
Publ. Mat. 66 (2022), 789–830
DOI: 10.5565/PUBLMAT6622209

STALLINGS AUTOMATA FOR FREE-TIMES-ABELIAN

GROUPS: INTERSECTIONS AND INDEX

Jordi Delgado and Enric Ventura

Dedicated to the memory of our late colleague and friend Paul Schupp

(1937–2022)

Abstract: We extend the classical Stallings theory (describing subgroups of free

groups as automata) to direct products of free and abelian groups: after introducing
enriched automata (i.e., automata with extra abelian labels), we obtain an explicit

bijection between subgroups and a certain type of such enriched automata, which—as

it happens in the free group—is computable in the finitely generated case.
This approach provides a neat geometric description of (even non-(finitely gener-

ated)) intersections of finitely generated subgroups within this non-Howson family.

In particular, we give a geometric solution to the subgroup intersection problem and
the finite index problem, providing recursive bases and transversals, respectively.
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1. Introduction

Stallings automata constitute the main modern tool to understand
and work with the lattice of subgroups of a free group FX (usually as-
sumed to be of finite rank n= #X, denoted by Fn). In the seminal pa-
per [36], J. R. Stallings used a topological approach to construct a natu-
ral and algorithmic-friendly bijection H St(H,X) between subgroups
of FX and certain kind of X-automata; see [1, 10, 22] for a more combi-
natorial approach closer to ours. This bijection has proved to be very use-
ful to obtain modern solutions to both classical and new problems regard-
ing subgroups of the free group. First easy applications are computability
of bases of finitely generated subgroups, the solution to the member-
ship problem in Fn, and description of finite index subgroups. Specially
relevant to us is the product (or pull-back) technique, which makes it
possible to construct St(H∩K,X) from St(H,X) and St(K,X); this im-
mediately implies that Fn is Howson, and allows us to describe (compute
a basis of) H ∩K in terms of (bases of) H and K. More recent applica-
tions of this fruitful theory are included in [8, 25, 26, 29, 30, 35, 37].
See [10] for a recent survey on applications of Stallings automata.
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This geometric approach constituted the seed for many successful at-
tempts at generalization; see for example [13, 19, 20, 23, 24, 34]. In
this paper, we present a generalization in another direction, namely to
direct products of finitely generated free and abelian groups, i.e., groups
of the form G = Fn × Zm. This is part of a more ambitious project
started in [5, Chapter 5], continued in [12], and aiming at the much more
general class of semidirect extensions of free groups, i.e., groups of the
form FnnAG. We restrict ourselves to free-times-abelian groups (i.e., G
finitely generated abelian and A trivial). The more involved theory for
the general semidirect scenario is in progress and will be published in
the near future; see [11]. The theory of intersections of free-times-abelian
groups, in turn, have a natural continuation in [6] (where the possible
configurations of multiple intersections are studied) and [7] (where the
results in [6] are used to obtain groups which, in some sense, admit a
structure of quotients as complicated as possible).

So, we revisit the family of free-times-abelian groups (already consid-
ered by the same authors in [9]), now from a geometric point of view.
This approach provides new insight into the properties and behavior of
subgroups that refines and clarifies some known results in the finitely
generated realm, and extends into the non-(finitely generated) one. The
main idea is to suitably enrich classical Stallings automata with abelian
labels to make them expressive enough to represent every subgroup of G,
and flexible enough to make this representation unique (and algorithmic
when restricted to finitely generated subgroups). With this bijection at
hand, we interpret the notion of basis (for subgroups of G), and geomet-
rically rephrase the solution to the membership problem MP(G) given
in [9]. Then, we go on to analyze intersections; note that this must be
more complicated than just computing products (of the corresponding
enriched automata) since G is not a Howson group in general, whereas
products of finite objects are again finite. Our approach makes it possi-
ble to geometrically understand arbitrary intersections of subgroups of G
as (a certain technical variation of) Cayley digraphs of abelian groups.
Moreover, when the intersecting subgroups are finitely generated, the
obtained description is fully algorithmic and leads to a clean alternative
proof for the solvability of the subgroup intersection problem SIP(G);
see Definition 4.1.

In Section 2 we introduce the family of free-times-abelian groups
(G = Fn×Zm) together with some related terminology and notation. It
turns out that this naive-looking family hides interesting features that
translate into non-trivial problems; see [4, 6, 9, 14, 31, 32].
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In Section 3 we start by briefly surveying the classical Stallings theory
for subgroups of the free group, to then introduce and study enriched
automata (restricted to the free-times-abelian case). This leads to the
classification Theorem 3.7, which we use to derive first applications, such
as the solvability of the membership problem and the computability of
bases.

In Section 4 we consider intersections of subgroups. After reviewing
the classical pull-back technique for the free group, we develop the the-
ory of enriched products to study intersections of subgroups in G. The
first important result is Theorem 4.14, where we establish the relation
between subgroup intersections and Cayley digraphs of abelian groups.
Then, we focus on the algorithmic description of the intersection, which
is summarized in Theorem 4.20 and has two notable consequences: a geo-
metric proof of the solvability of the intersection problem SIP(G), and
the denial of any possible extension of the celebrated Hanna Neumann
conjecture to any group containing F2×Z. Finally, we use a topological
argument to extend the above ideas to non-(finitely generated) intersec-
tions; this leads to Theorem 4.26 providing a geometric description of
arbitrary intersections within G.

In Section 5 we use these results to deduce a neat description of the
cosets and index of a given finitely generated subgroup H 6 G, which
turns out to be transparently encoded in the enriched Stallings automata
for H; see Proposition 5.1. A geometric solution for the finite index
problem FIP(G) and a description of a recursive transversal set easily
follow.

Finally, in Section 6, we provide some examples highlighting the most
relevant aspects of our geometric construction.

We use lowercase boldface Latin font to denote abelian elements (a,b,
c, . . . ), and uppercase boldface Latin font to denote matrices with in-
teger entries (A,B,C, . . . ). Capitalized calligraphic font is used to de-
note subgroups (H,K,L, . . . ) and subsets (S,R, T , . . . ) of G, in contrast
with the corresponding objects in the factors, denoted by H,K,L, . . .
and R,S, T, . . . respectively. Furthermore, homomorphisms and matri-
ces are assumed to act on the right; that is, we denote by (x)ϕ (or simply
xϕ) the image of the element x by the homomorphism ϕ, and we de-
note by ϕψ the composition A

ϕ
B

ψ
C. Accordingly, the image of

the homomorphism associated to a matrix A is the row space of A, de-
noted by 〈A〉. Finally, we shall use the symbol∞ to denote the countable
infinity.
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2. Free-times-abelian groups

According to a very well-known classification theorem, any finitely
generated abelian group is isomorphic to

Zm
′
× (Z/d1Z)× · · · × (Z/dm′′Z),

where m′,m′′, d1, . . . , dm′′ are non-negative integers satisfying 2 6 d1 |
d2 | · · · | dm′′ . We can think of the elements of such a group as in-
tegral vectors of length m = m′ + m′′ whose (m′ + i)-th coordinate
works modulo di, for i = 1, . . . ,m′′. For this reason, and assuming the
list d1, . . . , dm′′ of torsion orders fixed throughout the paper, we shall de-
note this abelian group simply as Zm. We shall slightly abuse language
and call an abelian basis of Zm any set of generators of the smallest
possible cardinal, namely m.

We shall be interested in direct products of finitely generated free
and abelian groups, namely groups of the form G = Fn × Zm. The
group G being non-abelian, it will be convenient to admit both additive
and multiplicative notation for the elements in Zm 6 G; to this end,
consider the standard presentation

G = Fn×Zm =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣∣ ti xk = xk ti ∀i ∈ [1,m], ∀k ∈ [1, n]
titj = tjti ∀i, j ∈ [1,m]
(tm′+i)

di = 1 ∀i ∈ [1,m′′]

〉
,

and let us abbreviate their element normal forms w(x)ta11 t
a2
2 · · · tamm just

as wta, where a = (a1, . . . , am) ∈ Zm, and t is a formal symbol serving
only as a pillar to hold the vector a up in the exponent. In this way,
the operation in G is given by (uta)(vtb) = uvta+b in multiplicative
notation, while the abelian part works additively, as usual, up in the
exponent. In particular, the trivial element is t(0,...,0) = t0, and ti = tei ,
where ei = (0, . . . , 1, . . . , 0), i = 1, . . . ,m, are the vectors in the canonical

basis of Zm. We extend this notation to subsets S ⊆ Zm 6 G, which are
denoted by tS . For an element in normal form wta, w ∈ Fn is called its
free part, and the vector a ∈ Zm its abelian part.

Note that the group G fits in the middle of the natural splitting short
exact sequence

(1) 1 Zm ι G π Fn 1,

where ι is the inclusion map, and π is the projection to the free part
wta w. The groups of this form are called free-times-abelian and are
the main object of study in the present paper. It is straightforward to
see that any subgroup H 6 G is again free-times-abelian; concretely, the
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restriction of (1) to H again gives a splitting (since Hπ 6 Fn is free)
short exact sequence

1 H ∩ Zm ι H
π|H Hπ 1,

and it easily follows that

(2) H = Hπσ × (H ∩ Zm) ' Hπ × (H ∩ Zm),

where σ is a (any) splitting of π|H. Therefore, any subgroup H 6 G
is isomorphic to Fn′ × A, where n′ ∈ N ∪ {∞} and A is a subgroup

of Zm (and so again finitely generated abelian, with a possibly different
sequence of torsion orders). The claim below follows immediately and
will become important in Section 4.

Corollary 2.1. A subgroup H 6 Fn × Zm is finitely generated if and
only if its projection Hπ to the free part is finitely generated; otherwise,
it is countably generated.

It is also obvious from (2) that

rk(H) = rk(Hπ) + rk(H ∩ Zm).

Taking a respective basis for each factor we reach our notion of basis for
a subgroup of G.

Definition 2.2. A basis of a subgroupH 6 Fn×Z
m

is a set of generators
of H of the form {u1ta1 , . . . , upt

ap ; tb1 , . . . , tbq}, where a1, . . . ,ap ∈ Zm,
{u1, . . . , up} is a free basis of Hπ, and {b1, . . . ,bq} is an abelian basis

of LH = H∩Zm (note that H is finitely generated if and only if p <∞).

To avoid confusion, we reserve the word basis for Fn × Zm, in contrast
with the terms abelian basis and free basis for the corresponding concepts
in the abelian and free contexts, respectively.

Definition 2.3. Given a subgroup H 6 G and an element w ∈ Fn, we
define the (abelian) completion of w in H to be CH(w) = {a ∈ Zm :
wta ∈ H}. We also say that a is a completion of w in H if a ∈ CH(w).

Lemma 2.4. The completion CH(u) is non-empty if and only if u ∈ Hπ
and, in this case, it is a coset of LH := H ∩ Zm in Zm. In particular, if
{u1ta1 , . . . , upt

ap ; tb1 , . . . , tbq} is a basis for H 6 G and w ∈ Fn, then

(3) CH(w) =

{
∅ if w /∈ Hπ,
ωA + LH if w ∈ Hπ,

where A is the p×m matrix having ai as its i-th row, LH=〈b1, . . . ,bq〉6
Zm, and ω = wφρ is the abelianization of the expression of w in base
{u1, . . . , up}; that is, φ is the change of basis Hπ 3 w ω, where w =
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ω(u1, . . . , up), and ρ is the abelianization F{u1,...,up} ' Fp Zp; see
Figure 1.

Fn > Hπ Fp Zp Zm Zm/LH
w ω ω ωA ωA + LH = CH(w).

φ ρ A ←→/LH

Figure 1. Completion diagram.

An immediate consequence of the above discussion is the following
useful equivalence.

Remark 2.5. Let wta∈G andH6G with basis {u1ta1 , . . . , upt
ap ; tb1 , . . . ,

tbq}; then

wta ∈ H ⇔ w ∈ Hπ and a ∈ wφρA + LH.

Remark 2.6. The natural extension of Lemma 2.4 works as well for non-
(finitely generated) subgroups H 6 Fn × Zm. In this case, p = ∞, a
basis for H looks like {u1ta1 , . . . ; tb1 , . . . , tbq}, and equation (3) is true
as written, understanding that A is an integral matrix with countably
many rows and m columns, and that Z∞ means

⊕∞
i=1 Z. Note that,

then, ω is a row vector with countably many coordinates, all but finitely
many of them being 0; so, the product ωA still makes sense with the
usual meaning.

3. Enriched automata

In this section we briefly survey the basics on the classical Stallings
automata, to then develop our enriched theory (restricted to free-times-

abelian groups Fn ×Zm; see [5, 11, 12] for a more general and detailed
account, including the case of semidirect products).

This geometric approach dates back to the 1980’s, with the ideas of
Serre, Stallings, and others (see [33, 36]) interpreting the subgroups of
the free group Fn = 〈X | −〉 as covering spaces of the bouquet of n cir-
cles. This topological viewpoint was later reformulated in a more combi-
natorial way in terms of pointed X-automata—that is, digraphs labeled
by letters in X with a distinguished (initial and terminal) vertex—and
can be summarized in Theorem 3.4; see [1, 22] for details and proofs.
The precise notion of automaton used in this context is stated below.

The involutive closure of a set X (usually understood as an alphabet)
is the disjoint union X± := X t X−1, where X−1 := {x−1 : x ∈ X} is
the set of formal inverses of X.

Definition 3.1. Let X be a set. By an (involutive and pointed) X-au-
tomaton Γ we mean an X±-labeled digraph such that for every arc
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e ≡ p x q (reading x ∈ X±) there exists a unique (inverse) arc e−1 ≡
p x−1

q (reading x−1), with a distinguished vertex called the base-
point of Γ (which acts as the unique initial and accepting vertex for Γ).

If e ≡ p x q is an arc in Γ, then we say that p and q are respectively
the initial vertex or origin of e (denoted by ιe), and the terminal vertex
or end of e (denoted by τe); and that x is the label of e, denoted by `X(e).
We also say that the vertices p, q are adjacent, and that the arc e is
incident to both p and q. The sets of vertices and arcs of Γ are denoted
by VΓ and EΓ, respectively. An involutive X-automaton is said to be
saturated (or complete) if every vertex is the origin of an x-arc, for
every x ∈ X±.

A walk in an automaton Γ is a finite alternating sequence γ = p0e1p1
· · · enpn such that ιei = pi−1 and τei = pi, for i ∈ [1, n]. If p0 = pn we say
that γ is a (closed) p0-walk. The length of a walk is the number of arcs
in the sequence. Walks of length 0 correspond precisely to the vertices
in Γ. A walk is said to exhibit backtracking if it has two consecutive arcs
which are inverses of each other, and is called reduced otherwise.

The label (resp., free label) of a walk γ is the element in (X±)∗

(resp., in FX) given (resp., represented) by the sequence of labels in
the arcs of γ, assumed to be the empty string 1 (resp., the trivial ele-
ment 1) if the walk consists of just a vertex. It is easy to see that the set
of free labels of -walks in an involutive X-automaton Γ is a subgroup
of FX . It is called the subgroup recognized by Γ, denoted by 〈Γ〉.

We denote by E+(Γ) the subset of arcs in Γ labeled by elements
in X (which we call the positive arcs of Γ). Note that we can represent
involutive automata using only the positive arcs of Γ (this is called the
positive part of Γ), with the convention that every x-arc e can also be
crossed backwards, reading x−1 (corresponding to the hidden inverse
arc e−1). Unless stated otherwise, the automata appearing throughout
the paper will be assumed to be pointed and involutive. We will refer to
them simply as automata. Note that if, in an involutive automaton Γ,
we identify mutually inverse arcs and ignore the labeling and basepoint,
then we obtain an undirected multigraph, which we call the underlying
(undirected) graph of Γ.

If a graph Γ can be obtained by identifying a vertex of some graph ∆
with a vertex of some disjoint non-trivial tree T, then we say that T
is a hanging tree of Γ. A hanging tree is maximal if it is not contained
in any other hanging tree. Both notions extend naturally to involutive
automata via the corresponding underlying graphs.

Definition 3.2. An X-automaton is said to be deterministic if no two
arcs with the same label depart from (or arrive at) the same vertex; and
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core if every vertex appears in some reduced -walk. Note that being core
is equivalent to being connected and having no hanging trees not con-
taining the basepoint. The core of an automaton Γ, denoted by core(Γ),
is the maximum core subautomaton of Γ, i.e., the automaton obtained
after taking the basepoint component of Γ and removing from it all the
hanging trees not containing the basepoint. Note that 〈core(Γ)〉 = 〈Γ〉.
Finally, an X-automaton is said to be reduced if it is both deterministic
and core.

Important examples of pointed involutive automata are Schreier and
Stallings automata, which we define below.

Definition 3.3. Let F be a free group with basis B and let H be a
subgroup of H. The (right) Schreier automaton of F w.r.t. B, denoted
by Sch(H,B), is the automaton with a set of vertices H\F (the set of
right cosets of H); an arc Hu v Huv (from Hu to Huv labeled by v)
for every coset Hu ∈ H\F and every element v ∈ B; and the coset H as
the basepoint.

Note that Schreier automata are always connected, deterministic,
and saturated, but not necessarily core. The core of Sch(H,B) is a re-
duced (involutive and pointed) B-automaton, called the Stallings au-
tomaton of H (w.r.t. B) and denoted by St(H,B); that is, St(H,B) =
core(Sch(H,B)). Clearly, 〈Sch(H,B)〉 = 〈St(H,B)〉 = H. Note that both
Schreier and Stallings automata depend on the free basis chosen for the
ambient group, and hence on the ambient group itself. (We alert the
reader that, throughout the paper, Stallings automata relative to differ-
ent ambient groups and bases shall be considered for the same subgroup.)

Theorem 3.4 (J. R. Stallings [36]). Let FX be a free group with basis X.
Then, the map

(4)
St : {subgroups of FX} {(isom. classes of) reduced X-automata}

H St(H,X) := core(Sch(H,X))
〈Γ〉 Γ

is a bijection. Furthermore, finitely generated subgroups correspond pre-
cisely to finite automata and, in this case, the bijection is algorithmic.

To compute St(H,X) (given a finite set of generators S for H) we
start by building the so-called flower automaton Fl(S) of S, which is ob-
tained after identifying the basepoints of the (involutive) petals spelling
the generators in S, which we can assume to be reduced words. Note
that, by construction, Fl(S) is core and recognizes H, but may fail to be
deterministic at the basepoint. To fix this, one can successively identify
the possible arcs breaking determinism. It is clear that these identifica-
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tions, called foldings, do not change the recognized subgroup. Of course,
a folding can produce new non-deterministic situations to be fixed, but
since the number of arcs in the graph is finite, and decreases with each
folding, the process finishes after a finite number of steps, producing as a
result a deterministic X-automaton recognizing H. Moreover, since the
folding process can only produce hanging trees containing the basepoint,
the final object is still core, and hence a reduced X-automaton recog-
nizing H. Theorem 3.4 states that this resulting automaton must be
precisely St(H,X). Furthermore, the bijectivity of (4) implies that the
result of the folding process depends neither on the order in which the
foldings are performed, nor on the starting (finite) generating set taken
for H, but only on the subgroup H 6 FX itself.

For the opposite direction, suppose we are given a finite reducedX-au-
tomaton Γ. Consider a spanning tree T of Γ and denote by p

T
q the

unique reduced walk from a vertex p to a vertex q using only arcs in T;
and by γT

e the -walk
T • e • T

, where e ∈ EΓ r ET.
It is not difficult to see that the set BT := {`X(γT

e ) : e ∈ E+Γ r ET}
constitutes a free basis of the subgroup 〈Γ〉 6 FX . We say that BT is the
(positive) T-basis of 〈Γ〉, that the γT

e ’s are the (positive) T-petals, and
that the e’s are the (positive cyclomatic) T-arcs of Γ.

Since the Stallings automaton of any finitely generated subgroup H 6
Fn is computable, we can immediately compute a basis for H as de-
scribed above, and decide membership for H simply by checking whether
the candidate reduced word w ∈ Fn labels a -walk in St(H,X). Other
well-known algorithmic applications of Theorem 3.4 include the study
of intersections (see Section 4), and the description of finite index sub-
groups (see Section 5). Also, the classical Nielsen–Schreier theorem fol-
lows immediately: any subgroup H 6 Fn is the fundamental group of
the underlying graph of St(H,X) and hence it is free.

In [5] we developed a broader generalization of Stallings’ techniques
oriented towards extensions of the form Fn n Zm, not yet available in
published form. Below, we present this theory restricted to the case of
free-times-abelian groups. Our fundamental object is an extension of the
X-automata used in the free case: we shall also admit abelian labels
at the end and origin of every arc, and a subgroup of Zm labeling the
basepoint of the automata. The precise definition follows.

Definition 3.5. A Zm-enriched X-automaton (enriched automaton for

short) is a pointed involutive (Zm×X×Zm)-automaton, with a subgroup

of Zm attached to the basepoint. In more detail, an enriched automa-
ton Γ consists of:
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(i) an involutive pointed digraph ~Γ = (V,E, ι, τ, ) (the underlying
digraph of Γ);

(ii) an involutive arc-labeling ~̀= (`1, `X , `2) : E Zm ×X ×Zm (the
enriched labeling of Γ); i.e., for every arc e ≡ p q labeled
by (a, x,b) there exists a unique (inverse) arc e−1 ≡ p q la-
beled by (−b, x−1,−a);

(iii) a subgroup LΓ 6 Zm attached to the basepoint of Γ (the base-
point subgroup of Γ).

The body of an enriched automaton Γ, denoted by Γ∗, is the result
of removing from Γ the basepoint subgroup, whereas the skeleton of Γ,
denoted by sk(Γ), is the result of removing all the abelian informa-
tion (i.e., the basepoint subgroup and all the abelian labels) from Γ.
Note that sk(Γ) = sk(Γ∗) is a standard X-automaton. An enriched X-
automaton Γ is said to be deterministic (resp., connected, core, reduced)
if its skeleton sk(Γ) is so, and we define the core of an enriched automa-
ton accordingly.

If an arc e≡p q is labeled by (a, x,b) then we write p qe≡ x
a b

(with the first and second abelian labels at the beginning and end of the
enriched arc, and the free label in the middle). As in the free case, the
idea is that the labeling (of the arcs) in an enriched automaton Γ ex-
tends to a G-labeling on the walks (sequences of successively adjacent
arcs) in Γ. For enriched automata the rules are the following:

(1) Every arc xj

a b in Γ is meant to be read t−axjt
b=xjt

b−a when

crossed forward (from left to right), and t−b x−1j ta = x−1j ta−b =

(xj tb−a)−1 when crossed backwards (from right to left).
(2) Successive arcs in a walk read the product (in G) of the labels of

the arcs.
(3) Elements from LΓ are thought of as labeling “infinitesimal” com-

muting loops at , that is, when at one can freely pick an element
from LΓ 6 Zm 6 G as a label.

More precisely, the enriched label of a non-trivial walk γ = eε11 · · · e
εk
k

in Γ, k>1, is `(γ)=`(e1)ε1 · · · `(ek)εk , where `(ei)=t−`1(ei)`X(ei)t
`2(ei)∈

G; note that the label of γ as a walk in the skeleton is just `X(γ) =
`X(e1)ε1 · · · `X(ek)εk ∈ Fn. As a convention, we admit any element in LΓ

as a possible label of the trivial -walk.
Recall that a walk beginning and ending at the basepoint is called a

-walk. An element (in G) labeling a -walk in an enriched automaton Γ
is said to be recognized by Γ; for example, every l ∈ LΓ is so. It is
straightforward to check that the set of all the elements recognized by
an enriched automaton Γ is a subgroup of G: it is called the subgroup
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recognized by Γ, and denoted by 〈Γ〉. Note that 〈sk(Γ)〉 = (〈Γ〉)π, and
〈Γ〉 = 〈core(Γ)〉.

It is clear that every subgroup in G is recognized by some enriched
automata. This is obvious for subgroups inside Zm 6 G (which can be set
as basepoint subgroups); on the other hand, given any element uta ∈ G
with u 6= 1, we can always consider the petal automaton Fl(uta); that is,
the following directed -walk:

· · ·xi1

0 0
xi2

0 0
xik

0 a

Figure 2. A petal automaton recognizing xi1xi2 · · ·xik ta = uta.

Note that the label of this cycle is uta and hence 〈Fl(uta)〉 = 〈uta〉.
Then, given a finite subset S = {u1ta1 , . . . , upt

ap , tb1 , . . . , tbq} ⊆ G,
with u1, . . . , up 6= 1, we define the flower automaton Fl(S) as the result
of identifying the basepoints of the petals of the first p elements in S, and
declaring the basepoint subgroup to be LΓ = 〈b1, . . . ,bq〉; see Figure 3.

LΓ = 〈b1, . . . ,bq〉

u1

a1

up

ap

Figure 3. The flower automaton Fl(S).

Clearly, one can extend the definition of flower automata to infinite sub-
sets in the obvious way, and, in any case, 〈Fl(S)〉 = 〈S〉, where the po-
tential purely abelian elements in S generate the basepoint subgroup LΓ.
It is important to realize that although LΓ 6 H ∩ Zm, the opposite in-
clusion may not be true, due to possible non-trivial relations among the
free parts u1, . . . , up.

Of course, a given subgroup H 6 G can be recognized by (infin-
itely) many enriched automata. Namely, (i) the skeleton of the flower
automaton defined above depends on (the free parts of) the chosen set
of generators S for H; and there is also a lot of freedom in the distri-
bution of the abelian labeling since: (ii) for any petal, we could alter-
natively have put the a label at the end of any of the other arcs in the
walk (among infinitely many other possible configurations reading the
same element uta); and (iii) every abelian label in Γ works modulo the
basepoint subgroup LΓ. So, the map Γ 〈Γ〉 from the set of enriched
automata to the set of subgroups of G is onto but very far from injective.
To make it bijective we have to distinguish one and only one geometric
object recognizing each subgroup.
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Definition 3.6. Let Γ be an enriched X-automaton, and let T be a
spanning tree of Γ. We say that Γ is T-normalized if it is reduced, and
the abelian labels of Γ are concentrated at the ends of the arcs outside T
(i.e., `1(e) = 0 for every e ∈ EΓ, and `2(e) = 0 for every e ∈ ET). It is
easy to see that, if Γ is a T-normalized automaton recognizing H, then
sk(Γ) = St(Hπ,X), and LΓ = H ∩ Zm; see Proposition 3.9.

It is not difficult to see that, after taking the quotient modulo the
basepoint subgroup LΓ (denoted by “mod ”), we finally reach the de-
sired unicity: for any given subgroup H 6 G, and any given spanning
tree T of St(Hπ,X), every two T-normalized enriched automata recog-
nizing H are equal modulo LΓ. This uniquely determined object is called
the T-Stallings automaton forH, denoted by StT(H, X). When the span-
ning tree T is clear from the context we will usually omit any reference
to it and write St(H, X). Also, since unicity is usually not necessary for
computational purposes, we will often abuse terminology and call any
normalized automaton recognizing H a “Stallings automaton for H”.

Finally, in order to obtain the desired bijection, we need a uniform way
of distinguishing spanning trees in all the enriched automata. This can be
done by fixing a total order 4 in the set X∪X−1: for any given Γ, declare
that is in T4 and then, recursively, add to T4 the edge (together with
its other incident vertex) with the smallest possible label incident to
the oldest vertex present in T4 at that moment and not closing a path.
This determines (even in the infinite case) a spanning tree in Γ denoted
by T4(Γ); see [5, 11, 12] for details. We say that Γ is 4-normalized if
it is T4(Γ)-normalized, and we write St4(H, X) := StT4(H, X).

The main result in this section is the following bijection between sub-
groups of G and (uniformly chosen) enriched Stallings automata, which
are furthermore computable in the finitely generated case.

Theorem 3.7. Let FX be a free group with finite basis X, let Zm be a
finitely generated abelian group, and let 4 be a total order on X±. Then,
the map

(5)

St4 : {subgroups of FX×Z
m}

{
(isom. classes of) 4-normalized

Zm-enriched X-automata mod

}
H St4(H, X)

〈Γ〉 Γ

is a bijection. Furthermore, finitely generated subgroups correspond pre-
cisely to finite automata and, in this case, the bijection is algorithmic.
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Let us focus on the algorithmic behavior of bijection (5). Given a
finite family of generators for a subgroup H 6 G, we can algorithmi-
cally obtain a Stallings automaton recognizing H by constructing the
corresponding (enriched) flower automaton and appropriately adapting
the folding process to the enriched scenario. To this end, we introduce
two new “abelian transformations” intended to move the abelian mass
around the automaton without changing the recognized subgroup.

Definition 3.8. A vertex transformation consists in adding a vector
c ∈ Zm to every abelian label in the neighborhood of a vertex p:

xi1 xi1

xi2 xi2

xi3 xi3

a1 + c

a3 + c

a2 + c

a3

a1a2

Figure 4. A vertex transformation.

An arc transformation consists in adding a vector c ∈ Zm to both the
initial and final abelian labels of an arc:

xi

a b
xi

a + c b + c

Figure 5. An arc transformation.

It is obvious that these two abelian transformations do not affect
the skeleton of the automaton, and it is straightforward to check that
they do not affect the recognized subgroup either. Note that a vertex
transformation at the basepoint (say by a vector c) corresponds to a

conjugation by tc, which in our case belongs to the center of Fn × Zm.

We claim that these two abelian transformations suffice to convert any
folding situation in sk(Γ) into a folding situation in Γ: suppose that e
and f are two arcs in Γ with the same free label `X(e) = `X(f) departing
from the same vertex, say p = ιe = ιf. Distinguish two cases: the open
case, when they are non-parallel (i.e., τe 6= τ f), and the closed case,
when they are parallel (i.e., τe = τ f).

In the open case, in order to fold e and f, we have to make sure
that both arcs have the same abelian labels: performing an appropriate
arc transformation to f we can get `1(e) = `1(f); and then, after an
appropriate vertex transformation at τ f (and using the fact τ f 6= τe), we
can further obtain `2(e) = `2(f). After this preparation, all the labels
in e and f coincide, and we can effectively perform the folding in Γ.
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Note that the above procedure does not work in the closed situation
because the vertex transformation at τ f also affects the label `2(e) we
want to match. In this case, instead, we just fully remove f and update
the basepoint subgroup from LΓ to LΓ +〈−`2(e)+`1(e)−`1(f)+`2(f)〉 in
order to take into account the purely abelian contribution of the closed
walk around the folded cycle.

LΓ

xia b

xic d

LΓ + 〈(−b + a− c + d)〉

xi

a b

Figure 6. Closed enriched folding.

It is straightforward to see that these two types of enriched foldings do
not change the recognized subgroup. Hence, interspersing the appropri-
ate abelian transformations, we can mimic the (any) folding procedure
for the skeleton to obtain a reduced enriched automaton recognizing H
which, after normalizing w.r.t. a chosen spanning tree T, will become a
Stallings automaton Γ for H.

Note that then the basepoint subgroup of Γ is the original basepoint
subgroup for Fl(H) possibly enlarged by the contributions of the possi-
ble closed foldings in the reduction process, whereas sk(Γ) = sk(Γ∗) =
St(Hπ,X). Therefore, calling BT = {`(γT

e ) : e ∈ E+Γ r ET} (the set
of enriched labels of the positive T-petals in Γ), we have (BT)π = BT

(the positive T-basis of Hπ). Indeed, besides providing the desired bijec-
tion (5), enriched Stallings automata encode the internal structure (and,
in particular, a basis) of the subgroups of G in a very transparent way.

Proposition 3.9. Let Γ be a T-normalized automaton recognizing H 6
Fn × Zm. Then, H = 〈Γ∗〉 × LΓ, where 〈Γ∗〉 is the image of a splitting

of π|H, and LΓ = H ∩ Zm. Moreover, BT is a free basis for 〈Γ∗〉 (called
the (positive) T-basis of 〈Γ∗〉) which, joined to an abelian basis for LΓ,
constitutes a basis for H.

Proof: The inclusion LΓ 6 〈Γ〉∩Zm is obvious by construction. For the

opposite inclusion, let BT = {uitai}i, and suppose that ta ∈ 〈Γ〉 ∩ Zm.
That is, ta = w(uit

ai)tl, where l ∈ LΓ, and w(uit
ai) denotes a reduced

word on the uit
ai ’s. Since the free part of this element is trivial, and

{ui}i is freely independent, then w must be the trivial word and thus
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ta = tl ∈ LΓ, as we wanted to see. For the second claim, it is enough
to consider the homomorphism Hπ H given by `X(γT

e ) `(γT
e ), for

each arc e ∈ EΓ r T, and recall the decomposition (2).

Definition 3.10. If Γ is a T-normalized automaton recognizing H 6 G,
then any BT defined as above is called an enriched T-basis of 〈Γ∗〉. So,
the union of an abelian basis of LΓ and an enriched T-basis of 〈Γ∗〉 is a
basis for 〈Γ〉.

The above considerations, together with the algorithmic nature of
bijection (5), allow us to easily compute bases of finitely generated sub-
groups, and solve the subgroup membership problem within free-times-
abelian groups.

Corollary 3.11. There exists an algorithm which given a finite family
of elements S ⊆ G outputs a basis for the subgroup 〈S〉 6 G.

Proof: It is enough to construct a Stallings automaton Γ for 〈S〉 (normal-

ized w.r.t. some spanning tree T). Then, an abelian basis for 〈S〉∩Zm =

〈Γ〉 ∩ Zm = LΓ can be computed from the generating set at hand, us-
ing linear algebra, whereas an enriched T-basis of 〈Γ∗〉 is obtained after
reading the enriched labels of the T-petals in Γ.

Proposition 3.12. The subgroup membership problem is solvable for
free-times-abelian groups.

Proof: Given wta ∈ G and a finite subset S ⊆ G, compute a Stallings
automaton Γ for H = 〈S〉. Now, try to realize w as the free label of a
-walk in sk(Γ): if it is not possible then w /∈ 〈sk(Γ)〉 = Hπ and return

no; otherwise, the enriched label of this -walk provides a vector b ∈ Zm

such that wtb ∈ H. Finally, wta ∈ H if and only if tb−a ∈ LΓ = H∩Zm,
which is again easily decidable using linear algebra.

4. Intersection of subgroups

Intersections of subgroups is a research topic with a long and inter-
esting history. For an arbitrary group G, we can consider the following
concept and problem as natural starting points.

Definition 4.1. A group G is said to satisfy the Howson property (or to
be Howson for short) if the intersection of any pair of finitely generated
subgroups of G is again finitely generated.

Subgroup intersection problem, SIP(G). Given two finite sets of
words R, S in the generators of G, decide whether the intersection
〈R〉 ∩ 〈S〉 is finitely generated; and, in the affirmative case, compute
a generating set for the intersection.
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It is well-known that subgroups of (non-cyclic) finitely generated free
groups are again free, but can have any (finite or countably infinite)
rank. However, in 1954 A. G. Howson proved that the intersection of two
finitely generated subgroups of the free group is always finitely generated;
see [18]. The classical Stallings automata machinery provides a neat
and algorithmic-friendly proof for this remarkable fact, and furthermore
makes it possible to compute a basis for the intersection.

Theorem 4.2 (Howson [18]). Free groups are Howson and have a solv-
able SIP.

The key concept needed for the geometric proof of this fact is that of
the product of automata.

Definition 4.3. Let Γ1, Γ2 be X-automata. The (tensor or categorical)
product of Γ1 and Γ2, denoted by Γ1×Γ2, is the automaton with vertex
set the Cartesian product VΓ1 × VΓ2, an arc (p1, p2) x (q1, q2) for
every pair of arcs p1

x q1 in Γ1, and p2
x q2 in Γ2 with the same

label x ∈ X, and basepoint ( 1, 2).

The following easily checkable facts complete the link between inter-
sections of subgroups of the free group and products of Stallings au-
tomata.

Lemma 4.4. If Γ1 and Γ2 are deterministic X-automata, then the prod-
uct Γ1×Γ2 is again deterministic, and recognizes the intersection of the
corresponding subgroups; that is, 〈Γ1 × Γ2〉 = 〈Γ1〉 ∩ 〈Γ2〉.

However, in general, the product of two core automata is not neces-
sarily core (not even connected); so we need to take the core to reach
the Stallings automaton of the intersection.

Corollary 4.5. Let H1, H26FX , then St(H1∩H2, X)=core(St(H1, X)×
St(H2, X)).

So, if H1 and H2 are finitely generated, then (from Theorem 3.4)
St(H1,X) and St(H2,X) are finite and computable; hence, St(H1∩H2, X)
is finite and computable too. This proves Theorem 4.2.

After Howson’s result, the quest for bounds for the rank of the in-
tersection in terms of the ranks of the intersecting subgroups became a
popular question in geometric group theory. Concretely, in 1956 H. Neu-
mann proved that rk(H1 ∩H2)− 1 6 2(rk(H1)− 1)(rk(H2)− 1) for any
pair of finitely generated subgroups 1 6= H1, H2 6 FX , and conjectured
that the factor ‘2’ can be removed; see [28]. After many unsuccessful at-
tempts and partial results, two correct (and unrelated) proofs appeared
almost simultaneously more than fifty years later (see [16, 27] and the
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remarkable unpublished simplification in [15]), and a third one shortly
after (see [21]).

In [2], B. Baumslag extended Howson’s result by showing that the
free product of Howson groups is again Howson. However, the same is
not true for direct products: Moldavanski (see [3]) already showed that,
in F{x,y} × Z, the intersection of the seemingly easy subgroups 〈xt, y〉
and 〈x, y〉 is the normal closure of y in F{x,y}, which is not finitely gen-
erated; see Subsection 6.1 below for our geometric interpretation of this
interesting example. Therefore, in this context the Subgroup Intersection
Problem SIP(G) emerges as a natural and interesting question, specially
the decision part (which trivializes in the free case).

The purpose of the present section is to solve SIP(G) using our
enriched version of Stallings automata (Theorem 3.7). We approach
the problem from a similar perspective to that used in the solution
to SIP(Fn): in particular, we shall adapt the definition of the product
of two finite automata to the enriched setting, and obtain an enriched
version for Lemma 4.4. However, crucial differences must appear with
respect to the free case because the situation is intrinsically different,
now with G not being Howson.

Definition 4.6. Let Γ1 = (~Γ1,~̀
1
, 1, L1) and Γ2 = (~Γ2,~̀

2
, 2, L2)

be two enriched automata. Their product, denoted by Γ1 × Γ2, con-
sists of the product of their respective skeletons sk(Γ1) × sk(Γ2) dou-
bly enriched with the abelian labeling coming from each factor. That
is, for every arc (e1, e2) in sk(Γ1) × sk(Γ2), and i = 1, 2, we define
`i(e1, e2) = (`1i (e1), `2i (e2)); and we attach the pair of subgroups (L1, L2)
to the basepoint ( 1, 2); see Figure 7.

x

(a1,a2)

(b1,b2)

L2 a2 b2

x2

L1 (L1, L2)1

x

a1

b1

Figure 7. Scheme of the product (in blue) of two enriched au-
tomata (in black).
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So, technically, this product is a (Zm × Zm)-enriched X-automaton

with a pair of subgroups of Zm (instead of a subgroup of Zm × Zm)
attached to the basepoint, a doubly enriched automaton for short. Walks
and labels of walks in doubly enriched automata are defined in the nat-
ural way. As in the enriched case, the skeleton of a doubly enriched
X-automaton is the X-automaton obtained after removing from it all
the (now double) abelian mass. The notions of connectedness, core, and
normalization are extended accordingly.

Remark 4.7. If Γ1, Γ2 are Stallings automata recognizing respectively
H1,H2 6 G, then it is clear that core(sk(Γ1 × Γ2)) = core(sk(Γ1) ×
sk(Γ2)) = St(H1π ∩ H2π,X). A crucial detail here is that the inclu-
sion (H1 ∩ H2)π 6 H1π ∩ H2π (of subgroups of FX) is not necessar-
ily an equality. Hence, core(sk(Γ1 × Γ2)) is not, in general, equal to
St((H1 ∩ H2)π,X). So, further analysis is needed to construct this last
automaton, and subsequently St(H1 ∩H2, X). Observe also that, if H1,
H2 are finitely generated, then H1π and H2π (and hence H1π ∩ H2π)
are so; but (H1 ∩ H2)π is a (possibly strict) subgroup of the latter,
and may very well not be finitely generated. See the characterization in
Proposition 4.18, and Examples 6.1 and 6.2 (Case 2).

As in the free case, the (core of the) product of enriched automata
encodes all the information about the intersection. However, in this case,
the resulting doubly enriched automaton is not a genuine Stallings au-
tomaton. Below, we state the enriched version of Lemma 4.4, which is
clear again by inspection.

Lemma 4.8. Let Γ1 = (~Γ1,~̀
1
, L1) and Γ2 = (~Γ2,~̀

2
, L2) be two enriched

Stallings automata recognizing the subgroups H1,H2 6 Fn×Zm = G, re-
spectively. Then, the intersection H1∩H2 is precisely the set of elements
in G (with free part in H1π ∩H2π) that are component-wise readable in
the product Γ1 × Γ2 modulo the corresponding base subgroups L1, L2,
respectively. More precisely, uta belongs to H1 ∩H2 if and only if there
is a ( 1, 2)-walk in Γ1×Γ2 whose label ut(b1,b2) satisfies simultaneously
b1 − a ∈ L1 and b2 − a ∈ L2.

Definition 4.9. Let Γ be a doubly enriched automaton with basepoint
subgroups (L1, L2). We say that Γ is equalizable if the label wt(a,b) of
any -walk in Γ satisfies (a + L1) ∩ (b + L2) 6= ∅. Note that, when Γ
is finite, this can be algorithmically tested by normalizing w.r.t. some
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previously chosen spanning tree T and, for every arc e with terminal
abelian label (a,b) 6=(0,0), checking whether (a+L1)∩(b+L2) 6= ∅ (this
is enough since, after normalization, (a,b) is also the abelian label of
the petal γT

e ). If Γ is equalizable, after normalizing w.r.t. some spanning
tree T, we can compute a witness c ∈ (a + L1) ∩ (b + L2) for each arc
outside T, and replace the double labeling (a,b) with c; finally replace
the pair of basepoint subgroups (L1, L2) with its intersection L1 ∩ L2.
The resulting enriched automaton is called the equalization of Γ w.r.t. T
(or the T-equalization of Γ).

Remark 4.10. The product St(H1) × St(H2) of the Stallings automata
of two subgroups H1,H2 6 G is equalizable if and only if every word
in H1π ∩ H2π admits compatible completions in H1 and H2; i.e., if for
every w ∈ H1π ∩ H2π, CH1

(w) ∩ CH2
(w) 6= ∅. That is, if and only if

(H1 ∩ H2)π = H1π ∩ H2π, which, as explained in Remark 4.7, is not
always the case.

Let {u1ta1,1, . . . , up1ta1,p1 ; tb1,1, . . . , tb1,q1 } and {v1ta2,1 , . . . , vp2ta2,p2 ;
tb2,1 , . . . , tb2,q2} be finite bases for H1 and H2, respectively, and let
B = {w1, . . . , wr} be a free basis for H1π ∩ H2π (all written in terms
of the original generators X, T for G). This means that, for i = 1, 2,

Li = Hi ∩ Zm = 〈tbi,1 , . . . , tbi,qi 〉, H1π ' Fp1 = F{u1,...,up1
}, H2π '

Fp2 = F{v1,...,vp2}, and H1π ∩ H2π ' Fr = F{w1,...,wr} (note that since

both p1 and p2 are finite, r is also finite). Now, consider the following
homomorphisms and matrices which compose the diagram in Figure 8:

• φ (resp., φ1, φ2) is the isomorphism sending each word inH1π∩H2π
(resp., H1π, H2π) in the original basis {x1, . . . , xn} to its expres-
sion in the basis {w1, . . . , wr} (resp., {u1, . . . , up1}, {v1, . . . , vp2});
• ρ (resp., ρ1, ρ2) is the abelianization map of Fr (resp., Fp1 , Fp2),

not to be confused with the corresponding restrictions of the global
abelianization map Fn Zn;

• Bi is the abelianization of the inclusion map H1π ∩ H2π ↪→ Hiπ
(after the change of bases φ and φi), i = 1, 2; note that, although
these inclusions are injective maps, the Bi’s need not be so;

• Ai is the pi × m integer matrix having as its j-th row the vec-
tor ai,j ∈ Zm, i = 1, 2;

• Ci := BiAi, i = 1, 2 (where every column of the result must be
interpreted modulo the corresponding torsion), and D := C1−C2

is the so-called difference matrix.
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Fn = F{x1,...,xn}

6

H1π H1π ∩H2π H2π
φ1 ' φ ' φ2 '

Fp1 Fr Fp2

Zp1 Zr Zp2

Zm
6

L1 6 L1 + L2 > L2

←↩→ ←↩ →

//////

ρ1 ρ ρ2

A1

D

B1 B2

A2

Figure 8. Intersection diagram I.

Remark 4.11. The above discussion includes the possibility r = 0 (cor-
responding to H1π ∩ H2π = {1}). In this case, B = ∅ and the maps ρ,
B1, B2, and D in Figure 8 are all trivial.

Proposition 4.12. Let H1 and H2 be finitely generated subgroups of
Fn×Z

m
. With the above notation,

(6) (H1 ∩H2)π ' (L1 + L2)D−1ρ−1 P Fr,
where D = B1A1 −B2A2, and ρ : Fr Zr is the abelianization map;
see Figures 8 and 9.

Proof: By definition, (H1 ∩ H2)π consists exactly of the elements w ∈
H1π ∩ H2π admitting compatible abelian completions in H1 and H2,
i.e., such that CH1

(w)∩CH2
(w) 6= ∅. On the other hand, from Lemma 2.4

and the commutativities in Figure 8 it is clear that the abelian com-
pletion of an element w ∈ H1π ∩ H2π in Hi (i = 1, 2) is CHi

(w) =
wφiρiAi + Li = wφρBiAi + Li. Hence,

(H1∩H2)π = {w∈H1π∩H2π :CH1
(w)∩CH2

(w) 6= ∅}
= {w∈H1π∩H2π : (wφρB1A1+L1) ∩ (wφρB2A2+L2) 6=∅}
= {w∈H1π∩H2π :wφρ(B1A1 −B2A2) ∈ L1 + L2}
= (L1 + L2)(B1A1 −B2A2)−1ρ−1φ−1

' (L1 + L2)D−1ρ−1.

Finally, the normality of (L1 + L2)D−1ρ−1 in Fr follows immediately
from the abelianity of (L1 +L2)D−1 and the surjectivity of the abelian-
ization ρ.
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The key point in equation (6) is that it allows to express (H1 ∩H2)π
(and so, its finitely generated character) in abelian terms. Now, we are
ready to establish the claimed link between Stallings automata and Cay-
ley digraphs of abelian groups. Recall that the vertical inclusions between
the two rows in Figure 9 are all normal (since Zm and Zr are abelian,
and ρ is onto).

Fn > H1π ∩H2π
φ
' Fr Zr Zm

P P P

(H1 ∩H2)π
φ
' (L1 + L2)D−1ρ−1︸ ︷︷ ︸

Mρ−1

(L1 + L2)D−1︸ ︷︷ ︸
M

L1 + L2.

ρ ← →D

← [→ ← [→

Figure 9. Intersection diagram II.

Defining M := (L1 + L2)D−1 6 Zr, s := rk(M) 6 r, and taking the
respective quotient groups, we have

(7) H1π ∩H2π/(H1 ∩H2)π
φ
' Fr/Mρ−1

ρ
' Zr/M.

We call M the s× r integer matrix having as rows the elements of some
abelian basis for M (note that s 6 r). Then, the Smith normal form
of M is an integral s× r matrix S = diag(δ1, . . . , δs), where δ1, . . . , δs ∈
Z r {0}, δ1| · · · |δs, and P and Q are invertible matrices (P ∈ GLs(Z),
Q ∈ GLr(Z)) such that PMQ = S. If we finally define δi := 0 for each
i = s+ 1, . . . , r (in the event that they exist), then

H1π ∩H2π/(H1 ∩H2)π ' Zr/〈S〉
=
⊕r

i=1 Z/δiZ =
(⊕s

i=1 Z/δiZ
)
⊕ Zr−s.

(8)

Furthermore, the index of (H1 ∩H2)π in H1π ∩H2π is

|H1π ∩H2π : (H1 ∩H2)π| =
∏r
i=1|Z : δiZ|

=

{
δ1 · · · δs <∞ if s = r,

∞ if s < r.

(9)

This allows us to interpret the Stallings automaton of (H1∩H2)π as the
Cayley multidigraph (a generalization of the classical Cayley digraph
allowing repeated generators; see the precise definition below) of the
finitely generated abelian group in equation (7); and ultimately, relate
the rank of the intersection H1 ∩H2 to the index of M in Zr.

Definition 4.13. LetG be a group and let {{hi}}i∈I be a multiset of gen-
erators forG (i.e., a set of generators with possible repetitions). Then, the
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Cayley multidigraph of G w.r.t. {{hi}}i∈I , denoted by Cay(G, {{hi}}i∈I),
is the multidigraph with vertex set G, and an hi-arc g hi ghi for ev-
ery g ∈ G, and every i ∈ I. It is allowed that, for some i ∈ I, hi is the
trivial element, hence producing loops labeled by hi in every vertex. Of
course, if {{hi}}i∈I is a set, then Cay(G, {{hi}}i∈I) is the standard Cayley
digraph of G.

Theorem 4.14. Let H1, H2 be two finitely generated subgroups of
Fn×Zm. Then, either (H1∩H2)π is trivial, or (with the above notation)

(10) St((H1 ∩H2)π,B) ' Cay
(⊕r

i=1Z/δiZ, {{eiQ}}i
)
,

where B={w1, . . . , wr} is a (finite) free basis for H1π∩H2π, {e1, . . . , er}
is the canonical basis of Zr, and {{eiQ}}i=1,...,r is the multiset consisting
of the rows of Q (recall that S = PMQ) interpreted as elements of⊕r

i=1 Z/δiZ.

Remark 4.15. Note that the generators eiQ in (10) must be interpreted
as elements in an ordered multiset (in order to keep track of the link
between generators in the corresponding automata).

Remark 4.16. Most of (the non-algorithmic part of) the analysis started
in Figure 8 is still valid for arbitrary (maybe non-(finitely generated))
subgroups H1,H2 6 G. Then p1, p2, and r may be infinite, but equa-
tions (6) and (7) are still valid (with the natural definition of D as an
∞×m integer matrix), and we can rephrase Theorem 4.14 by saying that
St((H1 ∩H2)π, {w1, . . . , wr}) is isomorphic to the corresponding Cayley
multidigraph of a countably generated abelian group.

Proof of Theorem 4.14: Assume (H1∩H2)π 6={1}; in particular, Mρ−1 6=
{1}, H1π ∩ H2π 6= {1}, and r 6= 0; put I = {1, . . . , r}. The claimed
result follows from the following chain of equalities and automaton iso-
morphisms:

St((H1∩H2)π,{wi}i∈I) ' St(Mρ−1, {wiφ}i∈I)(11)

= Sch(Mρ−1, {wiφ}i∈I)(12)

= Cay(F{wi}i∈I/Mρ−1, {{wiφ·(Mρ−1)}}i∈I)(13)

' Cay(Zr/〈M〉, {{ei + 〈M〉}}i∈I)(14)

= Cay(Zr/〈S Q−1〉, {{ei + 〈M〉}}i∈I)(15)

' Cay(Zr/〈S〉, {{eiQ + 〈S〉}}i∈I)(16)

= Cay
(⊕r

i=1Z/δiZ, {{eiQ}}i∈I
)
.(17)
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The isomorphism (11) follows immediately from (6). The equalities (12)
and (13) are consequences of the normality of Mρ−1 in Fr (note that (12)
also needs the assumed condition Mρ−1 6= {1}). Observe that different
wi’s may result in the same coset modulo Mρ−1; this is why {{wiφ ·
(Mρ−1)}}i∈I , and the subsequent ones in equations (14) to (17) must
be understood as multisets. The isomorphism (14) (where ei = wiφρ) is
clear from the (group) isomorphism ρ in (7).

Now compute a basis for M = (L1 + L2)D−1 from the starting data,
and write it in the rows of an s × r integral matrix M, where 0 6 s =
rk(M) 6 r. Then, compute its Smith normal form S = diag(δ1, . . . , δs)
together with the invertible matrices P and Q such that PMQ = S.
Since P is invertible, it is clear that M = 〈M〉 = 〈P−1SQ−1〉 = 〈SQ−1〉
and (15) follows. Finally, applying the automorphism Q : Zr Zr to
both the group elements and the arc labels, we obtain the isomor-
phism (16) which with the convention that δi = 0 for i = s + 1, . . . , r
takes the form (17).

Of course, the situation is special in the degenerate case (H1∩H2)π =
{1}. The following lemma clarifies the distinction between the two cases.

Lemma 4.17. Let H1, H2 be finitely generated subgroups of Fn × Zm,
and let r denote the (finite) rank of H1π ∩H2π.

(i) If r = 0, then (H1 ∩H2)π = {1}.
(ii) If r = 1, then (H1∩H2)π = {1} if δ1 = 0, and rk((H1∩H2)π) = 1

otherwise.
(iii) If r > 2, then [H1π ∩H2π,H1π ∩H2π] 6 (H1 ∩H2)π 6= {1}, and

(18) rk((H1 ∩H2)π)− 1 =
δ1 · · · δs
δs+1 · · · δr

· (r − 1).

In particular, (H1∩H2)π = {1} if and only if either r = 0, or both r = 1
and M = {0}.

Proof: (i) The case r = 0 is trivial. (ii) If r = 1, then the (cyclic)
subgroup (H1 ∩ H2)π is trivial if and only if M = {0} or, equivalently,
δ1 = 0. (iii) Firstly note that (H1∩H2)π ' (L1+L2)D−1ρ−1 = Mρ−1 >
[Fr,Fr], which is non-trivial when r > 2. Then, (18) follows easily from
equation (9): if the index |H1π∩H2π : (H1∩H2)π| is finite, then (18) cor-
responds precisely to the well-known Schreier index formula. Otherwise,
(H1∩H2)π is a non-trivial normal subgroup of infinite index inH1π∩H2π
and hence has infinite rank; and, on the other hand, s < r and the right
hand side of (18) is infinite as well. The last claim is obvious from the
above discussion.
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A neat characterization of when the intersection of two finitely gen-
erated subgroups of G is again finitely generated follows easily from
Theorem 4.14 and the previous considerations. Note that, since the pa-
rameters r and s in Proposition 4.18(iii) are clearly computable, this
immediately solves the decision part of SIP(G).

Proposition 4.18. Let H1 and H2 be finitely generated subgroups of
Fn × Zm. Then, the following conditions are equivalent:

(i) the intersection H1 ∩H2 is finitely generated;
(ii) the projection (H1 ∩H2)π is finitely generated;

(iii) r = 0, r = 1, or 2 6 r = s;
(iv) the (normal) subgroup (H1 ∩ H2)π is either trivial, or is of finite

index in H1π ∩H2π.

Proof: [(i) ⇔ (ii)] This is a particular instance of Corollary 2.1.

[(ii) ⇔ (iii)] If r = 0 or 1, then every subgroup of H1π ∩ H2π is cyclic
and hence finitely generated. Otherwise (since (H1∩H2)π 6= {1}), equa-
tion (10) holds and thus (H1∩H2)π is finitely generated if and only if the
group

⊕r
i=1 Z/δiZ is finite, which happens if and only if s = rk(M) = r.

[(iii) ⇔ (iv)] From Theorem 4.14 and equation (7) (see equation (13) in
the proof), if (H1 ∩H2)π 6= {1} then (H1 ∩H2)π is finitely generated if
and only if the index |H1π ∩H2π : (H1 ∩H2)π| is finite.

Remark 4.19. Suppose H1,H2 6 G both have a trivial abelian part,
namely L1 = H1 ∩ Zm = {0} and L2 = H2 ∩ Zm = {0}. In this case,
M = (L1 + L2)D−1 = {0}D−1 = ker D is a direct summand of Zr. So,
either M = Zr (and so, (H1 ∩ H2)π = H1π ∩ H2π) or M is of infinite
index in Zr. Hence, in this case, (H1 ∩H2)π is finitely generated if and
only if it equals H1π ∩H2π.

Finally, we can combine the developed machinery to compute an en-
riched Stallings automaton for H1 ∩H2.

Theorem 4.20. With the above notation, and after detecting that H1 ∩
H2 is finitely generated, the following procedure outputs a Stallings au-
tomaton for H1 ∩H2:

(1) Compute the Stallings automaton ∆ of (H1 ∩ H2)π w.r.t. a free
basis {w1, . . . , wr} for H1π ∩H2π.

(2) Replace each wi-arc in ∆ with a directed X-path spelling wi =

wi(X) 6= 1, doubly enriched with a pair of vectors (ai,bi) ∈ Zm ×
Zm (attached, say, to the end of the last arc) such that wit

ai ∈ H1

and wit
bi ∈ H2; and attach the pair of subgroups (L1, L2) to the

basepoint.
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(3) Reduce the resulting automaton until a reduced doubly enriched au-
tomaton is obtained.

(4) Equalize the automaton obtained w.r.t. a chosen spanning tree.

Proof: We start by computing the Stallings automata Γ1 = St(H1, X)
and Γ2 = St(H2, X) (see Theorem 3.7). In particular, we can use linear

algebra to obtain abelian bases for the subgroups L1 = H1 ∩ Zm, L2 =
H2 ∩ Zm, and hence an abelian basis for the subgroup L1 ∩ L2 = H1 ∩
H2∩Z

m
. Also, we choose spanning trees and compute the corresponding

bases for H1 and H2.
Then, compute the doubly enriched automaton Γ1×Γ2, T -normalized

w.r.t. a chosen spanning tree T ; compute the corresponding free ba-
sis BT = {w1, . . . , wr} for H1π ∩H2π, and let Ω = St(H1π ∩H2π,X) =
core(sk(Γ1) × sk(Γ2)); see Corollary 4.5. Finally, we compute the inte-
gral matrices A1, A2, B1, B2, and D (see Figure 8), and an abelian
basis for the subgroup M = (L1 + L2)D−1 6 Zr, which we write in the
rows of a new integral matrix M of size s × r, where s = rk(M) 6 r =
rk(H1π ∩H2π). Now, let us distinguish two cases:

If St(H1π ∩ H2π,X) is just a point (so, r = rk(H1π ∩ H2π) = 0), or
it has rank r = 1 but M = {0}, then, by Lemma 4.17, (H1 ∩ H2)π is
trivial and hence finitely generated. In this case, St(H1 ∩ H2, X) is a
single point with attached subgroup L1 ∩ L2.

Otherwise, 1 6 s = r (since we are assuming (H1∩H2)π is finitely gen-
erated) and we can apply Theorem 4.14: compute the Smith normal form
for M, say S = diag(δ1, . . . , δr), where δ1, . . . , δr ∈ Z r {0}, δ1| · · · |δr,
together with invertible matrices P,Q ∈ GLr(Z) such that PMQ = S,
and draw the Cayley multidigraph indicated in equation (10), corre-
sponding to the finite abelian group

⊕r
i=1 Z/δiZ. After reinterpreting

the labels accordingly, this is nothing else but the Stallings automaton ∆
of (H1 ∩ H2)π as a subgroup of H1π ∩ H2π and w.r.t. the ambient free
basis {w1, . . . , wr}. This is the content of step (1).

Note that each generator wi corresponds to an edge ei in Γ1×Γ2 out-
side T with a double label `2(ei) = (ai,bi) and closing a ( 1, 2)-walk γT

ei

with label wit
(ai,bi), such that wit

ai ∈ H1 and wit
bi ∈ H2. After replac-

ing every wi-arc in ∆ with the doubly enriched X-path γT
ei , successively

folding the resulting automaton, and finally taking the core, we obtain a
reduced doubly enriched X-automaton ∆′ such that its free part recog-
nizes 〈sk(∆′)〉 = (H1∩H2)π, and when read w.r.t. the first (resp., second)
abelian components recognizes a subgroup of H1 (resp., H2). Note that
no closed foldings are involved, since rk(∆) = rk(H1 ∩ H2)π = rk(∆′),
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so no vector gets added to the basepoint subgroups, which remain equal
to L1 and L2. This is the content of steps (2) and (3).

According to Definition 4.9, step (4) consists of three parts. Firstly,
normalize ∆′ w.r.t. some chosen spanning tree T (that is, use abelian
transformations to concentrate the double abelian mass of ∆′ into the
heads of the edges outside T ). Secondly, for every edge outside T , read
the corresponding label wt(a,b). By construction, wta ∈ H1 and wtb ∈
H2, but also w ∈ (H1 ∩ H2)π, and so the coset intersection (a + L1) ∩
(b + L2) is non-empty; this means that ∆ is equalizable. Compute c ∈
(a + L1) ∩ (b + L2) and replace in ∆′ the double labeling (a,b) with

the genuine one c ∈ Zm. Finally, replace (L1, L2) with L1 ∩ L2 as the
basepoint subgroup, and call Γ the final obtained automaton. This is the
equalization process mentioned in step (4).

By construction, Γ is an enriched, reduced, and T -normalized au-
tomaton such that 〈Γ〉 6 H1∩H2 and 〈sk(Γ)〉 = (H1∩H2)π. Moreover,
given an element utd ∈ H1 ∩ H2, u ∈ (H1 ∩ H2)π and so it is the free
label of a -walk in Γ. This walk reads an element ute ∈ 〈Γ〉 6 H1∩H2;

hence, d − e ∈ H1 ∩ H2 ∩ Zm = L1 ∩ L2, and so utd ∈ 〈Γ〉. Therefore,
〈Γ〉 = H1 ∩H2 and Γ is a Stallings automaton for H1 ∩H2.

Since finite Stallings automata provide computable bases for the sub-
groups they recognize, the above results immediately solve the SIP for
free-times-abelian groups.

Corollary 4.21. The subgroup intersection problem SIP(Fn × Zm) is
solvable.

The computability part of the SIP problem refers to the case where the
intersection H1∩H2 is finitely generated. We claim that, even when it is
not, we can also “compute” a basis for H1 ∩H2. It is not clear whether
the above proof given for the finitely generated case generalizes to a
recursive construction since one would have to do a similar procedure
with increasing finite pieces of the (now infinite) Cayley graph from
Theorem 4.14, and then somehow control or bound the effect of the
foldings coming from new additions onto the previously computed part.
Instead, we present an alternative approach covering both the finite and
the infinite cases, and providing the desired result. The new key concept
needed is that of vertex expansion, which we present below.

Definition 4.22. Let Ω be a reduced doubly enriched automaton nor-
malized w.r.t. a spanning tree T, and let B be the corresponding basis
for 〈sk(Ω)〉. Then, given a B-automaton ∆, we define the vertex ex-
pansion of ∆ by Ω w.r.t. T as the doubly enriched automaton ∆[Ω,T]
obtained in the following way:
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(1) Replace every vertex p in ∆ with a copy T(p) of the X-labeled
tree T (and denote by v(p) the copy of the vertex v ∈ VT in T(p)).

(2) For w ∈ B, replace every w-arc e ≡ p w q in ∆ with an arc

ι(p) τ (q) in ∆[Ω,T], where w is the label of the T-petal
T

ι τ
T

in Ω.
(3) Label each new edge ι(p) τ (q) by the full labeling `(ι τ)

from Ω.
(4) Declare ( ) as the basepoint, with attached basepoint subgroups

(L1, L2) as in Ω.

Remark 4.23. There are natural correspondences between -walks in
∆[Ω,T] and -walks in ∆ and Ω, which preserve free labels: firstly,
note that any -walk in ∆[Ω,T] translates, verbatim, into a -walk in Ω
with the same enriched label. Secondly, note that ∆ can be recovered
from ∆[Ω,T] by collapsing back every copy T(p) to the vertex p in ∆.
Hence, every -walk in ∆[Ω,T] projects to a -walk in ∆, and every
-walk in ∆ elevates to a uniquely determined -walk in ∆[Ω,T]. More-

over, it is clear that both transformations preserve labels as elements

in Fn × Zm+m
.

Proposition 4.24. Let H1, H2 be finitely generated subgroups of G with
respective Stallings automata Γ1, Γ2. Let Ω be the core of Γ1 ×Γ2 nor-
malized w.r.t. some spanning tree T, and let ∆ = St((H1∩H2)π,BT) (see
Theorem 4.14). Then, the vertex expansion ∆[Ω,T] is a doubly enriched,
reduced, and equalizable automaton which, after equalizing, constitutes a
Stallings automaton for H1 ∩H2.

Proof: It is enough to see that ∆[Ω,T] is deterministic, core, equaliz-
able, and, furthermore, after equalization, it recognizes the intersection
H1∩H2. The determinism of ∆[Ω,T] is clear from the determinism of ∆
and Ω (and hence of T). Secondly, it is easy to see that, since Ω is core
and ∆ is core and saturated, ∆[Ω,T] is also core.

Now, let us see that ∆[Ω,T] is equalizable. Let γ be an arbitrary
-walk in ∆[Ω,T] and consider its label `(γ) = wt(a,b). Note that, by

construction, the projection of γ to ∆ is a -walk reading the same
w ∈ Fn; therefore w ∈ 〈∆〉 = (H1 ∩H2)π, and hence there exist c ∈ Zm

such that wtc ∈ H1∩H2. On the other hand, γ is verbatim a -walk in Ω
with exactly the same doubly enriched label wt(a,b); hence, wta ∈ H1

and wtb ∈ H2. Therefore, c ∈ (a + L1) ∩ (b + L2) 6= ∅, and ∆[Ω,T] is
equalizable as claimed.

Finally, choose a spanning tree T , and (T -normalize and) equal-
ize ∆[Ω,T] w.r.t. it; denote by Γ the resulting enriched Stallings au-
tomaton (with basepoint subgroup LΓ = L1 ∩ L2). If wtc ∈ 〈Γ〉, then
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wt(c,c) ∈ 〈∆[Ω,T]〉 and, from the paragraph above, wtc ∈ H1 ∩ H2;
hence, 〈Γ〉 6 H1∩H2. Conversely, if wtd ∈ H1∩H2 then w ∈ (H1∩H2)π
and so it is the free label of some -walk γ in Ω; then, the label of γ
viewed as a -walk in Γ is wtc, for some c ∈ Zm, that is, wtc ∈ 〈Γ〉 6
H1 ∩H2. Therefore d− c ∈ L1 ∩L2 and so wtd ∈ 〈Γ〉. This shows that
〈Γ〉 = H1 ∩H2 and completes the proof.

Proposition 4.24 extends Theorem 4.20 by describing Stallings au-
tomata of general (not necessarily finitely generated) intersections. Be-
low, we prove that this new approach can also be made algorithmic, even
when the intersection is not finitely generated.

Remark 4.25. Note that if the ingredients ∆, Ω are finite, then the vertex
expansion ∆[Ω,T] is finite and algorithmically constructible. Further-
more, if Ω (and so T) is finite and ∆ is recursively constructible then
the vertex expansion ∆[Ω,T] is also recursively constructible.

Theorem 4.26. There exists an algorithm that, given finite subsets S1,
S2 ⊆ Fn × Zm, recursively constructs a Stallings automaton for the in-
tersection 〈S1〉 ∩ 〈S2〉.

Proof: Compute (finite) Stallings automata Γi for Hi = 〈Si〉, i = 1, 2,

and use linear algebra to compute the intersection L1∩L2 = H1∩H2∩Z
m

of the respective basepoint subgroups (to obtain the basepoint subgroup
of the desired automaton Γ).

To recursively construct the body of Γ, start by computing the core Ω
of the (finite, doubly enriched) product Γ1×Γ2 normalized w.r.t. a chosen
spanning tree T, and the corresponding free basis BT = {w1, . . . , wr} for
〈sk(Γ1)× sk(Γ2)〉 = H1π ∩H2π.

Once we have a free basis for H1π ∩ H2π we can compute the pa-
rameters δ1, . . . , δr and the multiset {{eiQ}}i from Theorem 4.14. Let
∆ = Cay

(⊕r
i=1 Z/δiZ, {{eiQ}}i

)
, which may be infinite (if and only if

δr = 0) but is always recursively constructible. Indeed, (for n = 0) let
∆0 be the subautomaton induced by the basepoint of ∆ (which may in-
clude loops), and for n = 1, 2, . . . construct the n-th ball ∆n by adding
to ∆n−1 the (finitely many) vertices at distance n from , and (by in-
spection) all the arcs in ∆ within ∆n. (For later use, note that all the
arcs added in this step have one end at distance n and the other at dis-
tance either n or n − 1 from ; so any -walk created during this step
must have length at least 2n.)

Hereinafter, we reinterpret ∆ = St((H1∩H2)π,BT) using the explicit
bijection between the multiset {{eiQ}}i and the free basis BT given in
the proof of Theorem 4.14.
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From Remark 4.25, ∆[Ω,T] is also recursively constructible. In fact,
since ∆n−1 is a full subautomaton of ∆n, then ∆n−1[Ω,T] is also a full
subautomaton of ∆n[Ω,T], which is computable by just expanding to T
the new vertices, and adding arcs accordingly. Note that every ∆n[Ω,T]
is a full subautomaton of the equalizable automaton ∆[Ω,T], and there-
fore it is equalizable as well.

Finally, we extend the procedure to output a sequence Γ0,Γ1,Γ2, . . .
by recursively constructing a Stallings automaton Γ for the intersec-
tion H1 ∩ H2, namely, ∆[Ω,T] equalized w.r.t. to some (possibly infi-
nite) spanning tree T : at step n = 0 declare T0 := T to be the spanning
tree for ∆0[Ω,T], and equalize w.r.t. to it (see Proposition 4.24) to ob-
tain Γ0; at step n construct ∆n[Ω,T] from ∆n−1[Ω,T], enlarge Tn−1 to
a spanning tree Tn of ∆n[Ω,T], and equalize the new arcs to obtain Γn.
If we call T the direct limit of {Tn : n ∈ N}, then it is straightforward to
see that T is a spanning tree for Γ, and that Γ0,Γ1,Γ2, . . . is a strictly
increasing sequence of full subautomata of Γ whose direct limit is Γ.
The claimed result follows.

Note that this last result immediately provides a recursive enumera-
tion of a basis for the intersection H1 ∩H2. Furthermore, since the enu-
meration can be made in increasing order (e.g., w.r.t. the word length of
the free parts), it turns out that we can obtain a recursive basis.

Corollary 4.27. Let H1, H2 be two finitely generated subgroups of
Fn×Zm given by finite sets of generators. Then H1∩H2 has a recursive
basis, which can be effectively computed.

Proof: Let Γ be the Stallings automaton for H1 ∩ H2 recursively de-
scribed in the proof of Theorem 4.26. Since the basis for the abelian
part is always finite, it is enough to see that a recursive basis BT (of the
free part of the intersection described by the body of Γ) can be obtained.
Following the notation in the previous proof, let Bn denote the enriched
Tn-basis of Γn (which is obviously computable since Γn is finite). Then,
it is clear that the increasing sequence B0,B1,B2, . . . entails a recur-
sive enumeration of the T -basis BT =

⋃
n∈N Bn. Finally, note that every

-walk in ∆ passing through an arc outside ∆n−1 has length at least 2n.
Since vertex expansions do not decrease the length of petals, the same
is true (after expanding) for the T -petals of Γ not included in Γn−1.
Therefore, the free parts of the elements in BT r Bn−1 are all of length
at least 2n. Now the decision of membership for BT is straightforward:
given a candidate element uta ∈ G with λ = |u|, it is enough to check
whether it belongs to the finite portion Bd(λ−1)/2e of BT ; if so, answer
yes, and otherwise answer no (since the rest of the elements in BT have
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length at least 2(d(λ− 1)/2e+ 1) > λ). Hence, BT is recursive, and the
proof is complete.

5. Applications to the index of subgroups

For a general group G and a subgroup H 6 G = 〈X〉, the Schreier
graph Sch(H,X) has as vertices the set of (right) cosets of G modulo H;
so, knowing Sch(H,X) we can determine a set of coset representatives
for H 6 G, and decide whether the subgroup is of finite index. This is
the case in the free group: for a finitely generated subgroup H 6 FX ,
one can compute St(H,X) = core(Sch(H,X)) and decide whether H
is of finite index by checking whether St(H,X) is saturated (i.e., every
vertex is the origin of an x-arc, for every x ∈ X±); in this case H is
of finite index and the labels of selected paths from the basepoint
to each vertex p in St(H,X) (for example, through a chosen spanning
tree T) form a finite transversal; otherwise, H is of infinite index and
we can recursively enumerate a transversal by constructing and reading
bigger and bigger portions of all the hanging trees in Sch(H,X) going
out of St(H,X). Furthermore, since this enumeration can be made in
increasing order of the length of the elements, the obtained transversal
is a recursive subset of FX = Fn.

We aim to use our enriched Stallings machinery to understand the in-
dex of a subgroup H 6 G given by a basis {u1ta1 , . . . , upt

ap , tb1 , . . . , tbq},
where 〈b1, . . . ,bq〉 = LH = H∩Zm. Applying well-known general prop-
erties of the index of intersections and direct products we have:

max{|Fn : H ∩ Fn|, |Z
m

: LH|}6 |G : H|6 |Fn : H ∩ Fn| · |Z
m

: LH|.

Since |Fn : H ∩ Fn| = |Fn : Hπ| · |Hπ : H ∩ Fn|, the index |G : H|
is finite if and only if all three indices |Fn : Hπ|, |Hπ : H ∩ Fn|, and

|Zm : LH| are finite. Furthermore, the index |Hπ : H∩Fn| is the number
of vertices in Sch(H ∩ Fn, B), where B is a basis of Hπ = Hπ ∩ Fn.
Taking H1 = H and H2 = Fn in Figure 8 we have r = p, B1 = I, A1 has
ai as its i-th row (i = 1, . . . , p), and A2 = 0; hence, D = A1, and

from (8), |Hπ : H ∩ Fn| = |Zr : (LH)A1
−1| 6 |Zm : LH|. In particular,

if |Zm : LH| <∞, then |Hπ : H ∩ Fn| <∞ and therefore

|G : H| <∞⇔ |Fn : Hπ| <∞ and |Zm : LH| <∞.

Furthermore, the fact that the quotient Hπ/(H ∩ Fn) does not con-
tribute to the finiteness of the index |G : H| suggests the possibility that
it might indeed not contribute to the index at all, which turns out to be
true and straightforward to prove.
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Proposition 5.1. Let H be a subgroup of G, let {vi}i∈I be a right
transversal for Hπ in Fn, and let {cj}j∈J be a transversal for LH =

H ∩ Zm in Zm. Then, {vitcj : i ∈ I, j ∈ J} is a right transversal for H
in G. Hence, |G : H| = |Fn : Hπ| · |Zm : LH|; in particular, the in-

dex |G : H| is finite if and only if both |Fn : Hπ| and |Zm : LH| are
finite.

Proof: Let Fn =
⊔
i∈I(Hπ)vi and Zm =

⊔
j∈J(LH + cj). We first claim

that the elements in {vitcj : i ∈ I, j ∈ J} are all different from each
other modulo H. Indeed, if Hvitcj = Hvi′tcj′ then, projecting to Fn,
(Hπ)vi = (Hπ)vi′ and i = i′. Hence, Htcj = Htcj′ . Now, intersecting

with Zm, we obtain LH+cj = LH+cj′ and so j = j′. On the other hand,

we claim that
⊔
i∈I
⊔
j∈J Hvitcj = Fn × Zm. In fact, for an arbitrary

element wta ∈ Fn × Zm, we have w = uvi for some i ∈ I and u ∈ Hπ;
choose b ∈ Zm so that utb ∈ H and write a− b = l + cj for some j ∈ J
and l ∈ LH; then, wta = uvit

a = (utb ·tl)·vitcj ∈ Hvitcj . This completes
the proof.

So, a system of coset representatives (and hence the index) of a sub-
group H 6 G is transparently encoded in any enriched Stallings automa-
ton Γ for H. In particular, H is of finite index in G if and only if the
basepoint subgroup of Γ is of finite index in Zm and sk(Γ) is saturated.
Moreover, since Stallings automata for finitely generated subgroups are
computable (Theorem 4.20), all this information is available algorithmi-
cally, and one can effectively decide whether the index |G : H| is finite.

Furthermore, when the index is infinite (and H is finitely generated),

a transversal for LH in Zm is recursively enumerable using basic linear
algebra techniques, and a transversal for Hπ in Fn is also recursively
enumerable (by reading first the finite core sk(Γ) and then bigger and
bigger portions of all the hanging trees in the Schreier graph Sch(Hπ,X)
going out of sk(Γ)). According to Proposition 5.1, by combining these
two recursive enumerations we can recursively enumerate a transversal
for H. Moreover, since these two recursive enumerations can be done in
increasing order (say, of the sum of absolute values of the coordinates,
and of the word length, respectively) the obtained transversal is indeed
recursive. The last claims are summarized below.

Proposition 5.2. Let H 6 G be a finitely generated subgroup given by a
finite set of generators. Then, (i) there is an algorithm to decide whether
H is of finite index and, in the affirmative case, compute the index and
a transversal for H (i.e., FIP(G) is solvable); and (ii) H has a recursive
transversal, which can be effectively computed.
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Remark 5.3. Note that our geometric argument improves the proof for
FIP(G) given in [9] by removing all the possible redundancy in the coset
description, making unnecessary the (computationally expensive) clean-
ing procedure used there.

One last straightforward application of Proposition 5.1 is the exten-
sion of M. Hall’s theorem (see [17]) to the free-times-abelian context.
A subgroup H of a free-times-abelian group G is called a factor (of G)
if some (and hence, every) basis of H can be extended to a basis of G
(which is equivalent to saying that Hπ is a free factor of the free part
of G, and LH is a direct summand of the abelian part of G); see [31].

Proposition 5.4. Every finitely generated subgroup H 6 Fn × Zm is a
factor of a finite index subgroup K 6 Fn × Zm.

Proof: Let Γ be a Stallings graph forH. Add the necessary x-arcs, x ∈ X
(with zero abelian labels) in order to obtain a saturated automaton, and
complement the basepoint subgroup LH to a finite index subgroup L
of Zm, i.e., LH 6⊕ L 6fi Zm. By Proposition 5.1, the enriched automa-
ton Γ′ obtained in this way corresponds to a subgroup K = 〈Γ′〉 of finite

index in Fn × Zm and, by construction, H is a factor of K.

6. Examples

In this section we use enriched automata to study a couple of exam-
ples showing relevant situations that can occur when intersecting two
finitely generated subgroups of Fn × Zm. Recall that in the graphical
representation we shall omit all the trivial abelian labels, including the
basepoint subgroup.

6.1. Moldavanski’s example. Let H1 = 〈xt, y〉 and H2 = 〈x, y〉 be
subgroups of the group F2 × Z = 〈x, y | −〉 × 〈t | −〉. Then, L1 =
H1 ∩ Z = L2 = H2 ∩ Z = L1 ∩ L2 = L1 + L2 = {0}, and respective
enriched Stallings automata for H1 and H2 are:

andSt(H1, {x, y}) ≡ yx

1

St(H2, {x, y}) ≡

and therefore,

St(H1, {x, y})× St(H2, {x, y}) ≡
(1, 0)
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Note that the basis {w1, w2} obtained for H1π∩H2π is exactly the same
as the original basis for H1π and for H2π, namely w1 = x and w2 = y.
According to our scheme, D = B1A1−B2A2 = ( 1 0

0 1 ) ( 1
0 )− ( 1 0

0 1 ) ( 0
0 ) =

( 1
0 ), and the matrix M = (0 1) has as row a basis for (L1 + L2)D−1 =

ker D. Hence, the Smith normal form of M is S = PMQ = (1 0),
with P = (1), and Q = ( 0 1

1 0 ). Therefore, δ1 = 1, δ2 = 0, and applying
Theorem 4.14 we have that

St((H1 ∩H2)π, {w1, w2}) ' Cay(Z/Z⊕ Z/0Z, {(0, 1), (1, 0)})
' Cay(Z, {1, 0}),

· · ·· · ·

w2

w1

Since the obtained abelian group Z is infinite, the intersection H1 ∩ H2

is not finitely generated. Now, replace the arcs labeled by w1, w2 with
the corresponding enriched paths reading xt and y and note that there
are no foldings available. Finally, (normalize and) equalize w.r.t. the
only possible spanning tree T (consisting of the x-labeled (red) arcs in
Figure 10) to obtain a Stallings automaton for H1 ∩H2.

· · ·· · ·

y

x

Figure 10. Stallings automaton for 〈xt, y〉 ∩ 〈x, y〉.

Therefore H1 ∩ H2 is not finitely generated, and BT = {xiyx−i : i ∈ Z}
is a basis for H1 ∩H2 = 〈〈y〉〉.

6.2. Parameterized example. Consider the subgroups H1 = 〈x3ta,
yxtb, y3xy−2tc, tL1〉, and H2 = 〈x2td, yxy−1, tL2〉 of the direct prod-
uct F2 × Z2, where a,b, c,d ∈ Z2, and L1, L2 are subgroups of Z2.

According to our previous discussion, in order to compute (a Stallings
automaton for) the intersection H1 ∩ H2 we first compute respective
Stallings automata Γ1, Γ2 for H1 and H2, and then build its product
Γ1 × Γ2; see Figure 11.
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L2

Γ2

L1Γ1

d

a

b

c

L1, L2

Γ1 × Γ2

a,d

0,d

a, 0

0,d

b, 0 a, 0

0,d

c, 0

Figure 11. Product Γ1 × Γ2 of the Stallings automata Γ1, Γ2

for H1 and H2.

Note that the product Γ1×Γ2 is disconnected and has a hanging tree
not containing the basepoint. After removal, we obtain the core of the
doubly enriched product which can be normalized as follows (the arcs
outside the chosen spanning tree are drawn with thicker lines):

L1, L2

2a, 3d

a, 0

Figure 12. Normalized product for H1 ∩H2.

Remark 6.1. The basis element y3xy−2tc ∈ H1 does not contribute to
the core of the product Γ1×Γ2. In a similar vein, the abelian labels b, c
no longer appear in the normalized product core (Figure 12) and will
not play any role in the intersection H1 ∩H2.

So, we obtain a basis {w1, w2} for H1π ∩ H2π, where w1 = x6 and
w2 = yx3y−1. Let us now study the intersection H1 ∩ H2 in light of
Theorems 4.14 and 4.20. According to the notation summarized in Fig-

ure 8, we have A1 =
(

a
b
c

)
, A2 = ( d

0 ), B1 = ( 2 0 0
1 0 0 ), B2 = ( 3 0

0 3 ),

and D = ( 2a−3d
a ). Below we explore some relevant particular cases

for a,d ∈ Z2 and L1, L2 6 Z2.



Stallings Automata for Free-Times-Abelian Groups 823

Case 1. Let a = (1, 0),d = (0, 1) ∈ Z2, and L1 = 〈(0, 6)〉, L2 =
〈(3,−3)〉 6 Z2.

Then, L1 +L2 = 〈(0, 6), (3,−3)〉, L1∩L2 = {(0, 0)}, and D =
(
2 −3
1 0

)
.

Hence, the subgroup M = (L1 + L2)D−1 is generated by the rows of
the matrix M =

(−2 4
1 1

)
which, in turn, admits the Smith normal form

decomposition PMQ = S, where P = ( 0 1
1 2 ), Q =

(
1 −1
0 1

)
, and S = ( 1 0

0 6 ).
Therefore, according to Theorem 4.14, we obtain:

St((H1 ∩H2)π, {w1, w2}) ' Cay(Z/Z⊕ Z/6Z, {(1,−1), (0, 1)})
' Cay(Z/6Z, {−1, 1}).

Denoting by a violet (resp., green) arc the action of the element −1
(resp., 1), we obtain:

w1

w2

Figure 13. Stallings automaton corresponding to Cay(Z/6Z, {−1, 1}).

Since Z/6Z is finite, the intersection H1 ∩ H2 is finitely generated. Fi-
nally, we apply Theorem 4.20 to compute a Stallings automaton. Af-
ter replacing the arcs reading w1 (resp., w2) with an enriched path
reading x6t(2,0),(0,3) (resp., yx3y−1t(1,0),(0,0)), folding, and normalizing
w.r.t. a spanning tree T (whose cyclomatic arcs are drawn thicker), the
automaton in Figure 13 becomes:

L1,L2

(−3,0),(0,3)
(3,0),(0,3)

(3,0),(0,3)

(3,0),(0,3)
(3,0),(0,3)

(3,0),(0,3)

(6,0),(0,0)

Figure 14. Normalized expanded product for H1 ∩H2.
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We know by construction (see Theorem 4.14) that the automaton in
Figure 14 must be equalizable; that is, the doubly enriched label (a,b)
of any T-arc satisfies (a + L1) ∩ (b + L2) 6= ∅. After replacing each
label (a,b) with some c ∈ (a + L1) ∩ (b + L2), and replacing (L1, L2)
with L1∩L2 = {(0,0)} as the subgroup basepoint, we obtain a Stallings
automaton for the intersection H1 ∩H2:

(−3,6)
(3,0)

(3,0)

(3,0)
(3,0)

(3,0)

(6,−6)

Figure 15. Stallings automaton for H1 ∩H2 (Case 1).

This provides the basis {yx3y−1x6t(3,0), yx6y−1x6yx−3y−1t(3,0), yx9y−1

x6yx−6y−1t(3,0) , yx12y−1x6yx−9y−1t(3,0) , yx15y−1x6yx−12y−1t(3,0) ,
yx18y−1t(6,−6), x6yx−15y−1t(−3,6)} for the intersection H1 ∩H2.

Case 2. Let a=(3, 3),d=(2, 2)∈Z2, and L1 =〈(1, 2)〉, L2 =〈(0, 0)〉 6 Z2.
Then, L1+L2 = 〈(1, 2)〉, L1∩L2 = {(0, 0)}, D = ( 0 0

3 3 ), and M is gen-
erated by the row of the matrix M = (1 0), which is already in Smith nor-
mal form; hence, P = (1), Q = ( 1 0

0 1 ), and S = (1 0). According to Theo-
rem 4.14, St((H1∩H2)π, {w1, w2}) ' Cay(Z/Z⊕Z/0Z, {(1, 0), (0, 1)}) '
Cay(Z, {0, 1}), which takes the form:

· · ·· · ·

w1

w2

Figure 16. Stallings automaton corresponding to Cay(Z, {0, 1}).

Since Z is infinite, in Case 2 the intersection H1 ∩H2 has infinite rank.
After replacing the arcs reading w1 and w2 with the enriched paths read-
ing x6t(6,6),(6,6) and yx3y−1 t(3,3),(0,0), folding, and normalizing (w.r.t.
the spanning tree having as cyclomatic arcs the thicker ones), and equal-
izing, we obtain a Stallings automaton for H1 ∩H2:
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· · ·· · ·

(6,6) (6,6) (6,6)(6,6)(6,6)

Figure 17. Stallings automaton for H1 ∩H2 (Case 2).

The corresponding (infinite) basis for H1 ∩ H2 is {yx3ky−1x6yx−3k
y−1t(6,6) : k ∈ Z}.

Case 3. Let a=(3, 3),d=(2, 2)∈Z2, and L1 =〈(2, 2)〉, L2 =〈(0, 0)〉 6 Z2.
In this case, D = ( 0 0

3 3 ), M = ( 1 0
0 2 ), P = Q = ( 1 0

0 1 ), and S = ( 1 0
0 2 ).

Therefore, St((H1∩H2)π, {w1, w2}) ' Cay(Z/Z⊕Z/2Z, {(1, 0), (0, 1)}) '
Cay(Z/2Z, {0, 1}), which takes the form:

w1

w2

Figure 18. Stallings automaton corresponding to Cay(Z/2Z, {0, 1}).

After replacing the arcs reading w1 and w2 with the enriched paths read-
ing x6t(6,6),(6,6) and yx3y−1t(3,3),(0,0), folding, normalizing (w.r.t. the
spanning tree having as cyclomatic arcs the thicker ones), and equaliz-
ing, we obtain the Stallings automaton:

(6,6)

(6,6)

Figure 19. Stallings automaton for H1 ∩H2 (Case 3).

This provides the basis {x6t(6,6), yx6y−1, yx3y−1x6yx−3y−1t(6,6)} for
H1 ∩H2.

Case 4. Let a=(3, 3), d=(2, 2)∈Z2, and L1 =〈(1, 1)〉, L2 =〈(0, 0)〉 6 Z2.
In this case, D = ( 0 0

3 3 ), and M = P = Q = S = ( 1 0
0 1 ). Therefore,

St((H1 ∩H2)π, {w1, w2}) ' Cay(Z/Z⊕ Z/Z, {(1, 0), (0, 1)})
' Cay({0}, {{0, 0}}),

which takes the form:
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w1 w2

Figure 20. Stallings automaton corresponding to Cay({0}, {{0, 0}}).

Recall that we are using Cayley multidigraphs. Hence, esoteric ob-
jects like Cay({0}, {{0, 0}}) (the Cayley multidigraph of the trivial group
w.r.t. the trivial generator considered twice) may appear from our con-
struction.

After replacing the arcs reading w1 and w2 with the enriched paths
reading x6t(6,6),(6,6)and yx3y−1t(3,3),(0,0), folding, and normalizing (w.r.t.
the spanning tree having as cyclomatic arcs the thicker ones), and equal-
izing, we obtain the Stallings automaton:

(6,6)

Figure 21. Stallings automaton for H1 ∩H2 (Case 4).

This provides the basis {x6t(6,6), yx3y−1} for H1 ∩H2.

Remark 6.2. Comparing Cases 2, 3, and 4, we see that a slight change
in one of the abelian parts can seriously affect the behavior of the inter-
section.

Case 5. Let a = (6, 6),d = (4, 4), and L1 = 〈(6p, 6p)〉 (0 6= p ∈ Z),
L2 = 〈(0, 0)〉 6 Z2.

In this case, D = ( 0 0
6 6 ), M =

(
1 0
0 p

)
, P = Q = ( 1 0

0 1 ), and S =
(
1 0
0 p

)
.

Therefore, St((H1∩H2)π, {w1, w2}) ' Cay(Z/Z⊕Z/pZ, {(1, 0), (0, 1)}) '
Cay(Z/pZ, {0, 1}):

p vertices

Figure 22. Stallings automaton corresponding to Cay(Z/pZ, {0, 1}).
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After replacing the arcs reading w1 and w2 with the appropriate enriched
paths, folding, normalizing (w.r.t. the spanning tree having as cyclomatic
arcs the thicker ones), and equalizing, we obtain the Stallings automaton:

(p times)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

Figure 23. Stallings automaton for H1 ∩H2 (Case 5).

This provides the basis {yx3py−1} ∪ {yx3ky−1x6yx−3ky−1t(12,12) : k ∈
[0, p− 1]} for H1 ∩H2.

Remark 6.3. Case 5 above points out the following interesting conse-
quence: not only the intersection of two finitely generated subgroups H1,
H2 6 G can be of infinite rank, but even when it is finitely generated,
one can no longer bound the rank of H1 ∩ H2 in terms of the ranks of
the intersecting subgroups. This fact is relevant because it denies any
possible extension of the recently proved Hanna Neumann conjecture to
groups containing F2 × Z.

Indeed,H1 = 〈x3t(6,6), yx, y3xy−2, t(6p,6p)〉 andH2 = 〈x2t(4,4), yxy−1〉
are subgroups of F2 × 〈(1, 1)〉 6 F2 × Z2 of ranks 4 and 2 respectively
(independently from p), whereas the intersection H1∩H2 has rank p+1.
Moreover, note that by Remark 6.1 we can remove y3xy−2 fromH1 with-
out affecting the intersection; this way we obtain two subgroups of F2×Z
of ranks 3 and 2 whose intersection has rank p+ 1.

Note that this is the minimum possible sum of ranks for such an exam-
ple: if one of the intersecting subgroups has rank 1, then the intersection
must be cyclic; if one of the intersecting subgroups is abelian then the
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intersection has rank at most 2. It only remains to consider the case of
two subgroups of rank 2 with a trivial abelian part. But then, by Re-
mark 4.19, H1 ∩ H2 is either non-(finitely generated) or (H1 ∩ H2)π =
H1π ∩ H2π, and hence has rank bounded by 1(2 − 1)(2 − 1) + 1 = 2.
So, the minimum possible ranks of subgroups H1,H2 6 F2 × Z with
intersection of arbitrarily large finite rank are 3 and 2, as claimed.
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on https://www.tesisenred.net/.

[6] J. Delgado, M. Roy, and E. Ventura, Intersection configurations in free times

free-abelian groups, Preprint (2021). arXiv:2107.12426.
[7] J. Delgado, M. Roy, and E. Ventura, On universally quotientable groups, in

preparation.

http://dx.doi.org/10.1112/jlms/s1-41.1.673
http://dx.doi.org/10.1006/jabr.1998.7411
https://arxiv.org/abs/2011.05205
https://www.tesisenred.net/bitstream/handle/10803/458522/TJDR1de1.pdf?sequence=1&isAllowed=y
https://arxiv.org/abs/2107.12426


Stallings Automata for Free-Times-Abelian Groups 829

[8] J. Delgado and P. V. Silva, On the lattice of subgroups of a free group:

complements and rank, J. Groups Complex. Cryptol. 12(1) (2020), Paper no. 1,
24 pp.

[9] J. Delgado and E. Ventura, Algorithmic problems for free-abelian times free

groups, J. Algebra 391 (2013), 256–283. DOI: 10.1016/j.jalgebra.2013.04.

033.

[10] J. Delgado and E. Ventura, A list of applications of Stallings automata,
Trans. Comb. 11(3) (2022), 181–235. DOI: 10.22108/toc.2021.130387.1905.

[11] J. Delgado and E. Ventura, Stallings automata for free extensions, in prepa-

ration.
[12] J. Delgado and E. Ventura, Stallings automata for free-by-abelian groups, in

preparation.

[13] J. Delgado, E. Ventura, and A. Zakharov, Intersection problem for Droms
RAAGs, Internat. J. Algebra Comput. 28(7) (2018), 1129–1162. DOI: 10.1142/

S0218196718500509.

[14] J. Delgado, E. Ventura, and A. Zakharov, Relative order and spectrum in
free and related groups, Preprint (2021). arXiv:2105.03798.

[15] W. Dicks, Simplified Mineyev, Preprint 2011. Available on https://mat.uab
.cat/∼dicks/SimplifiedMineyev.pdf.

[16] J. Friedman, Sheaves on graphs, their homological invariants, and a proof of the

Hanna Neumann conjecture: with an appendix by Warren Dicks, Mem. Amer.
Math. Soc. 233(1100) (2015), 106 pp. DOI: 10.1090/memo/1100.

[17] M. Hall, Jr., Subgroups of finite index in free groups, Canad. J. Math. 1 (1949),

187–190. DOI: 10.4153/cjm-1949-017-2.
[18] A. G. Howson, On the intersection of finitely generated free groups, J. London

Math. Soc. 29 (1954), 428–434. DOI: 10.1112/jlms/s1-29.4.428.

[19] S. V. Ivanov, On the intersection of finitely generated subgroups in free products
of groups, Internat. J. Algebra Comput. 9(5) (1999), 521–528. DOI: 10.1142/

S021819679900031X.

[20] S. V. Ivanov, Intersecting free subgroups in free products of groups., Internat.
J. Algebra Comput. 11(3) (2001), 281–290. DOI: 10.1142/S0218196701000267.

[21] A. Jaikin-Zapirain, Approximation by subgroups of finite index and the Hanna
Neumann conjecture, Duke Math. J. 166(10) (2017), 1955–1987. DOI: 10.1215/
00127094-0000015X.

[22] I. Kapovich and A. Myasnikov, Stallings foldings and subgroups of free groups,
J. Algebra 248(2) (2002), 608–668. DOI: 10.1006/jabr.2001.9033.

[23] I. Kapovich, R. Weidmann, and A. Miasnikov, Foldings, graphs of groups and

the membership problem, Internat. J. Algebra Comput. 15(1) (2005), 95–128.
DOI: 10.1142/S021819670500213X.

[24] O. Kharlampovich, A. Miasnikov, and P. Weil, Stallings graphs for quasi-

convex subgroups, J. Algebra 488 (2017), 442–483. DOI: 10.1016/j.jalgebra.
2017.05.037.

[25] S. Margolis, M. Sapir, and P. Weil, Closed subgroups in pro-V topologies

and the extension problem for inverse automata, Internat. J. Algebra Comput.
11(4) (2001), 405–445. DOI: 10.1142/S0218196701000498.

[26] A. Miasnikov, E. Ventura, and P. Weil, Algebraic extensions in free

groups, in: “Geometric Group Theory”, Trends Math., Birkhäuser, Basel, 2007,
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