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MULTIPLE VECTOR-VALUED, MIXED-NORM
ESTIMATES FOR LITTLEWOOD-PALEY SQUARE
FUNCTIONS

CRISTINA BENEA AND CAMIL MUSCALU

Abstract: We prove that for any L@-valued Schwartz function f defined on R¢, one
has the multiple vector-valued, mixed-norm estimate
I lLr ey S NSFllLP Le)

valid for every d-tuple P and every n-tuple @Q satisfying 0 < P, Q < oo componentwise.
Here S := Sg; ® -+ ® Sqp is a tensor product of several Littlewood—Paley square
functions Sd]. defined on arbitrary Euclidean spaces R% for 1 < j < N, with the
property that di + --- 4+ dy = d. This answers a question that came up implicitly
in our recent works [2], [3], [5] and completes in a natural way classical results of
Littlewood—Paley theory. The proof is based on the helicoidal method introduced by
the authors in the aforementioned papers.
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1. Introduction

Let us start by recalling that a sequence of L'-bounded Schwartz func-
tions (¢ )kez defined on the Euclidean space R™ is called a Littlewood—
Paley sequence, if its Fourier transform satisfies®

— — —100m
(1) suppd €[22, (ordu©) s 27 (14 )

for every £ € R™ and sufficiently many multi-indices «, and if one also

has .
1= .

kEZ

C. Muscalu is also a Member of the Simion Stoilow Institute of Mathematics of the
Romanian Academy in Bucharest.

1Here and throughout the article we use the standard notation A < B, meaning that
A < CB for some constant C' > 0 which can be universal or dependent on several
implicit parameters derived from the specific context.
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In particular, any Schwartz function f defined on R admits the Little-
wood—Paley decomposition
=Y fxix
keZ
To any Littlewood—Paley sequence, one can also associate a Little-
wood—Paley square function S, f, defined by

2 Snf @) = (I wvn?)
keZ

Moreover, for any N > 1 such Littlewood—Paley sequences (l/ii)kez de-
fined on R% for 1 < j < N, one defines an N-parameter one (Uy)czny
on R? := R% x ... x RN by

(3) Uy, =Py, ® - @Y
for k = (k1,...,kn), where
Uiy @ - @R (@1, ) = (1) - (@)
Here we think of the generic variable 2 € R¢ as being identified with the
vector (21,...,zN) with z; € R% for 1 < j < N.

In particular, any Schwartz function on R? admits the decomposition

F=Y [

kezZN
One can then also define the N-parameter square function Sf by the
formula
1/2
(4) Sf(@) = (D 1f * () ?)
keZN

for z € R%. This is the square function that will be studied in the present
article.

To complete the presentation of the main notations that we will use,
we also recall that given any n > 1 o-finite measurable spaces (4;, X;, u])
for1<j<mnand R=(ry,...,r,), an n-tuple of positive real numbers,
one can define the iterated (or mixed-norm) Lebesgue space L% (A, Y, ,u)
to be the space containing those functions g which are measurable on
the product space

(A2, p) : (HAJvHEJaHHJ)

and for which the (quasi)-norm H Jllr deﬁned by

lgllr:=lgllLras.w=I---lgar, ... an)llLra(a, 20 pmm) - |Lr (A2 00)
is finite.
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Classical Littlewood—Paley theory states that the inequalities

(5) 1 fllr@my S NSmfllLe@my SN fllze@m)

are true, provided that 1 < p < co and that, in addition, the left-hand
side of (5)
(6) 1flLr@m) S 11Smf e @m)
is in fact available in the whole range 0 < p < oo; see for instance [19]
and [20].

Standard duality and vector-valued arguments for singular integrals

allow one to extend (5) very easily to the setting of mixed-norm spaces
and N-parameter square functions. This implies that the inequalities

(7) 1fllzr ey S ISFlLray S If e

are true for L@-valued Schwartz functions defined in R? for every n-tu-
ple @ and d-tuple P satisfying 1 < P, < oo componentwise.

To be more specific, the space LT above is considered with respect to
the product Lebesgue measure in R?, and as before, by [|h]zr (o) one
means the mixed (quasi)-norm given by

”hHLP(LQ) = ||h(xaa)”LQ(A,E,u) ||LP(Rd)~

The main result of the present article proves an extension of the esti-
mate (6).

Theorem 1.1. The estimate
(8) I fllzr ey S NSfllLr o)

is true, for every L?-valued Schwartz function f on R?, as long as the
n-tuples @ and the d-tuples P satisfy the condition 0 < P,Q < oo com-
ponentwise.

As we will see, unlike (7), the proof of Theorem 1.1 is far from be-
ing routine, and it is based on the helicoidal method developed by the
authors in [2], [3], [5]. The question addressed and answered by The-
orem 1.1 surfaced quite naturally in our recent works [2], [3] and it
is related to an open problem of Kenig on mixed-norm estimates for
paraproducts on polydisks. See also our recent expository work [4], in
particular Theorem 5 there. We also refer the reader to Sections 5 and 6
of [2], where scalar and Banach-valued versions of Theorem 1.1 are used
to prove mixed-norm estimates for multi-parameter operators. Thus the
vector-valued extension in (8) for the multi-parameter square function
is essential for widening the range of boundedness of those operators,
although certain endpoints are still excluded.
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Some particular cases of (8) were known in the scalar case, that is,
when L9 = C. The case when all the entries of the d-tuple P are equal
to each other is the well-known multi-parameter case studied by Gundy
and Stein in [12]. More recently, Hart, Torres, and Wu proved the case
when N =1 and d = 2, again, in the scalar situation [13]. Even more
recently, the case N = 1 was extended in [14] to arbitrary dimensions,
also in an anisotropic setting.

The central point of the paper will be the proof of our main Theo-
rem 1.1 based on techniques from [2], [3], and [5]. The L¥(R?) mixed-
norms, the iterated Lebesgue spaces L9 (A, %, 1), and the N parameters
could make the result seem convoluted, but several simplifications are
attainable. We will first focus on the situation when L7 (R?) = LP(R?),
leaving out the mixed-norms in a first instance; the same principle used
for proving vector-valued extensions will be useful for proving the mixed-
norm estimates as well, since both problems boil down to a change of
(quasi)-norm. With this simplification, we are reduced to proving the
vector-valued extension for the N-parameter square function

9) Ifllr ey SISFllLe(zays

for any 0 < p,Q < co. Following the viewpoint of [2], multi-parameter
operators can be treated using vector-valued extensions of operators de-
pending on fewer parameters. Since our vector spaces are precisely it-
erated Lebesgue spaces, the treatment of the N-parameter square func-
tion is reduced eventually to multiple vector-valued estimates for the
one-parameter square function.

In order to ease the presentation even more, we consider in the first
part of the paper the case when all the square functions Sg4, for 1 <
j < N are one-dimensional, that is, when dy = --- = dy = 1; all
the objects considered have unequivocal higher-dimensional analogues,
and this reduction does not produce a loss of generality. Notice that
this situation corresponds numerically to NV = d. The proof of this case
represents the core of the present article.

Under this assumption, we first show in Section 2 that the N-param-
eter estimate (8) follows easily, by induction, from the one-parameter
case at the cost of increasing the complexity of the vector-valued spaces
considered. Notice that in this situation, (8) becomes a multiple vector-
valued extension of the well-known (scalar) inequality (6). Then, in Sec-
tion 3, we explain how this multiple vector-valued case is implied by a
certain discrete analogue of it.

Next, in Section 4, which is more involved, we describe the proof of
this discrete case, by using ideas that lie at the heart of our helicoidal
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method in [2], [3], [5]. In Section 5 we explain how one can modify the
proof presented up to now in order to deal with the general, mixed-norm
case of Theorem 1.1.

Lastly, in the final Section 6, we will see how Theorem 1.1 can also be
obtained through extrapolation from a weighted, scalar version of Theo-
rem 1.1, which appeared in the context of weighted Hardy spaces in [9].
Since we are outside the Banach setting, the extrapolation needed con-
cerns A, weights and pairs of functions. For the mixed-norm estimates,
we need to adapt a result of Kurtz [15].

That the vector-valued result of Theorem 1.1 allows also for a proof
based on extrapolation and weighted theory should not be surprising:
the helicoidal method yields vector-valued results that can be obtained
also through extrapolation, once weighted estimates for the correct class
of weights are known. This was the case also with the bilinear Hilbert
transform (see [2], [5], [6], [16]). For completeness, in Subsection 6.2 we
show how to deduce the weighted version of Theorem 1.1 by using the
helicoidal method: the same maximal inequality used in Section 4 plays
a central role, and only the stopping time algorithm changes.
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2. Reduction to the multiple vector-valued case

As mentioned above, we first study the case when dy =--- =dy = 1.
From now on, until Section 5, we work under this assumption.

And as also mentioned in the introduction, in this section we show
that Theorem 1.1 follows by induction, from its particular case d = 1.
Recall also that d = N now. Let us therefore assume that Theorem 1.1
is true for dimensions smaller than or equal to d — 1 and we will explain
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how to deduce the d-dimensional case. The argument is based on the
identity

(10) F= (XS0 (F )

keZ

where S(;, ..z, ,)(g) denotes the (d — 1)-dimensional part of the square

function, taken with respect to the variables x1,...,x4_1, and explicitly
given by
) 1/2
(1) Seraa @@= (D lgx @k @ 2v @)
k1,...,ka—1

for x € R%. The first convolution in (10) is a one-dimensional one, taken
with respect to the last variable x4, while the convolution in (11) is
a (d — 1)-dimensional one, taken with respect to the first d — 1 vari-
ables z1,...,74-1. Using (10) one can write ||Sf| .7 Le) as

H (Z 1S(@r,.wan) (f * ¢Z)|2) 1/2‘

kEZ

LP(L?)
= (S(ar,wa) (F ¥ VDkllLr (L2
= H(S($1,<~~,$d—1)(f*wz))k”Lﬁ(LPd(LQ(Z2)))7

where P := (p1,...,Pd—1)-
Here, one can use the induction hypothesis in the (d — 1)-dimensional
case to conclude that the above expression is larger than

H(f*wk)kHLP(LPd(LQ(lz = H( ‘f*¢k| ) ‘

LP(LPa(LQ))

Finally, by using the one-dimensional case and Fubini, we see that this
is also greater than

||f||L15(Lpd(LQ)) = ||fHLP(LQ)a

which ends the argument.

3. The discrete multiple vector-valued case

Now that we know that Theorem 1.1 (in the special situation when
dy = --- =dny = 1) can be reduced to its d = 1 particular case, we
show in this section that a further reduction is possible. The multiple
vector-valued d = 1 case can be reduced to a discrete variant of it that
will be described next.
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Let us pause briefly and recall that a sequence of Schwartz func-
tions (¢r)r on the real line, indexed by dyadic intervals I, is called an
L? normalized lacunary sequence (for some p € (0,00]), if and only if
the following estimates hold:

(12) 0% () 1 ( dist(x,]))—loo

= |I|1/p e i

for z € R, 0 < o < 10, and also if [, ¢7(x) dx = 0.

Now let (¢}); and (¢?); be two such L?-normalized lacunary se-
quences, indexed by an arbitrary finite subset of dyadic intervals. The
following discrete variant of the one-dimensional case of Theorem 1.1 is
true.

Theorem 3.1. For every 0 < p < co and tuple @ as before, one has

)2
LP(LR) S H(Z : f’|?|1 | )1/2‘

Observation 3.2. The function f above depends on the variables
(a1,...,a,) € A and on z € R. Sometimes we will write this explic-
itly as fa,,....an)(2). It is important to emphasize that, as we will see
from the proof of Theorem 3.1, the estimate (13) holds also in the more
general case when the families (¢}); and (¢?); depend on the variables
(a1,...,a,) € A as well, in a uniform manner, with respect to the im-
plicit constants of (12).

(13) HZ 1,603

Lp(LQ)

We will now explain why Theorem 3.1 implies the one-dimensional
case of Theorem 1.1. The argument is based on an idea that we learned
from the article [13], and which goes back to the work of Frazier and
Jawerth [11].

Proposition 3.3. There exists a large universal constant N such that,
given any sequence of intermediate points xy € I, there exists (zzl)[, an
L™ normalized lacunary sequence, so that every Schwartz function h on
the real line can be decomposed as

(14) h=>" > (h*te_n) ()i

ko|1j=2-*

In (14), the sequence (¢;); is any a priori fixed Littlewood—Paley se-
quence. We prove Proposition 3.3 in detail later on. In what follows, we
describe how it helps reduce the d = 1 case of Theorem 1.1 to its discrete
analogue from Theorem 3.1.
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Fix f(= fia,,....an)(x)). For every (ai,...,a,) € A pick 2y € I, a
number with the property that

inf |(f(a1,...,an) * @[kaN)(y)' = |(f(a1,...,an) * ’@[]ka)(xI)'»

yel

where I is a dyadic interval with |I| = 27%. Clearly, 27 depends on f
and also, implicitly, on (a1,...,a,) € A.
Using Proposition 3.3, one can write

15) Ifllzozer=|32 Y Garuan ¥ N @D 00 ()]

k|I|=2-*

Lr(L)

Using now the general form of Theorem 3.1 (see Observation 3.2 that
followed it) one can majorize the above expression (15) further by

H(Z Z ‘(f(al""’a")*¢k_N)(xI)|21[(x))l/2‘

k=2

Lr(LR)’

and using the definition of the sequence (z); above, one can immediately

see that this is smaller than
1/2 1/2
2 _ 2
H(Ekj|<f<m,..,,an>wk_m(a:n ) e = H(}knfwu )

as desired.

Lr(LR)’

3.1. Proof of Proposition 3.3. We now describe the proof of Propo-
sition 3.3 using the ideas from [11].
Start by writing, for a generic function of a variable f:

F=> Fxvp=> fxtrn.
k k

We will prove that for every k € Z, a family of functions (1[11) 7 as in
Proposition 3.3 exists?, so that

(16) Frten =Y (Ftrn)(@n)r.
|1|=2—*

Clearly, this would be enough. Since the argument is scale-invariant,
we will prove this in the particular case when k = N. In this case,
(16) becomes

(17) Frto= > (f o) (@)

[I|=2—-N

2This time all the intervals I have the same length, |I| = 2F.
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Now consider J, a Schwartz function such that zz = 1 on the support

of % and having the property that supp ¢ C [1/4,8].
Then, one can write

f o to(@) = (f * o) * (e /f*wo —y)dy
-y /f*wo (z— y)L1(y) dy
(18) =
Z I xo(zr /wx— )17(y) dy + Resty(x)
|I|=2-N
> frvoler)ei(z) + Resty(x),
|I|l=2-N

where ¢} = ¢ % 17(z) and

Resty (z) =: Z Restq 1 (z)
j1j=2-~

S 1= nt) = £+ nlenlie - i) dy

[1]=2-%

(19)

The above inner expression can be estimated by

£ oly) — £ *abolar) = / F(2) ol — 2) — tboler — 2)] d
- / FEU# — 2)(y — zr) dz,

where # is a point lying inside the interval I and depending on y, xj,
and z. Since both y and x; belong to I, it is easy to see that the above
expression is at most C' 27| f||«. Using this in (19) we obtain that

[Resty,r(2)] < Cp2™ V| flloo (1 + dist(x, 1)) =1,
which implies further
Rest (2)] < O fllne2 V.

We see these calculations as providing a first approximation towards the
desired (17). To summarize, so far we have shown that

(20) Fripo(@)= Y fxvolxr)di(x)+ Resty(z),
|I|=2-N

where |Restq(7)| < C||f|lcc2™Y and (¢}); is a lacunary family.
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We now iterate this fact carefully. Fix J with |J| = 27 and recall
the expression

(21)  Resty(z) = / F * doly) — f * dole )@ — )1 (y) dy.

Using (20) for + = y and = = x; in (21) we obtain a decomposition
of Resty s(x) of the type

> ool [ 163 = o — ) Lso) dy

[I|=2-N

£ 30 [ IResti () = Resto ()1 = )10 0)

|I|=2-N

Summing over |J | = 27N we obtain the formula

Resty (z Z [ to(xr)d7 + Resta (),
where =
S / B3 (y) — SHw )P — 1)1 (y) dy,
|J|=2—N
while Resta(z) = Z Resto r(x)
|I|=2—N
and
Resto 1(z) == Z /[Restl,f(y) —Restl’[(xJ)]zZ(x—y)lJ(y) dy.
|7j=2—-~ /R

Arguing exactly as before, given that both y and z; belong to the inter-
val J, it is not difficult to see that (¢2); is a lacunary family satisfying

I97lloc < C27N,  while |[Restz [lo < C% 272V fl|oo,

where, as always, C' is a universal constant. In other words, at our second
approximation step, we obtain the decomposition

frtole)= > fxvoler)(r(z) + ¢7(x)) + Resta(x).
|I|=2—-N

Tterating this an arbitrary number of times, we obtain that f*g(z) can
be written as

(22) frdole)= Y [rtoler)(@p(@) + - + ¢} (2)) + Resty(x),

|[|=2-N
where (¢j1) 1 is a lacunary family satisfying

[¢7]lcc < CT712707DN while ||Resti]|oc < C'27V|f] 0.
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Thus, if N is large enough so that C 27" < 1, by letting I go to oo in (22),
we obtain the desired decomposition (17) with 1; given by

Strictly speaking, the families (d)ll) 7 are naturally associated to intervals
of length 1, not 2=, but since N is a fixed universal constant, it is
not difficult to see that they satisfy the estimates (12) as well, at the
expense of losing a harmless constant of the type 219N This completes
the proof of Proposition 3.3.

4. Proof of Theorem 3.1

Recall that our goal now is to prove that

(23) HZ f.6%) ¢1]LP(LQ)<H(Z”’? 1)

for every 0 < p < oo and every n-tuple @) of positive real numbers.
Also, 7 is a fixed finite collection of dyadic intervals. Of course, the
implicit constant in (23) is meant to be independent of the cardinality
of Z. We also denote by Z the collection of all dyadic intervals .J having
the property that there exists I € Z such that I C J and satisfying
|J| < 2} for some large fixed positive integer My. Sometimes we refer
to the intervals in Z as being the relevant dyadic intervals.

Now let E C R be a measurable subset. To prove (23) it is necessary
to prove a more refined version of it given by

e (S uehet)is],, ..,
< H(Z| f’|j_§|1 )1/2’

where € > 0 is arbitrarily small while

Lr(LR)

. (sizer 17)1/P—¢
Lr(LQ) (SIZGI E) 5

(25) sizer 15 := sup — / 1g(x dlSt(x I)) o dx
rez 11 1]
is essentially the supremum over all L' averages of 1g(z) over the in-
tervals of Z. The ¢ in the right-hand side of (24) represents a small loss
in the information corresponding to the localizing function 1g, which
will be traded later in (47) for the overall summability of the informa-
tion corresponding to the level sets. The reader familiar with our earlier
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“helicoidal papers” [2], [3], and [5] will find our desire to prove (24)
natural.

Clearly, (24) implies (23) since one can take E to be the whole real
line R.

Using interpolation arguments (see Proposition 4.1), it is enough to
prove a weaker version of (24), namely

@6) | (3. ehet )1

LP>>(L<
IeT (L)

<S5

Such interpolation arguments will in fact be freely used throughout the
section, until the end of it, when they will be proved in detail.

Let us denote by P(n) the statement which says that (26) holds in full
generality, for 0 < p < oo and @ n-tuple of positive real numbers. We
will prove P(n) by induction for every n > 0.

. (sizer 1=)1/P—€.
(L) (sizez 1g)

4.1. Proof of P(0). This is the scalar case, which now reads as

0 ||(iohed)s| |

Iel

S H (Z . f7|f|1 )I/ZHLP - (sizez 1E)1/P—e.

Let s be any positive real number with the property s < min(1,p). To
estimate the left-hand side of (27) we dualize the expression through L*,
as explained in [3]. Given also the scale invariance of the inequality, this
amounts to proving that for every F' C R measurable set with |F| = 1,
there exists a subset of it ' C F with |F| > 1/2 such that

(28) H(Z<f>¢}>¢?)1E15HL5

IeT
~ H (Z i f’|§5|l )1/2HLp - (sizer lE)l/P—e.

To construct the subset F , we start by defining an exceptional set €2 as
follows.
First, for every integer k > 0 we define

Oy = {2 5f(a) > C2¥7|5f]],}.



MixED-NORM ESTIMATES FOR LITTLEWOOD—PALEY SQUARE FUNCTIONS 643

Here, and from now on, by Sf(z) we mean the“discrete” Littlewood—
Paley square function given by

) )= (T )

IeT

When we need to emphasize that the square function above depends on
the collection Z, we write Sz.
It is not difficult to see that
1 1
|2 < 910k Op
After that we set
Q= {z: M(1g,)(z) > 1/2%},

where M is the Hardy—Littlewood maximal operator, and finally
(30) Q=
k=0

Clearly,
11 C 1

2105 or — O
and in particular this implies that |Q] < 1/10 if C is a large enough
constant?. N

In the end we set F' := F'\, which is a major subset of F, in the sense
that it satisfies |F'| ~ 1. Now, using a result from [18], we decompose
the functions ¢? as

Q| < C2F|Qu| < C2F—

oo

(31) o= 27 M2

£=0

where M is arbitrarily large and for each £ > 0, ( % o)1 is still a lacunary
family with the additional property that

supp (;5%,[ C2'r.
In particular, one can estimate the left-hand side of (28) by

(2) [[(Xtrehe) stz < szfw (o trohet ) 1ets|
IeT =0

IeT

3The constant C is the boundedness constant of M: L1 — L1
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The right-hand side of (32) can also be rewritten as

Z2—Af&£/2H( (f, ¢}>¢~5?,4) 1E1ﬁ‘ :’
s

£=0 Ie

where ¢I = 2_M€/2¢2 . We will see in what follows that for each £ > 0
one has

33) (Ot endte)1eg|| S 2SSl - (sizer 1)/,
IezT 3
where L is some constant depending on s and p. However, because of
the large constant M in (32), this will be enough to complete our proof.
We will prove (33) in detail in the main case when ¢ = 0 and then we
will explain how to modify the argument to obtain (33) in general.
In other words, the goal for us now is to prove that

~, S

30 (St ehde) et S USHI - (simer 1)/,

I€T 5
Recall that now, since

supp ¢7 o C 1,

one must have I N Q¢ # (), which in particular implies that I N Q§ # 0.
From the definition of 2y, one can see that this set admits a natural
decomposition as a disjoint union of maximal dyadic intervals denoted
by Imax- In particular, our dyadic intervals I have the property that they
are either disjoint from all these I, or they contain strictly at least

one of them. In either case, it is not difficult to see that one has the
pointwise estimate

1y|2 1/2 ~
(35) (2 ol w) < ey,

1€T:INQEAD

where C' is a universal constant. To prove (34) we will combine two
stopping time arguments, one performed with the help of averages of
the type

[(fon]?, \1/2
& I(; t) |
) G 2
and the other one with the help of averages of the type

dlst(as Ip)\ —100
(37) |IO|/ (@ o L)

Lp
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The latter will be denoted from now on by zauve}0 (1;-7)- Clearly, because
of the pointwise bound (35), averages such as the ones in (36) cannot be
larger than C'||Sf||,, while averages of the type (37) cannot be larger
than sizez (1, 7)-

We now describe in detail the first stopping time.

We start by selecting maximal dyadic intervals Iy € Z with the prop-
erty that Io N Q§ # 0 and such that

(39) |IO|1/pH(Z'f’|f|f LY = s

Of course, as pointed out before, we implicitly assume that all the
intervals I that participate in the summation above have the prop-
erty I NQ§ # 0. It is also important to observe that these selected
intervals Iy are all disjoint, as a consequence of their maximality. Then,
we disregard all the relevant dyadic intervals that lie inside one of these
selected intervals and consider only those that are left. They are either
disjoint from the selected ones or they contain at least one of the selected
ones.

After this, among those that are left, we pick those maximal ones,
still denoted by I, for which

(T W) ), 2 G,

and so forth. The maximal intervals selected at the first step are collected

in I:El), those selected at the second step are collected in I2(1)

(39)

|Io\1/p

and so on,

obtaining the collections (L(Lll))m. Clearly, there are only finitely many
such steps, since our initial collection of intervals was finite.

After that, independently, we perform a similar stopping time, but
one that involves the averages ave}o (1 instead. We start by selecting
those maximal intervals Iy for which

Emﬁ)

1 .
ave}o(lEmﬁ) > 3 sizez(1547)

then, among those that are left (more specifically, those that are not
inside any of the previously selected Iy) we again pick those maximal Iy
for which

1 .
(40) ave}o(lEm;) > 7] sizez (154 7)

and so on, exactly as before. In this way, one obtains a sequence of

collections of maximal dyadic intervals Iy denoted by (Z, (2))n2.
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In the end, we combine them to be able to estimate (34). One can
write

@) | X vohdie)ets

I1eZ,INQ5#0

<> X 0 X (ehd)

et nezl) ez 1ezl) (1)NZ) (I2)
where 1-7(111) (I1) contains all the relevant dyadic intervals I with the prop-
erty that I C I; but such that I is not contained in any of the previously
selected intervals in Il(l) for 0 <1 <my — 1, and similarly for 17(122) (I3).
Clearly, any interval I participating in the summation (41) must satisfy
I C I nI,. Now, for every I, Is as before, the corresponding L*® quasi-
norm in (41) can be estimated by

(12) H(Ic%;hq’ 00 )1elg]| - IENFAL 0L

by using Holder, since s < 1. The L' norm in (42) can be dualized and
estimated by

Z <f» ¢}><1Emﬁ g, 5%0>
ICIiNIy

for some function g with the property ||g||co = 1. Using Cauchy—Schwarz
this can be further estimated by

Ny ey
|I; N IQ|1/2 P 1| )
[(Loni g S10)*, \1/2
« (X EEEE L) Ln gl

ICIiNIa

Now using John-Nirenberg twice (see Theorem 2.10 in [19] for this ro-
bust, discrete variant of it) together with the standard local estimate
of weak-L! averages (which can be found in Lemma 2.16 of [19], for
instance), this can be further majorized by

(2 ) )

x ( sup avey (1,.z)) - [I1 NIl
JoCI1NIy

43 ( su
(43) nenn [L7P |J1|1/p
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If one raises these estimates to the power s, as required by (41), one
can see that the corresponding expression there is smaller than

2 s
( o |J1\1/PH<Z |f7|jr5|l ’)UQHP)

J1CI1NIs

(44) x (sup  avel (1,47))° - |1 N Ll
JoCIiNIy

x (aver,nr, (1gag)' ™ 1N L%,

which is smaller still than

(45) (1&1;1%12 |J1|1/pH(Z . f’?l )1/2Hp)s

x (sup avel (1,.7)) |1 NIl
JoCI1NIy

Using these estimates in (41), the expression there can be estimated
further by

6) Y > @ CUISS) @ sizer (1 p) |1 N Dol

mm220 1 er(V) ezl

On the other hand the expression

> |1, N I

nLez), Lezly)

Yo Inlsem?

Lezly)

is smaller than

and also smaller than

D 1| S 27 (sizer(1g5)) 7,
1,€T)

given that |ﬁ | ~ 1. This implies that
> I N Ip| < 2mP0r2m2f (siger (1, =) %
nezy), nezl)

for every 0 < 61,602 < 1 so that 6; + 62 = 1. Using this in (46) one can
majorize that expression by

(47)  SFlp(sizer (1, ) 0 30 2Tl oy a0,

ni,me>0
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The geometric series on the left-hand side above are convergent pro-
vided 0; < s/p and 5 < 1, which is equivalent to

0<91<§.
p

If 6, is taken to be very close to s/p, this gives an upper bound of the
type

IS, - (sizez 1)*/P~,

as desired in (34).
To prove (33) for arbitrary £ > 0 one proceeds similarly. The obser-
vation now is that since supp qﬁ%e C 2T one must have

2INQc £ 0
and it is not difficult to see that this implies that
INQ;#0.

Indeed, if this were not true, then I C €, which means that 27 C Qg -
Q, a contradiction. Here we can see the connection between the initially
independent decomposition (31) of the functions ¢% and the level sets Q
and Qj used in (30) to define the exceptional set Q.

Now one simply repeats the previous argument. One difference is
that the first LP averages of the square function can be as large as
C2'%¢/?||S |, a bound which is responsible for the positive constant L
n (33). Another difference is in the estimate (42), whose analogue now
contains a factor of the type

1—s
s .

[ENFN2Y(1 N L)

However, the small constant 2-M{/2 in the definition of 531 gets multi-

plied by it, and this allows one to write

1-s dist(w, [;N15) \~100  \5*
5 ([romr (1 ERELEELY )
~ R EOF( ) |I1 N 1'2‘

and everything continues as before, if M is large enough. This completes
the proof of P(0).

2~ Mt/ pAFN2Y (I ND,)
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4.2. The proof of P(n — 1) implies P(n). Recall that what we need
to prove now is the estimate

(48) |[(Xotr0het ) 15|

1T

Lro(LQ)
|(f. o1)] 1/2
<J(S )

for every 0 < p < oo and @, an n-tuple of positive real numbers, as-
suming that even the stronger version of it, namely (24), holds true for
(n—1)-tuples Q. Again, here we are implicitly assuming that the proof of
the strong LP(L®) estimate in (48) will follow by standard interpolation
arguments, which we will describe later on, as promised.

Define g;, := 1%ign gj and let s be any positive real number such that

- (si 1/p—e
Lr(L2) (SIZQI]_E)

s < min(1,p, gj,). Then, one can dualize the weak-L? quasi-norm on the
left-hand side of (48) through L*, as explained in [3]. As before, this
amounts to proving that for every F' C R measurable set with |F| = 1,
there exists a subset F' C F with |F| > 1/2 such that

(49) HH( fa 1) ¢1>1E1 H

QHs NS F o (ze) - (sizer 1p) /P,

To construct f , one first constructs an exceptional set €2, as in the scalar
case, with the only difference that the corresponding €2 is now given by

Q= {2 |Sf@)llg > C22%2)|1S flloll -

After that, exactly as before, one defines F = F\Q, which is clearly a
major subset of F', in the sense that it has a comparable measure. Then,
again one uses the decomposition (31) to reduce matters to proving the
analogue of (33), which is now given by

60) [[[(C - ohdne)1ets] [ < 2 NS S el (sizer 1) /70"
IeT

Recall from [3] that s < min(1, p, ¢;,) implies that the expression on the
left-hand side of (50) is now subadditive. As before, we will describe the
proof of (50) in the main case k = 0, the changes in the general case
being similar to the ones in the scalar case. We therefore want to show
that

oo (gf’ o131 0) Lotz | || S 1S Floll - (sizer 15)0/70
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To estimate the left-hand side of (51) we combine, as before, two stopping
times. The first one selects iteratively maximal dyadic intervals Iy for
which one has

62 1/pHH(Z | f’?’ )WHQ‘

for various ni > 0, whlle the second is identical to the one used in the
scalar case — see (40) and its natural generalizations. This allows us to
estimate the left-hand side of (51) by

3 > X HH( > (f, ¢}>5§,o)1E1ﬁHQ

nun2 L er® el 1€z (1)NZ2) (I2)

C
o 1S fllzr(zay

Lp

S

S

ny s no no

Now fix I1 and I5 and consider the corresponding term on the right-hand
side of (53). Given variables (aq,...,a,) € A denote @ := (ag,...,an)
and given @ = (¢1,...,¢,) denote é := (q2,...,qn). Using these nota-
tions, the expression becomes

(S ehidto) nontsts|
i /R(/A H (szf(a“a)’ ¢}>$%’°>1E1ﬁuil§ (x)dal)‘g/ql dzx

:/R</141H( e 6N o) 1615 a‘?(fﬂ)dal)S/ql

X 15,nr, (2)1p(2)15(z) do.
Since s/q; < 1 one can apply Holder and estimate the above expres-
sion by

(54) (/R/AlH< (f(ar,a)s ¢I>¢10)1E1 ‘

S/ 1
( )daldx) !

X \E NF NI NIL|0-s/a)

also using the fact that all the intervals I are now inside I; N I5. Then,
one can use Fubini and integrate first with respect to the x variable
n (54). This allows one to use the induction hypothesis locally (i.e. with

respect to the collection I,(Lll)(ll) N L(i)(lg)) in the case p = ¢1, and
estimate (54) by

(55) // IS f(x ‘qldaldx> n (Sizelflll)(h)ﬂIffz)(Ig)(1Emﬁ))(ﬁie)

x |[ENF NI NI )
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We emphasize that in (55)) the implicit sum in the definition of the
square function Sf(x) runs over the intervals I inside the local collec-
tion I3 (1) N T (I).

It is then not difficult to see that the last expression in (55) can be
rewritten and majorized by

1 [(f, oD% /2 ’
) (@ 1) gl
|1, N L]/ s ] QllLn
x (SizeL(fl)(Il)mI%)(b)(lEmﬁ))l_e LN L.

Using once again the John-Nirenberg inequality from [19] (which
works equally well in our multiple vector-valued setting), we find that
(56) is smaller than

)

(57) sup (|J|1/pHH<Z . f7|j_5|1 )UQHQ‘
10z (1) (LenF)!

JCINIy
no

X (size 0, LN L.

Using these, we can go back to (53) and majorize that expression by

> @S Lere))t (27" sizer 1 7)) > |11 N Il

ni,m2>0 I1€IT(L11)712€Z(2)

As before, one can estimate

> LNk

nLezl?) ezl

in two distinct ways, by taking advantage of the stopping time decom-
positions performed earlier.

First, we can estimate it by 2”7 and secondly, by 2"*(sizez 1, 5) "
given that |F| ~ 1. In particular, this allows one to estimate the whole

expression by

18130 r (sizer 1 )00 37 grmlempigmnaliemon

ni,m2>0

as in the scalar case, for every 0 < 61,605 < 1 with 61 + 65 = 1. Then,
if one chooses 0; < s/p but very close to it, this double sum becomes

smaller than
€

ISF150(ra) - (sizez 1) 7 ¢,

as desired. And this completes our proof.
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The only thing left is the interpolation argument that we used implic-
itly several times.

4.3. Interpolation. Our interpolation result is somewhat unusual, in
the sense that the collection Z of dyadic intervals is as important as the
operator it defines, the square function associated to it from (29). The
result and its proof generalize straight away to collections of cubes in R,
and to arbitrary measures.

Proposition 4.1. Consider 0 < p1 < p < ps < oo and let T be a
collection of dyadic intervals. Assume that, for any subcollection T C T
of dyadic intervals and any L®-valued Schwartz function f on R, we
have for j =1,2

(58) | (IEZ;U, 01)6%) 1|

LPi>° (LQ) H(Z A f7?1 )1/2‘

with the constants K; independent of Z. Then for any I C 7 we have
the strong bound

(59) || (3o tr.0nef)1s|

LPi (LK)

LP(LQ) H(Z | f’?l )1/2‘

Lr(LR)’

where K < (KT —|—K§2)%.

Observation 4.2. As mentioned before, the interpolation result in Propo-
sition 4.1 can be stated in a more general setting, as the interested reader
can verify. Our choice of presentation is motivated by the fact that in
the present paper we need precisely the form presented above. The con-
stants K; in (58) do not depend on any of the subcollections Z of in-
tervals, but they could (and in most applications they do) depend on
the general collection Z and on the set E appearing on the left-hand
side of (58); as a consequence, K is not dependent upon any of the
subcollections Z, but could depend on Z and on the set E.

We use the interpolation result above in order to deduce (24)
from (26); notice that in that case

ER
Kj = (sizez 15)? © for j =1,2.

Hence (24) follows immediately from (26) after interpolating carefully in
a small neighborhood of the desired index 0 < p < co.

On the other hand, in the proof of the interpolation result we will
assume that F is the entire real line since it plays no role in the inter-
polation argument.
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Proof of Proposition 4.1: Let Z C T be a subcollection of dyadic inter-
vals, and denote by F(x) the L?-valued function

F(z):=Y (f,o1)¢7(x).

Iel

Our goal is to control ||F|[1»ze) by [|SzfllLr(re), where Szf is the
associated square function:

Sef(x (Zlf’?l 1 ))1/2'

1€

The proof that we are about to provide will involve a partitioning of
the collection Z according to level sets of the “global” square function Sz.
First, for any o > 0 and any k& > 0, we define

(60) S(k,a) i= {1825 @)lse > 55 -

where C is a constant that will be determined later. Notice that the
sets S(k,a) are nested:

S(O’a) gS(l,a) - S(k’a) c

Each of the sets S(k, ) can be written as a disjoint union of maximal
dyadic intervals:

Ska):= | Ik Vk>o.
eEMy

m ax

These will be used for the formerly mentioned partition:
e the collection Zy will consist of all intervals I € Z that are contained

inside some maximal interval 10 _:

Ty :={I € T: there exists some 1%, € Mo with I C I, C S(0,a)};

max

e for any k > 1, Z is defined as

Ty:={IeZ:3I", €M, withICIF CS(k,a)

and I ¢ If,, for all 0 </ < k}.

max

That is, Zj, consists of all the intervals in Z contained in some I*

max

My, which were not previously selected in any other Z, with 0 §
(<k-1.
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Then we have Z = |J Zj and if F}, denotes the L%-valued function

k>0
Fi(w) = Y (f,01)67 (),
I€Ty,
we have the decomposition F(x) = Y Fi(x).
£>0

Notice that for all £k > 0

supp(Sz, f) U IC U 1" = S(k,a).
I1€Ty eEMy

m ax

For any k > 1, if I € T, and I*7! € M;,_; are such that TNIF-1 £ (),

max max

then necessarily I 2 I¥-1. Given the maximality condition based on

which I*~1 was selected in My_1, all intervals I € 7, intersect S(k —

max

1,)¢ and
(61) 15z, f(2)llLe < ISzf(2)llre - Lsg-1,0)c(2) <

a feature that will be exploited later on.

Since @ is an arbitrary n-tuple of positive real numbers, there is no
certainty that ||| e satisfies the triangle inequality; however, for s small
enough (the condition that s < min(1, 12‘127; q;) suffices), ||-||5 o becomes

(0%
Ck—l’

subadditive. As a result,

S

(S 0 > o< Ut > o).

k>0

Moreover,

(e[S ol > o} = [ [ o, > )
Sl > =)o e > )|

k>0

Such an inequality is important because it allows us to estimate
1] e (pe)y:

1F ey =p [ |{a {DEIEIEI
<Sop [T o | @l > gt da

k>0

(62)

We note that the functions F}, above depend in fact on the variable «
(the collections of intervals Zj, are determined by the level sets S(k, @));
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this is the main difficulty in proving the interpolation result, and which
differentiates Proposition 4.1 from standard interpolation results.

First, we deal with the case corresponding to k = 0, by invoking the
weak-type hypothesis (58) for the collection Zy:

| o o 1@l > 57 o
s/omapl(;/s) (Z i f,|}¢|f 1)

§2P1/5K{’1/ ap—m—l/ 1Sz, £ () [P dz da.
0 5(0,@)

p1
do
Lr1 (LQ)

The term above can be bounded by an expression involving only the
“global” square function Sz, which depends on neither the subcollec-
tion Zy nor on a, given by

o0/ KD / a1 / 1527 (@) |7 de do
0 {5z fll >}

Now we apply the usual trick which consists in changing the order of
integration, obtaining in this way

o 1
p— .
| e {e iR@lse > 555} o
- 1Sz f(@)llLq
<27 [ sef )l [ PP da di
R 0

2 Kpl
||SIf||Lp(LQ

Next we deal with a generic term involving F}, for some k£ > 1; we use
the assumption (58) applied to the collection Zj:

/0 ap—l‘{x N Fe(@)|| e > %Q)WH‘M
. . LoD |y
s/o o o) KE (Z| )

2 / Pl / 152, £ (@), de da.
0 S(k,a)

k,a

D2
da
Lpr2 (LQ)

Changing the order of integration will not be helpful in this case
because the collections on intervals Zy,Z;,... depend on the variable «,
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and lower? bounds for S7, independent of « are not available. Instead, we
use the pointwise inequality [|Sz, f(z)||Le < F#=r from (61). Recalling
also the definition of S(k, ), we have

kot ng / apfpafl/ ||Ska(CC)| izQ dr do
0 S(k,a

s

oo
1 P
§2pz’%[(§2/0 ap—p2—1|5(k,a)|(%) * da

k — — > - -
< op L gpa oGk )/0 o |{e < ISz @llze > g fdo

Making a change of variable we obtain

oo
o I
/0 o HJU k(@) pe > 2(k+1)/8} da

< o ’“ilngc*k*l)chkp/ )\p’l‘{x: 1S2f ()] e > A}‘ X
0
1
<
p
Now it remains to put everything together and to sum in k£ > 0: due
o (62),

I>¢rehet|
Il

= ( _p Q%Kfl + QPQ/SKSZCPZ Z(2p2/sci(p27p))k> ”SIinP(LQ)'
p—D1 ko1

OmER O Sof|, o

LP(LR)

Since ps—p > 0, if C' is large enough so that 2r2/5C~(P2—P) < 1 (which
is equivalent to C' > 2P2/5(P2=P)) the series above is finite. We obtain in
this way (59) with

K? <

~P1,P2,8

KT+ K12 0

Observation 4.3. In the statement of Proposition 4.1, we could allow K3
and K to depend on the collection Z, which will yield an upper bound
for K that also depends on Z. Thus, assuming that

LP5>(LQ) =K H(Z| f7|j§|1 11)1/2‘

©3) [ (3 U 0107 ) 1|

L3 (LK)

4(Classically the strong-type estimates are obtained from the weak-type ones via an
identity similar to (62) by splitting the function into two pieces, one where the func-
tion is small and another one where the function is large (relative to the parameter ).
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holds for all collections Z of dyadic intervals, for 0 < p; < p < p2 < 0,
we deduce the strong bound

o0 [(Seronan)ie],,,., < x](5 L)

where this time K(Z) < (sup K1(Z')P* + sup Kz(I/)pz)%-
I'CT I'CT

Lr(LR)’

5. Proof of Theorem 1.1 in the general case

Recall that our goal is to prove that

(65) I fllLr ey S NSFfllLeLay,

where the d-tuple P = (p1,...,pq) and the n-tuple Q = (q1,...,¢n)
satisfy 0 < P,(Q < oo componentwise. Recall also that the N-parameter
square function S is defined by

S:=54 ® - ®Say

while dy 4+ --- + dy = d. So far we have proved this in the particular
situation when dy = --- = dy = 1. The goal of this section is to explain
that similar ideas can handle the general case as well. First of all, let us
observe that using a similar inductive argument to that in Section 2, it
is enough to prove the particular case when N = 1. In other words, from
now on, our square function Sf is a one-parameter square function in R?
and the task is to prove multiple vector-valued, mixed-norm estimates
for it, in the form of

(66) I fllzeey S 1SafllLr(pe)-

It is now important to observe that when p; = --- = pg = p, then
(66) becomes a multiple vector-valued LP(R?) estimate, which can be
proved exactly as in the one-dimensional case d = 1 treated before. This
is because all of our previous arguments have natural higher-dimensional
analogues. Instead of doing analysis with dyadic intervals, one does anal-
ysis with dyadic cubes of the corresponding dimension, in precisely the
same way.

It will be more convenient to modify the notation a bit, in order to
obtain a statement more suitable for the upcoming inductive argument.
We will think of the Euclidean space R? as being decomposed into

(67) R =R™ x ... x R™™
and consequently the mixed-norm space L (R?) being unfolded as

(68) LP(RY) = LPY(R™)(LP2(R™2)(... (LP=(R™™))...)).
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In other words, we implicitly assume that the first ny indices of the d-
tuple P are all equal to p1, the next ny indices of P are all equal to po,
and so on, until the last n,, set of indices of P, which are all equal to py,.

The plan is to prove the corresponding (66) by induction with respect
to the parameter m. As pointed out before, (66) is already known when
m = 1 and we aim to show that it is also true for m = d, when all the
entries of P are possibly different from each other.

As in the one-dimensional case, it is not difficult to see that things
can be reduced to proving a discrete analogue of (66), namely

) |3 o],y 5 (5 L)

This is because the methods in Section 3 have natural equivalents in
higher dimensions. The families (¢%)r and (¢%)r in (69) are two lacu-
nary families, L? normalized, indexed by a finite collection R of dyadic
cubes in R%. And also as in the one-dimensional case, the statement of
Observation 3.2 remains valid, in the sense that the two families of func-
tions may depend on the implicit variables (ay, ... ,a,) of the space L%.

Using a higher-dimensional analogue of (31) we decompose each ¢%
as

o0 B oo 3 ﬁ ~
(70) op =Y 27*eh = > 27GNGg
=0 =0

where

LP(LQ)

supp(¢% ) C 2°R
as before and where # is arbitrarily large. Using this in (69), it will be

enough to show
oLt [(f, &) 1/2‘
e |
LP(LQ) H(Z |R| R)

(71) H > (k) Ol
for some large but fixed number L. The main case is when ¢ = 0 and we
will concentrate on it from now on (by this we mean that the general case
follows by standard modifications as in the one-dimensional situation
— see the proof of Theorem 3.1). Then (71) reads as

S ool (X )

We think of the dyadic cubes R as being of the form
R=R; X -+ X Ry

to match the decomposition (67), where each R; is a dyadic cube in R™
of the same side length as R itself for 1 < j < m.

LP (L)

LP(LR)
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Following the same earlier strategy for the estimate (72), one needs
in fact to prove a more localized variant of it given by

(73) || D4 6k)dhols|

ReR

LP(LR)

sI(x )

A 1 1/p1—e
(L) (sizer, 1g) ,

where
Ri ZZ{RllR:Rlx---XRmER}

and sizer, 1g is the corresponding n;-dimensional size generalizing nat-
urally the one-dimensional (25). In (73) the set E is an arbitrary mea-
surable subset of R™.

The plan is to prove (73) by induction with respect to the parame-
ter m. Notice that when m = 1, then R; = R and the corresponding
(73) is known, as we pointed out before (its proof is identical to the one
in the one-dimensional case). In particular, all one has to do is to prove
that the case m — 1 implies the case m, for every m > 2. We claim that
this can be done by an argument similar to the one used earlier in the
proof of “P(n — 1) implies P(n)” (see Subsection 4.2).

First of all, we like to see the left-hand side of (73) as being

(74) | > (7. 0kt

ReER

LrL(LP(LR))

where for P = (p1,...,pm) we define P = (p2,...,Pm). As before, by
interpolation it would be enough to estimate the weaker analogue of it,
namely

(75) | S (. 0k 01s|
RER

Lrves(LP(LR))

by the same right-hand side of (73). As explained previously, we dualize
the LP*° quasi-norm through L°, where s is a positive real number
smaller than all the entries of P, of (), and also smaller than 1. By scale
invariance (in the ambient space R?) this amounts to proving that for
every subset F' C R™ with |F| = 1 there exists a major subset FCF
with |F| > 1/2 such that

(76) | > ok hotets|

RER

< RHS(73).

L#(LP(L?))
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The subset F is defined as usual by F:=F \ 2 for a certain exceptional
set £ € R™ . This exceptional set is constructed as before with the only
difference that the corresponding €); are now given by

(77) Qk = {xl cR™ : H‘S’f(xl)HLﬁ(LQ) > C210k/p1||5f||LP(LQ)}.

In the above (77), by Sf one denotes the discrete square function given
by the inner expression in the right-hand side of (69). Also, we now think
of a generic variable in R? as being of the form (21, ..., ¥y) with z; € R™
for 1 < j < m. In particular, Sf(x;) can be thought of as a function
depending on the rest of the variables (z3,...,2zy) in an obvious way:

Sf(z1)(xay...,xm) = Sf(z1,T2,...,Tn).

To estimate (76) one needs to perform (again) two carefully designed
stopping times. The second one involves averages over dyadic cubes,
and it is essentially a higher-dimensional analogue of the one before. The
first one, on the other hand, selects maximal dyadic cubes R in R™ for
which the corresponding averages

1 ( Z |<f7|;§%>|2 1R>1/2‘

(78) ICRE
RER:R; CRY

LP1(LP (L))

are large (larger than C'27"1[|Sf[| r L@y, for k1, some positive integer),
also as in the one-dimensional multiple vector-valued case. The way one
uses these two together is similar to the way explained in the earlier
“P(n — 1) implies P(n)” situation. At some point, exactly as before, one
uses Holder locally, to be able to rely on the induction hypothesis (as in
the previous (54)) in the particular case when p; = py. More precisely,
this amounts to estimating expressions of the type

|32 0k o1
R

Lr2(LP(LR))

locally, and here the induction hypothesis can be applied since the new
P tuple is now P = (pa,p2,...,Pm), and in particular, one can think of
R? as being split as R = R™1+72 x ... x R™™ and this now contains only
m — 1 factors. There are only two observations that one needs to make
in order to realize that the earlier argument goes through smoothly in
our case as well.

The first is that the John—Nirenberg inequality is still available in
this context. More explicitly, this means that the supremum over R} of
averages of the type

1 ( Z |<fa|f;|z>|21R)1/2‘

0|1/p
| Ry [1/Pe RER:RCRY

LP2(LP(LR))’
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which appear naturally after one applies the induction, is controlled by
the corresponding supremum of averages of the type

; 2 1/2
1 (RE Z |<f|;i]|?>| R) ‘

0|1/p
| Ry R:R; CRY

Lry(LP(LR))’

which are the ones needed to capitalize on the stopping time procedure.
To prove this, one just has to observe that the above inner expressions
can also be seen as

a¢1 2 a T2y..., T 2
§ : |<f|R}|%>| 1R<$17I27-~-a 2 : | R1 2|R )| 1R1(x1)7
RER:R; CRY Ry CR? 1l

where in general

12
ac(xa, ..., Tm) ::( Z M]-Rgxmxﬁ’,m(x%uwxm)) )

RR—C ‘RQ X oo X Rm‘

N

and after that to realize that BMO expressions of the type

(79) sup |Co|1/qH( Z |Tg|2lc)%

are all equivalent to each other for every 0 < ¢ < co even when B is a
quasi-Banach lattice.
And the second observation is that

La(B)

sizer, ., 1g S sizer, 1g,
as one can easily check. By Rix2 one means
Rixo := {Rl X Ry : R= (R17R27...,Rm) ER}

and they appear naturally after the application of the induction hypoth-
esis in R = R™*"2 x ... x R This concludes our proof of the weaker
estimate (76).

After that the induction argument works exactly as before, allowing
one to complete the proof of the desired discrete estimate (73).

6. Connections to weighted theory and extrapolation

In the present section we discuss a certain weighted version of inequal-
ity (6), which eventually yields an alternative proof of Theorem 1.1, upon
adapting existing extrapolation results. Assuming such a weighted esti-
mate, in Subsection 6.1, we detail this proof by extrapolation. In the
second part, Subsection 6.2, we review the weighted estimates (which
are indispensable for extrapolation) and provide a proof for them based
on a sparse domination result implied by the helicoidal method.
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Although the weighted estimates (either in the one-parameter or the
multi-parameter setting) are not difficult to deduce in all their gener-
ality from certain particular cases via extrapolation, they do not seem
to have appeared previously in the literature. For this reason, we will
provide a self-contained proof of the weighted estimates, which relies on
localization and stopping times.

A weighted, scalar version of (6) can be formulated in the following
way: if f is a Schwartz function and w is “regular enough”,

(80) Hf”LP(w) S ||SfHLP(w)

For 0 < p <1, this inequality is related to the theory of weighted Hardy
spaces and it was stated in [9]. There, the authors study the bounded-
ness of singular integrals on such spaces, which was known previously
under more stringent conditions on the weights (they were assumed to
be A; weights). In [9], a theory of weighted Hardy spaces and bounded-
ness of singular integrals is developed for A, weights. Central to their
theory is the inequality (80), which is stated for A, weights. Starting
from this and using a certain type of extrapolation (regarding collec-
tions of pairs of functions, rather than operators, and A, weights), we
recover the multiple vector-valued results of Theorem 1.1; the mixed-
normed estimates are obtained through a generalization of a result of
Kurtz [15].

On the other hand, we will see once again that a local estimate similar
to (24) and a change in the direction of the stopping time will yield
a (multiple vector-valued) sparse® estimate, and in consequence, also
(multiple vector-valued) weighted estimates, in the one-parameter case.
The weighted estimates obtained in this way are similar to (80) and to
those of [9], and hence they are interconnected to weighted Hardy spaces.

Before proceeding, we briefly recall a few definitions and results about
weights. For 1 < p < oo, the classes A,(R™) consist of measurable
functions w: R™ — [0, co] for which

[w]a, := ngﬂgn (]é w(z) dx) (7{2 w' " (z) dac)p_l < +o0.

Q cube

If p=1, then w € A;(R™) provided there exists a constant C' such that
Muw(z) < Cw(x) for almost every z € R™. Then Ay, (R™) is defined as

A@®™):= ) A,R™).

1<p<oo

5While this is defined more precisely in Definition 6.7, one should think of a sparse
estimate as one in which the information is concentrated on a “thin” collection.
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For the classes Ap Rectangle (R x - - x R9N), the collection of cubes is re-
placed by the collection of rectangles with sides parallel to the coordinate
axes, and in the case p = 1, the Hardy-Littlewood maximal function is
replaced by the strong mazimal function Mg. For p > 1, it is well known
that w(zy,...,zN) € AnRectangle(Rdl x -+ x R if and only if

w(, oo, ... xn) € Ap(RM), .. w(zy, ..., on_1,-) € Ay(RIN)
uniformly with respect to the fixed variables.

6.1. Weighted Hardy spaces and extrapolation. Let 0 < p < co.
If w € Ao (R™), then the weighted Hardy space HE consists of

(81) HE :={f:R™ = C:S,fe€Ll(R™)]}.
Setting || f|lgz = ||Smfllrr, HE becomes a quasi-Banach space, for
which we have, whenever s < min(p, 1),
1+ 9l < 1A 15 + lgllzs -

By making use of a certain discrete Calderén reproducing formula,
it was shown in [9, Theorem 3.5] that, for any w € A, (R™) and any
0<p<,

(82) 1 flle, ey < Cllfllaz@my = C |SmfllLe, @my-

The method of the proof does not immediately generalize to the
case p > 1. Instead, in this situation the L? (R™) boundedness (which
requires the stronger condition that w € A,) of the square function S,,
is invoked to deduce, by means of duality, an estimate similar to (82).
Hence, for p > 1, Ding et al. [9] state the inequality (82) only for
weights w € A,,.

Alternatively, one can use the A extrapolation developed in [7] (sim-
ilarly, see [8, Corollary 3.15]) applied to the pairs of functions (f, Sy, (f))-
This will imply that (82) is valid for any 0 < p < oo, and for any w €
A (R™). The same extrapolation result yields multiple vector-valued
weighted inequalities: for any 0 < p < oo, any n-tuple @, and any
weight w € Ao (R™),

(83) I fllzrz@yw) < CllSm(F)llzrre)w)-

Theorem 3.5 in [9] remains valid in the context of multi-parameter
Hardy spaces, and Theorem 2.1 in [7] holds for weights associated to
Muckenhoupt bases. This simple observation extends the inequality in [9]
and as a result, the multi-parameter multiple vector-valued inequality
holds:

(84) 1 fllzezeyw) < CllSay @ -+ @ San (F)llLr(29)(w)>
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where 0 < p < 00, @ = (q1,...,¢n) With 0 < ¢g; < oo for all 1 < j < n,
and w € Aoo,Rectangle(Rdl X oe0 X RdN).

In order to obtain the full mixed-norm estimates of Theorem 1.1, we
need an extrapolation result from [15] suited for mixed-norm spaces. The
result extends without any important modification to pairs of functions,
in which case the operator T is being disregarded. Once inequality (84) is
deduced as above, the plan is to apply it to product weights and deduce
the mixed-norm estimates from Theorem 6.1 below.

We recall the following reformulation of Kurtz’s result, in a slightly
more general setting, although the proof remains the same:

Theorem 6.1 (Similar to Theorem 2 of [15]). Let 0 < sp < oo and
assume that there exists sg < s < 0o such that

69 [ ewleeoddec [ o) uey)dyds
R41 xRd2 R91 xR42

for all pairs (f,g) in a certain collection of functions F, and for all

w € A%,Rectangle(Rdl x R, with the constant C' depending only on

[w] Then for any so < p,q < oo, and any weights w(x,y) of

A % ,Rectangle *

the type w(x,y) = u(x) v(y) such that
ui € Az (RM), wve Aq(R®),
% %

we have for any pair (f,q) € F:

p
q

[ ([ it an)

- C([U]ASL’ [U]Ai) /Rdl (/]Rdz l9(z, y)["w(z,y) dy)% dz.

0 S0
In particular, if w(x,y) = 1, mized-norm estimates are implied by
extrapolation, once the weighted result (85) is known.

Remark 6.2. In [15], one is in fact looking for a necessary and sufficient
condition on weights w(z,y) so that the strong maximal function Mg
satisfies

P
q

/Rdl (/Rdz | Ms f (@, y)|w (@, y) dy) dx
<[ ([ 1repm i)’ .

While a necessary condition was found (the classes A,(A,) from [15,
Definition 2]), sufficiency is proved only in the particular case of prod-
uct weights w(x,y) = u(z)v(y). Since we are mainly interested in the
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unweighted, multiple vector-valued case, we do not elaborate on the
properties of the classes of weights A,(A,), but instead focus on the
extrapolation result, which is also known to be true only for product
weights.

We also disregard how the constants appearing in the inequalities
above depend on the weights involved or on their characteristics.

Next, we generalize Theorem 6.1 to mixed-norm LP spaces involving
k variables (with k > 2), and A, weights.

Theorem 6.3. Assume there exists some 0 < s < oo such that

(86) / |f(z1, ..., x0) | w(xy, ..., x0) dey ... d,
R4 x ... xRdr
<C lg(z1, ..., x0)|Pw(zy, ... 2g) day .. day,
R91 x ... xRdr

for allw € A Rectangle(RTX - - -xR<) and for all pairs of functions (f, g)
belonging to a certain collection F. Then for any 0 < p1,...,Dx < o0

and for any weight w(x1,...,zx) = w1 (z1)- ... we(2s) such that w}* €
A (R%) for all 1 <1< k and all (f,g) € F, we have

Pr—1 a1

(87) If(z1,..., ) Prw(zy, ..., o) de ) ™ . dey )™
R41 Rix

Pr—1

SC/.../ g(z1,. ..,z |Prw(zy, ..., x0)dee ) 7" L. dx H,
(Rdl (RdJ“ )Py )da) )
forall (f,g) € F

Proof: We present a proof by induction over . If k = 2, the statement is
p1

a reformulation of Theorem 6.1: the assumption that wE ,We € Ay will
P1

be rewritten so that w{* € Am , Wo € Am , for a suitable 0 < s¢ < o0.
yan
Since 0 < p1,p2 < oo and w{? € Ay, wy € Ay, there exists 1 <
$1, S2 < oo such that

r1

w1p2 E A817 w? E ASQ-

We pick sg with 0 < s < s with 51 < i’—;, s9 < g—z (these conditions

P1 P2

reduce to sg < mln( S5

)) Because the weight classes are nested, we

have in this situation wl2 € Am , Wa € Apz



666 C. BENEA, C. MUSCALU

The hypothesis (86) holds for all weights w € Ay Rectangle; and in
particular also for w € A%Rectangle; the inequality in (87) then follows
from Theorem 6.1.

Next, we assume that the result holds true when x — 1 variables
are involved and will prove it for k variables as well. We fix a x-tuple

1A
(p1,- .- ,Dx) and weights wy, . . ., w, satisfying wlR € Ao (R%) forall 1 <
| < k. Denote

F(xth) = Hf(-Th s 7‘TN)HLi%...Lﬁg(wg‘“uwm)’
G(z1,m2) = [lg(@1, - we)llLrs Lo (s,

We want to show that

P2 P2 L
L ([ 1F ol wf (o) dr) ™ da
R%1 Rd2

) P2 43

<C (/ (Glar, @)l wl (21wl (22) dez) ™ dan,
Rd1 N R2

P P2

given that w{* € A and wy* € A.
If we denote

p2 P2

Wz, x2) := wl”7 (z1) w2”7 (z2) :=Ulx1) V(x2),

we have U 72 € A, and V € A,.. The problem is reduced to the case k =
2, and it remains to check that the hypothesis (86) is satisfied. That
is, we need to check that there exists 0 < s < oo such that for all
weights Wy € Aoo,Rcctanglc(Rdl x R%2)

(88) / ‘F($1,$2)|S Wo(xl,.’ﬂg) d.’ﬂl di(,‘g
R41 xR%2

S C ‘G($1,$2)|S Wo(xl,ﬂfg)dﬂfl d.l?g.
R xR%2
The case of (k — 1) iterated Lebesgue spaces applied to the tuple
(P2, p3, .- D) for some 0 < Py < oo yields, for weights of the form

pan
w(x1, T2, ..., 2x) = Wa(x,x2) - wy(3) - ... - we(x,) such that w~ €

P2
A (R%) for all 3 <1<k and w3~ (z1,72) € Ao (R4F92) the estimate
Pr—1 1
(/ (/ |f(x1,m2,.,.,wﬁ)\p”w(m,...,wn)dx,{) pr ...davld:rg)p2
R41+d2 Rix

Pr—1 1

SC(/ (/ |g($1’x2’""x“)|pﬁw($1a---,x,ﬁ)dm) P da dwz)g.
R1+d2 R
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If the functions f and g and the weights wj, ..., w, are precisely those
we started with, we obtain, for any weight ws such that wy (21, .1‘2)5% €
Ao (RIH42) the estimate

(89) / \F(ml,x2)|p2w2($1,x2) da?l dCL‘g
Ré1 xRd2

S C |G(£L’1,£E2)|52’(D2((E1,.’£2) d.’ﬂl dLCQ.
R xR%2
We want (88) for some 0 < s < oo and all weights Wy(z1,22) €
Ao Rectangle(RY x R?2). Instead, the (k — 1) induction case yields the
similar estimate (89) for any 0 < py < oo and any weight Wy such that

wg(l'l,xg)% € A (RUFd2) We get the desired estimate by choosing
s = px, and by noting that the class of weights for which the supremum
over rectangles is finite is a subcollection of the class of weights for which
the supremum over cubes is finite:

Aso Rectangle(R? X R%) C Ao (RTHE), O

Proof of the main Theorem 1.1. Now we want to deduce the general
inequality

[fllee ey S NS(H)llLrze)-

By extrapolating the scalar result of [9], we obtain the multiple vector-
valued estimate of (84). Then we apply Theorem 6.3 in the case of d =
dy+- - -+dy variables, to obtain the mixed-norm, multiple vector-valued
result.

6.2. Obtaining the weighted result by using the helicoidal
method. As previously mentioned, we can obtain the weighted result
directly from a sparse domination estimate, which follows from a local
mazximal inequality. A similar strategy was used in [5].

6.2.1. The localization lemma. For the weighted result, it is more
suitable to work with locally integrable functions than with characteristic
functions, the reason being that the characteristic function cannot play
the role of an A, weight.

We recall a few notations, for convenience:

Notation. If 7 is a collection of cubes in R? and Iy C R? is a fixed
dyadic cube, then

I(Io) = {I el:1C Io} and I+(Io) = I(Io) @] {[0}
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For any cube I C RY, ¥;(x) denotes a function that decays fast away
from I:

(90) Xr(z) := (1 + diS'C|(I$|,I)>M7

where M can be as large as we wish.

Remark 6.4. For statements involving a weight w € A, the decaying
factor M in the definition (90) might depend on w. More exactly, if
w € A, then we know that w € A, for some g, > 1; we will need, in
certain situations, to make sure that d g, < M.

Lemma 6.5. Let 0 < p < 1. Let T be a finite collection of dyadic
squares in R%, Iy a fired dyadic square, f: R* — C a Schwartz function,
and w a positive locally integrable function. Then for any 0 < p; < oo,

p
> ehei], .,
1€Z(Iy) v
1 [(f, oD I\
S| osup —— RO g,
(91) (JleI(IO) |J1|ﬁ (Ie;o) 1] ) pl)

ICJT,
1 -
X ( sup T71 1 W+ XJ, d’JJ) ‘|IO|7
JaeT+ (1) | 2] Jr

with an implicit constant independent of the collection T and of the func-
tions [ and w.

Proof: If 0 < p < 1, then || - ||} is subadditive. In this case, we have for
some 0 < 7 < 00

1 1
S=1+-.
P T

First, we note that || 3 (f.61) éflln) = I( 3 (F01)67) -
S

Z(lo) I€Z(lo)
1
wEHsz We let v1 := w and vy := w% so that

wh=viwy and | 3 (fohe] <[ (rohed)ui|,

I€Z(Io) I€Z(Io)
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We also use the previous decomposition (31) ¢%(z):= Y 2*%45%@(30),
>0
so that it suffices to show instead of (91) the similar inequality, for every
£>0:
1y 72 P
H ( Z (f, ¢1>¢1,z) V1 - V2 .

IeZ(1o)

1\|2 1
S210€dp< sup % ( Z M-h)z
BETo) [J1]7m "N T ) ]

I1CJy

~ p
W X Jy dar) - To].

)P
p1

(92)

><< sup ——
JaeTt(Io) |2 Jra

We recall that the families (‘5%@) ez Are all lacunary, L?-normalized,

and supp é%é C 2T for all I € Z. As before, we only present the case £ =
0, since the general case follows from almost identical arguments.

By Holder’s inequality and the fact that all the functions (13%,0 are
supported on I C Iy, we have

©03) (X (o) u,

I€Z(Io)

s[O3 rehdio)n

IeZ(Iy)

o1

The first expression can be rewritten as
[(X trehdto@)ute) @ = 3 (.o 9,07,
R e T(To) 1€T (1)

for a certain function g € L satisfying ||g||cc = 1. Next, we apply the
Cauchy—Schwarz and John—Nirenberg inequalities to get

PORIRDICRIR I

I€Z(1y)

< ( sup ;H( > <f’fz>l.11)2

1
BET(Do) [ J1[71 N 1 E7 Ty

)

ICT
1 vy - a~2 2 3
X( sup (> %.h)"‘ )\10|7
J2 €T+ (Io) | Jo| P2 16Z(10) 1] p2,00
ICJ,

or any 0 < py,p2 < 00.



670 C. BENEA, C. MUSCALU

Setting py = 1 and using the L' — L%* boundedness of the square
function (see also [19, Lemma 2.13]) we obtain

1 [(f, o0 3
< su JAVRRS VAN |
H( (1) qb”) ‘ (JGIPIO)|J|p1 ( > H ’) pl)
I1€Z(1o) 1 I€Z(1o)
ICJ,
1 -
X ( sup U1 Xy dfﬂ) “|Zo|.
Jo €T+ (Io) | 2| JRa

1
Recalling that v1 = w and |jvg - 1|, = (ﬁ”w Apllh) 7 |Ip]*, the
above estimate and (93) imply that

> (fondio)vi v
L

I1€Z(1p)

<(mn (3 W
J1€Z(Io) |Jy|P1 IeZ(Ip) H
ICJ,

W X, d:lc) |To] - (

)

1
x( sup w1n,10) " - Tl

1
JoeTt (1) |2 Jra
Raising the inequality to the power p we obtain exactly (92) in the
case { = 0.
For £ > 1, the difference will consist in replacing (93) by

(X2 rondt)onvel|  S||(X (iohdde)u| |

IeZ(Iy) I€Z(lo)
€N 1 1
X2 7 (— vy - X1, dx)
ol Jra

and using the L' — LV boundedness of the modified square function

72 \|2 1
b (3 LR
I€Z(1o)
IC T,

which satisfies the same LP estimates as the classical discretized square
function of [19], uniformly in ¢ > 0.

The inequality remains true if p = 1; in that case 7 = oo and there
will be no second term on the right-hand side of (93). O

Remark 6.6. The local estimate in Lemma 6.5 should be compared to
the maximal inequality in Theorem 19 of [5].
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6.2.2. The stopping time. Further, Theorem 12 in [5] explains how to
deduce sparse estimates from a local estimate such as (91) of Lemma 6.5.
The procedure in [5] is stated for averages of functions, but the same
is true when averages of square functions are concerned. A similar algo-
rithm, based on the helicoidal method, was used in [1] to deduce a result
on sparse domination by averages of localized square functions.

Definition 6.7. A collection of dyadic cubes S is said to be sparse if
there exists 0 < 1 < 1 such that for each Q € S we have

> P < -nlQl,
PechS(Q)

where chs(Q) is the collection of direct descendants of @ in S — the
maximal elements of S that are strictly contained in Q

chs(Q)={PCQ:PeSandif PPeS, PC P CQ, then P' = P}.

Our result, making use of sparse collections as defined above, reads
as follows:

Theorem 6.8. Let T be a collection of dyadic squares, 0 < p,p; < 00,
and w a positive locally integrable function. Then, for any e, > 0 and any
Schwartz function f, there exists a sparse collection S of cubes (which
depends on the functions f, w, the exponent p) such that
)p
P1

H( RIS gz( (Z'fﬁ( T

1 T
% (o [ w0t Redz) T Q)
@l e

However, if 0 < p < 1, the above inequality is true for ¢, = 0.

Proof: We briefly sketch the proof for completeness, which consists of a
rather standard argument, first in the case 0 < p < 1. As per usual, the
collection § := |J Sk, where the cubes in the subcollection Siy1 are to
k>0
be understood as the “descendants” of the dyadic cubes in the previous
generation S:
Sep1 = | chs(@Q).
QESK
To every Q € S, we also associate a subcollection Zg C Z of cubes so

that
= U To
QEeS
represents a partition of the initial collection Z.
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The bottom-most collection Sy will consist of the maximal dyadic
cubes of the collection Z:

So :={Q € T : Q maximal with respect to inclusion}.

Next, we assume that Sy, S1 up to Sk are known and we will show
how to construct S,41, and for every Qo € Sk, the collections Zg,,.
If Qo € Sk, then we define

0::{956@0 (Z |f7|?|[ 1( ))%

IeT
ICQo
1 [(f, 0% \3
(95) >C—— 1
oI )L

I1C€Qo
- 1 -
{r € Qo M@ ) @) > Orpe | we xaul)dy

and we set Eg, = Qo\Qq,- It is not difficult to see that, if we choose C' >
0 large enough, |Eq,| > @ Then chs(Qo) will consist of a maximal
covering of Qg, by dyadic cubes:

chs(Qo) :={Q dyadic cube: Q Cg,, maximal with respect to inclusion}

and also, as already stated, Sg+1:= | chs(Qo). We have that
QoESk

1
chs(Qu)l = 90| < 5/Qol,

which guarantees that the collection S is sparse. Also, it will be useful
later to notice that the sets {Eg}ges are all mutually disjoint.
Moreover, for every Qg € Sk, we define

Ly, = {IEIZIng,IgQQO}.

In consequence, every I € Zg, has the property that either it is disjoint
from the intervals in chs(Qo) or, if @ € chs(Qo) and I N Q # 0, then
necessarily @@ € I. This implies in particular that the localized square
function

1\|2 1

(96) Szo, f(@) = ( 3 |<f7|j5|1> 1,(x))2
IEIQO
I1CQo

is constant on each @ € chS(QO) and moreover, for every x € Qg,,

|f7¢1 ‘2 l
|Q0|”1 <IGZI | 1] )
I1CQo

SIQO f(il'

p1
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The same inequality remains true on Eq,, by definition (95). So that we
have, for every J; € Zg,,

1y|2 3
( |<f,|§5|1> ,11)

1

(Z f?f ' ’)%

L .
AER IeZo, p1

ICJ
Also, all Jo € Iy, intersect {a: €Qo: Mw-xz,)(x) > Cﬁ fRdw'
XQo () dy}c7 which implies

1
sup

A w-Xg, dr S
+ |J2 d
J2€IQO R

1 XQ, d
— w - X .
(Qof Jpa

Using the subadditivity of || - ||} and the result in Lemma 6.5, we have

H(E}ﬁ¢ﬁ¢ﬂ- ds }jH( (f.01)9%) w3 ||

IeZg
< ( sup

~ (Z |fﬁl 1’)5 p1>p

Qes JleIQ |J1 p1
ICJ1

p

1 -
x(sup WAl w~X12das)-|Q|
Jezg‘ 2| Jra

O Fr o) L) g fosos)

<Z(

Qes |Q\”1

If p > 1, we invoke a procedure that has already appeared in Propo-
sition 20 of our previous [5]. In this situation, we can use duality:

I(Sihr)

—H( ﬁ¢I¢J-w%u

)
1
for some function u € LP" with |lu]l z»» = 1. Now we can apply the result

of Theorem 6.8 for p = 1 to deduce the existence of a sparse collection &
so that
P1 )

(St onet) - wial, £ 3 (o

<Z|f7|?|1 ' )%

X (@H Rdwﬁu-)Zde) -1Q|.
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Holder’s inequality, first with respect to the measure g dx and with
exponents p + € and (p + €)', yields

[(Zes-ohet) -t o,

IeT
<Z|f’|f|j ’ )E

<z(

QI )
pte 1

- 1 1
~ pte [ (p+e)’
X (— wr .Y dx) (— uPte) . g dx) Q.
Ql Je X Ql Ja @ <

Then we again use Holder’s inequality with respect to the discrete mea-
sure ¢P(S) to estimate the above expression by

(sS4’ )p(ﬁa [ i)™

(3 g [ waee) ™7 i)

QeS

QI

For the last term, we take advantage of the sparseness property, or
more exactly, we use the disjointness of the sets { E(Q)}ges and the fact
that |E(Q)| > |Q|/2:

(Z (ﬁ Rdu(p+e)’ Yo dm) e |Q\)

QES

1
o7

L

< (3 [ -vo) 7 mc@)?

Qes
S Moy ully S llullpr = 1.

We are losing an ¢ (as small as we wish) in making sure that the maximal

operator M, ) is bounded on L”". We can choose € such that e, =
pte O
R

Such a sparse estimate allows us to recover the weighted estimates
from [9], in the one-parameter case.

Proposition 6.9. Let 0 < p < 00, w € Ax, and f a Schwartz function
on RY; then

(97) Il ey S IS FllLe(w)-
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Proof: The weighted estimate follows easily once we prove a strength-
ening of the sparse estimate (94), with p; > 0 to be chosen later: there
exists a sparse collection of dyadic cubes S such that

09 (S oned)

<Z<

Qes |Q|‘”1

1

(Z [(f, o) .11)5
2

IcQ
If such an estimate were true, we could deduce that

H( _(7.oh o)

) wE@).

¥

i S Z(me 1S )W) ™ - w(EQ)),

yeR

and in consequence,

HZ fro1) ¢1HL o) / M(|S P )( ))m w(z) da.

IeT
So far, no information has been required on pq; it suffices to choose
p1 < p and such that w € A» (this will assure that M is bounded
P1

on L7t (w)) to obtain that
| ohet],, ., <1571
IeT
This is possible since w € As = |J Ay The final inequality (97) is

q>1
deduced thanks to the formula (14).
It remains to show how (94) implies (98). We recall that

1 . e _ . e
(@/ 1+PXQd£E) <ZQ £M<|Q| wH'de)

£>0

1
< 2_ZM21+€ ( wlter dx)HEp .
7
2 Q! g

Now we use the Reverse Hoélder property of the weight w: there ex-
ists €, such that

( 1 w1+ewdx)ﬁ< 1
12¢Q| Jaeg ~20Q) Jaeg

If we pick €, < €, then the L% average in (94) can be replaced by
an L' average (note that, for 0 < p < 1, we have from the start ep =0).

wdx.
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Hence, we have

H( (.01 97) - w?
< ngMTi‘ip QZ (|QT;1 (Z |<f7|?|}>|2.11)é pl)l’rzdw@zQ)_
2 €S €T

1CQ

All we need to do is compare w(2¢Q) and w(E(Q)). We know that
Q| < 2|E(Q)| and w € Ay. Then w € A,, for some ¢, > 1 and in
consequence (see inequality (7.2) of [10])

E@Q
w2Q(Z) S (B @) = w'Q) £ 29 u(E@)

If M, the decaying exponent of the auxiliary weights X¢q (see Defini-
tion 90), satisfies d ¢, < M, then we can sum in £ > 0 and we are done.

Since M can be as large as we wish, we can arrange for this condition
to be satisfied. O

We note that the sparse domination result (94) of Theorem 6.8
implies, for any collection Z of dyadic squares and any fixed dyadic
square Io:

00 (X tehad)],, .,
IeZ(1o)
S (JQES;JP(IO) ‘<]12| Rd ’LU(.T,‘) XJZ dx)HSI(Io)f”g

This observation will be useful shortly, as we will show that it is pos-
sible to prove a multiple vector-valued weighted result without making
use of extrapolation.

Proposition 6.10. Let 0 < p < o0, 0 < Q < o0, and w € Ay ; then for
any L?-valued Schwartz function f on R?, we have

I £llzeeiaw) S NS fllrzeiaw)-

The proof combines all the previous techniques used to deduce mul-
tiple vector-valued estimates in Section 4 and weighted estimates. We
sketch the proof of the crucial maximal inequality (the equivalent of (91)
of Lemma 6.5) in the case of ¢?-valued functions, where ¢ < 1. The
case ¢ > 1 is in fact easier, since duality is available. The general multi-
ple vector-valued case, corresponding to a general n-tuple @, follows by
induction over n.
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Lemma 6.11. Let 0 < g <1 and 0 < p < g; let I be a finite collection
of dyadic squares in RY, Iy a fired dyadic square, (fi)rez a sequence of
Schwartz functions, and w a positive locally integrable function. Then
for any 0 < p; < o0,

(5] 5 et

Lr(w)
IeZ(1o)
. [P
5( sup ( ( 771'1[) ) )
(100) J1€Z(Io) |J1|p1 Zk: Ieg(:lo) d "
ICJy

1 - ¥ 1
(s o= [ we g de)” L),
JeT+ (o) 2] Jr
with the implicit constant independent of the collection I and of the
functions f and w.

Proof: Since || - ||ip( ¢a,dw) 15 subadditive, and hence, using the decompo-
sition (31),
) Lr(w)

(5] 5 ier
<=2 oi|(S] ¥ it )

k IEIIO)
p
& IeI(Io)

L (w)

Since p < ¢ and all the functions ¢I7€ are supported inside 2¢1y:

(2] & teehar)’

k  IeZ(Io) Lr(w)
N H(Z‘ (fr> o1) ¢14‘ ) Lo( )'H12MO||L*(w)7
k IeZ(lo) v
where % = é + % For the first term on the right-hand side, we use

Fubini and the known scalar version of Lemma 6.11 (more precisely,

inequality (99) above):
H(Z\ ) a) oty = ZH S (e ohdi|
I€Z(Iy)

1 -
§Z|\51(10)fk\|g( SUPI )m » w(Z) X1, dx)
0

(|I| (Z| IIo)fk|) H) ( sup |J—12| Rdw(g;)xbdx).‘m.

Jo€T+(Io)

La(w)
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By a vector-valued version of the John—Nirenberg inequality, which
was also used in proving the multiple vector-valued version of Theo-
rem 1.1, the above can be estimated by

)q

(Z |Sz(10) fil )

1 -
X ( sup (.’E) X Ja dx) : |IO|7
naert (1) 192 Jra

( sup
JleI(IU) |[0| o

where 0 < p; < oo is any Lebesgue exponent.
On the other hand,

— V] pa
2 pr/2||12e10||LT(w) \I |/ ) X1, dm |IO|T.

After summing in £ > 0, we get the inequality (100). O

Applying the usual stopping time, the maximal inequality of Lem-
ma 6.11 will imply a vector-valued version of Theorem 6.8. We leave the
details to the interested reader. Although Lemma 6.11 is stated for p < ¢,
a vector-valued version of Theorem 6.8 is valid for any Lebesgue expo-
nents, as we can pass from lower Lebesgue exponents to larger ones at
the expense of losing an e.

6.2.3. The multi-parameter case. The multi-parameter version
of Proposition 6.9 follows easily from the properties of the weights
Ao Rectangle(RY X -+ x RIV). We will only illustrate the scalar bi-
parameter case, but state the result in its generality.

Proposition 6.12. Let 0 < p < o0, 0 < Q < oo; then for any w €
Aw,ReCtangle(Rdl x -+ x RN and any L9 -valued Schwartz function f,

[ fllzezeyw) < CllSdy @ -+ @ Say (F)llLe (@) (w)-
Proof: In fact, we will prove that
(101) £l e (w) < CllSa, ® Sa, ()l Lr(w)s

for any w € Am7RCCtang1C(Rd1 x R%). An important property of the
weights in the class Ao Rectangle(RY X + -+ x RN is that if we fix one of
the variables, we still obtain an A., weight in the other variable and we
can use the one-parameter result:

wy(z) = w(z,y) € As(R?)  for ae. y € R,

(102) wy(y) = w(z,y) € Aso(R%)  for ae. z € R%,
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We start by fixing the variable y; then f,(z) := f(z,y) is a function
on R% . By Proposition 6.9,

[, f@npeyds [ 18us,@)lds
R%1 R%1 .
= [ (Erenor) we ds

Above,
(103)  Qr(fy)(x) == Qif(x,y) == Qif(y) == [  flz —s,y)¢u(s)ds

Re1
If we integrate with respect to y and use Fubini, we have

[ [ oty ayas
Rd41 JR42

/Rdl /Rd2 Z| Qi f)(y ) w(z,y) dy dz.

Now we consider x fixed and we apply Prop051t10n 6.9 (or more specifi-
cally an ¢?-valued extension which follows also from a well-known
result of Marcinkiewicz and Zygmund [17]) to the sequence of func-

tions (Qf /)kez:
P
2

/R . @ (QEN®)2) wiz,y) dy
S /R . (Z |Sd2(sz)<y>|2)gw<x,y) dy

Here it is useful that we can 1nterchange the role played by the variables:
if x is fixed, w(z,-) is still an A, weight and vice-versa.
We need to understand the last expression; the explicit formula for

QUQEN W) is
[ @nw-nuda= [ ([ fa-sy- o ds)ud
Rd2 Rd2 R41

= f * (7/% ® djl)(xvy)?
so that

(Z 156 (QENW)P)

p
2

= (P enein) ) = SueSu (i)
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Integrating in = we obtain (101). Note that here it is important that
we can use Fubini, fix one of the variables and perform the usual one-
parameter analysis; in particular, the properties (102) are critical. For
mixed-norm estimates most of the weighted results are known only for
weights that tensorize: w(x,y) = u(x) v(y), the reason being that Fubini

and property (102) do not hold any longer. O
References
[1] C. BENEA AND F. BERNICOT, Conservation de certaines propriétés a travers un

2]

(3]

(4]

(5]

[6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

controle épars d’un opérateur et applications au projecteur de Leray—Hopf, Ann.
Inst. Fourier (Grenoble) 68(6) (2018), 2329-2379. DOI: 10.5802/aif.3211.

C. BENEA AND C. MuscALU, Multiple vector-valued inequalities via the helicoidal
method, Anal. PDE 9(8) (2016), 1931-1988. DOI: 10.2140/apde.2016.9.1931.
C. BENEA AND C. MUSCALU, Quasi-Banach valued inequalities via the helicoidal
method, J. Funct. Anal. 273(4) (2017), 1295-1353. DOI: 10.1016/j.jfa.2017.
04.014.

C. BENEA AND C. MuscALU, The helicoidal method, in: “Operator Theory:
Themes and Variations”, Theta Ser. Adv. Math. 20, Theta, Bucharest, 2018,
pp. 45-96.

C. BENEA AND C. MUSCALU, Sparse domination via the helicoidal method, Rev.
Mat. Iberoam. 37(6) (2021), 2037-2118. DOI: 10.4171/rmi/1266.

D. Cruz-URIBE AND J. M. MARTELL, Limited range multilinear extrapolation
with applications to the bilinear Hilbert transform, Math. Ann. 371(1-2) (2018),
615—653. DOI: 10.1007/s00208-018-1640-9.

D. CrRUz-URIBE, J. M. MARTELL, AND C. PEREZ, Extrapolation from A weights
and applications, J. Funct. Anal. 213(2) (2004), 412-439. DOI: 10.1016/j.jfa.
2003.09.002.

D. Cruz-URIBE, J. M. MARTELL, AND C. PEREz, “Weights, Extrapolation
and the Theory of Rubio de Francia”, Operator Theory: Advances and Ap-
plications 215, Birkh&user/Springer Basel AG, Basel, 2011. DOI: 10.1007/
978-3-0348-0072-3.

Y. DiNG, Y. HAN, G. Lu, AND X. WU, Boundedness of singular integrals on
multiparameter weighted Hardy spaces HE (R™ x R™), Potential Anal. 37(1)
(2012), 31-56. DOI: 10.1007/s11118-011-9244~y.

J. DUOANDIKOETXEA, “Fourier Analysis”, Translated and revised from the 1995
Spanish original by David Cruz-Uribe, Graduate Studies in Mathematics 29,
American Mathematical Society, Providence, RI, 2001. DOI: 10.1090/gsm/029.
M. FRAZIER AND B. JAWERTH, A discrete transform and decompositions of
distribution spaces, J. Funct. Anal. 93(1) (1990), 34-170. DOI: 10.1016/
0022-1236(90)90137-A.

R. F. GunDYy AND E. M. STEIN, HP theory for the poly-disc, Proc. Nat. Acad.
Sci. U.S.A. 76(3) (1979), 1026-1029. DOI: 10.1073/pnas.76.3.1026.

J. HART, R. H. TORRES, AND X. WU, Smoothing properties of bilinear operators
and Leibniz-type rules in Lebesgue and mixed Lebesgue spaces, Trans. Amer.
Math. Soc. 370(12) (2018), 8581-8612. DOI: 10.1090/tran/7312.

L. Huang, J. Liu, D. YaNG, AND W. YUAN, Atomic and Littlewood—Paley
characterizations of anisotropic mixed-norm Hardy spaces and their applications,
J. Geom. Anal. 29(3) (2019), 1991-2067. DOI: 10.1007/s12220-018-0070-y.


http://dx.doi.org/10.5802/aif.3211
http://dx.doi.org/10.2140/apde.2016.9.1931
http://dx.doi.org/10.1016/j.jfa.2017.04.014
http://dx.doi.org/10.1016/j.jfa.2017.04.014
http://dx.doi.org/10.4171/rmi/1266
http://dx.doi.org/10.1007/s00208-018-1640-9
http://dx.doi.org/10.1016/j.jfa.2003.09.002
http://dx.doi.org/10.1016/j.jfa.2003.09.002
http://dx.doi.org/10.1007/978-3-0348-0072-3
http://dx.doi.org/10.1007/978-3-0348-0072-3
http://dx.doi.org/10.1007/s11118-011-9244-y
http://dx.doi.org/10.1090/gsm/029
http://dx.doi.org/10.1016/0022-1236(90)90137-A
http://dx.doi.org/10.1016/0022-1236(90)90137-A
http://dx.doi.org/10.1073/pnas.76.3.1026
http://dx.doi.org/10.1090/tran/7312
http://dx.doi.org/10.1007/s12220-018-0070-y

MixED-NORM ESTIMATES FOR LITTLEWOOD—PALEY SQUARE FUNCTIONS 681

(15]

(16]

(17]
(18]

(19]

20]

D. S. Kurrz, Classical operators on mixed-normed spaces with product
weights, Rocky Mountain J. Math. 37(1) (2007), 269—283. DOI: 10.1216/rmjm/
1181069331.

K. L1, J. M. MARTELL, AND S. OMBROSI, Extrapolation for multilinear Muck-
enhoupt classes and applications, Adv. Math. 373 (2020), 107286, 43 pp.
DOI: 10.1016/j.aim.2020.107286.

J. MARCINKIEWICZ AND A. ZYGMUND, Quelques inégalités pour les opérations
linéaires, Fund. Math. 32 (1939), 115-121. DOI: 10.4064/fm-32-1-115-121.

C. Muscaru, J. PipHER, T. TA0o, AND C. THIELE, Multi-parameter paraprod-
ucts, Rev. Mat. Iberoam. 22(3) (2006), 963-976. DOI: 10.4171/RMI/480.

C. MuscALU AND W. SCHLAG, “Classical and Multilinear Harmonic Analysis”,
Vol II, Cambridge Studies in Advanced Mathematics 138, Cambridge University
Press, Cambridge, 2013. DOI: 10.1017/CB09781139410397.

E. M. STEIN, “Harmonic Analysis: Real-Variable Methods, Orthogonality, and
Oscillatory Integrals”, With the assistance of Timothy S. Murphy, Princeton
Mathematical Series 43, Monographs in Harmonic Analysis, III, Princeton Uni-
versity Press, Princeton, NJ, 1993. DOI: 10.1515/9781400883929.

Cristina Benea
Université de Nantes, Laboratoire Jean Leray, Nantes, 44311, France
E-mail address: cristina.benea@univ-nantes.fr

Camil Muscalu
Department of Mathematics, Cornell University, Ithaca, NY 14853, USA
E-mail address: camil@math.cornell.edu

Received on July 20, 2020.
Accepted on November 8, 2021.


http://dx.doi.org/10.1216/rmjm/1181069331
http://dx.doi.org/10.1216/rmjm/1181069331
http://dx.doi.org/10.1016/j.aim.2020.107286
http://dx.doi.org/10.4064/fm-32-1-115-121
http://dx.doi.org/10.4171/RMI/480
http://dx.doi.org/10.1017/CBO9781139410397
http://dx.doi.org/10.1515/9781400883929

	1. Introduction
	Acknowledgements

	2. Reduction to the multiple vector-valued case
	3. The discrete multiple vector-valued case
	3.1. Proof of Proposition 3.3

	4. Proof of Theorem 3.1
	4.1. Proof of P(0)
	4.2. The proof of P(n-1) implies P(n).
	4.3. Interpolation

	5. Proof of Theorem 1.1 in the general case
	6. Connections to weighted theory and extrapolation
	6.1. Weighted Hardy spaces and extrapolation
	6.2. Obtaining the weighted result by using the helicoidal method

	References



