Q).

To every Q ∈ S, we also associate a subcollection IQ ⊆ I of cubes so
that

I :=
⋃
Q∈S
IQ

represents a partition of the initial collection I.
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The bottom-most collection S0 will consist of the maximal dyadic
cubes of the collection I:

S0 := {Q ∈ I : Q maximal with respect to inclusion}.
Next, we assume that S0, S1 up to Sk are known and we will show

how to construct Sk+1, and for every Q0 ∈ Sk, the collections IQ0
.

If Q0 ∈ Sk, then we define

ΩQ0
:=
{
x ∈ Q0 :

(∑
I∈I
I⊆Q0

|〈f, φ1
I〉|2

|I|
1I(x)

) 1
2

> C
1

|Q0|
1
p1

∥∥∥( ∑
I∈I
I⊆Q0

|〈f, φ1
I〉|2

|I|
1I

) 1
2
∥∥∥
p1

}

∪
{
x ∈ Q0 : M(w · χ̃I0)(x) > C

1

|Q0|

ˆ
Rd
w · χ̃Q0

(y) dy
}
,

(95)

and we set EQ0
:= Q0\ΩQ0

. It is not difficult to see that, if we choose C >

0 large enough, |EQ0
| > |Q0|

2 . Then chS(Q0) will consist of a maximal
covering of ΩQ0

by dyadic cubes:

chS(Q0) :={Q dyadic cube: Q⊆ΩQ0
, maximal with respect to inclusion}

and also, as already stated, Sk+1 :=
⋃

Q0∈Sk
chS(Q0). We have that

|chS(Q0)| = |ΩQ0
| ≤ 1

2
|Q0|,

which guarantees that the collection S is sparse. Also, it will be useful
later to notice that the sets {EQ}Q∈S are all mutually disjoint.

Moreover, for every Q0 ∈ Sk, we define

IQ0
:= {I ∈ I : I ⊆ Q0, I * ΩQ0

}.
In consequence, every I ∈ IQ0 has the property that either it is disjoint
from the intervals in chS(Q0) or, if Q ∈ chS(Q0) and I ∩ Q 6= ∅, then
necessarily Q ( I. This implies in particular that the localized square
function

(96) SIQ0
f(x) :=

( ∑
I∈IQ0
I⊆Q0

|〈f, φ1
I〉|2

|I|
1I(x)

) 1
2

is constant on each Q ∈ chS(Q0) and moreover, for every x ∈ ΩQ0
,

SIQ0
f(x) .

1

|Q0|
1
p1

∥∥∥( ∑
I∈I
I⊆Q0

|〈f, φ1
I〉|2

|I|
1I

) 1
2
∥∥∥
p1
.
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The same inequality remains true on EQ0
, by definition (95). So that we

have, for every J1 ∈ IQ0
,

1

|J1|
1
p1

∥∥∥( ∑
I∈IQ0
I⊆J1

|〈f, φ1
I〉|2

|I|
·1I
) 1

2
∥∥∥
p1

.
1

|Q0|
1
p1

∥∥∥( ∑
I∈I
I⊆Q0

|〈f, φ1
I〉|2

|I|
·1I
) 1

2
∥∥∥
p1
.

Also, all J2 ∈ IQ0
intersect

{
x ∈ Q0 : M(w · χ̃I0)(x) > C 1

|Q0|
´
Rd w ·

χ̃Q0(y) dy
}c

, which implies

sup
J2∈I+Q0

1

|J2|

ˆ
Rd
w · χ̃J2 dx .

1

|Q0|

ˆ
Rd
w · χ̃Q0

dx.

Using the subadditivity of ‖ ·‖pp and the result in Lemma 6.5, we have∥∥∥(∑
I∈I
〈f, φ1

I〉φ2
I

)
· w

1
p

∥∥∥p
p
.
∑
Q∈S

∥∥∥(∑
I∈IQ

〈f, φ1
I〉φ2

I

)
· w

1
p

∥∥∥p
p

.
∑
Q∈S

(
sup
J1∈IQ

1

|J1|
1
p1

∥∥∥(∑
I∈IQ
I⊆J1

|〈f, φ1
I〉|2

|I|
· 1I
) 1

2
∥∥∥
p1

)p

×
(

sup
J2∈I+Q

1

|J2|

ˆ
Rd
w · χ̃J2 dx

)
· |Q|

.
∑
Q∈S

( 1

|Q|
1
p1

∥∥∥(∑
I∈I
I⊆Q

|〈f, φ1
I〉|2

|I|
· 1I
) 1

2
∥∥∥
p1

)p
·
( 1

|Q|

ˆ
Rd
w · χ̃Q dx

)
· |Q|.

If p > 1, we invoke a procedure that has already appeared in Propo-
sition 20 of our previous [5]. In this situation, we can use duality:∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
· w

1
p

∥∥∥
p

=
∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
· w

1
p u
∥∥∥

1
,

for some function u ∈ Lp′ with ‖u‖Lp′ = 1. Now we can apply the result
of Theorem 6.8 for p = 1 to deduce the existence of a sparse collection S
so that∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
· w

1
p u
∥∥∥

1
.
∑
Q∈S

( 1

|Q|
1
p1

∥∥∥(∑
I∈I
I⊆Q

|〈f, φ1
I〉|2

|I|
· 1I
) 1

2
∥∥∥
p1

)

×
( 1

|Q|

ˆ
Rd
w

1
p u · χ̃Q dx

)
· |Q|.
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Hölder’s inequality, first with respect to the measure χ̃Q dx and with
exponents p+ ε and (p+ ε)′, yields∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
· w

1
p u
∥∥∥

1

.
∑
Q∈S

( 1

|Q|
1
p1

∥∥∥(∑
I∈I
I⊆Q

|〈f, φ1
I〉|2

|I|
· 1I
) 1

2
∥∥∥
p1

)

×
( 1

|Q|

ˆ
Rd
w
p+ε
p · χ̃Q dx

) 1
p+ε
( 1

|Q|

ˆ
Rd
u(p+ε)′ · χ̃Q dx

) 1
(p+ε)′ · |Q|.

Then we again use Hölder’s inequality with respect to the discrete mea-
sure `p(S) to estimate the above expression by(∑
Q∈S

( 1

|Q|
1
p1

∥∥∥(∑
I∈I
I⊆Q

|〈f, φ1
I〉|2

|I|
·1I
) 1

2
∥∥∥
p1

)p( 1

|Q|

ˆ
Rd
w
p+ε
p ·χ̃Q dx

) p
p+ε ·|Q|

)1
p

×
(∑
Q∈S

( 1

|Q|

ˆ
Rd
u(p+ε)′ · χ̃Q dx

) p′
(p+ε)′ · |Q|

) 1
p′
.

For the last term, we take advantage of the sparseness property, or
more exactly, we use the disjointness of the sets {E(Q)}Q∈S and the fact
that |E(Q)| > |Q|/2:(∑

Q∈S

( 1

|Q|

ˆ
Rd
u(p+ε)′ · χ̃Q dx

) p′
(p+ε)′ · |Q|

) 1
p′

.
(∑
Q∈S

( 1

|Q|

ˆ
Rd
u(p+ε)′ · χ̃Q dx

) p′
(p+ε)′ · |E(Q)|

) 1
p′

. ‖M(p+ε)′u‖p′ . ‖u‖p′ = 1.

We are losing an ε (as small as we wish) in making sure that the maximal

operator M(p+ε)′ is bounded on Lp
′
. We can choose ε such that εp =

p+ε
p .

Such a sparse estimate allows us to recover the weighted estimates
from [9], in the one-parameter case.

Proposition 6.9. Let 0 < p <∞, w ∈ A∞, and f a Schwartz function
on Rd; then

(97) ‖f‖Lp(w) . ‖Sf‖Lp(w).
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Proof: The weighted estimate follows easily once we prove a strength-
ening of the sparse estimate (94), with p1 > 0 to be chosen later: there
exists a sparse collection of dyadic cubes S such that

(98)
∥∥∥(∑

I∈I
〈f, φ1

I〉φ2
I

)
· w

1
p

∥∥∥p
p

.
∑
Q∈S

( 1

|Q|
1
p1

∥∥∥(∑
I∈I
I⊆Q

|〈f, φ1
I〉|2

|I|
· 1I
) 1

2
∥∥∥
p1

)p
w(E(Q)).

If such an estimate were true, we could deduce that∥∥∥(∑
I∈I
〈f, φ1

I〉φ2
I

)∥∥∥p
Lp(w)

.
∑
Q∈S

(
inf
y∈Q

M(|S f |p1)(y)
) p
p1 · w(E(Q)),

and in consequence,∥∥∥∑
I∈I
〈f, φ1

I〉φ2
I

∥∥∥p
Lp(w)

.
ˆ
Rd
M(|S f |p1)(x))

p
p1 w(x) dx.

So far, no information has been required on p1; it suffices to choose
p1 < p and such that w ∈ A p

p1
(this will assure that M is bounded

on L
p
p1 (w)) to obtain that∥∥∥∑

I∈I
〈f, φ1

I〉φ2
I

∥∥∥
Lp(w)

. ‖Sf‖Lp(w).

This is possible since w ∈ A∞ =
⋃
q≥1

Aq. The final inequality (97) is

deduced thanks to the formula (14).
It remains to show how (94) implies (98). We recall that( 1

|Q|

ˆ
Rd
w1+εp χ̃Q dx

) 1
1+εp ≤

∑
`≥0

2−`M̃
( 1

|Q|

ˆ
2`Q

w1+εp dx
) 1

1+εp

≤
∑
`≥0

2−`M̃2
`d

1+εp

( 1

|2`Q|

ˆ
2`Q

w1+εp dx
) 1

1+εp
.

Now we use the Reverse Hölder property of the weight w: there ex-
ists εw such that( 1

|2`Q|

ˆ
2`Q

w1+εw dx
) 1

1+εw
.

1

|2`Q|

ˆ
2`Q

w dx.

If we pick εp < εw, then the L1+εp average in (94) can be replaced by
an L1 average (note that, for 0 < p ≤ 1, we have from the start εp = 0).
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Hence, we have∥∥∥(∑
I∈I
〈f, φ1

I〉φ2
I

)
· w

1
p

∥∥∥p
p

.
∑
`≥0

2−`M̃2
`d

1+εp

∑
Q∈S

( 1

|Q|
1
p1

∥∥∥(∑
I∈I
I⊆Q

|〈f, φ1
I〉|2

|I|
·1I
) 1

2
∥∥∥
p1

)p
2−`dw(2`Q).

All we need to do is compare w(2`Q) and w(E(Q)). We know that
|Q| < 2 |E(Q)| and w ∈ A∞. Then w ∈ Aqw for some qw > 1 and in
consequence (see inequality (7.2) of [10])

w(2`Q)
( |E(Q)|
|2`Q|

)
. w(E(Q))⇐⇒ w(2`Q) . 2`dqww(E(Q)).

If M̃ , the decaying exponent of the auxiliary weights χ̃Q (see Defini-

tion 90), satisfies d qw < M̃ , then we can sum in ` ≥ 0 and we are done.

Since M̃ can be as large as we wish, we can arrange for this condition
to be satisfied.

We note that the sparse domination result (94) of Theorem 6.8
implies, for any collection I of dyadic squares and any fixed dyadic
square I0:

(99)
∥∥∥( ∑

I∈I(I0)

〈f, φ1
I〉φ2

I

)∥∥∥p
Lp(w)

.
(

sup
J2∈I+(I0)

1

|J2|

ˆ
Rd
w(x) χ̃J2 dx

)
‖SI(I0)f‖pp.

This observation will be useful shortly, as we will show that it is pos-
sible to prove a multiple vector-valued weighted result without making
use of extrapolation.

Proposition 6.10. Let 0 < p <∞, 0 < Q <∞, and w ∈ A∞; then for
any LQ-valued Schwartz function f on Rd, we have

‖f‖Lp(LQ;dw) . ‖S f‖Lp(LQ;dw).

The proof combines all the previous techniques used to deduce mul-
tiple vector-valued estimates in Section 4 and weighted estimates. We
sketch the proof of the crucial maximal inequality (the equivalent of (91)
of Lemma 6.5) in the case of `q-valued functions, where q < 1. The
case q ≥ 1 is in fact easier, since duality is available. The general multi-
ple vector-valued case, corresponding to a general n-tuple Q, follows by
induction over n.
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Lemma 6.11. Let 0 < q < 1 and 0 < p ≤ q; let I be a finite collection
of dyadic squares in Rd, I0 a fixed dyadic square, (fk)k∈Z a sequence of
Schwartz functions, and w a positive locally integrable function. Then
for any 0 < p1 <∞,∥∥∥(∑

k

∣∣∣ ∑
I∈I(I0)

〈fk, φ1
I〉φ2

I

∣∣∣q) 1
q
∥∥∥
Lp(w)

.
(

sup
J1∈I(I0)

1

|J1|
1
p1

∥∥∥(∑
k

( ∑
I∈I(I0)
I⊆J1

|〈fk, φ1
I〉|2

|I|
· 1I
) q

2
) 1
q
∥∥∥
p1

)

×
(

sup
J2∈I+(I0)

1

|J2|

ˆ
R
w · χ̃J2 dx

) 1
p · |I0|

1
p ,

(100)

with the implicit constant independent of the collection I and of the
functions f and w.

Proof: Since ‖ · ‖pLp(`q ;dw) is subadditive, and hence, using the decompo-

sition (31),∥∥∥(∑
k

∣∣∣ ∑
I∈I(I0)

〈fk, φ1
I〉φ2

I

∣∣∣q) 1
q
∥∥∥p
Lp(w)

.
∑
`≥0

2−`pM̃
∥∥∥(∑

k

∣∣∣ ∑
I∈I(I0)

〈fk, φ1
I〉φ̃2

I,`

∣∣∣q) 1
q
∥∥∥p
Lp(w)

.

Since p ≤ q and all the functions φ̃2
I,` are supported inside 2`I0:∥∥∥(∑

k

∣∣∣ ∑
I∈I(I0)

〈fk, φ1
I〉φ̃2

I,`

∣∣∣q) 1
q
∥∥∥
Lp(w)

.
∥∥∥(∑

k

∣∣∣ ∑
I∈I(I0)

〈fk, φ1
I〉 φ̃2

I,`

∣∣∣q) 1
q
∥∥∥
Lq(w)

· ‖12` I0‖Lτ (w),

where 1
p = 1

q + 1
τ . For the first term on the right-hand side, we use

Fubini and the known scalar version of Lemma 6.11 (more precisely,
inequality (99) above):∥∥∥(∑

k

∣∣∣ ∑
I∈I(I0)

〈fk, φ1
I〉φ̃2

I,`

∣∣∣q) 1
q
∥∥∥q
Lq(w)

=
∑
k

∥∥∥ ∑
I∈I(I0)

〈fk, φ1
I〉φ̃2

I,`

∥∥∥q
Lq(w)

.
∑
k

‖SI(I0)fk‖qq
(

sup
J2∈I+(I0)

1

|J2|

ˆ
Rd
w(x) χ̃J2 dx

)
.
( 1

|I0|
1
q

∥∥∥(∑
k

|SI(I0)fk|q
)1
q
∥∥∥
q

)q
·
(

sup
J2∈I+(I0)

1

|J2|

ˆ
Rd
w(x) χ̃J2 dx

)
·|I0|.
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By a vector-valued version of the John–Nirenberg inequality, which
was also used in proving the multiple vector-valued version of Theo-
rem 1.1, the above can be estimated by(

sup
J1∈I(I0)

1

|I0|
1
p1

∥∥∥(∑
k

|SI(I0)fk|q
) 1
q
∥∥∥
p1

)q
×
(

sup
J2∈I+(I0)

1

|J2|

ˆ
Rd
w(x) χ̃J2 dx

)
· |I0|,

where 0 < p1 <∞ is any Lebesgue exponent.
On the other hand,

2−`pM̃/2‖12` I0‖
p
Lτ (w) .

( 1

|I0|

ˆ
Rd
w(x) χ̃I0 dx

) p
τ |I0|

p
τ .

After summing in ` ≥ 0, we get the inequality (100).

Applying the usual stopping time, the maximal inequality of Lem-
ma 6.11 will imply a vector-valued version of Theorem 6.8. We leave the
details to the interested reader. Although Lemma 6.11 is stated for p ≤ q,
a vector-valued version of Theorem 6.8 is valid for any Lebesgue expo-
nents, as we can pass from lower Lebesgue exponents to larger ones at
the expense of losing an ε.

6.2.3. The multi-parameter case. The multi-parameter version
of Proposition 6.9 follows easily from the properties of the weights
A∞,Rectangle(Rd1 × · · · × RdN ). We will only illustrate the scalar bi-
parameter case, but state the result in its generality.

Proposition 6.12. Let 0 < p < ∞, 0 < Q < ∞; then for any w ∈
A∞,Rectangle(Rd1 × · · · × RdN ) and any LQ-valued Schwartz function f ,

‖f‖Lp(LQ)(w) ≤ C‖Sd1 ⊗ · · · ⊗ SdN (f)‖Lp(LQ)(w).

Proof: In fact, we will prove that

(101) ‖f‖Lp(w) ≤ C‖Sd1 ⊗ Sd2(f)‖Lp(w),

for any w ∈ A∞,Rectangle(Rd1 × Rd2). An important property of the
weights in the class A∞,Rectangle(Rd1 × · · · ×RdN ) is that if we fix one of
the variables, we still obtain an A∞ weight in the other variable and we
can use the one-parameter result:

(102)
wy(x) = w(x, y) ∈ A∞(Rd1) for a.e. y ∈ Rd2 ,
wx(y) = w(x, y) ∈ A∞(Rd2) for a.e. x ∈ Rd2 .
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We start by fixing the variable y; then fy(x) := f(x, y) is a function
on Rd1 . By Proposition 6.9,ˆ

Rd1
|f(x, y)|pw(x, y) dx .

ˆ
Rd1
|Sd1fy(x)| dx

=

ˆ
Rd1

(∑
k

|Qk(fy)(x)|2
) p

2

w(x, y) dx.

Above,

(103) Qk(fy)(x) := Q1
kf(x, y) := Qxkf(y) :=

ˆ
Rd1

f(x− s, y)ψk(s) ds.

If we integrate with respect to y and use Fubini, we haveˆ
Rd1

ˆ
Rd2
|f(x, y)|pw(x, y) dy dx

.
ˆ
Rd1

ˆ
Rd2

(∑
k

|(Qxkf)(y)|2
) p

2

w(x, y) dy dx.

Now we consider x fixed and we apply Proposition 6.9 (or more specifi-
cally an `2-valued extension which follows also from a well-known
result of Marcinkiewicz and Zygmund [17]) to the sequence of func-
tions (Qxkf)k∈Z:ˆ

Rd2

(∑
k

|(Qxkf)(y)|2
) p

2

w(x, y) dy

.
ˆ
Rd2

(∑
k

|Sd2(Qxkf)(y)|2
) p

2

w(x, y) dy

.
ˆ
Rd2

(∑
k

∣∣∣∑
l

Ql(Q
x
kf)(y)

∣∣∣2) p2w(x, y) dy.

Here it is useful that we can interchange the role played by the variables:
if x is fixed, w(x, ·) is still an A∞ weight and vice-versa.

We need to understand the last expression; the explicit formula for
Ql(Q

x
kf)(y) isˆ

Rd2
(Qxkf)(y − t)ψl(t) dt =

ˆ
Rd2

(ˆ
Rd1

f(x− s, y − t)ψk(s) ds
)
ψl(t) dt

= f ∗ (ψk ⊗ ψl)(x, y),

so that(∑
k

|Sd2(Qxkf)(y)|2
) p

2

=
(∑

k

∣∣∣∑
l

Ql(Q
x
kf)(y)

∣∣∣2) 1
2

= Sd1⊗Sd2(f)(x, y).
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Integrating in x we obtain (101). Note that here it is important that
we can use Fubini, fix one of the variables and perform the usual one-
parameter analysis; in particular, the properties (102) are critical. For
mixed-norm estimates most of the weighted results are known only for
weights that tensorize: w(x, y) = u(x) v(y), the reason being that Fubini
and property (102) do not hold any longer.
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