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COERCIVITY FOR TRAVELLING WAVES
IN THE GROSS-PITAEVSKII EQUATION IN R?
FOR SMALL SPEED

DAviD CHIRON AND ELIOT PACHERIE

Abstract: In a previous paper, we constructed a smooth branch of travelling waves
for the 2-dimensional Gross—Pitaevskii equation. Here, we continue the study of this
branch. We show some coercivity results, and we deduce from them the kernel of the
linearized operator, a spectral stability result, as well as a uniqueness result in the
energy space. In particular, our result proves the nondegeneracy of these travelling
waves, which is a key step in their classification and for the construction of multi-
travelling waves.
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1. Introduction and statement of the results

We consider the Gross—Pitaevskii equation
0 = (GP)(u) := idu + Au— (Ju|* — D)u
in dimension 2 for u: R; x R2 — C. The Gross—Pitaevskii equation is a

physical model for Bose-Einstein condensates [8], [17], and is associated
with the Ginzburg-Landau energy

E(w):= 1/ \Vu|2+1/ (1— o).
2 Jp2 4 Jp2

The condition at infinity for (GP) will be

ul =1 as |z| = 4o0.
The equation (GP) has some well-known stationary solutions of infinite
energy called vortices, which are solutions of (GP) of degrees n € Z*
(see [2]):

V() = pa(r)e™,

where 2 = re'? | solving

AV — ([Val? = 1)V, = 0,

Vo] = 1 as |z] — oo.
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Amongst other properties, V7 and V_; have exactly one zero (p,(r) =0
only if r = 0), and we call it the centre of the vortex. Since the equation
is invariant by translation, we can define a vortex by its degree and its
centre (the only point where its value is zero).

We are interested here in travelling wave solutions of (GP):

u(t,z) = v(w1, w2 + ct),
where x = (z1,22) and ¢ > 0 is the speed of the travelling wave, which
moves along the direction —¢3. The equation on v is then
0= (TW,.)(v) := —icdu,v — Av — (1 — [v]*)v.

We use the following notations throughout this paper. We denote, for
functions f,g € L2 (R? C) such that Re(fg) € L'(R?,C), the quantity

loc
() = [ 9e(s9).

even if f,g ¢ L?(R% C). We also use the notation B(z,r) to define the
closed ball in R? of centre z € R? and radius » > 0 for the Euclidean
norm. We define between two vectors X = (X1, Xo) € R Y = (Y1,Y3) €
C? the complex quantity

XY :=X1Y7 + XoY5.

Finally, we use the notation oY (1) to describe a quantity that goes
to 0 when ¢ — 0 for a fixed value of v.

1.1. Branch of travelling waves at small speed. In the previous
paper [4], we constructed solutions of (TW.) for small values of ¢ as a
perturbation of two well-separated vortices (the distance between their
centres is large when c¢ is small). We showed the following result.

Theorem 1.1 ([4, Theorem 1.1]). There exists ¢co > 0 a small constant
such that for any 0 < ¢ < ¢y, there exists a solution of (TW,) of the form
Qe = Vi(- — deel)Vor (- + dee?) + T,

where d. = Lroesol) o 4 continuous function of c¢. This solution has
finite energy (E(Q.) < +00) and Q. — 1 at infinity.

Furthermore, for all +00 = p > 2, there exists co(p) > 0 such that if
¢ < ¢o(p), for the norm

IlAllp == Pl Lr @2y + [IVRI Lr-1(R2)

of the space X, := {f € LP(R?), Vf € LP7}(R?)}, one has

HFCHP = 0c—o(1).
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In addition,
C Qc -1 € Cl(]07 CO(p)[7 XP)7

with the estimate
-0 1
) — Oc—0 02 .

' 9.Qc + <”007;°(1)> a(Vi(- — de)Vor (- + del)) aa,

The main idea of the proof of Theorem 1.1 is to use perturbative meth-
ods around a quasi-solution Vi (- — def)V_1(- + de7), get T, by a fixed
point theorem and the value of d. by the cancellation of a Lagrange
multiplier. With an implicit function theorem, we can show that this
construction gives us a C'! branch with respect to the speed c. In [4],
we showed additional and more precise estimates on Q. and 0.Q. in
some weighted L°° norms that will be useful in the proof of the next
results (they will be recalled later on). Still in [4], we wrote the pertur-
bation I'. 4, to make the dependence on ¢ and d. clearer, but it is no
longer needed here, and we will only write T'...

With this solution @Q., we can construct travelling waves of any small
speed, i.e. solutions of

(TW2)(v) == i¢- Vo — Av — (1 — [v]*)v

for any & € R? of small modulus. For &= |cle’%=7/2) ¢ R?, |¢] < ¢, we
have that

(].].) Qa = Q‘a OR_QE
is a solution of (TWz), with R,, being the rotation of angle a and Q¢ de-
fined in Theorem 1.1. Furthermore, the equation is invariant by trans-
lation and by changing the phase. Thus, we have a family of solutions
of (GP) depending on five real parameters, ¢ € R?, |¢] < cp, X € R?,
and v € R:

Qg( - X - té)eiw.
We note that, for a vortex of degree +1, the family of solutions has
three parameters (the two translations and the phase): Vi (- — X)e!” is
a solution of (GP) for X € R?, v € R. In particular, between a travelling
wave and the two vortices that compose it, we lose a parameter (since
the phase is global). This is one of the difficulties that will appear when
we study the stability of this branch.

First, we give additional results on this branch of travelling waves: we
will study the position of its zeros, its energy and momentum, as well
as some particular values appearing in the linearization. The (additive)
linearized operator around Q. is

La.(p) i= —Ap —icdoy o — (1 = |Qc|*)p + 2Re(Qep) Qe
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We want to define and use four particular directions for the linearized
operator around @., which are

8x1Qc> axQQC7

related to the translations (i.e. related to the parameter X € R? in the
family of travelling waves), and

aCQC7 acL QC7

related to the variation of speed (i.e. related to the parameter ¢ € R?), if
we change respectively its modulus or its direction. The functions 0, Q.,
0z, Q¢, and 0.Q. are defined in Theorem 1.1, and we will show that

8ci— Qc(x) = 8a(Qc o R—a)\a:() = _xL : VQC(I’),
with 2+ = (=23, 21) (see Lemma 2.7). We infer the following properties.

Proposition 1.2. There exists cg > 0 such that, for 0 < ¢ < ¢, the mo-
mentum P(Q.) = (P1(Q¢), P2(Q¢)) of Q. from Theorem 1.1, defined by

PUQ2) = 5(i00,Qe, Qe — 1),
PQ(QC) = %<iazzQC7Qc - 1>7
verifies ¢ — ﬁ(Qc) € C1(]0, o[, R?),

P1(Qc) = 0:P1(Qc) =0,
21 + OC*}O(l)

P (Qc) = .
and
—2 c—o0(1
9:Pa(Qe) = 77""67‘;0()_
Furthermore, the energy satisfies ¢ — E(Q.) € C1(]0,¢co[,R), and

E(Q.) = (21 + 0es0(1))In (1> .

C

Additionally, Re(Lg.(A)A) € LY(R%R) for A € {94, Qc, 0uy Qe 0cQe,
0,1Q.}, and

<LQu(aﬂ¢1 QC)7 Oy QC> = <LQc (8932626)7 812QC> =0,

(L.(0.0).0.00) = 0.Py(Qe) = 2=+ 20,
<LQc(acJ_ Qc)a aCJ_ Qc> = CPQ(QC) =2 + Oc—>0(1),
and
0eE(Qc) = cdePa(Qc) = M

Finally, the function Q. has exactly two zeros. Their positions are :i:d;?f,
with ~
|de — de| = 0c—0(1),

where d. is defined in Theorem 1.1.
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The momentum has a generalized definition for finite energy functions
(see [16] in 3d and [3]). For travelling waves going to 1 at infinity, it is
equal to the quantity defined in Proposition 1.2. The proof of Proposi-
tion 1.2 is done in Section 2.

The equality (Lo, (0:Qc), 0cQc) = 0:.P2(Q.) is a general property for
Hamiltonian systems; see [12]. The equality 0. E(Q.) = c0.P2(Q.) was
conjectured and formally shown in [14], provided we have a smooth
branch ¢ — @Q., which is precisely shown in Theorem 1.1. We note that
the energy E(Q.) is of the same order as the energy of the travelling
waves constructed in [1], which also exhibit two vortices at a distance
of order % We believe that both constructions give the same branch,
and that this branch minimizes globally the energy at fixed momentum.
However, we were not able to show even a local minimization result of
the energy for Q. defined in Theorem 1.1.

In the limit ¢ — 0, the four directions (9., Qc, Or, Qc, ¢20.Qe, cDer Q.)
are going to zeros of the quadratic form (while being of size of order
one), and we see here the splitting for small values of ¢. In particular, two
directions give zero (9,, Q. and 9,,Q.), one becomes positive (9,1 Q.),
and one negative (9.Q.).

1.2. Coercivity results. One of the main ideas is to reduce the prob-
lem of the coercivity of a travelling wave to the coercivity of vortices.
We will first state such a result for vortices (Proposition 1.3) before the
results on the travelling waves (see in particular Theorem 1.5).

1.2.1. Coercivity in the case of one vortex. A coercivity result
for one vortex of degree +1 is already known; see [5], and in particular
equation (2.42) there. We consider both vortices of degrees +1 and —1
here at the same time, since V; = V_;. Here, we present a slight variation
of the results in [5] that will be useful for the coercivity of the travelling
waves. We recall from [5] the quadratic form around V;:

Bule) = [ | V6l = (1= VIl + 26" (Vi)
R
for functions in the energy space
_ 1 2 2 2 2 2 2
Hi ={ o€ i@, C), Il i= [ [V (1= VP45 (i) < 40
R

As the family of vortices has three parameters, we expect a coercivity
result under three orthogonality conditions. The three associated direc-
tions are 0, V1, 0., V1 (for the translations), and ¢V} (for the phase).
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Proposition 1.3. There exist K > 0, R > 5, such that, if the following
three orthogonality conditions are satisfied for p=Vi1p € C2°(R?\{0},C),

/ Re(D, ViVAD) = / Re(Day ViVAT) = / Im(y) = 0,
B(0,R) B(0,R)

B(0,R)\B(0,R/2)
then

2
Bv1(¢)>K</ |W>|2+\sﬂl2+/ vw2v1|2+%e2(w>|vl4+ﬂ>-
B(0,10) R2\ B(0,5) r21n*(r)

The same result holds if we replace V7 by V_;. We note that the
coercivity norm is not || - ||z, , but is weaker (the decay in position is
stronger), and this is due to the fact that iV; ¢ Hy,. That is why this
result is stated for a compactly supported function. The fact that the
support of ¢ avoids 0 is technical at this point.

Proposition 1.3 is shown in Subsection 4.2. The proofs there are mostly
slight variations or improvements of proofs given in [5].

1.2.2. Coercivity and kernel in the energy space. The main part
of this section consists of coercivity results for the family of travelling
waves constructed in Theorem 1.1. We will show them on @, defined in
Theorem 1.1, and with (1.1), they extend to all speed values ¢ of small
norm. We recall the linearized operator around @.:

Lq. () = =Ap = icday — (1 = |Qc|*)p + 2%¢(Qeip) Qe
The natural associated energy space is
Hq. = {p € Hioo(R?), Il mq, < +oo},
where
Il = [ |1V + |1 = 1Q:Pllol? + R @ee).
R

First, there are difficulties in the definition of the quadratic form for ¢ €
Hg., because of the transport term. A natural definition for the associ-
ated quadratic form for ¢ € Hg, could be

(12 [ Vel = (0 1Ql)el? + 2916 @) — elicdrnio).

Unfortunately the last term is not well defined for ¢ € Hg_, because
we lack a control on Jm(Q.) in L*(R?) in || - [z, ; see [16]. We can
resolve this issue by decomposing this term and doing an integration by
parts, but the proof of the integration by parts cannot be done if we only
suppose ¢ € Hg,_ (see Section 3 for more details). We therefore define
the quadratic form with the integration by parts already done. Take a
smooth cutoff function 7 such that 7(z) = 0 on B(+d.et,1), n(z) = 1
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on RQ\B(:l:cfivce_fﬂ), where :I:c’lvce_f are the zeros of Q.. We define, for
Y = ch € HQC7

Bo.(e) = [ |1Vl = (1 = Q") lol” + 2086 Q)

—o [ (0= mRe(i0nsop) —c [ nte(ion,QuQoll
(13)
+2e [ e 0IQuE +e [ o neramylQul®
R2 ]R2

b || eI, (1Q:P).

See Subsection 3.3 for the details of the computation. For functions ¢ €
H'(R?) for instance, both quadratic forms (1.2) and (1.3) are well defined
and are equal (see Lemma 5.7). We will show that B, is well defined for
¢ € Hg, (see Lemma 3.3), and that for A€ {0, Qc, 02, Qc, 0:Qc, 0cr Q. },
Bo, (4) = (Lq,(4), A).

From Proposition 1.2, we know that @, has only two zeros. We will
write the quadratic form Bg, around the zeros of Q. (for a function ¢ =
QY € Hg,) as the quadratic form for one vortex (computed in Propo-
sition 1.3), up to some small error. As we want to avoid adding an
orthogonality condition on the phase, we change the coercivity norm to
a weaker seminorm that avoids iQ)., the direction connected to the shift
of phase.

We will therefore infer a coercivity result under four orthogonality
conditions near the zeros of Q). (two for each zero). Then we shall show
that, far from the zeros of Q., the coercivity holds, without any addi-
tional orthogonality conditions.

Proposition 1.4. There exist co, R > 0 such that, for 0 < ¢ < cp, if
one defines Vi1 to be the vortices centred around :I:c?ce—l> (c?c s defined
in Proposition 1.2), there exists K > 0 such that for ¢ = Q.Y € Hg,,
0 < ¢ < ¢y, if the four orthogonality conditions

[ e = [ @.Tive) =0,

B(d.e1,R)

B(dcet,R)

/ Re(Dy, Vo1 Vo19) :/ Re(De, Vor Vo)) =0
B(—dc&{,R) B(—dc&f,R)
are satisfied, then, for

Il = [ | IVOPIQel + eIl

the following coercivity result holds:

Baq. () > Kll¢|.
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We will check that ||¢||¢ is well defined for ¢ € Hg, (see Section 3).
Proposition 1.4 is proven in Subsection 4.4.

We point out that ¢ = Q.1 — ||¢]lc is not a norm but a seminorm
since [o, [VY?|Qc|* + Re? () |Qc|* = 0 implies only that ¢ = XiQ. for
some A € R, and Q). is the direction connected to the shift of phase. Note
also that in this proposition ¢ = QY but the orthogonality conditions
are on V1. This is a consequence of Proposition 1.3 and the fact that
the coercivity is shown with a seminorm.

Now, we want to change the orthogonality conditions in Proposi-
tion 1.4 to quantities linked to the parameters ¢ and X of the travelling
waves, that is, 0;, Q., 0z, Qc, 0.Q¢, and 0,1 Q.. We can show that for
v = QY € Hy,, for instance

/ ) Re(0a, V1 V19)| < K[lolle,
B(dcei,R)

but such an estimate might not hold for msz(Jce_f,R)uB( 4.3 R) 0, QeQtp
(because of the lack of control on Jm(v) in L?(R?) in the coercivity
norm || - ||¢). It is therefore difficult to have a local orthogonality condi-
tion directly on 9;, Q). for instance.

To solve this issue, we shall use the harmonic decomposition around
+d,e{. For the constructed travelling wave @), two distances play a
particular role: d. (defined in Theorem 1.1) and d,. (defined in Proposi-
tion 1.2 and connected to the position of the zeros of @.). In particular,
we define the following polar coordinates for z € R2:

re'’ .=z e R?,
re1efE =g (:td Yei € R?,
fileiéi = — (:i:dc)e_1> € R2.
We will also use 7 := min(ry,7_1) and 7 := min(77,7_1). For a func-
tion v such that QY € HE (R?) and j € Z, We define its j-harmonic

around :I:d e{ by the radial function around +d,e; c€1:
27

P (gy) = [ p(Feae®E)e 08 gy,
2m J,
Summing over the Fourier modes leads to
¥(a) = 30 (Fer)e
j€z
and we define, to simplify the notations later on, the function ¥7°, by
v70(@) = () — ™ (7)
in the right half-plane, and

V70 (@) = Pla) =T (7o)
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in the left half-plane. This notation will only be used far from the
line {1 = 0}. We now state the main coercivity result.

Theorem 1.5. There exist ¢y, K, By > 0 such that, for R > 0 defined
in Proposition 1.4, for any 0 < B8 < Bo, there exist co(8), K(8) > 0
such that, for ¢ < co(B), if ¢ = Qe € Hg, satisfies the following three
orthogonality conditions:

811 Qch'lb#O:%e/ 6z2 Qchw;ﬁO:(L

9%/
B(dcel,R)UB(~dcet,R) B(dcel,R)UB(~dcel,R)

e / 0:QeQet = 0,

B(dc&,R)UB(~dc&1,R)
then
Ba.(#) > K(9)&** ol
with
lelle = [ 190PQl* + e @lQul
R

If o = QW also satisfies the fourth orthogonality condition (with 0 <
c<co)
S)‘ie/ 0,1 QcQcp#9 =0,
B(dcet,R)UB(~dceT ,R)
then
Bq.(#) = K|l¢l2.

Theorem 1.5 shows that, under four orthogonality conditions, we have
a coercivity result in a weaker norm || - |c, instead of || - ||, with a
constant independent of ¢, and with only three orthogonality conditions,
we have the coercivity but the constant is a O " o(c?*P). This is because,
of the four particular directions of the linearized operator, 0., @, 0z,Q.
are in its kernel, 0.Q). is a small negative direction, and 0.1 Q. is a small
positive direction (see Proposition 1.2). Concerning the orthogonality
conditions, we note that, for ¢ = Q.9 € Hg_,

%e / Do, Qo™
B(dcel,R)UB(—d.&1,R)

is close to

Re / i i 02, QcQct
B(dcel,R)UB(~dcel,R)
(we have Re fB(dce—{,R) 02, QcQc! = 0. 0(1)||¢l| r,,, for instance), but
the first quantity can be controlled by ||¢||c, and the second cannot be.
Theorem 1.5 is a consequence of Proposition 1.4, and is shown in Sec-
tion 5. From this result, we can also deduce the kernel of the linearized
operator in Hg, .
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Corollary 1.6. There exists cg > 0 such that, for 0 < ¢ < ¢y, Q. defined
in Theorem 1.1, for ¢ € Hq,, the following properties are equivalent:

(i) Lg.(¢) =0 in H-Y(R?), that is, YVo* € H'(R?),

-, Re(Vep - V) — (1 — Qe )Re(pp7) + 2Re(Qep) Re(Qey )
— Re(icOzy pp*) =

(ii) ¢ € Spang(0z,Qc, 02, Qc)-

This corollary is proven in Subsection 5.5. This nondegeneracy result
is, to our knowledge, the first one on this type of model. It is a building
block in the analysis of the dynamical stability of travelling waves and
the construction of multi-travelling waves. Here, the travelling wave is
not radial, nor has a simple profile, which means that we cannot use
classical techniques for radial ground states for instance (see [19]).

1.2.3. Spectral stability in H*(R?). In this subsection, we give some
results on the spectrum of Lg, : H*(R?) — L?(R?). In particular, we are
interested in negative eigenvalues of the linearized operator. We can show
that H'(R?) C Hg, and prove the following corollary of Theorem 1.5.

Corollary 1.7. There exists ¢y > 0 such that, for 0 < ¢ < ¢g, Q. defined
in Theorem 1.1, if ¢ € H'(R?) satisfies

(¢,102,Qc) = 0,
then
Bq.(¢) = 0.

We can show that Lg_(9:Q.) = i0.,Q. € L*(R?), and thus ¢id,,Q. €
LY(R?) for ¢ € H'(R?). This result shows that we expect only one nega-
tive direction for the linearized operator, and it should also hold in Hg,.
For ¢ € H'(R?), we have that B, () is equal to the expression (1.2).

Now, we define & to be the collection of subspaces S C H!(R?) such
that B, () < 0 for all ¢ # 0, ¢ € S, and we define

n~ (Lq,) := max{dim S, S € &}.
Proposition 1.8. There exists ¢y > 0 such that, for 0 < ¢ < cg, for Q.
defined in Theorem 1.1,
n (Lg.)=1.
Furthermore, Lg,: H?*(R?*) — L?(R?) has exactly one negative eigen-
value with eigenvector in L?(R?).

With this result, Theorem 1.1 and Proposition 1.2, we have met all
the conditions to show the spectral stability of the travelling wave:
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Theorem 1.9 (Theorem 11.8(i) of [15]). For 0 <c¢; <cz andc— U, a
C' branch of solutions of (TW.)(U.) = 0 on ]y, ca[ with finite energy,
for c. €ler, cal, under the following conditions:

(i) forallc €]y, e[, Re(U.—1) e HY(R?), Im(VU,) € L*(R?), |U.| —

L at infinity, and ||Uc||crr2) < 400,

(ii) n~(Lu,,) <1,

(iii) 0cPao(Ue)je=c, <0,
then U., is spectrally stable. That is, it is not an exponentially unstable
solution of the linearized equation in H'(R?,C).

Corollary 1.10. There exists co > 0 such that, for any 0 < ¢ < ¢g, the
function Q. defined in Theorem 1.1 is spectrally stable in the sense of
Theorem 1.9.

The notion of spectral stability of [15] is the following: for any ug €
H'(R2?,C), the solution to the problem

{i@tu = Lq,.(u),

u(t =0) =wuo
satisfies that, for all A > 0,

(/R2 |Vl (t) dx) e M0

when ¢t — oo. The result of [15] is a little stronger: the norm that does
not grow exponentially in time is better than the one on H!(R?,C), but
weaker than the one on H'(R?,C), and is not explicit.

1.3. Generalization to a larger energy space and use of the
phase. There are two main difficulties with the phase. The first one, as
previously stated, is that we lose a parameter when passing from two
vortices to a travelling wave. The second one is that for the direction
linked to the phase shift, namely iQ., we have iQ. ¢ Hg, (and even for
one vortex, iV; &€ Hy, ). This will be an obstacle when we modulate the
phase for the local uniqueness result. Therefore, we define here a space
larger than Hg,.

1.3.1. Definition and properties of the space Hg . We define
the space H,", the expanded energy space, by

HEP = {p € Hbe(B?), llpl g < +oo),
with the norm, for ¢ = Q.¢ € H\ (R?),

2 o 2 2 2 |1/)|2
Iellige = el ron + [ 190 + 8¢ @) + i,
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where 7 = min(r7,7_1), the minimum of the distance to the zeros of Q..
It is easy to check that there exists K > 0 independent of ¢ such that,
for ¢ = Quv € HEP,

Lo < V| + e [ol* <K
§H4PHH1({5<;<10})\ [V|"+0Re” () + 72 In(7)2 B ||€0||H1 ({5<10})"

{5<7<10}

We will show that Hg, C HEXP and Q. € HeXp, whereas iQ. ¢ Hq, .
This space will appear in the proof of the local uniqueness (Theorem 1.14
below). The main difficulty is that Bg,(y) is not well defined for ¢ €
HGP because, for instance, of the term (1 — |Qc[?)|¢|* integrated at
mﬁmty If we write the linearized operator multiplicatively, for ¢ = Q.9

(using (TW.)(Q.) = 0),

/ . VQC
QeLlo, () = La(¢) = Qo =ity — v~ 2T
then there will be no problem at infinity for ¢ € H,™" for the associated
quadratic form (in ), but there are instead some integrability issues
near the zeros of ().. We take as before a smooth cutoff function 1 such
that n(z) = 0 on B(+d,e1,1), n(z) = 1 on R2\ B(+d.e1, 2), where +d.e]
are the zeros of Q.. The natural linear operator for which we want to
consider the quadratic form is then

LGP () = (1 = n)La.(¢) + nQecLg, (),
and we therefore define, for ¢ = Q.9 € H, e’ip7

- V1 + 2%Re(p )IQCIZ),

BE () / (1=0) (| V| = Re(icDay 02) — (1— Qe ) o]* +2%e* (@)
- [, V0 (VRO — 2Im(VQQ)RKe(w)Im()
(1.4) + / O Re(1)Im () Qcl”
+ / n(VEPIQ + 226 (6)[Q ")

+ /R ATV Qo0 Im (Vi) Re (1) £ 26| Q| > Tt (D, 1) Re (1))

This quantity is independent of the choice of 7.

We will show that B;,"(¢) is well defined for ¢ € H;™ and that,
if ¢ € Ho, C H,", then BGP(9) = Bq.(v). Writing the quadratic
form BQC is a way to enlarge the space of possible perturbations to add
in particular the remaining zero of the linearized operator. We infer the
following result.
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Proposition 1.11. There exist cg, K, R, By > 0 such that, for any 0 <
B < Po, there exist co(B), K(8) > 0 such that, for 0 < ¢ < ¢o(B), if
p=Q € Hzgxcp satisfies the following three orthogonality conditions:

D D0 —
Re /B 02, QuQut P —Re /B 02y QeQuiP =0,

(@7 R)UB(~ .21 ) (@7 R)UB(~d.2 )

e / 0.Q.Q.970 = 0,

B(dcef,R)UB(—dce1,R)
then
BEP (@) = K(B) P |ol|2,
with
lelle = [ 1901Ql* + B @lQul
R

If o = QW also satisfies the fourth orthogonality condition (with 0 <
c<cp)
e [ 00 Q@ = 0,
B(dcet,R)UB(~dcei,R)
then
B5P(¢) > Klelle-

Furthermore, for ¢ € Hg?xcp, the following properties are equivalent:

(i) Lo, () =0 in H-(R?), that is, Ye* € H'(R?),

|, Be(Ve - Vi) = (1= Qe)Re(p7) + 20e(Qep) Re(Qei”)
— Re(icdzpy pp*) = 0.

(11) SO € SpanR(iQm axl Q¢27 8952 Qc)

Proposition 1.11 is proven in Subsection 6.1. The additional direction
in the kernel comes from the invariance of phase (Lg,(iQ.) = 0). The
main difficulty, compared to Theorem 1.5, is to show that the considered
quantities are well defined with only ¢ € H, Sip, and that we can conclude
by density in this bigger space.

1.3.2. Coercivity results with an orthogonality condition on the
phase. The main problem with adding a local orthogonality condition
on i@, is to choose where to put it. Indeed, we want this condition
near both zeros of @, or else the coercivity constant will depend on the
distance between the vortices, which itself depends on c.

The first option is to let the coercivity constant depend on c. In that
case, we can also remove the orthogonality condition on 0.1 Q., the small
positive direction. We infer the following result.
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Proposition 1.12. There exist universal constants K1, co > 0 such that,
with R > 0 defined in Proposition 1.4, for 0 < ¢ < c¢q, for the function Q.
defined in Theorem 1.1, there exists Ko(c) > 0 depending on ¢ such that,
if o=Q € Hg‘cp satisfies the following four orthogonality conditions:

e / D, QeQuF0 =Pe / 023 Q.QuPI =0,

B(dcel,R)UB(—d.21,R) B(dcel,R)UB(—dcel,R)

aCQchwio = “-Re/ 7/1/) = 0,

9%/
B(d.&1,R)UB(—d.&1,R) B(0,R)

then
Killplige > B (6) > Ka(@)llplise-

Here, the orthogonality condition on Q). is around 0, between the two
vortices, but it can be chosen near one of the vortices for instance, and
the result still holds.

The second possibility is to work with symmetric perturbations, since
the orthogonality condition can then be at both the zeros of Q.. We then
study the space

HGP® = {p € HGP, Vo = (v1,22) € R?, p(w1,2) = (—x1,72)}.

We show that, under three orthogonality conditions, the quadratic form
is equivalent to the norm on H gzp.

Theorem 1.13. There exist R, K,co > 0 such that, for 0 < ¢ < ¢,
Q. defined in Theorem 1.1, if a function ¢ € Ho™* satisfies the three
orthogonality conditions:

0eQep = Pe / DeyQuip = 0,

i)‘ie/
B(dcel,R)UB(—dc&{,R) B(dcel,R)UB(—dce{,R)

%e/ 1Qcp =0,
B(deel, R)UB(—deel, R)

then
1 2 exp 2
wlelliee > BGP(0) = Klellee-

We note that here the orthogonality conditions to 0., Q. and 0.1 Q.
are freely given by the symmetry. We also do not need to remove the
0-harmonic near the zeros of Q..

If we remove the symmetry, and if we add the two orthogonality condi-
tions related to 0., Q. and 0.1 Q., it is not clear that we can get a similar
result (with a coercivity constant independent of ¢). The main difficulty
would come from the phase, because we would have one orthogonality
condition on it, but we would like two, one on each vortex.
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Proposition 1.12 and Theorem 1.13 hold if we replace By,” by Bq,
for ¢ = Q. € Hg, with the symmetry, but the coercivity norm will
still be || . ||H5xp.

1.4. Local uniqueness result. With Propositions 1.11 and 1.12, we
can modulate the five parameters (¢, X,v) of the travelling wave, and
these coercivity results will be enough to show the following theorem.

Theorem 1.14. There exist constants K, cg, g, o > 0 such that, for
0 < ¢ < ¢y, Qc defined in Theorem 1.1, there exists R. > 0 depending
on ¢ such that, for any X > R., if a function Z € C*(R% C) satisfies,
for some small constant €(c, \) > 0, depending on ¢ and A,

(i) (TWe)(Z) =0,

(il) E(Z) < 400,

(iil) |1Z — Qcllerr2\B(0,2)) < Hos

(iv) 12 = Qellage < ele,N),

then, there exists X € R? such that |X| < K||Z — Qc||Hexp and
Z =Qc(-— X).

The conditions E(Z) < 400 and HZ_QcHHg"f < e(c, A\) imply that the
travelling wave Z — 1 at infinity, and therefore Z = Q.e?” with v € R,
v # 0, is excluded. The fact that £(c,\) depends on ¢ comes in part
from the constant of coercivity in Proposition 1.12, which itself depends
on c. The condition that || Z — Qcl|c1(r2\B(0,7)) < po outside of B(0, \)
is mainly technical. We believe that this condition is automatically sat-
isfied with the other ones (with A depending only on ¢), but we were not
able to show it.

To the best of our knowledge, this is the first result of local uniqueness
for travelling waves in (GP). It does not suppose any symmetries on Z,
and therefore shows that we cannot bifurcate from this branch, even to
nonsymmetric travelling waves.

We believe that, at least in the symmetric case, Theorem 1.14 should
hold for ||Z — Qc||Hexp < ¢ with € > 0 independent of ¢ and A\. We

also note that the condltlon 1z — QcHHexp < e(c, A) is weaker than
1Z = Qcllm,, <elc,A), and thus we can state a result in Hg,.

1.5. Plan of the proofs. Section 2 is devoted to the proof of Proposi-
tion 1.2. We start by giving some estimates on the branch of travelling
waves in Subsection 2.1. We then show the equivalents when ¢ — 0 for
the energy and momentum, as well as the relations between them and
some specific values of the quadratic form in Subsection 2.2. Finally, in
Subsection 2.3, we study the travelling wave near its zeros.
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In Section 3, we infer some properties of the space Hg,. First, we
explain why we cannot have a coercivity result in the energy norm in
Subsection 3.1, and we show the well-posedness of several quantities in
Subsections 3.2 and 3.3. A density argument is given in Subsection 3.4
that will be needed for the proof of Proposition 1.4.

Section 4 is devoted to the proofs of Propositions 1.3 and 1.4. We
start by writing the quadratic form for test functions in a particular
form (Subsection 4.1), and we then show Propositions 1.3 and 1.4 re-
spectively in Subsections 4.2 and 4.4. To show Proposition 1.4, we use
Proposition 1.3 and the fact that we know well the travelling wave near
its zeros from Subsection 2.3.

The next part, Section 5, is devoted to the proof of Theorem 1.5
and its corollaries. We show the coercivity under four orthogonality con-
ditions by showing that we can modify the initial function by a small
amount to have the four orthogonality conditions of Proposition 1.4, and
that the error committed is small in the coercivity norm. We then focus
on the corollaries of Theorem 1.5 in Subsection 5.5. We show the com-
position of the kernel of Lg, (Corollary 1.6), and the results in H!(R?):
Corollary 1.7, Proposition 1.8, and Corollary 1.10.

The penultimate Section 6 is devoted to the proofs of Propositions 1.11
and 1.12 and Theorem 1.13. In Subsection 6.1, we study the space Hy,";
in particular, we give a density argument that allows us to finish the
proof of Proposition 1.11. Then, in Subsection 6.2, we compute how the
additional orthogonality condition improves the coercivity norm, both
in the symmetric and nonsymmetric case, and we can then show Propo-
sition 1.12 and Theorem 1.13.

Section 7 is devoted to the proof of Theorem 1.14. Here we use classical
methods for the proof of local uniqueness, by modulating the five param-
eters of the family and using a coercivity result. One of the main points
is to write the problem additively near the zeros of (). and multiplica-
tively far from them. The reason for that is that we do not know the link
between the speed and the position of the zeros of a travelling wave in
general, and we therefore cannot write a perturbation multiplicatively
in the whole space. Because of that, here we require an orthogonality
condition on the phase, and we cannot avoid it, as we did for instance
in the proof of Proposition 1.4 by choosing correctly the position of the
vortices.

We will use many cutoffs in the proofs. As a rule of thumb, a function
written as 1, x, or x¥ will be smooth and have value 1 at infinity and 0 in
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some compact domain. The function 7 itself is reserved for Bg, and BeXp
(see equations (1.3) and (1.4)).

Acknowledgments. The authors would like to thank Pierre Raphaél
for helpful discussions. E. Pacherie is supported by the ERC-2014-CoG
646650 SingWave.

2. Properties of the branch of travelling waves

This section is devoted to the proof of Proposition 1.2. In Subsec-
tion 2.1, we recall some estimates on Q. defined in Theorem 1.1 from
previous works ([2], [4], [9], and [13]). In Subsection 2.2, we compute
some equalities and equivalents when ¢ — 0 on the energy, momentum
and the four particular directions (0y, Qc, O, Qc, 0:.Q. and 9,1 Q.). Fi-
nally, the properties of the zeros of Q). are studied in Subsection 2.3.

2.1. Decay estimates.

2.1.1. Estimates on vortices. We recall that vortices are stationary
solutions of (GP) of degrees n € Z* (see [2]):

V(@) = pu(r)e™,
where z = re'? | solving

AV, — ([Vu]? = 1)V, =0,
Vo] = 1 as|z| — oo.

Here we regroup estimates on quantities involving vortices. We start with
estimates on V.

Lemma 2.1 ([2] and [13]). A vortex centred around 0, Vi(z)=p1(r)e®,
verifies V1(0) = 0, and there exist constants K,k > 0 such that

Vr>0,0< p1(r) <1, p1(r) ~roo k7, p1(1) ~rso K,

p()>0 pl = T~>oo( >7|Pl |+|p,1”( )|<K’
1 1
K K
<7
Vil < 7 1+r [V < (14r)?’

and

) + 1
VVi(@) = iVi(2) S5 + O <7«s) :
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where x+ = (—x9,21), x = re’ € R2. Furthermore, similar properties

hold for V_q, since

V71(:C) = V1 (l‘)

We also define, as in [4],

and
0V () 1= 0a(Vi(- — def)V_1 (- + det))ja=a.
We will also estimate
03V = 03 (Vi(- — del) Vo (- + del)) ja=d.

The function V(z) = Vi(x — dce—f)V_l(I + dce—f) is close to Vi (z — dce—f)
in B(dce_f, Qdi/z), since, from Lemma 2.1 and [2], we have, uniformly in
B(d.ei,2d.%),

(2.1) Voi(- 4 deed) = 1+ Ocso(c!?)
and

1/2
2.2 Vol + doah)] < 2eote )
(2.2) [VV_1(- + deef)] )

We recall that B(dce_f, 2di/2) is near the vortex of degree +1 of Q. and
that 7 = min(ry,r_1), with r4 = |z F dce_1>|.

2.1.2. Estimates on Q. from [4]. We recall, for the function Q. de-
fined in Theorem 1.1, that

(2.3) Y(z1,22) € R, Qc(1,22) = Qclz1, —72) = Qc(—21,72).

In particular, 9.Q. enjoys the same symmetries, since (2.3) holds for any
¢ > 0 small enough. We recall that Q. € C°°(R?, C) by standard elliptic
regularity arguments.

Finally, we recall some estimates on (. and its derivatives, coming
from Lemma 3.8 of [4]. We denote ¥ = min(ry,7_1), the minimum of
the distances to d.€; and —d.€;, and we recall that V(z) = Vi(z —
deet)Voi(z + deel).
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We write Q. = V +T. or Q. = (1 —n)V¥, +nVe¥s, where I, =
(1—n)VU,.+nV(e¥s—1) (see equation (3.4) of [4]). There exists K > 0
and, for any 0 < o < 1, there exists K (o) > 0 such that

(2.4) Tl < %
(2.5) |VL| < %
(2.6) -l < ek
(2.7) Qe — V| < %
238) 1Qu2 — VI < %
(29) (V) <
(2.10) Im(VQQ)| < o

and for 0 < 0 < ¢’ < 1, there exists K(o,0’) > 0 such that

K(o,0')c' ="

2~ 2
(2.11) [DP3Im(We)|+ [VRe(e)| + [V*Re(We) | € =707

From Lemma 2.1, with Theorem 1.1, we deduce in particular that, for ¢
small enough, there exist universal constants Ki, Ko > 0 such that on
R2\ B(+d,e1,1) we have

(2.12) K1 <|Qc| < Ko.

To these estimates, we add two additional lemmas. We write

[¥lloa. =Vl ey +IF FTRe(@) | oo ((r2y) +HIFHTVRe() || oo (722
HFIM) [ Loe (721 + 17TV IM) | oo (223

where 7 = min(ry,7_1), with

(2.13) re1 =z F clce—1>|7

and with d. defined in Theorem 1.1. The first lemma is about Q. and
the second one about 9.Q)..
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Lemma 2.2. For any 0 < o < 1, there exist co(0), K(o) > 0 such that,
for 0 < c < co(o) and Q. defined in Theorem 1.1, if

Fc:Qc*Vv
r
\%4

Proof: This estimate is a consequence of

Te=(1-nVV¥,+nV(e" —1)
and equation (3.10) of [4]. O
Lemma 2.3 (Lemma 4.6 of [4]). There exists 1 > By > 0 such that, for

all 0 < o < By < o' <1, there exists co(o,0’) > 0 such that for any
0 < c<colo,0"), Qe defined in Theorem 1.1, ¢ — Q. is a C' function

from 10, co(0,0")[ to C1(R%,C), and
oo’ leo'/
= Oc7—>0 ( c2 > .
o,de

then

(o) ™e.

‘ 0.Q. (1 + 02’:’3@”')) 0Viaea,

\%4 c? \%4
These results are technical, but quite precise. They give both a de-
cay in position and the size in ¢ of the error term. The statement of
Lemma 4.6 of [4] has 0c0(1) and oco(Z) instead of respectively

oc_m(cl"’l) and 0640(01;20 ), but its proof gives this better estimate
(given that ¢’ is close enough to 1) We recall that ogjo(l) is a quantity

going to 0 when ¢ — 0 at fixed o, o’. We recall that 9.VQ. = V9.Q.. We
conclude this subsection with a link between the ||-||; norms and [|-| g, -
We recall

lilrg, = [, 1901 + 11 = 1QePllel® + 346" @)

Lemma 2.4. There exists a universal constant K > 0 (independent
of ¢) such that, for Q. defined in Theorem 1.1,

h

hllig, < K ||7

3/4,dc
The value 0 = 3/4 is arbitrary here; this estimate holds for o € ] %7 1 [

Proof: We compute, using Lemma 2.1, that

/ VA < +/ v (ﬁv)
3/4 de {r>1} 14

2

V
h s 2 |h*
gKH, vof o (B)[ rwvel
Vills/aa (721} v 14
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With Lemma 2.1 and the definition of || - ||3/4,4,, we check that

[ 7 (%)
=1l \V

Indeed, we have the estimate

h 2

V

2 2
, B h
LUy gl
VYR HV

2 1
——> <K
3/4,dc/{f>1}(1+’")3“/2 H

3/4,d.

1 1
— <2 — <
/{;21} (1_|_7:)3+1/2 = /{T21} (1 +7,)3+1/2 X

Furthermore, from equation (2.6) with ¢ = 1/2, we have the estimate

K.

2

B 1 h
1- 62h2<K — /7<K —
[ - ieaein HV = Hv

3/4,dc

Finally, we compute

2

Re?(Qoh) < KHE + / Re’(Qch),
&2 Vilsjaa. Ji=n
and
2/ 2 —h
/ Re?(Qch) = / Re (VQC—)
(7>1} (F>1} v

2(h 2 A 2 B 20,7
< 2/{;21} NRe <V)9‘ie (VQc) + Jm (V) Tm*(VQ.).

With the definition of || - [|3/4,4,, Lemmas 2.1 and 2.2, we check that
h — h
Re? (—) Re*(VQe) <K Re” (—)
/{@1} 4 e {F>1) v

A 2
<K ||+

2
1 h
s S K ||
3/4,dc /{f21} (L4 7)s+1/2 H 14

With Lemma 2.2 with ¢ = 1/2, we check that, since Jm?(VQ,.) =
Jm?(VV +T.) = Im?(VT,), we have

3/4,dc

2

2 h) P Al 1 h

om? () ImP (V@) <K | Ll ck||k
/{f21} (V 14 3/4,d./{7>1} (1+T)2+1/2 14 3/4,dc
Combining these estimates, we end the proof of this lemma. O

2.1.3. Faraway estimates on Q.. Since E(Q.) < +oo thanks to The-
orem 1.1, from Theorem 7 of [9], we have the following result.
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Theorem 2.5 ([9, Theorem 7]). There exists a constant C(c) > 0 (de-
pending on c¢) such that, for Q. defined in Theorem 1.1,

2 C(e)
|1_‘QL‘ ‘g (1+T)27
c(e)
|17QC‘ < 1+7‘7
C(e)
Vel < Gy
and o)
C
ViRl < (52

Furthermore, such estimates hold for any travelling wave with finite en-
ergy (but then the constant C(c) also depends on the travelling wave, and
not only on its speed).

This result is crucial to show that some terms are well defined, since
it gives better decay estimates in position than the estimates in Sub-
section 2.1.2 (but with no smallness in c). Note that 1 — |Q.|? is not
necessarily positive. In fact it is not at infinity (see [10]). In particular,
the estimate o)

2 C
- 1QePI > 5
does not hold because of the possibility of |Q.| = 1. This happens, but
only for few directions and it can be offset. We show the following suf-
ficient result, which is needed to show that some quantities we will use
are well defined. Furthermore, in these estimates, the constant depends
on ¢, and thus cannot be used in error estimates (since the smallness of
the errors there will depend on c¢).

Lemma 2.6. There exists ¢cg > 0 such that, for 0 < ¢ < cqy, there
exists C(c) > 0 such that for ¢ € Hg, and the function Q. defined in
Theorem 1.1,

|| < (/ 2 B 2 2)
/R? 1+ [2])2 dx < C(c) R2|V<p| + 11— 1Qc)el” ) -
See Appendix A.1 for the proof of this result.

2.2. Construction and properties of the four particular direc-
tions.

2.2.1. Definitions. The four directions we want to study here are
02, Qcy 01,Qc, 0cQc, and 0,1 Q.. The first two are derivatives of Q.
with respect to the position, the third one is the derivative of Q). with
respect to the speed, and we have its first order term in Theorem 1.1.
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The fourth direction is defined in Lemma 2.7 below. The directions 0, Q.
and 0,Q. correspond to the translations of the travelling wave, 0.Q.
and 0,1 Q. to changes respectively in the modulus and direction of its
speed. These directions will also appear in the orthogonality conditions
for some of the coercivity results.

Lemma 2.7. Take ¢ € R? such that |é] < ¢y for co defined in Theo-
rem 1.1. Define a such that ¢ = |¢|Ry(—€2), where Ry: R? — R? is the
rotation of angle 6. Then, Qz:= Q7 o R_, solves

(TW;z)(v) = i¢- Vv — Av — (1 — |v|*)v = 0,

[v] = 1 as |z| — +oo,
where Qg is the solution of (TW\z) in Theorem 1.1. In particular, Qg is
a C' function of a and

0aQe(x) = —R-a(z™) - VQiz (R-a(2))-
Furthermore, at a = 0, the quantity
acL QC = (aaQé’)\a:O

i
satisfies 9,1 Qu(z) = —a+ - VQu(),

is in C°(R%,C), and
Lq, (aci QC) = —icOz, Qe
Proof: Since the Laplacian operator is invariant by rotation, it is easy to
check that Q|z0R_ solves (TWz)(Q|z0R_a) = 0. The function 6 — Ry
is O, hence (a, z) — Qz(x) is a C! function, and we compute
(0aQ2)(z) = 0a(Q)z1 © R-a)(2) = Da(R-a(2)) - VQ&(R-a(2)).

We note that N
9a(R-a(z)) = —R-a(z™),

—Z9, 1), hence
9aQz(z) = —R_o(z) - VQz(R-a(x)).
In particular, for oo = 0,
0aQe()|a=0 = —zt. VQc(z).
We recall that @z solves
i€ VQe — AQe — (1 |Qe*)Qz =0,
and when we differentiate this equation with respect to a (with |¢] = ¢),
we have

where 2t = (

—i0a€ (VQz) + L(8aQz) = 0.
At a =0, Qs = Qc, 9uf = —c€y, and 8aQaa—o = Jor Q. therefore

Lg.(0.1Qc) = —icOz, Qe. O
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2.2.2. Estimates on the four directions. We shall now show that
the functions 0y, Qc, Oz, Qc; 0:.Q., and 0.1 Q. are in the energy space
and we will also compute their values through the linearized operator
around ()., namely

Lo. () = —=Ap — icdayp — (1 — |Qc|*) ¢ + 2Re(Qetp) Q.

Lemma 2.8. There exists cg > 0 such that, for 0 < ¢ < ¢cp, Q. defined
in Theorem 1.1, we have

8x1Qc, 8:1:2QC7 6CQC, 8cl Qc € HQc7

and
LQc(aﬂEl QC) = LQc(aﬂszC) =0,
L. (0:Qc) = i02,Qc,
L. (01 Qc) = =iz, Q.

We could check that we also have 0,, Q., 92, Q. € H'(R?) (see [10]),
but we expect that 9.Q., d.. Q. & L*(R?). For d,1 Q., this can be shown
with Lemma 2.7 and [10].

Proof: We have defined

lella, = [, 196 +11 = 1Qulllol + 916" @)

For any of the four functions, since they are in C°°(R2,C), the only
possible problem for the integrability is at infinity.

Step 1. We have 0y, Q., 0,,Qc € Hg, .
From Lemma 2.1 and equation (2.11) (for 1 > ¢’ > 0 = 3/4), we have

K(c,0")
v 2 \v4 Q 2 < N\ ) —+00.
/]R2 V02, Qc| /Rz V02, Qcl” < /]R2 (L+r)7/2 =

From Theorem 2.5, we have
[ - 1@ rvael + ne@ve) < [
R2 R2

hence 0y, Qc, 02,Q¢ € Hg, .

Step 2. We have 0.Q. € Hg,.
From Lemmas 2.3 and 2.4, we have that for ¢ > 0 small enough

1+07_ 0 (Cd)
2

K(c)
(1+nr)*

< +oo0,

ach + aivld:dc S HQm

therefore we just have to check that 94V|4—q. € Hq,, which is a direct
consequence of Lemma 2.6 of [4].
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Step 3. We have 0,.Q. € Hg,.
From Lemma 2.7, we have 0,. Q. = —z* - VQ.. With Theorem 2.5,
Lemma 2.1, and equation (2.11), we check that

[ 190 Qe 410~ Q)04 Qo < +oc.
R2
Now, from Lemma 2.1 and equation (2.6) (with ¢ = 1/2), we have

Re2(@.0,.Q0) <K | (1+r)RA(VQQe) < K(¢) / !

R2 R2 R2 (1 + 7')3

thus 9,1 Q. € Hg,.

< o0,

Step 4. Computation of the linearized operator on 0., Qc, 0z, Qc, 0:Q¢,
0.1Q¢.

For the values in the linearized operator, since
—i60s, Qe — AQe — (1 = |Qc|*) Qe = (TWe)(Qe) =0,
by differentiating it with respect to x; and z, we have
Lq. (811QC) = Lq. (azch) =0.

By differentiating it with respect to ¢, we have (we recall that 0.Q. €
C>(R2,0))

—i02,Qc + L. (9:Qc) = 0.
Finally, the quantity Lg, (9,1 @Q.) is given by Lemma 2.7. O

The next two lemmas are additional estimates on the four directions
that will be useful later on. They estimate in particular the dependence
on cof || - ||c on these four directions.

Lemma 2.9. There exists K > 0 a universal constant, independent of c,
such that, for Q. defined in Theorem 1.1,

102, Qclle + 102, Qclle + [[¢*0:Qcle < K.
Furthermore, for any 1 > 3 >0,
681 Qelle = 0lo(c™").
Proof: We have defined, for ¢ = Q¢ € Hg,,
lelle = [, 19PIQel* + Be)1Qel”
We recall that, since ¢ = Q.,

(214) [ [90F1Ql" = [ 1Vo-TQu @ <K [ Vol @cl+17Q Pl
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Step 1. We have [|0x, Qclle + (|02, Qclle < K.

From Lemmas 2.1 and 2.2 and equations (2.9) to (2.11), we have that,
for 7 = min(ry,7-1),

K
(147)

K

2
o € 5.
and [V°Q| <

IVQ.| <

Therefore,
[, W02 Q0PI + ¥ (0nQol Qe < K,
and we also have
[, IVQ Ve < K,
]R2

thus, with equation (2.14),
O Qc)
\V4 ZTr2wC
( Qe

[ () e ],

By equation (2.9) (for o = 1/4), we have

2 VQL 4 / 2 N / #
[ (o) < & [ 9o <K [ g <K
We conclude that |0, Qcllc + ||02,Qcllc < K.

Step 2. We have ||c?0.Q.|lc < K.

From Lemma 2.3, we have, writing ¢29,.Q. = (14+0c-0(1))94Vi4=a. +h,
that H%HU 4. = 0c—o0(1). In particular, if we show that [[02Vj4=q.llc < K
and ||h|lc < K, then [|c?0.Q.|lc < K. With Lemma 2.6 of [4], we check
directly that

2
Q! < K.

|0aVia=a,|”
A +7)p/2

In particular, with (2.14), this implies that

OaVia—a, \ |
/ V< 5 |d—dc>‘ Q. < K
R2
and we estimate

Q.

2 (0aVid=ad, 4 25 2 2

, Re 0. Q" < K . Re” (VOaVig=a,)+IV — Qc|"10aVia=q.|" <K
R c R

with the same arguments and equation (2.7). Similarly,

J.

/ . |VOaVia=a.|* + + Re? (VIaVigq,) < K.
R

0aVia=d,

\Y 0.

2
QeI <2 [ IV PIQI* +9Q0Viama, I < K,
R
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therefore [|03Vj4=q,|lc < K. We now have to estimate ||h[|c. The com-
putations are similar, since we check easily that

2

[ o Qe < x|
R2 4 3/4,d.
and
_ _ hlI?
Re? (Quh) < K/ R (Vh) + [V — Qb < K Hf
R2 R2 Vills)aa.

Step 3. We have ||c0,.+ Qc|lc = ofﬂo(cfﬁ).

By definition, ¢d,1 Q. = —cz* - VQ,.(z), and we check by triangular
inequality that ¢jz*| < K(1 + 7) since # = min(|z — deeil, |z + doe1))
and cd, — 1. Therefore,

V(0. Q)2 < & / VQ. + / (el )?V2Q.
R2 R2 R2

<K (1 +/ IV2Q.|* (1 + f)Q) :
]R2

We have |[V2Q.| < |V2V| + |[V?T.|, and with equation (2.11), we check
that [, |[V2Tc|*(147)? < K. With computations similar to the ones of
Lemma 2.3 of [4] and Lemma 2.1, we can show that

K

2 K 2
< <
V7V and |V7V| < A+

S (1472
therefore, for any 1 > 5 > 0,

Kc™*

2
<
VVI< g

and thus, by (2.14),

L (%6%)

Furthermore, by equations (2.9) (for o = 1/2) and (2.12), we have

2
\Qc\4<K/ V€D Qc*|Qel ™+ IV Qel*e0es Qel* <K (B)e ™"
R2

1
of CT™ - VQC(ZC) 4 / 2 2 —_— /
/R2me (7@_ Q' <K [ (47 0(VQQ) <K [ G <
We conclude that [|cd,. Qe = 0, (c™#). O
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2.2.3. Link with the energy and momentum and computations
of equivalents. In this subsection, we compute the value of the four
previous particular directions Oy, Qc, Oz, Qc; 0cQc, 0.+ Q. on the qua-
dratic form. In particular, we shall show that one of them is negative.

Lemma 2.10. There exists cg > 0 such that for 0 < ¢ < ¢y, and
for Q. defined in Theorem 1.1, for A € {0z, Qc,0u,Qc; 0cQe, 0ot Qc},
Re(Lg,(A)A) € L' (R?), and

(L@e(02,Qc); 02, Qc) = (LQ. (02, Qc), 02,Qc) = 0,

<LQC (80Q0)7 ach> = _27T+c7(;c_’0(1)

<LQC (8CJ- QC)7 8CJ‘ QC> =27 + OC_’O(l)'

Proof: For A € {0x,Qc, 02,Qc, 0cQe, 0.1 Qc}, we recall from Lemma 2.8
that A € Hg,. To show that Re(Lg_ (A)A) € L*(R?), we need to show
that

—Re(AAA) — Re(icdry AA) — (1 —|Qc?)|A]” 4 2% (Q.A) € L' (R?).
For that, we check that, for some o > 1/2,

(1 +7)7 All oo 22y + I (14 7) 7 (VA +[Re(A)]) ] oo (22
H 1+ 7)*TIm(AA)| oo o)+ (1 + 1) TTR(AA) || oo 2y <00

For 0,,Q. and 0.,Q., this follows from Theorem 2.5, and also, since
Lq.(0z,,Qc) = 0, from

A(all,zQC) = _icazzwl,zQC - (1 - |QC|2)811,2QC + 2%2(@811,2Q6)Qca

which allows us to estimate A(d,, ,Q.) with Theorem 2.5, Lemma 2.1,
and equation (2.11) for any o > 1/2.

Now, for 0.Q., the estimates not on its Laplacian are a consequence of
Lemma 2.3, Theorem 2.5, and Lemma 2.6 of [4]. Then, from Lemma 2.8,
we have Lg,(0.Q.) = 10z, Q., thus

A(0cQe) = ~il; Qe — 1602y 0eQc — (1 = [Qel*) 0cQe + 2Re(QeDeQe) Qe-
By Theorem 2.5 and Lemma 2.3, we have, for any o > 1/2,
K(c,0)
(1+r)2te’
K(c,0)
(14 r)tte’

)

(2.15

(1= |Qcl?)0cQe| + [2Re(Qe0:Qc)Qe| <

|05 Qe + |02, 0:Qc| <

and

K(c,0)
Re(0e, Qe)| + [Re(0r, 0eQe)| < Atz

which is enough to show the estimates for 0.Q..
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Finally, from Lemma 2.7 we recall that

0,0 Qe =—z - VQ.(x)
and
Lo, (0,0 Q) = —icOs, Qe.

Similarly, the estimates not on its Laplacian follow from Theorem 2.5,
Lemmas 2.1 and 2.2, and equation (2.11). We also have

A(8,1Qe) = ic0z; Qe — 1€y 01 Qe — (1 — |Qel*) 0ot Qe + 2Re(Qe0,1 Qc) Qe

and with the same previous estimates, we conclude that .. Q. satisfies
the required estimates. With the definition || - ||z, , we check that the
last two terms are in L'(R?), and for the first two, the integrands are
in L'(R?,R) by estimates in Subsection 2.1.1 and (2.15).

Step 1. We have (Lg, (0, Q¢), 0z, Qc) = (Lo, (05,Qc), 02,Qc) = 0.
From Lemma 2.8, we have Lg, (0, Q¢) = Lg.(0z,Q.) = 0, hence

<LQc (811QC)7821Q6> = <LQc (812QC)»8m2QC> =0

Step 2. We have (Lo, (0.Qc), 0-Qc) = *27T+;’72H0(1)
From Lemma 2.8, we have

LQ.(0:Qc) = 1025 Qe,

therefore

(216) <LQc (ach),ach> = <iaz2Qc,ach>.

From Lemma 2.3, we can write 0.Q. = —(Hoziﬁo(l))adwd:dc + h with
H %H = oc_)o(%). Similarly, from Lemma 2.2, we write Q. =V + T,

= 0.0(1), and we compute

<LQc<ach)7ach>=<iamv, - (e @Yo Y+ 0.,vm

(2.17)
+<iaw2rc,_ (”Ozij‘)m)adm:dc>+<iamrc, h).

By symmetry in z; of V, we compute
(100, V, 0aVig—a,) = —2(i00, VIV 1,00, VIV_1) + 2(i00y Vi V1, Bz, Vo1 VA).
In equation (2.25) of [4], we computed

(i@wzvlv,l,ﬁxlvlv,l) = —m+ Ocﬁo(l).
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Furthermore,

‘<i832V1V_1, axl V_1V1>| = 9%(1‘6352\/1‘/18951‘/_1\/_1)

R2

< Re (O VA V1) I (0, Vo1 V1)

RrR2

+

/ I (B, ViV Re(Ta V1 V).
]RZ

From Lemma 2.1, we have the estimates

_ K - K
x — — g T Na xT g 71 . \2)
|Re(0oy Vo1 V-1)| (1+7r_1)3 and  [Re(0z, V1 V1)] (1+7)°
as well as
- _ K
IM(Oey Vi Vor)| < 7 i < .
|Im Oy Vo1 V1)) T and |Im(9z, V1V1)| T

We deduce, in the right half-plane, where r_; >d_, that |Jm(VV_,V_;)|=
0c—0(1) and thus

S 1
Re(Og, Vi V1) IM(02, Vo1 V1) | < 0c 1 —— =0 1).
/{ZI>0} (02, ViV1) I (02, Vo1 V_1)| < 0cs50( )/{1120} armye = ° —o(1)
In the left half-plane, we have ﬁ < 1-5-,1 and ﬁ = 0c—0(1), there-

fore

1
< 0e 0(1)/ ——————— = 0c-0(1).
- {zy<op (L +7r-1)3 -

/ Re(Dny ViVL)IM(@r V1 V1)
{z1<0}

We therefore have

%2(812‘/1?1)3111(811‘/_1‘/_1) = OC_>0(1),
R2
and by similar estimates,
/ T (B, ViV Re(@a Va V)| = 00 (1),
R2

We can thus conclude that (i0,,V1V_1, 0, V_1V1) = 0c—0(1). Therefore,

(2.18) (M) (100, ~0aViams) = - +0 (i) .

c2

Now, we estimate

(102, V, )| = < oc—o(1) +

/ Re(i0z, VR) / Re(i0z, VR)
R2 {r>1}

/ MRe z'amvf/(ﬁ)
(7>1} v

< 0c—>0(1) +
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because |||~ = 0c_0(1) and |8,,V| is bounded near d. by a universal

constant. Furthermore,
_ h
Re (02, VV)Im | —
{F>1) v

/ Re i@xz‘/f/(ﬁ)
(721} 14
~ — h
IOz, VV)Re [ — ||
(7>1) 14

From Lemmas 2.1 and 2.3 (taking o = 1/2), we have

<

+

_ h h 1 1
Re(0z, VV ﬁm(—) <KH— / — =0, o(—)
/{;21} (Ouy ) 14 \%4 12,40 J (721} (14 7)3+1/2 —0\ 2
and
_ h h 1 1
Jm (0 VV)S)%(—) <K H— / — = 0c.50 (—),
AF}I} ( 2 \%4 14 1/2,d. J{7>1} (1 +T’)2+1/2 - c?
therefore

1
\(i@zzv, h>| = Oc—0 <?> .
Now, by Lemmas 2.1 and 2.2 (taking o = 1/2), we have

140c50(1) Y. K|T. / 1 1
— o Le, OaVig=a, )| < = =507 = Oc - -
( >|<18 2Le, 0aVia=a, )| 2 s w2 (1+7)2+1/2 00| 3

c? v
Finally, by Lemmas 2.2 and 2.3, we check easily that

%
h / 1 (1
1/2,d, R2 (1 + F)2+1/4 —0Uc—0 02 .

v
Combining (2.18) to (2.19) with (2.17), we conclude that
—27 + OC*)O(];)

c2

(2.19) |(iamzrc,h)\<KH%

3/4,d.

(LQ.(0:Qc), 0:Qc) =

Step 3. We have (Lg, (0.1 Q¢), 0cr Qc) = 27 + 0c—0(1).
From Lemma 2.8, we have Lg, (0.0 Q.) = —icdy, Q. and from Lem-
ma 2.7, we have .. Q. = —x* - VQ,. Therefore,

<LQc (6cL QC)7 acL QC> = c(i@zl QC7 'TJ_ : VQC>
We have
(101, Qs =020, Q) =~ [ Felizmalor, Qul") =0,
R
hence

(2-20> <LQc (8& Q6)7 0.1 Qc> = C<i8z1 Qc, $1ax2Qc>-
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From Lemma 2.2, we write Q. =V + I'. with ||%
any 0 < ¢ < 1, and we compute

< K(o)cl=7 for

o,de

(1021 Qcy 1025 Qc) = (102, V, 2102, V') + (103, V, €10, Tc)
+ (10, T, £102, V) + (i0s, T, 102, Tc).
We write x1 = d. + y1, therefore
(102, V, 2102, V) = de(i02, V, 02y V) + (102, V, 410, V).
We have
(102, V, 02, V) = (102, VIV_1, 05, VAV 1) + (10, Vo1 VA, D, Vo1 VA)
(100, VAV 1, 00y VA V) + (10, V1 VA, By VAV 1),

and, from the previous step and by symmetry, we have

(102, ViV_1, 02, VAV 1) = (100, Vo1 Vi, 02, Vo1 VA) = 7 + 0cs0(1)
and

[(i02, ViV_1, 03, Vo1 V1) | + [(i02, Vo1 Vi, 0, VAV_1)| = 0c—0(1),

thus
(102, V, 02, V) = 27 + 0c—0(1).

With Vi; centred around :I:dce_f, we write V = V1 V_; and we compute

(02, V102, V) = | Re(iy105, Vidoy VI|Vor [P + 9100, Vor 82, Vor [VA]?)

R2

—|—/ %e(iylaxlvlvl\/_lamv_l+z‘y16x1V_1V_1V16x2V1).
RrR2

By decomposition in polar coordinates, with the notation of (2.13) and
Lemma 2.1, we compute

4o p2m
me(iylaxlwaquv_lﬁ):/ / VP o (1)l (1) cos(01 )1 dir 6.
R2 0 0

By integration in polar coordinates, we check that

“+oo 27
/ / P1 (7"1)[)/1 (7’1) COS(91)T1 dT1 d91 = O,
0 0
hence

/me(z‘ylaxlvlaxzvl|V-1\2):/ (1= Vo1 ) Re(igs 02, ViBog V).
R2 R

2
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In particular, since, from Lemma 2.1, we have

K

2
W=V=D<aroe
and

K
/

<=
|p1(7”1)‘ (1+r1)37

we can deduce that
Re (i1 02, ViDiy Vi |V [*) = 0c0(1)
R2
and, similarly,

D‘te(iylale,lazZV,lWﬂQ) = OC*)O(].).
R2

Therefore, we conclude that

(102, V, 2102 V) = (27 + 0c 0 (1), = 22020,

Now, we want to show that
. . . 1
(102, V, 2102, Tc)| + [(i02, Te, 2102, V)| + (102, Te, 2102, )| = 0c—0 (E) ,

which is enough to end the proof of this step.
By triangular inequality, we have |z1| < M, and with Lemmas 2.1

and 2.2 (for o = 1/2), we estimate ‘

‘(iazl V, mlazzrc>| =

/wli)%e(@leV)ﬁm(@zQFcV)‘
R2

J’_
K (1+7) cl/? (1+7) cl/?
ST (/R TR ERN S I s e (1+f)5/2)

(&)
=Oc—0 | — |-
(&

Similarly, we check with the same computations that [{(i0,, T, 210, V)| =

0c-0(2)-
Finally, using Lemma 2.2 (for 0 = 1/4), we estimate

Op T Oz, T
Re il‘lixl €2 c) .
~/{7=>1} ( Vv Vv

/ 21IM(0sy VV)Re(02, T V) ’
R2

[(i0z, Te, 102, Tc)| < K03/2||371||L°°({F<1})+K
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We have |71 e (i<1y) < £ Moreover, we infer

Oz e Og, T Oz, I Oz, e
Re [ iz 21— 722 c) g/ x %e( o1 C) TJm( 2 °>‘
/{%21} ( LV 14 {f21}| ! 4 v

Oz, e Oz, e
+/ 1| |Tm (17> Re ( 2 )
{f>1}| 1l v 4

and, with Lemma 2.2 (for o = 1/4), we have

Opy e 0z, T
e (in LT
/{@1} ( Y 14

|z1]c

since ) < K by triangular inequality. We conclude that
(102, Te, 2102, Te) = 0c0(1),
which, together with the previous estimates, shows that
(Lq.(0c1Qc), 0.1 Qc) = 2T + 0c—0(1). O

These quantities are connected to the energy and momentum. This is
shown in the next lemma.

I

3/2
c
<K |1]

oy g ~ 0o

Lemma 2.11. There exists cg > 0 such that for 0 < ¢ < ¢, Q. defined
in Theorem 1.1, we have

Pr(Qc) = 0:P1(Qe) = 0,

P2(Qc) = %BQc(alec) — 27T++04)0(1)7

and
0.P3(Qc) = Bo, (9.Q0) =~ 0e=0),
Furthermore,
9:E(Qc) = c0cP2(Qc),
and

E(Qc) = (27 + 0es0(1)) In <1) .

C

Proof: We have )
Pl(QC) = §<i8331QC7 QC - 1)7

by the symmetries (2.3), 0,, Q. is odd in 1 and Q.—1 is even. Therefore,
Pl(Qc) =0.P1 (QC) =0.
We have

N | =

PQ(QC) = <i822Q87 Qc — 1>7
and from Lemma 2.10 and (2.20), we have

27 + 0c0(1) = Bo, (0,1 Qec) = (i0z; Qe, 102, Q).
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By integration by parts (which can be done thanks to Theorem 2.5,
Lemma 2.1, and equation (2.11)), we compute

<i6Z1QC7x18E2QC> = _<i(QC - 1)7812620) - <7'(QC - 1)7$181112QC>7

and

<7'(QC - 1)7‘771811E2QC> = _<i812Q67‘T18®1QC> = <7;8le¢,1'1812@¢>‘
Therefore,

1 27 + 0cs0(1)

P2(Qc) = (Zaam le’langc) = EBQC (8CJ- Qc) =

N —

C

We have Po(Q.) = & [oo Re(i0:,Qc(Qc — 1)), and we check, with Lem-
mas 2.2 and 2.3, that

K

Iacarch(Qc - 1)' + |81)2Q(;86QC| < W,

and is therefore dominated by an integrable function independent of ¢ €
Je, co| given that ¢1,c2 > 0 are small enough. We deduce that ¢ —
P(Q.) € C1(]0,co[,R) for some small ¢y > 0 and that, by integration
by parts,

28CP2(QC) = <i8128cQ¢37 Qc - 1> + <i8z2QC7 ach) = 2<ial‘2QC7 ach>7
and, from Lemma 2.10 and equation (2.16), we have

—2m + 05*}0(1)

2 I

(1025, Qec, 0cQec) = BQ.(0:Qc) =

C

therefore
—27 + Oc_>0(1)
c? ’

0P (Qc) =
We recall that

@)= [ Vel +g [ -l

We check, with Lemmas 2.2 and 2.3, that

K

= 2 2
10:VQc - VQe| +0:(1Qc|")(1 — |Qc])] < FEE

and is therefore dominated by an integrable function independent of ¢ €
Je1, ca] given that ¢i,co > 0 are small enough. We deduce that ¢ —
E(Q.) € C*(]0, o[, R) for some small ¢y > 0 and that

! 2) _ 1 R _
e (2 /Rz IVQc| > =5 /Rz Re(VQ:VIQc) + Re(VIQVQe).
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We check, with Theorem 2.5 and (TW,.)(Q.) = 0, that we can do the
integration by parts, which yields

1 2\ _
a. (5 /R VQ.| ) — (~AQ.,2.Q.).

We check similarly that

o (3 [La-102) == [ (- P,

hence
1 22\ _ 4 2
o (3 [0 -1QF) = (-0~ 100000,
Now, since —icd,,Q. — AQ. — (1 — |Q.|*)Q. = 0, we have
0:E(Qc) = (~AQe — (1 —|Qcl*)Qc, 0:Qc) = ¢(~i02, Qc, 8cQc).-
Now, since P>(Q.) = 1(i0,,Qc, Q. — 1), we have

1. . .
0:P2(Qc) = 5(@892280@& Qe — 1) + (102, Qc, 0cQc))-
By integrations by parts, we compute

aCP?(QC) = <_Z‘812Q67 6ch>~
We deduce that 9. E(Q.) = c0.P2(Q.), and in particular, we deduce that

—27 + Oc~>0(1)
C

0:E(Qe) =
By integration (from some fixed ¢y > ¢ > 0), we check that F(Q.) =

(27 + 0c0(1)) In(2). O

We conclude this subsection with an estimate on @. connected to the
energy that will be useful later on.

Lemma 2.12. There exists K > 0, a universal constant independent
of ¢, such that, if ¢ is small enough, for Q. defined in Theorem 1.1,

ITQQI e (1)
/}R2 0.7 < Kln 2 )
Proof: We recall that r41 = |x F dce_ﬂ. Since V@, is bounded near the
zeros of Q. (by Lemmas 2.1 and 2.2), and |Q.| > K on R2\B(+d.e7,1)
by (2.12), we have

[m(VQ-Q.)[* .,
/Rz Qr =F <1+/{% [Im(VQ-Q.)| )
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Now, by (2.12), Lemma 2.11, and the definition of the energy,

/ lﬁm(VQc@)Fé/ IVQCIQ\QC\QSK/\VQC\QgKE(QC)gKlnG).
{r>1} R2 c

{r>1}

O

We could check that this estimate is optimal with respect to its growth
in ¢ when ¢ — 0.

2.3. Zeros of Q.. In this subsection, we show that . has only two ze-
ros and we compute estimates on ). around them. In a bounded domain,
a general result about the zeros of solutions to the Ginzburg—Landau
problem is already known; see [18].

Lemma 2.13. For ¢ > 0 small enough, the function Qc defined in
Theorem 1.1 has exactly two zeros. Their positions are :td ei, and, for
any 0 <o <1,

|de = de| = 0Z0(c' ),
where d. is defined in Theorem 1.1.

The notation 07_,,(1) denotes a quantity going to 0 when ¢ — 0 at
fixed 0. Combining Lemmas 2.10, 2.11, and 2.13, we end the proof of
Proposition 1.2.

Proof: From (2.3), we know that Q. enjoys the symmetry Q.(x1,z2) =
Qc(—x1,13) for (x1,72) € R?, hence we look at zeros only in the right
half-plane. From Theorem 1.1, we have Q. = Vi (- —dce1)V_1(-+deei) +
I, with ||T. ||L00(R2) + || VT, ||L00(R2) = 0c—0(1). In the right half-plane
and outside of B(d ei,A) for any A > 0, by Lemma 2.1, we estimate

1Qel > [Vi(- = de)Vos (- 4 ded)] — 0eso(1) > K(A) > 0

if ¢ is small enough (depending on A). Now, we consider the smooth
function F': R x R? — C defined by

F(p, z) == (Vi(- — deel)Voi (- + deef) + ple(-)) (2 + deé).

We have F(0,0) = Vi(0)V_1(2d.ei) = 0 by Lemma 2.1 and F(1,z) =
Qc(z +dee1). For |p| <1 and |z] <1, since ||V Lo (r2) = 07_,0(c' ™7
by equation (2.5), with Lemma 2.1 and equation (2.1), we check that

(2.21) |d=F,2)(§) = VVi(2) - €] = oc—o(DIE]
uniformly in p € [0, 1].
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Now, from Lemma 2.1, we estimate (for z = re? # 0 € R?)

Oz, Vi(z) = (cos(@)p’(r) — ;sin(e)p(r)) e’
= r(cos(#) — isin(6))e + or0(1)
=k +o0r-0(1),

and thus, by continuity, d.,V1(0) = & > 0. Similarly, we check that
0z, V1(0) = —ik, and therefore,

VVi(2) = & (_11) +opzso(1).

Identifying C with R? canonically, we deduce that the Jacobian deter-
minant of F in z, J(F), satisfies

J(F) (1, 2) = J(V1)(2) 4 0c—0(1) = =K% + 0c0(1) + 0121 50(1) # 0,

given that ¢ and |z| are small enough. By the implicit function theorem,
there exists pp >0 such that, for |u| < po, there exists a unique value z(u)
in a neighbourhood of 0 such that F'(u, z(1)) = 0, and since 0, F (i, z) =
Lo(de€i+2) = 07_,0(c!=9) uniformly in 2z (by (2.4)), it satisfies addition-
ally 2(u) = Ogﬁo(cl_‘f)-

Now, let us show that we can take pug = 1. Indeed, if we define
po = sup{v > 0, u — z(n) € C([0,v],R?)} > 0 and we have ug < 1,
since u — z(p) € CY([0, wol, R?) with |d,z|(1) = 09_,¢(c*~7) uniformly
in [0, o], it can be continuously extended to po with F(ug,2(pg)) =
0 and z(ug) = 07,9(c!™9). Then, by the implicit function theorem
at (wo,z(po)) (since pg < 1 with equation (2.21)), it can be extended
above pg, which is in contradiction with the definition of pug.

Since F(1,-) = Q.(- + d.€1), we have shown that there exists z € R?
with |z| = 07_,(c!79) such that Q.(z + d.€1) = 0. Now, for ¢ small
enough and |¢] < 1, we have

V(Qe(§ + 2z 4 de€1)) = VVi(2) + 0c0(1) + 0j¢|»0(1)
=K (_IZ) + 0c—>0(1) + 0|§\~>0(1)~

We deduce, with Q.(¢ + z + d.€1) = O|C| VQc(&% +2 ot ddy) - %d&,
that

Qulc-+ 2+ dei) = ¢ (L) o = oolich + 00l

Therefore, Q. has no other zeros in B(z + d.€1,A) for some A > 0
independent of ¢. Therefore, since for ¢ small enough, |Q.| > K(A) >0
outside of B(z+d.€1,A) in the right half-plane, (). has only one zero in
the right half-plane.
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By the symmetry Qc(21,22) = Qc(x1, —x2) (see (2.3)), z must be
colinear to 61, therefore we define d € R by d e =z + d.é €1, and we
conclude that, since |z| = 0Z_,,(c!77)

|de — de| = 07_,0(c" 7). O

9

We define the vortices around the zeros of Q. by
f/il(x) = Vil(l' F é;e_f)a
and we will use the already defined polar coordinates around j:c’lvce_l>
of x € R?, namely
Fi1 = |z Fdeei|, 041 = arg(x Td.e7).
One of the idea of the proof is to understand how Q. is close, multi-
plicatively, to vortices Vi centred at its zeros, since by construction it

is close to a vortex centred around idce_f, which is itself close to icfivce_f.
In particular, Lemma 2.15 below will show that the ratio |% is bounded
1

and close to 1 near 6766_1)

In Lemma 2.14 to follow, we compute the additive perturbation be-
tween derivatives of ). and a vortex Vi centred around one of its zeros.
In Lemma 2.15, we compute the multiplicative perturbation. All along,
we work in B(d.ef, d“”) the size of the ball d&/? being arbitrary (any
quantity that both goes to infinity when ¢ — 0 and is a oc_>o(d ) should
work). We recall that 71, = |& F d, 61|

Lemma 2.14. Uniformly in B(d,e1, ) for Q. defined in Theo-
rem 1.1, one has

Qe = Vil = 0cs0(1),

I 0c—>0(1)
o <
IVQc — VVi| < 117/
and )
2 .= 2317 < Oc—0 .
V'@ VV1|\71+7;1

See Appendix A.2 for the proof of this result.
Lemma 2.15. In B(d e, ~1/2) for Q. defined in Theorem 1.1, we have

Qc ‘ 1/10
= -1 o).
Vi

In particular,

Qe

Vi

The power 1/10 is arbitrary, but enough here for the upcoming esti-
mates.

—1+O ( 1/10).
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Proof: We recall that both Q. and V; are C™ since they are solutions
of elliptic equations. We have that Qc(dca) = 0 by Lemma 2.13, thus,
for € R?, by Taylor expansion, for |z| < 1,

Qc(@ + dee?) = 2 - VQc(deel) + Opyyo([2f).

From Theorem 1.1, we have Q. = V1(~—dce_1>)V_1(-+dce—1>)+FC, therefore,
with Vi, being centred around +d .e1 for the rest of the proof,

VQe(d &) = VVi(deel)Vor(deel) + Vi(dee])VVo1(deel) + VTe(doe7).

We have Vi (deei)VV_1(deel)+VTe(deel) = 0co(c'/2) by Theorem 1.1,
Lemma 2.1, and (2.2). Furthermore, by (2.1) and Lemmas 2.1 and 2.13,

VVi(deet)Vor(d.el) = VVi(d.el) + oco(c'h).
We deduce that
Qcl(x +deet) = - (VVi(deed) + 0cso(c”?)) + Onso(|zf?).

We also have Vl(x—i—d el) =z VVl(d 61)+Oz%o(|x\ ) (since /I}I(cice_f) =
0) and VV;(d.e1) = VVi(d.et), hence

Qc(x+deet) = Vi(z + deel) + @ - 0co(c"/ )+O\ —o(]z[?).

Now, by Lemma 2.1, there exists K > 0 such that, in B(dcel,c 1/4Y for
¢ small enough, |V;(z + d.e7)| > K|z|. We deduce that

&71‘ [zlocoo(c®) - Olaio(lef)

Vi |V1(ac+d el |Vi(z+d.el)|
< 0eso(c?) + Opzso(|2l)
< 0esso(c?).

Outside of B(d.e],c*/*) and in B(d.e], @1/2), we have ﬁ/\ﬂ > Kc'/* by

Lemma 2.1, and 12
Qc - Vi + Oc~>0 (C )

by Theorem 1.1 and equations (2.7) and (2.1). We deduce
1/2

QC ‘/1"_0230(6 ) 71‘(%): Yl(m)

Vi Vi Vi(z)

Furthermore, by Lemma 2.13 (for ¢ = 1/2), we have

— 1|+ ocﬁo(cl/lo).

-1/ (@) -

Vi(x) _1l= V;(x) +O\dcf¢ic|ao(|dc *CTBD 1
Vl(x) Vl(x)
Oy i1 sol|de — del)
= |de—de] 610/4 = 03;}0(01/10).
~1/2

We conclude that ‘% — 1‘ = 0c_0(c/10) in B(d~ce_1>,dc ). O
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By the symmetrles of Qc (see (2. 3)) the result of Lemma 2.15 holds
if we replace ei by fel and Vl by V. 1.

We conclude this section with the proof that in B(+d.ef, dy/ %), we
have, for ¢ € C2°(R2\{+d.e; },C),

(2.22) /0 |70 dfs1 < 714 /0% |Vep|* dfs .
We recall that the function ¢7° is defined by
v (@) = () — " ()
in the right half-plane, and
V70 (@) = P(a) — ¢ ()
in the left half-plane.

To prove (2.22), it is enough to show that, for ¢ € C°(R?\{0},C),
we have, with z = re®,

/271'
0

This is a Poincaré inequality. By decomposition into harmonics and Par-
seval’s equality, we have

27 2

27
P — W dy d9<r2/ |V df.
0 0

2 2

27 27 o
/0 v [ e de—/ zzjw a6
/ S [u ()P o,
neL*

and

27 9 27 1 9
/ Vol d9>/ 1wl do
0

0

2
27 .
> / ZiL/’”(T)em" 6
0 nez* r
> / S w0 do

nez*

1
2720 len )| df.

neL*
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This concludes the proof of (2.22). With |Q.(z+d.&])|=Os., s0(7+1)
and (2.22), we have, for 711 < R,

27 27
/ Qe [7°)? df1 < K/ 7270 dfas
0 0
2
(2:23) <K [Vl dis
0

27 4 5 =
< K(R) / Qe V2 i

0

This result will be useful to estimate the quantities in the orthogonality
conditions.

3. Estimates in Hg,

We give several estimates for functions in Hg_ . They will in partic-
ular allow us to use a density argument to show Proposition 1.4 once
it is shown for test functions in Section 4. We will also explain why a
coercivity result with the energy norm || - [|p,_ is impossible with any
number of local orthogonality conditions, and show that the quadratic
form and the coercivity norm are well defined for functions in Hg, .

3.1. Comparison of the energy and coercivity norms. In the in-
troduction, we have defined the quadratic form by

Ba.(e) = [ |96l = (1= 1QePlel* + 2 @cp)
- 1 — 1)Re(i0z,03) — Re (10, Qe Qo) Y|
o [, (= melitnnop) — [ ie(i0,Q Q0w
w2 [ omesmmd, wiQ + e [ o neramilQo)
R2 R2

v [ e amio., Q)

(see (1.3)). We will show in Lemma 3.3 below that this quantity is well
defined for ¢ € Hg,. As we have seen, the natural energy space Hg, is
given by the norm

liellrg, = [, 1961 +11 = 1Qelllol* + 916" Qo).

We could expect to replace Theorem 1.5 by a result of the form: up to
some local orthogonality conditions, for ¢ € Hg, we have

Ba.(¢) = K(c)ll¢ltrg, -
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However such a result cannot hold. This is because of a formal zero
of Lg, which is not in the space Hg,: iQ. (which comes from the phase
invariance of the equation). We have Lg_ (iQ.) = 0 and iQ. ¢ Hg,
because

(1= 1Qc*)iQe|*
is not integrable at infinity (see [10], where it is shown that this quantity

decays like 1/r?). We can then create functions in Hg, getting close
to iQ)., for instance
fR = WRchv

where ng is a C™ real function with value 1if Ry < |z| < R and value 0 if
|z| < Ro—1or |z| > 2R. In that case, when R — +o0, || fr|lH,, — +o0
and Bg,(fr) — C a constant independent of R, making the inequal-
ity Bo.(¢) = K ||ga||%,@c impossible (and the local orthogonality condi-
tions are verified for Ry large enough since fr = 0 on B(0, Ro—1)). That
is why we get the result in a weaker norm in Proposition 1.12: we will
only get for ¢ € Hg,, up to some local orthogonality conditions,

Ba, (9) > K(e)lellgr,

where || - ||H§pr is defined in Subsection 1.3.1. In particular, || - HHpr is
not equivalent to || - ||z, -

3.2. The coercivity norm and other quantities are well defined
in Hg,. We have defined the energy space Hg, by the norm

liellra, = [, 1961 +11 = 1Qelllol* + 916" Q).

By Lemma 2.6, we have that, for ¢ € Hg_,

ool 2
(3.1) [, iy o < C@lelng,-

The goal of this subsection is to show that, for ¢ € Hg,, ||¢llc, and
Bg.(¢), as well as the quantities in the orthogonality conditions of

Proposition 1.4 and Theorem 1.5, are well defined. This is done in Lem-
mas 3.1 to 3.3.

Lemma 3.1. There exists cg > 0 such that for 0 < ¢ < cg, there
exists C(c) > 0 such that, for Q. defined in Theorem 1.1 and for any

p=Q € HQcy

lelle = /Rz IVEIP1Qe]" +Re*()IQe]* < C)ll¢lrg, -
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Proof: We estimate for ¢ = Q. € Hg, , using equations (2.12) and (3.1)

and |[VQ.| < (1+T)2 from Theorem 2.5, that

/ Vo P|Qe" = / Ve — VQul*Qul?
R2 R2

< K/2 VolQeP + 1V Q. Qe

/|V|+ lw\)

< K(©)lelg, -

Similarly, for ¢ = Q. v,

/ 9Re? ()] Qe = / Re2(@ep) < 9l
R2 R2
We conclude that

(32 [, Iwuriad’ + 5 wed’ < colel, =

We conclude this subsection with the proof that the quantities in the
orthogonality conditions are well defined for ¢ € Ho,.

Lemma 3.2. There exists K > 0 and, for ¢ small enough, there exists
K(c) > 0 such that, for Q. defined in Theorem 1.1 and ¢ = Q. € Hg,,

O<R<dg/2, we have

/ ~ me(amvwﬂwu/ C |Re(@ry Vir Ver )| < K ()l g
(£dcei,R) (£dcei,R)

/ 5 - ‘me(azl.zQCWN < K(C)HQOHHQC,
B(d.e{,R)UB(—d.&1,R)

/|  Re(0.Q.Q07)| < K(0) ¢l
B(dcei,R)UB(—dce71,R)
and

/~ L Re(—aT - VQeQYP)| < K(0) ||l g, -
B(dee1,R)UB(—d.e1,R)

We recall that 170(x) = (x) — ¢%1(7;) in the right half-plane and
Y7#0(2) = (x) — O 1(F_1) in the left half- plane with 741 = |z Fdeeq|
and ¢%*!(74;) the 0-harmonic of ¢ around +d.e; €.
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Proof: From Lemma 2.15, we have, for ¢ = Q. € Hg_,
Vi
Qe

given that ¢ is small enough. We deduce by Cauchy—Schwarz and Lem-
mas 2.1 and 2.6 that

Verdp| = Jop] x < 2|

/ i |PRe( 8w1Vi1V¢1¢' 2/ ‘8901‘7i1| X ¢l
B(+d.&1,R) R)

+dce
(C)I\wIIHl(B(ﬂca’,R»

< KQO@lelag.,

and similarly fB(iJc?l’,R) |§Ke(3w2‘7i1 Vi1¢)| < K(o)|lellug, -
By Cauchy—Schwarz, equation (3.2), and Theorem 1.1 (for p = 400),
we conclude that

/ Re(0.0. Qi) < K (c \/ / VU[2(Qq

B(dcei,R)UB(—dce1,R) B(dcef,R)UB(—dc&l,R)
K(o)|l¢ll g, -

We can estimate the other terms similarly. O

3.3. On the definition of Bg,. We start by explaining how to get
Bg, (¢) from the “natural” quadratic form

[, 196l = (1= 1QuP ol + 2986 (@es) = i o).

For the first three terms of this quantity, it is obvious that they are well
defined for p € Hg,, but the term —Re(icO,, p@) is not clearly integrable.

Take a smooth cutoff function 7 such that n(z) = 0 on B(+d.e7,1),
n(z) =1 on R?\B(+d, e, 2). Then, taking for now ¢ = Q. € C°(R2),

Re(i0r, pp) = nRe(i0z,0P) + (1 — 1)Re(i0x, 05),
and writing ¢ = Q. 1,

R (102, 0P) = NR(1825 QeQe) 1] + 1R (102, 91)| Qe
= e (102, QcQe) [¥|* —ReYIMO2, Y| Qe | > +nReDa, YIMY|Qc|.
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Furthermore,

1RV, YIMY| Qe = Doy (NReYIMY|Qc|) — Dy nRepTMP|Qc |
—nReyp I, Y| Qe|* — nRetpTIMYP0s, (|Qe|?),

thus we can write

Re(iey 0P) = / Dy (MRYIMY| Qe )
R2 R2
1-— R .812 D R .8z2 cYe 2
+ [ 0=l ep) + [ nme(i0,QQ0ll
72/ nmewmawzmcgc\z—/ Dy nRepTMY| Q.|
R2 R2

- [ evamo,, Qq)
R
The only difficulty here is that the first integral is not well defined for ¢ €

Hg., but it is the integral of a derivative. This is why we defined instead
the quadratic form

Ba.(e) = [ | I96l" = (1= 1QePlel* + 2% @2p)
- 1 — 1)Re (0, 0P) — Re (102, Qe Qo) ||
C/Rz( 1m)Re(i0z, 0 p) C/Rz" ¢(i02, QcQe) ||
+2c/ NRetpTm, | Q.| +C/ Dy PRI Qe
R2 R2

te /R iRew I, Q).

It is easy to check that this quantity is independent of the choice of 7. We
will show in Lemma 3.3 that this quantity is well defined for ¢ € Hg,.
By adding some conditions on ¢, for instance if ¢ € H!(R?), we can show
that [po 9, (nRepIm|Q.|?) is well defined and is 0. In these cases, we
therefore have

Ba.(9) = [ | IV6l* = (1= |Qcl*) ¢ + 20 (@eip) ~ RelicDry 09).
R
This is a classical situation for Schrédinger equations with nonzero limit

at infinity (see [3] or [16]): the quadratic form is defined up to a term
which is a derivative of some function in some LP space.
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Lemma 3.3. There exists cg > 0 such that, for 0 < ¢ < ¢g, Q. defined in
Theorem 1.1, there exists a constant C(c) > 0 such that, for ¢ = Q. €
Hq, and n a smooth cutoff function such that n(xz) =0 on B(+d,e1,1),
n(z) =1 on R2\B(+d,e1,2), we have

(1 = ) Re(i0r, 05)] + / IRe(i00y Qo Qo) [0[7]
R2 R2
+ / Ry Im (D )] Qe | + / 1020 PRI Q]
R2 R2

+ / [nRey I, (|Qc )|
R2

<O©llelg, -

Proof: Since |1 — |Q.|?] = K > 0 on B(£d.e],2) for ¢ small enough by
Lemma 2.1 and Theorem 1.1, we estimate

/ (1 — )PRe(icde08)] < C(0) / 11— 1Qe2ll¢l[0es0]
R2

B(dce1,2)UB(—dce7,2)
<Ol -
Furthermore, by (2.12) and Lemma 2.6,

/ InRe(icda, Qe@o)W?] < C(c) / DV Qe
R2 R2
<@ [ avQliel? < C@)lelfg,

since |VQ.| < #+%s from Theorem 2.5. By Cauchy—Schwarz, equa-
tion (2.12), and Lemma 3.1,

/ I RewImdn, ]Qe|?| < \/ / e ) [ n\vw\2<c<>|\wn%@c.

Now, still by equation (2.12) and Lemma 3.1, since 9,7 is supported in
B(+d.e1,2)\B(£d.et, 1),

[ eanewanulQl?] < Kol
R

C(f)

Finally, since |VQ.| < s by Theorem 2.5, by Cauchy—Schwarz and

Lemma 2.6,

[ mevamio, (e <c \// () [ s <CElelig, .0

1+r)t
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3.4. Density of test functions in Hg_ . We shall prove coercivity
with test functions that are 0 in a neighbourhood of the zeros of Q.. This
will allow us to divide by Q. in several computations. Here we give a
density result to show that it is not a problem to remove a neighbourhood
of the zeros of @), for test functions.
Lemma 3.4. C>°(R2\{d.e{,—d.e1},C) is dense in Hg, for the norm
I Mg, -

This result uses similar arguments to those used in [5] for the density
in Hy,. See Appendix B.1 for a proof of it.

4. Coercivity results in Hgq,

This section is devoted to the proofs of Propositions 1.3 and 1.4.
Here, we will do most of the computations with test functions, that is,
functions in C2°(R?\{d.€, —d.€},C). This will allow us to do many
computations, including dividing by @. in some quantities.

4.1. Expression of the quadratic forms. We recall that n is a
smooth cutoff function such that n(z) = 0 on B(+d.e1,1), n(z) = 1
on R2\(B(d.e1,2)UB(—d,e1,2)), where +d.e{ are the zeros of Q.. Fur-
thermore, from [5], we recall the quadratic form around a vortex V;:

Bup) = [ IVl = (1= AP)lel? + 206" (7).

We want to write the quadratic form around V; and Q. in a special form.
For the one around Q, it will be of the form B, defined in (1.4).

Lemma 4.1. For ¢ = Q. € C°(R2\{d,e1, —d.e1},C), we have

(Lac(p),p) = B5L(#),

where BGP () is defined in (1.4). Furthermore, for ¢ = Vig € C2°(R?\
{0}, C), where V; is centred at 0, and 7 a smooth radial cutoff function
with value 0 in B(0,1), and value 1 outside of B(0,2),

Bulp) = [ (1= DVl = (1= Pl + 20 (Vi)

— [ Vi (Re(VVD)[|* — 23m(VViVA)Re(¢p)Tm(1)))
R2

+/ FIVOLIVAE + 2862 () [Vi]* + 43m(V Vi) Im (V) Re (1))
Rz

See Appendix B.2 for the proof of this result.



COERCIVITY FOR TRAVELLING WAVES IN GP 325

2. A coercivity result for the quadratic form around one vor-
tex. This subsection is devoted to the proof of Proposition 1.3, and a
localized version of it (see Lemma 4.2).

4.2.1. Coercivity for test functions.
Proof of Proposition 1.3: We recall the result from [5]; see Lemma 3.1

and equation (2.42) there. If ¢ = Vi1 € C°(R?\{0},C) with the two
orthogonality conditions

/ Re(De, Vi p) = / Re(De, Vi) = O,
B(0,R) B(0,R)

then, writing ¢°(z) = & |, o P(|z| cos(0), || sin(#)) df, the O-harmonic
around 0 of 1, and ¥7° = w ?, then
#0412 02 2 |V11/) | 4
By, (p) = K | [V(Vi” ") + |V PIVif* + o5 + Re ()]
®2 (1+r)?

We recall from Lemma 2.1 that there exists K7 > 0 such that, for all r >

0, K1 < @ < K , and that |V} ] is a radial function around 0. Therefore,

by Hardy inequahty in dimension 4,

/ |w°\2<K/ |w°|2|v1\2+/ 2 ) .
B(0,1) B(0,2) B(0,2)\B(0,1)

By Poincaré inéquality, using fB(O R\B(0.R/2) Jm(y) =0 and |V1|2 > K
outside of B(0,1), we have

/ W2 < K (/ VOO VA2 + me2<w°>|v1|4) .
B(0,10)\ B(0,1) B(0,R)

Here, the constant K > 0 depends on R > 0, but we consider R as a
universal constant. We deduce that

/ o2 </ Viy?
B(0,10) B(0,10)
<K </ Vig° 2 +/ m«ﬁ“)
B(0,10) B(0,10)

[Viy?

<x ([ mmrEeve e L

°F +9Re% (¢ )\v1|4>.
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Similarly,

/ Vel?< / IV (Vi (0 + 702
B(0,10) B(0,10)

<K vV (Vi) V(Viy™?)|?
(/BM| (Vig®)| */B(o,m‘ (Vig >|)

<K(/ VO OV |V<v1w¢°>|2>
B(0,10) B(0,10)

Vg™ |?
(1+7r)?
Finally, outside of B(0,5), we have, by Lemma 2.1, that

/ Vol < K IVl VA2.
RZ\B(O,B) Rz\B(O,5)

Let us show that

2
I e S W A P ).
R2\B(0,5) T In (7") R2\B(0,5) B(0,10)\ B(0,5)

This is a Hardy-type inequality, and it would conclude the proof of this
proposition. Note that for the harmonics other than zeros, this is a direct

consequence of
[p™° 2
/ — < VY|~
R2\B(0,5) I R2\B(0,5)

We therefore suppose that 3 is a radial compactly supported function.
We define x a smooth radial cutoff function with x(r) =0 if r < 4 and
x(r) = 1if r > 5. Then, by Cauchy—Schwarz,

<K( [V v+ +%e2<w>|v1|4) .
]R2

/% |- [T xween (o) @
| ey

5 too dr
<K 7)0r r
< (/B I [l |w|<>1n(r)>

2
<[ Y = AL
B(0,10)\ B(0,5) r2\B(0,5) 72 In*(r) Jr2\ B(0,5)

The proof is complete. O
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4.2.2. Localization of the coercivity for one vortex. Now, we
want to localize the coercivity result. We define, for D > 10, ¢ = V19 €
HV1 )

B ()= [ o =DV = (1= [Pl + 26 ()
- /B o) Vi - (Re(VVIVI) 9" = 20m(VViVi)Re(v) Im(y)))

+/ (VP Vi 429 ()| Vi ] +4Tm(V VI V1) Tm(V ) Re (1)),
B(0,D)

where 7) is a smooth radial cutoff function such that 77(x) = 0 on B(0, 1),
fi(z) = 1 on R?\ B(0,2).

Lemma 4.2. There exist K, R, Dy > 0 with Dy > R, such that, for D >
Dy and ¢ = Vip € CF(R?\{0},C), if the following three orthogonality
conditions

/ Re(Ds, Vi) = / Re(De, Vi p) = / Im(y) = 0
B(0,R) B(0,R) B(0,R)\B(0,R/2)

are satisfied, then

ByP(p) > K (/ Vel + |o]?
B(0,10)

2
+/ VP + eV + 1Y ) :
B(0,D)\B(0,5) r?In”(r)
Proof: We decompose 1 into harmonics j € N, [ € {1,2}, with the same
decomposition as in (2.5) of [5]. This decomposition is adapted to the
quadratic form B{%CD (see equation (2.4) of [5]), which also holds if the
integral is only on B(0, D).

For j = 0, the proof is identical. For j > 2, | € {1,2}, from equa-
tion (2.38) of [5] (which holds on B(0, D) as the inequality is pointwise),
the proof holds if it does for j =1, 1 € {1,2}.

We therefore focus on the case j =1 = 1. We write ¢ = 11 (r) cos(6)+
i) (r) sin(f), with 11,19 € C°(RT*, R). The other possibility (I = 2) is
¥ = 1(r)icos(0) + o (r) sin(f), which is done similarly. We will show a
more general result, that is, for any ¢ = Vi1 € C°(R?\{0}, C) satisfying
the orthogonality conditions,

ByeP (Vig™?) >K< / o IV (Vap™)* + Vg™
B(0,10

02 2 2/, #0 4 |7/1¢O‘2

+/ V7P VA P+ e (70N Vi |+ e

B(0,D)\B(0,5) r



328 D. CHIRON, E. PACHERIE

With the previous remark, it is enough to conclude the proof of this
lemma. In the rest of the proof, to simplify the notation, we write ¥
instead of ¥7°, but it still has no 0-harmonic.

We note that, for D > Ry > 2,

/ V2 [VA |2 + 2962 (6) Vi [*+-43m(V Vi T7) - Tm(Veb)Re (1))
B(0,D)\B(0,Rp)
KW ?

>
1) > e

IV [* VA +29R¢® () Vi | —

/ I (V) Re(8)
B(O,D)\B(O,RO)

=5

2 JB(0,0)\B(0,Ro)
if Ry is large enough. We therefore take Ry > R large enough such that
(4.1) holds. For 2 > X\ > Ry, we define y, a smooth cutoff function such
that xa(r) =1if r <X, xa =0if r > 2, and |x}| < % In particular,
since Ry > 2, we have Supp(x’) C Supp(#) and Supp(1—17) C Supp(x).
This implies that

/B(O D)(l —M(IVel* = (1= Vi) lol” +2%e* (Vi)

[V V| + 2%Re? (0) V2 *

- / (1= (Vo) = (1= ViP)xagl® + 2% (Tixae)
B(0,D)
and

/B o, ¥ ORTATDIf — 22m(TV T Im()

= [ (RTITD o - 23m(TATE)Re0n0) I
B(0,D)
Now, we decompose

/ FIVBEVA|? + 293 () [Va[* + 49m(VVATL)Im (V) Re ()
B(0,D)
= [ ATV 2R W) VA 4 40m (T T I (V) Re()
B(0,D)

4 / EA(THEVAL + 2862 () [VA[* + 43m(VVT7) Im(Tep)9Re(1))),
B(0,D)
and by equation (4.1),

/ (L= x)A(VYVa[* + 298e* () [Va]* + 40m(V Vi VA)Im (V) Re ()
B(0,D)

> K/ (1= Q) VY PIVA [ + 2% () [V |,
B(0,D)
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Furthermore,

/ XAA(VYPVA? + 208 (1) Vi [* + 40m(VVA V1) Im(Vep)Re (1))
B(0,D)

= [0 AITCODPIAL 29 Gl
: +4Im(VV1 V1) Im(V (x29))Re(xa¥)))

- /B(o D) (Vo) — VX/\QM2 - ‘V(XA¢)|2)|V1|2
: —4Tm(VVAVL) - Vo dm(y)Re(xarh)),

and thus

B (Vi) > BEP (Vixaw) + K / oy O RITULIVE 4 M E @
B(0,D

L AT - Tl - TP
—4Im(VVIVL) - Vxadm(y)Re(xa))).

Since Vixaty € C(B(0,D)), we have B (Vixat) = By, (Vixav),
and since x» = 1 in B(0, R) and V¢ satisfied the orthogonality condi-
tions, so does Vi x\%. By Proposition 1.3, we deduce that

BEP(Vixaw) > K /B oo PO+ Varap

xa|?

+K/ IV 00 P VA P+ Re2 () [V 228
B(0,D)\ B(0,5) r21n*(r)

Now, noting that
Vo) P Vif* 2 K[ VeI A VAL = K| VPl [V,

and since xx = 1 in B(0,10), we deduce that

By P(Vig) > K (/( )IV<P\2+\¢I2+/ |vw|2|v1|2+9%2<w>IV14>
B(0,10 B

(0,D)\B(0,5)
(4.2) K [ 0T Gow) = Tl = TGP
+ | Im(VVAVL) - Vxadm(y)Re(xath)])

-K IVl val*.
B(0,D)\B(0,5)



330 D. CHIRON, E. PACHERIE

Since V', is supported in B(0,2X)\B(0, A) with [Vy,| < £, we have

||
B0,22\B(0,n) (1+7)?

/ VPPV < K
B(0,D)\B(0,5)
and by Cauchy—Schwarz we have that

/ AIm(VViVL) - VxaJm(y)Re(xay))|
B(0,D)
Y2 /
< K / |7 %62 '(/)
\/ B0,20\B0,%) (1+7)% J50,00\B(0,5) v
and

/Bw , M1V 000) = 0wP = [V 0o P)IViP)

2 2
<K / ¥ 2/ |V1ﬁ|2|V1|2+/ 9] ).
50,20\ B(0,0)(1+7)2 50,0\ B(0,5) B0,23)\B(0,n) (1+7)

Since % has no 0-harmonics we have that

2
/ Wl o K/ Vol VAl
B(0,0)\B(0,5) (1+7) B(0,D)\B(0,5)

We infer that there exists Dy > Ry a large constant such that, for D >
Dy, for all ¢ = Viyp € C(R?\{0},C), there exists A € [Ro, £¢] such
that

| 211,12
(4.3) / <e V"Vl
BO,2\B(0,n) (1+7)2 B(0,D)\B(0,5)

for some small fixed constant ¢ > 0. Indeed, if this does not hold, then
fB(O,D)\B(O,S) IVY[?[Va]? # 0 and

/ [yl >/D0 WP, 4
B(0,D)\B(0,5) (1+47r)? Ro (1+7)2

LIOgQ(fi%)J72 271+1R0

R 2
> / il 27"d7“
"0 2" Ry (1+7)
[toga (72 ) | 2
> -/ RNk
n=0 B(0,D)\B(0,5)

D
>e qlogg (70>J a 1) / IVerIr
2Ry B(0,D)\B(0,5)

> Vel |val®
B(0,D)\B(0,5)



COERCIVITY FOR TRAVELLING WAVES IN GP 331

for Dy large enough. Taking £ > 0 small enough, with equations (4.2)
o (4.3), we conclude the proof of this lemma. O

A consequence of Lemma 4.2 is that, for a function ¢ = Viy €

C*(R%\{0},C) satisfying the three orthogonality conditions in Lem-
ma 4.2 and D > Dy, then

loc
(4-4) Bv1 Plp) > K(D)H@Hiﬂ(B(O,D))'

4.3. Coercivity for a travelling wave near its zeros. We recall
from Lemma 4.1 that, for p € C°(R?\{d.€1, —d.é1},C), we have

(La.(p); ¢) = /R2(1 = 0)(|Vl* = Re(icdey ) — (1 — Q) o] +2%e* (Qc))

— [ Vi (Re(VQQe) ¢ — 20m(VQQe)Re(¥))Im (1))

RrR2

+/R € Re(16) T ()| Qo ?
+/ (VO PIQel? + 29362 () Qel )

/R 0(VQeQe)In(V) Re () + 26| Qe [T Dy 1) Re(1).

For D > Dy (D > 0 being defined in Lemma 4.2), we define, with ¢ =
QcY,

BlS1P (5) .= / (=) (VP — Re(icderpp)
B(£d.e1,D)
(- QP el + 2% (@)
- / OV (R(VQLQ0) [~ 23m(VQ.0)Re (1) Im (1))
B(+d.ei,D)
+/ Dy Re($)Im(1)|Q. 2
B(+xd.ei,D)
VIR + 27 @R
(4T (VQeQe)Im (V) Re(1)
+ 20| Q| *IM(Dn, ) Re (1)) ).
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We infer that this quantity is close enough to Bif/’icf’ (¢) for coercivity

to hold, with f/il being centred at icice_f, the zero of Q. in the right
half-plane.

Lemma 4.3. There exist R, Dy > 0 with Dy > R, such that, for D >
Do, 0 < ¢ < co(D), and ¢ = Qb € C°(R?\{d.e1},C), if the following
three orthogonality conditions

[ mdonig=[  we@.ie- [ (1) =0
B(dcei,R) B(dcet,R) B(dcel,R)\B(d.e1,R/2)

are satisfied, then

1
BS:LD(W) > K(D)H(pHiIl(B((ice_{,D))'

Proof: First, note that we write ¢ = Q.1 and not p = V31, as we did
in the proof of Proposition 1.3. Hence, to apply Lemma 4.2, the third
orthogonality condition becomes

/ Jm (1/;9 ) =0.
B(deat,R)\B(dcet,R/2) 1%

With Lemma 2.15, we check that

im0
B(de&?,R)\B(del,R/2) Vi

/ ~ ~ ﬁmw)‘
B(d.&{,R)\B(dcet,R/2)

+0cso (DYl 2 (pd.zt, r)\ B(do7t, R 2))

<

[ amw)
B(dcei,R)\B(dcel,R/2)

D
+ 0c—>0(1)||¢||H1(B(Jcc?1’,D))’

therefore, by a standard coercivity argument, we can change this orthog-
onality condition, given that ¢ is small enough (depending on D). With
equation (4.4), it is therefore enough to show that

loc loc D 2
|Bg.” () = By P ()| < ocmo(Wlell g 5a,e1.0)
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to complete the proof. Thus, for ¢ = Q.9 € C (R2\{Jce_1>}, C), writing
®= Vl({%ﬂ’) in B%ZCD (), we have

loc oc
Bg:"P () = ByP (#)

= sy PP QTR 4200 @)~ (P

deei,D)

- /B Vi - (Re(VQQ)WI? — 29m(VQuQe)Re(t) Im(1))

—2Im(VVAVI )R (C\i w) om (%1 ¢)>

from
N /B €0y Re(4)Im()| Qe
/

Qe
Vdf

1

N <9%(VV1 Vi)

n(IVe*|Qcl* + 20Re® (1) |Qc| )

Q \I\ 2 2<Qc ) s
V ~ 2% — C
('Ca,mn(‘ (‘/lw> e Vlw 9 |>

4 /B D(AT(VQQe) T (Vi) Re() + 2¢|Qe[2Tm (D ) Re ()

. o Q Q
Jarn o (om0 @m (3 (Fo0) e (o))

With Theorem 1.1 (for p = +00) and Cauchy—Schwarz we check easily
that

/ oty DD+ QUL ~ ITAll” + 20" @) ~ e (i)
B(dcei,D

2
oro(Well3 (5id.zt.0)-

<
Since V1 is supported in B(d.eq,2)\B(d.e1,1), still with Theorem 1.1
(for p = +00), we check that

/B(cica’,D)

<K )
B(dce1,D)

Qe

1

Vi Re(VQeQo)|¢f* — ViiRe(VViTA)

2

Vi Re(VQQo) ¢l — ViRe(Vi 1)

<.,
\%1

V1 - Re(VQQo)— ViRe(VVA VL) ‘Q/E

2
: el e (sed.zt,0)

L0 ((deet, D))

< OcDao(l)||80Hi11(B(JCe—1’,D))‘
We check similarly that the same estimate holds for all the remaining
error terms, using the fact that n is supported in R2\B(dce_1>, 1). O
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Note that, by a density argument (see the proof of Lemma 3.4),
Lemma 4.3 holds for any ¢ € H'(B(0,D)). Now, we want to remove
the orthogonality condition on the phase. For that, we have to change
the coercivity norm.

Lemma 4.4. There exist R, Dy > 0 with Do > R, such that, for D >
Dy, 0 < ¢ < (D), and ¢ = Q. € C=(R2\{d.e1},C), if the following

two orthogonality conditions
/ Re(Do, V1 T10)) = / Re(Do, V1T10) = 0
B(deel,R) B(dcei,R)

are satisfied, then
B (@) = KO) [ elQ + e wlQl
B(dce1,D)

Proof: Take a function ¢ € H'(B(0, D)) that satisfies the orthogonality
conditions

[ @)= [ R0, TT)
B(dcei,R)

B(d.&,R)

-/ () = 0,
B(dce1,R)\B(dce1,R/2)

IOCLD

and let us show that By ™" (¢) > K||<p\|§{1(3(dce_{,D)). Take ey, eq,63 €R
and we define

SZ =p = 6181‘1 QC - 52812 Qc - E37:Qc.
We have, for ¢ = Q.1, by Theorem 1.1 (for p = +00) and Lemma 2.15,

/ ) Re(y, ViVi1)) — / me(alechw)‘
B(dcei,R) B(dcet,R)

- Wi
< / Re (@Jﬁ—%ﬁ - alecQZJ)
B(deel,R) Qe
- W
S K (|00, Vis — 02, Qe ) el 1 (5(d.z1,0)
Qe Lo (B(dcel,R))

D
< ocmoWlell g1 (pd.z,py)-

Similar estimates hold for fB(dCe_{’R) Re(y, Vi Vi), By the implicit func-
tion theorem, we check that there exist 1,232,353 € R with |g1| + |ea| +
les| < ocso(D@ll g1 (5(d.zr,py) such that ¢ satisfies the three orthogo-
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nality conditions of Lemma 4.3. We deduce that, since (by Theorem 1.1
for p = 400)

HamQCHfrl(B(dce—{,D)) + Hazch”Hl(B((ice—{,D)) + ||chHH1(B(JCe—{,D)) < K(D)7

BoeP(#) 2 Bo: P (8) = oo (W@l (pea.et.on
> K(D) 8l (a0 — 00Dl 32,00
> KDl pa.at,00 = ool iz,
> K(D)lelh pdoet oy

given that ¢ is small enough (depending on D). For ¢ = Q.1, we infer
that

/~ VULIQel" + REBIQel* < KDYl et o
B(d.&1,D)
Indeed, we have

REWIQ <K [ 8ee) < Kol et
/B(Jce_{,D) ‘ B(d.51.D) H1(B(d.&,D))

and

[Pl = we-voulien!
B(dcet,D) B(dcéef,D)
<K (/ ) IWI2+/ _ |Vch2QCQ>
B(d.ei,D) B(d.et,D)

<k ([ wels [ e,
B(dce1,D) B(d.e1,D)

We deduce that, under the three orthogonality conditions, for ¢ = Q. v,

[ @)= [ R0, 7T)
B(dcei,R)

B(dc&,R)

= / Jm(vy) =0,
B(dce,R)\B(dce],R/2)

then
B P (@) = KO) [ VeQ + eIl
B(dce1,D)
Now, let us show that for any A € R, p € Hl(B(che_1>, D)),

loc . loc
BQCLD(QO —iAQe) = BQCLD(Qﬁ)‘
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For ¢ € C°(R?,C), we have Lg_(p — iAQ.) = Lo.(¢) € CZ(R?,C),
thus (L, (p — iAQ¢), ¢ — iAQ.) is well defined, and

(Lq.(p —iAQe), p —iAQe) = (Lq.(¢), p — iAQ¢)
= (¢, Lg.(p —iAQc)) = (Lq.(¥), ¥)-

With computations similar to that of the proof of Lemma 4.1 and by
density, using V(¢ —i)\) = V¢ and Re(y —iX) = Re(v), we deduce that
Bg (o —iXQe) = By (9).

Now, for A € R, ¢ = p —tAQ., ¥ = ¥ — 1\, p = Q., we have
B " () = B " (9),

B(dcei,D)

/ ] \wwszc|4+w2<w>|Qc|4:/ V2 Qel* + e ()[Q.*
B(dcei,D)

and

/ Re(VILVith) = / Re(VIAVID).
B(dcei,R) B(dcei,R)

For this last equality, it comes from the fact that |’ B(d.elR) iRe(in/ﬂ?il) =

0, since ERe(in/lVT) has no 0-harmonic (see Lemma 2.1). We also check
that

/ Im(e) = / Im() + KA
B(d.&1,B)\B(de,R/2) B(d.&1,R)\B(de,R/2)

for a universal constant K > 0. Therefore, choosing A € R such that

fB(cice—{ R\B(d.71.R/2) Jm(y)) = 0, we have, for a function ¢ = Q. that
satisfies

[ @ = [ @, 7o) =0,
B(dc&f,R)

B(dcei,R)
that

loc loc ~
BQCLD (p) = BQCLD (?)

> [P el

B(d.&f,D)

=[Pl e wad”
B(d.&f,D)

This concludes the proof of this lemma. O
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4.4. Proof of Proposition 1.4. From Lemma 4.1, we have, for p =
Q. € C(R2\ {d.ef,—d.ei},C) that

Ba.(p) = /Rz(l —0)(|Vel* = Re(icdz, 0p) — (1 — |Qcl*)liol” + 29Re*(Qeyp))

— [ Vi (Re(VQQe)|Y|* — 20m(VQcQc)Re(v)Im(v))

R2

+ [ et (1) e
+ [ VI + 2 )lQ )
+ [ T QuQE)I(T) () + 2e Qe IOy )R

We decompose the integral in three domains, B (j:czce—f, D) (which yield
B () and R?\(B(d.e{, D) U B(~d.e1, D)) for some D > Dy > 0,
where Dy is defined in Lemma 4.3.

Then, with the four orthogonality conditions and Lemma 4.3, we check
that
Bt (@) 2 KD) [ VIR + nEwlQul

B(dcet,D)
and, by symmetry of the problem around B(id};?{,D), since Q. =
—V_1(- + de@y) 4 0c—0(1) in L®(B(—d.e1, D)), and checking that mul-
tiplying the vortex by —1 does not change the result, that
B @) 2 KD) [ iR+ e Wl
B(—d.et,D)
Furthermore, there exist Ky, K> > 0, universal constants, such that,
outside of B(d.e1,1) U B(—d.et,1) for ¢ small enough, we have
K1 > Qc|* = K>
by (2.12). We also have
_ 1 1
Im(VQ:Q:)| < K = =
(VR < K (5 + o)
by (2.10). With these estimates and by Cauchy—Schwarz, for D > Dy,

2¢|Qc|*Im(p1p) Re (1))

/Rz\(B@ce—{,D)LJB(dee—f,D))

>k | V2 1Qel* + Re2()[Q. |,
R2\(B(dc&{,D)UB(—dc&{,D))

and

/ ] ) 4Im(VQ.Qc) - Tm(Vip)Re(t))
R2\(B(d.&},D)UB(—dce],D))

> V2 [Qc|* + 2e® (1) |Qe| .
(1+D) /R2\<B(Jca>,D>UB<—«ZCa>,D>>
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Therefore, taking D > Dy large enough (independently of ¢ or ¢y, D >
10K + 1) and ¢ small enough (c < 1), we have

/ - VPRI + 2R (w)] Q.
R2\(B(d.e7,D)UB(—dc&{,D))

n / 4Im(VQ.Qc) - Im(V1p)Re(v)
R2\(B(d.e1,D)UB(—dce1,D))

+2¢|Qe|*IM(Dry 1) Re (1)

> K IV [*|Qc]* + Re? (1) |Qc| .

R2\(B(dcet,D)UB(~dcel,D))
— oo (M2\ 7 =7 e
We deduce that, for ¢ = Q.9 € C°(R*\{d.ei, —d €1}, C),

Bq.(p) > Kll¢|ic

/  Re(@aTiTiy) = / Re (0, ViV10) = 0,
B(dce1,R)

B(dcel,R)

/ 9%2(811‘7_1‘7_1’(#) = / D%e(anV_lV_W) = 0.
B(—dcel,R) B(—dc&i,R)

We argue by density to show this result in Hg,_. From Lemma 3.1, we
know that || - ||c is continuous with respect to | - ||, . Furthermore, we
recall from Lemma 3.2 that

[ 190 AV < K@l
B(d.7,R)

and similar estimates hold for

/ me(azgﬁﬁd))a / me(a‘rlv—lvflw)
B(d.&{,R)

B(—dc&l,R)

and

/ Re(Dry Vor1Vo11h).
B(~de&,R)

In particular, we check that these quantities are continuous for the
norm || - ||z, , and that we can pass to the limit by density in these
quantities by Lemma 3.4.



COERCIVITY FOR TRAVELLING WAVES IN GP 339

We are left with the passage to the limit for the quadratic form.
For ¢ € Hg,, we recall from (1.3) that

Ba.(e) = [ | IV6l" = (1= 1QePlel* + 2 @cp)
te / (1 — ) Re(i0s, 0) + / DR (102, Qe e |
R2 R2
~2c [ umewamon, vlQuE — ¢ [ D neramlQ.®
R2 RZ

—c [ ntewamuo,, Qo)
]R2

Following the proof of Lemma 3.3, we check easily that, for o1 = Q. 91,
02 = Q2 € Hg,, we have

[, 91T+ 101 = 1QeP)oia] + 1e(@epn) he @)
+ / (1= )| Re(iBay 9172)| + / D|Re(iDy Q)| 1]
R2 R2
+ / IRt Ty ]| Qul? + / |0y Petn I | Q
R2 R2

+ / n[PReths Tmthade, (|Qe )]
]RQ

< K(©)llpr1lleg, @2, »

and thus we can pass to the limit in Bg, by Lemma 3.4. This concludes
the proof of Proposition 1.4. O

5. Proof of Theorem 1.5 and its corollaries

5.1. Link between the sets of orthogonality conditions. The first
goal of this subsection is to show that the four particular directions
(02, Qe 00y Qey 20:.Qc, 0,1Q..) are almost orthogonal to each other near
the zeros of ()., and that they can replace the four orthogonality condi-
tions of Proposition 1.4. This is computed in the following lemma.

Lemma 5.1. For R > 0 given by Proposition 1.4, there exist K1, Ko >
0, two constants independent of c, such that, for Q. defined in Theo-
rem 1.1,

ki< [ 0.,Q: + | 1022 Qc
B(+dcel,R) B(+dcel,R)

+/ |c?8.Q.|? +/ B lcd,1 Q.|* < Ko.
B(+d.el,R) B(+dcet,R)
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Furthermore, for A, B € {04, Q¢,02,Q¢, ?0:Qc, 0.1 Q.}, A # B, we
have that, for 1 > By > 0 a small constant,

/ Re(AB) = 0co(c™).
B(dcel,R)UB(—dcel,R)

Proof: From Lemma 2.2, we have, in B(:I:c?ce_f,R), that (for 0 < o =
1—08p<1)
Qe(z) = Vi(x — deel)Voi(z + deel) + ocoso(c™)
and
VQ.(z) = V(Vi(z — deel)Voi (x4 deel)) + 0cso(c™).
In this proof a o._o(c?) may depend on R, but we consider R as a
universal constant. From Lemmas 2.1 and 2.13 and equation (2.7), we
show that, by the mean value theorem, in B(:I:dce—f, R),
Qe=WV_1+ Ocao(Cﬁo) = Vi1 + OCHO(CBO) = Vi + Ocao(CBU)
and, similarly,
VQe = Vi1 + 0cs0(c™).
Thus, in B(j:cflvce—f, R), we have

(51) ach = azl Vj:l + OCHO(CBO)
and
(5:2) B2y Qe = ay Vier + 0cms0 (™).

Furthermore, by Lemma 2.3, we have in particular that in B(id;?f, R),
Qe = (14 0c0(c™))8a(Vi(x — det)Voi(z + det)) g=a, + 0c—o(c™).
Thus, in B(:I:c’l;e_f7 R), with Lemmas 2.1 and 2.13, we estimate
(5.3) 0.Qc = Ty Va1 + 0c—0(c™).
Finally, from Lemma 2.7, we have
¢0,.Q. = —cat - VQ.

with 2t = (=, 21). In B(+d.e1, R), we have, since cd, = 1400_,0(c™)
and using Lemma 2.13,

cxt = :Fe_z> + ocﬁo(cﬁo).
Therefore, in B(j:c’ivce_f, R), we have
(5.4) 0,1 Qe = 02, Vi1 + 0c-0(c™).

Now, from Lemma 2.1, we have

(5.5) K </ \azlffﬂ|2+/ |02y Vi1 |* < Ko
B(+d.&l,R) B(+dcel,R)
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for universal constant Ky, Ko > 0 (depending~ only on R). By a change

of variable, we have, writing Vi, = p(F+1)e?*1 (with the notations of
Lemma 2.1),

5 i P (Fx1)  E s y
(5.6) Oz, Vi1 = (cos(Oil) (Far) o sin(0+1) | Va1
and
- (s P (Fe1) | i ~ ~
Oy Vi1 = (sm(@il)ip(fil) + 0 cos(0+1) ) Vg1.
Since
JE— - - /[~ ~
Re(B, Vi1 Oy Var) = 2008(0a1) sin(far) L TED (77,2,
Fr1p(F1)
by integration in polar coordinates, we have
(5.7) / Re(Da, Vit Doy Vet ) = 0.
B(*dcet,R)

Combining (5.1) to (5.4) with (5.5) and (5.7), we can do every estimate
stated in the lemma. O

With (5.1) to (5.4), we check that these four directions are close to the
ones in the orthogonality conditions of Proposition 1.4. This will appear
in the proof of Lemma 5.5. Now, we give a way to develop the quadratic
form for some particular functions.

Lemma 5.2. For ¢ € C°(R2\{d.e1,—d.e1},C) and A € Span{d,, Q..
8(1,‘2 Qc, 0:Qc; Ocr Qc}; we have

(La.(p+A)p+ A) = (La.(¢),¢) + (2Lq.(A), ) + (Lq.(A), A).
Furthermore, (Lo, (¢ + A),o + A) = Bg. (¢ + A) and (Lg,(A),A) =

Proof: Since ¢ € C>=(R2\{d.ei,—d.ei},C), it is enough to check that
f’Re(LQc (A)A) eL! (szR) for A € Span{afbl Q678132Q07 86@67 acL Qc} to
show that
(La.(p+A), o+ A) = (La.(9), p) + (2Lo.(A), p) + (Lq.(A), A).
From Lemma 2.8, we have, for A = p10,,Qc + 1202,Qc + 130.Qc +
,LL4aCJ_ QC7 that
LQC (A) = M318I2QC - /1442.811 Qc-

Now, with (2.15) (that holds also for A by linearity) and (2.9), (2.10),
we check easily that Re(Lg,(A)A) € L*(R?,R).
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Now, from Subsection 3.3, to show that for =Q.¥ € Hy N C?*(R?,C),
we have (Lg,(®),®) = Bg,(®P), it is enough to show that the inte-
gral [o, O, (NReWImU|Q,[?) is well defined and is 0. For & = A or
® = ¢ + A, this is a consequence of (2.15), Lemma 2.15, and ¢ €
C(R?\{d.e1, —dcei},C). D

5.2. Some useful elliptic estimates. We want to improve slightly
the coercivity norm near the zeros of Q.. This is done in the following
lemma. The improvement is in the exponent of the weight in front of f2.

Lemma 5.3. There exists a universal constant K > 0 such that, for
any D > 2, for Vi centred at 0, and any function f € C°(R?\{0},R),
we have

[ pWlde<k [ P £ e
B(0,D) B(0,D)
In particular, this implies that, for ¢ € C>(R*\{0},C),
[ om@mila <k [ eI+ @l de,
B(0,D) B(0,D)

This lemma, with Lemmas 2.15 and 3.4, implies that, for ¢ = Q.9 €
HQC’

/RQ Re? (1) Q.* < Kl

Proof: Since |V4]| > K > 0 outside of B(0, 1), we take y a smooth radial
non-negative cutoff with value 0 in B(0, 1) and value 1 outside B(0,3/2).
We have

/ XAl da < K/ Vil da < K/ PV da.
B(0,D) B(0,D) B(0,D)

In B(0,2), from Lemma 2.1, there exist K7, K5 > 0 such that K; >
“:—}l > Ks, and thus

[, a=0rmfas < x ([7 [ a-xensantar) .
For g € C°(R\{0},R), we have
Ja=xong et ar==2 [ o =g ar

) %2 0 (1_X(T))5rg(r)g(r)r5 dH_%/O X/(T)QQ(T)TE dr,

and since x'(r) # 0 only for r € [1, 2], we have

2 2
/ X (D) dr < K / ) dr,
0 (0]
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and, by Cauchy—Schwarz,

/02(1— X(P)IOrg(r)g(r) | dr < \// (9-9) ’“Ed’“ 92(’")’"5‘"'

We deduce that

| a-xong ot ar < i (f ‘oot [ o).

and taking, for any 6 € [0,2x], g(r) = f(rcos(6),rsin(d)), and since
r < K|Vi| in B(0,2) (by Lemma 2.1), by integration with respect to 6,
we conclude that

/ (1—x)f2|V1|3dx<K/ VFRIAL + F2VAl de,
B(0,D) B(0,D)

which ends the proof of this lemma. O

We estimate here some quantities with the coercivity norm. These
computations will be useful later on.

Lemma 5.4. There exists K > 0, a universal constant independent
of ¢, such that, if ¢ 1s small enough, for Q. defined in Theorem 1.1, for
¢ = Q. € CX(R*\{d.e7, —d.e1},C), we have

K (1) el

< K@l

Re(1)IM(VQeQe)| <

R2

and

Im(y)Re(VQQe)

R2

Proof: By Cauchy—-Schwarz and Lemmas 2.12 (with a slight modification
near the zeros of Q). that does not change the result) and 5.3,

Im(VQ.T)?

<[ ewiap [ ETe2E

<xm (1)) [ mewier
Kln( )Hsollc

We now focus on the second estimate. We take x a smooth function with
value 1 outside of {7 > 2} and 0 inside {7 < 1}, and that is radial around
+d.ef in B(:l:dce_f, 2). We note that

Re(VQ.0.) = %vqgcﬁ) = %V(X(|Qc|2 =1+ (1= 0lQe*) + %Vx,

Re(¥)Im(VQ.Qe)

R2
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thus, by integration by parts, we have

[ am@Re(vQ.Q =3 [ m@TOQ - 1)+ (1= 0IQ. )
R2 R2

1
+= VxIm(e)
2 Jp2

— /R (TN )5 /Rf“‘(W)”_X)'Q”'Q

1
+3 vxjm(d))a
2 Jp2

and, since x is radial around +d,.e7 in B(idce_f, 2),

[ om@vx= [  Im@)vx
R?2 B(dcet,2)UB(—dcet,2)
Since Vy is supported in

(B(de1,2) U B(—d.et,2))\(B(d.e1,1) U B(—d.e1, 1)),
by equations (2.12) and (2.22) and Cauchy—Schwarz,

<)/ [ vk,
R2
Now, by Cauchy—Schwarz, we check that
: <K\/ [ voriad: [ - x>2<K\/ VBRI

Furthermore, we check that (y being supported in {7 > 1})

’/ Im(V)x(1Qe)” 4‘ \// IVy[2x / (1Qc* —1)2

Indeed, we have, from equation (2.6) (for o = 1/2), that

K

2

Q-1 ————,
H Cl | (1 f)g/g

Im(y*")Vy

/B(«iceﬁa)us(—dceﬁ,z)

[ e -

which is enough to show that

/ (1Qe —1)? < K.
R2

Combining these estimates, we conclude the proof of

Ky [, IV0R1Qd < Kllgle 0

Im(¢)Re(VQQe)| <

R2
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5.3. Coercivity result under four orthogonality conditions. The
next result is the first part of Theorem 1.5, and the second part (for coer-
civity under three orthogonality conditions) is done in Lemma 5.6 below.
We recall that, in B(+d.e1, R), we have v79(z) = ¢(z) — O+ (Fyy)
with 401 (71;) the O-harmonic centred around +d.e7 of .

Lemma 5.5. There exist R, K,cy > 0 such that, for 0 < ¢ < ¢o and
p=Q € Hg,, Q. defined in Theorem 1.1, if

SRE/ 6301 QCQCQZJ#O :me/ 8172 Qchw#o :()7
B(dcel,R)UB(—d.21,R) B(dcel,R)UB(—d.&l,R)
i)‘{e/ 0cQcQ )70 :fﬁe/ 0,1 QcQcp#0 =0,
B(dcel,R)UB(—d.&{,R) B(dcel,R)UB(—dce{,R)
then

Baq. () > Kll¢l.

Proof: For ¢ = Q. € C’é’o(Rz\{Jce_f, —&;Ef}ﬂC), we take g1, €2, €3, €4
four real parameters and we define

a3101 QC CQaCQc 812 Qc C@CJ_ QC
+e€ +e& + e .
Q. Q. Q. T Q.

Since, by Lemma 2.8, 0y, Q¢, 0z, Qc, 0cQc, 0. Qc € Hg,, we deduce that
Q:Y* € Hg,. Furthermore, we have

/ Re(Ds, Vi Vi +) = / %Re(De, Vi Vh 1))
B(dcei,R) B(d.e1,R)

~ Vi
azl Vlazl Qcé)

Y =y ter

+

m

-

e

=
2
)
/N

axlvw Ok QCQ >

0o, Vi, Qe
(do7t ) ( 10 Q)

8951‘/108 LQCQ ) .
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From (5.6), we compute

— ~ o (F i~ —
Oe, ViV = <cos(el)’; ((Fll)) - s1n(91)> Va2,
|2

and in particular, it has no 0-harmonic (since |?1 is radial). Therefore,

/ Re(0r, Vi Vi) = / Re(0r, Vi V1 70)
B(dce1,R)

\
ml

ale QC’([)#O)
+ Re((Day Vi Vi — 0y QeQe) ™).
B(dcel,R)

By Cauchy—Schwarz and equation (2.23),

/| etk Qv
(5.8) /B(dcet,R)UB(—dcet,R) B(d.&{,R)UB(~d.&],R)

< Kllele-
Here, K depends on R, but we consider R as a universal constant. We
note, by equations (5.1), (5.3), and (5.8), that

1
79%/
2 JB(.at,R)UB(~d.5,R)

N / ; Re(92, QeQcp?0) + 0cso(¢™) Koz,
B(dcei,R)

(02, Qe — CQBGQC)QC#’#O

where 8y > 0 is a small constant. We suppose that

%e / Do, Qo™
B(dcet,R)UB(—dcet,R)

— %t / 0.Q.Qu070 =0,
B RUB(—d.et, )

therefore

/ C Re(00 QuQet) = 00 () K ]2
B(dcel 7R>

Furthermore, by equations (2.7), (2.23), and (5.1), Lemma 2.15, and
Cauchy—Schwarz,

/ C Re((00, ViVh - 00, Q™)
B(dcei,R)

<0eo(c ﬁ“)\/ [70121Qc?
B(dcel R)

<oesn(¢™)K]fpllc.
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Now, from Lemma 2.15 and equation (5.1), we estimate

v _
/ NRe 811V1311Q3f1 = / |311V1|2 + 0c0(1).
B(d.&1,R) Qe B(d.&1,R)

With (5.2), we check

~ Vi
/ Re [ 92, V100, Qe — | = 0cs0(1).
B(d.e1,R) Qe

Similarly, by (5.3) and Lemma 2.15, we have

_ T _
/ Re 611 Vlc28ch ! = _/ ‘6z1 ‘/1|2 + OC*}O(]-)
B(d.#t,R) Qe B(d.#t,R)

and by (5.4), we have

/ Re <‘9Ij71¢ac¢c,)cE = 0c50(1).
B(d.e1,R) Qe

Thus, with (5.5) we deduce that, writing

K(R) = / 180, Vi ()2 di,
B(0,R)

since

K(R) = / 00, Vi ? = / 100, V1 2
B(dcet,R) B(—d.&{,R)

-/ 0.,V = [ 10 V12,
B(dcei,R) B(—dcéei,R)

we have
[ R0, TiVe) = (e - K ()
B(dcei,R)

+0c0(1)(e1 + €2 + €3 + £4) + 00 (™) Ko |c.

Similarly, we can do the same computation for all the orthogonality
conditions, and we have the system

fB(JCe_{,R) me(aﬂcl,‘z,‘};w*)

o 1 -10 0 €1

b Re(Opy, Vo1 Vo19h*
fB}dce—{,R) m((al 'VVl/vaﬂf . K(R) (1) (1] (1) 1 |Foe—0(D) Z
- ¢(0z * — .
B(de#,R) 2 00 1 1 €4

IB(ﬂiCe—{,R) Re (D Vor Vor9p%)

+0cm0(¢™) K| ole-
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Therefore, since the matrix is invertible and K(R) > 0, for ¢ small
enough, we can find &1, e9,3,64 € R such that

(5.9) ler] + lea| + les] + leal < 0emo(¢™) K]l

and

/ i me(az1 ""/'1’"}'1'1/]*) = / %e(az2f‘}zﬁw*) =0,
B(deei,R)

B(dcet,R)

/ 9%2(611‘771‘7711&*) = / SRe(azzf/,lfLﬂ/)*) = 0.
B(—dc&f,R) B(—d.&{,R)
Therefore, by Proposition 1.4, since Q.9* € Hg_, we have

Ba. Q") = K||Qey™ 2.
From Lemma 2.9, we have
192, Qelle + 11922 Qelle + I*0:Qcllc + ¢™/*[|cder Qclle < K (Bo),
hence, since Qo (1" — 1) = €195, Qe + £2620,Q + €302, Qe + 246001 Qo
QeI < Qe 12 + 1Qe(¥ — ¥)IE
<1Qet™[1E + K (Bo)(|e1| + lea| + lea] + ¢/ %|ea])?,

therefore, for ¢ small enough, by (5.9), we have

Qv |2 > K||Qet||2
and

FinaHY7 we compute, since Qc(d}*w*) = 518901 Qc+52628ch+538x2Qc+
€4¢0,1 Q¢, by Lemma 5.2, that

Bq.(p) = Bq.(Qct") + Bo.(Qec(¥ — ¥7)) + 2(Qe¥”, Lo, (Qec(¥ — ¥7))).-

Furthermore, we compute, still by Lemma 5.2,

<ch*7 LQc (Qc(w - w*)» = 7BQc(Qc(w - 1/1*)) + <Qc¢a LQc (Qc(w - 1/1*)»7
therefore

Bq.(¢) = Bo.(Qct") — Bo. (Qe(¥ — ")) + 2(Qct, Lq. (Qe(y — ¥%)))
> K| Qe[| — Bq. (Qc(¥ — ¥%)) 4+ 2(Qct, Lo, (Qe (v — ™))
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We have
Qe — V") = —(£102;, Qe + £26°0cQe + €302, Qe + £4¢0,. Q.),
and from Lemma 2.8, we have
Lo, (Qe(t — ¥%)) = —%€2102y Qe + 24102, Q..
We compute
B, (Qc(t) — %)) = (— (€102, Qe + £2¢°0cQc + €302, Qc + £4¢0,1 Qc),
— ?2100, Qe + *€4i0s, Qc),
and with (2.3), we check that
Bo.(Qe(¥ —v")) = €3¢ (Lq.(9:Qc), 0:Qc) — €ic*(LQ. (9.1 Q) 02 Q)
With Lemma 2.10 and equation (5.9), we estimate
1BQ. (Qe(v — ¥™)| < K (€5 + 1) < ocmo(1)]| Qe 2.
Finally, we have
(Qet, Lo (Qe(v = 97))) = (Qeth, =’ 22102, Qc + €41z, Qc).-
We compute
Qb iVQe) = | Im()R(VQQL) ~ < [ Re(w)Im(VQ.Q),

and to finish the proof, we use

|c{Qc,iVQe)| < Kcln <%> 1Qctllc

for a constant K > 0 independent of ¢ by Lemma 5.4, which is enough
to show that

(Qet, Lo, (Qe(t — ™)) < 0cmso(1)(|e2] + lea))[Qetblle < 0emo(1)[Qet]IE,

since ¢In(2) = 0.0(1). We have shown that, for ¢ € C(R2\{d.e7,
—&;6_1)}7((:)

Bq.(¢) = K||Qev||2 — Ba. (Qe(v¥ — ¥™)) + 2(Qct, La, (Qc(¥ — ™))
> (K — 0c-0(1)) Qv
> T lQuvl

for ¢ small enough. Now, by Lemma 3.4, we conclude by density as in
the proof of Proposition 1.4. O
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5.4. Coercivity under three orthogonality conditions.

Lemma 5.6. There exist R, K > 0 such that, for 0 < 8 < Bo, Bo a small
constant, there exist co(8), K(B8) > 0 with, for 0 < ¢ < ¢o(8), Q. defined
in Theorem 1.1, ¢ = Q. € Hg_, if

SRe/ O, QCQC'l/ﬁEO:SRe/ B 02, Qc QY70 =0,
B(d.

B(dcet,R)UB(—dcet,R) &, R)UB(—d.&],R)

Re / 0.Q.Q.7 = 0,
B(dcei,R)UB(—dce7,R)

then
Ba.(¢) = K(B)**||g||2.

Proof: As for the proof of Lemma 5.5, we show the result for ¢ = Q.9 €
C°(R2\{d.e1,—d.ei},C), and we conclude by density for ¢ € H._.
For ¢ = Qctp € C(R2\{d &1, —d.e1},C), we take &1, 9, £3, £4 four

real parameters and we define
Oz, Qe 028ch Oz, Qe 0,1 Qe

@ e e Q
With the same computation as in the proof of Lemma 5.5, we check that
Q" € Hg,, and using similarly the estimates of Lemma 5.1, we can
take €1,€9,€3,64 € R such that

Y=t e

€2 + &4

le1] + le2| + les| = ocmso (™) [Iplle,
lea] < K||¢||c and such that ¢* satisfies the four orthogonality conditions
of Lemma 5.5. The estimates on €4 are with a constant independent of ¢
because ¢d,. Q. is of size independent of ¢ in B(d.e, R) U B(—d.et, R).
Therefore,
(5.10) Bq.(QeY") > K[|Qev"le.
We write
T=¢10:,Qc+ 6262(9ch ~+ €302, Qc,
and we develop, by Lemma 5.2,
Bq.(Qct)) = Bq.(Qcv™) + ¢*e1Bq. (9.1 Qc) + Bo.(T)

—2(QcY", ceaLq. (9.1 Qc))

—2(Qe¥”, Lo (T)) + 2c24(Lq (0,1 Qe), T).
Using Lemmas 2.8 and 2.10, we compute

1Ba.(T)| = [(Lq.(T), T)| = [{Lq.(2¢*0eQc), £2¢*0eQc)|
= e3¢ [(Lq. (0:Qc), 0eQe)| < Ke3e® = ocmo(®727) | 2.
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Now, we compute, by Lemma 2.8, that
(Qet”, ceaLq. (0p1 Qe)) = £ac™(Qet”, 02, Qc).
From Lemma 5.4, we have
e(Qetr”, 102, Qe) | < 0cmso(e' ™) " e,
therefore
Qe ceaLlq. (0e1 Qe))| < ool /)" el el
Similarly, we compute
(Qet)”, Lq.(T)) = (Qetp™, €26 L. (0:Qe)) = £2¢”(Qet)”, 102, Qc)-

Still from Lemma 5.4, we have

e{Qets”, 10:,Qc)| < Keln (%) "l
therefore
(@t La. ()] < Kleale*n (1) 16"l < 0cmn ()" el
Finally, we compute similarly that
clea(Lo, (0,1 Qc), T)| =clea(icdu, Qe, T)|=c?|e4(i8s; Qe €260 Qe 4302, Qc)).
Using Lemma 5.4 for ¢ = ¢?0.Q, (with Lemma 3.4), we infer

(102, Qe ¢ 0eQe)| < K||c*0eQellc,

and [|c?0.Q.|lc < K by Lemma 2.9. Furthermore, since Q.(—z1,xs) =
Qc(x1,x2), we have

(1021 Qc, 02, Qc) = 0.
We conclude that
(5.11)  Jeea(La, (0.1 Qc), T)| < Kc?lea|(le2] + [ea]) = oco(c*T7/%) |||

Now, combining (5.10) to (5.11), and with Bg, (0.1 Q.) = 27 + 0c—0(1)
from Lemma 2.10, we have

Ba.(9) = Kll¢™ |12 + Keic® — 0cmo(c®T/2)]0l|2 — 0cmso(c"7?)lo" lcllollc-
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Similarly as in the proof of Lemma 5.5, we have from Lemma 2.9 that,
for any By/2 > 8 >0,

lelle < Kll@*||& + K(B)eie™?,

hence
eic® = KB P (lelle = #7112,
therefore
Ba.(p) = Ki(B)(l" 12 + P [lplle) — K2(8)™ P |lo"|[
—0c50(PP ) |l|2 = 0cmso (TPl el lle
> K(B) | lle
for ¢ small enough (depending on f3). O

Lemmas 2.13, 5.5, and 5.6 together end the proof of Theorem 1.5.
Note that in both Lemmas 5.5 and 5.6, we could replace the orthogonality

condition JRe fB(Jce_{,R)UB(fdca,R) 9:Q.Q. 070 = 0 by

(512) i)%e/ 8(1(‘/1 (l‘*déa)vfl (m+d51))\d:duch¢O(x) d:C:(),

B(dcet,R)UB(~d.e1,R)
since, by Theorem 1.1 (for p = 4+00),
1c*0eQec —Ba(Vi(x—d&1)Vor(z+de1)) ja=a.ll o1 (md.at, muB(—d.zt,my) = 0c—0(1);
and thus this replacement creates an error term that can be estimated
like the other ones in the proof of Lemma 5.5.
5.5. Proof of the corollaries of Theorem 1.5.
5.5.1. Proof of Corollary 1.6. We start with the proof that (i) im-
plies (ii). We start by showing that, for ¢y € C°(R?,C),

Bq. (¢ + ¢0) = Bq.(¢o)-

We take pg = Q.o € C°(R?, C) and, by integration by parts, from (i),
we check that

(Lq.(p0), %) =0.
Furthermore, we check (for ¢ € C°(R2\{d e, —d.e1},C) and then by
density for ¢ € Hg,) that for ¢y € C°(R?,C),
Bq. (¢ +¥0) = Bq.(#) + Ba.(po) + 2(¢, Lq.(#0)),

hence

(5.13) Bq. (¢ + ¢o) = Bq.(¢) + Bq.(#0)-
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Similarly as in the proof of Proposition 1.4, we argue by density that this
result holds for ¢g € Hg,. Now, taking ¢ = —¢, we infer from (5.13)
that Bg,(¢) = 0, thus, for p € Hg,,

(5.14) Bq. (¢ + ¢0) = Ba.(¢o)-

Now, similarly as in the proof of Lemma 5.5, we decompose ¢ = Q.9 €
Hg, into
Y = 90* + 518561 QC + 526902 Qc + 536260Qc
with
le1] + le2] + les| < Kll¢lle,

such that ¢* verifies the three orthogonality conditions of Lemma 5.6
(all the functions of Q. considered in the orthogonality conditions are of
size independent of ¢ in B(d.ef, R) U B(—d.e1, R)). We write

A= 2105, Qc + £205,Qc + £3¢*0:Q. € Ha,
by Lemma 2.8, and using (5.14), we have

Bq.(¢") = Ba.(¢ — A) = Bq.(A).

From Lemma 5.6, we have Bg, (p*) > Kc*P/2||p*||2. Furthermore,
from Lemmas 2.8 and 2.10,

Bg.(A) = £5¢° B, (0:Qc) = (—2m + 0c-0(1))e3 < 0.

We deduce that 3 = 0 and ||¢*||¢c = 0, hence ¢* = iuQ. for some p € R.
Since ¢* = ¢ — R € Hg,, we deduce that u = 0 (or else ||<,0*||%{Q >

*|2
Jg2 % = +00). Therefore,
Y = 518:01 Qc + 52812Qc € Spanm(aﬂm Qe 8172(20)'
Finally, the fact that (ii) implies (i) is a consequence of Lemma 2.8.

This concludes the proof of this lemma. O

5.5.2. Spectral stability. We have H'(R?) C Hg_, therefore Bg, ()
is well defined for ¢ € H*(R?). Furthermore, i0,,Q. € L*(R?) is a con-
sequence of Theorem 2.5, and in particular this justifies that (@, i0,,Q.)
is well defined for ¢ € H(R?). For » € H*(R?), there is no issue in the
definition of the quadratic form, as shown in the following lemma.

Lemma 5.7. There exists cg > 0 such that, for 0 < ¢ < ¢p, Q. defined
in Theorem 1.1, if ¢ € H*(R?), then

Ba.(p) = /Rz IVol* = Re(icdzy 0p) — (1= 1Qcl*)lipl* + 2Re* (Qctp).
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Proof: We recall that H'(R?) C Hg, and, for ¢ = Q.¢ € H'(R?),
Ba.(e) = [ | I96l" = (1= 1QePll* + 20 @cp)
—e [ (= meivnpp) —c [ aein,, Q"
R2 R2
+2 [ omesmmd,,viQ +c [ o nesmlQul
R2 R2

te / nRedmd, Q).

Since ¢ € H'(R?), the integral [, Re(icdy, @) is well defined as the
scalar product of two L?(R?) functions. Now, still because ¢ = Q. €
H'(R?), we can integrate by parts, and we check that

/ PRI, ] Qu[? = — / PPRed, YIMY| Qo2
R2 R2

- [ drnmevamplQut - [ aevamvon, (@),
R R
We conclude by expanding

/ TRe(i02y 0P) = / Re(i02, Qe Q)0 + / R (102, 00)| Qu
R2 R2 R2
- / (100, Q. Q) UI + / Re(Dry ) TND| Qe 2
R2 R2
+ / PR () Iy | Qe 2. 0
IR2

The rest of this subsection is devoted to the proofs of Corollary 1.7,
Proposition 1.8, and Corollary 1.10.

Proof of Corollary 1.7: For ¢ € H*(R?) such that (¢,i0,,Q.) = 0, we
decompose it into

=" + €10, Qc + €200, Qe + £30:Qe.
Similarly as in the proof of Lemma 5.5, we can find €1,e2,e3 € R such
that ¢* satisfies the three orthogonality conditions of Lemma 5.6, and
thus (since ¢ € H*(R?) C Hg,, for 8 = 30/2)
Ba.(¢") 2 K202
Now, we compute, by Lemma 5.2 and with a density argument, that
Bq.(¢)=Ba.(¢")+2(¢", La. (€100, Qe €201, Qe+ cE30:Qc)) +€5¢'Ba, (9eQe).-

We have from Lemma 2.8 that Lg, (€102, Qc + €20.,Qc + ¢?e30:.Q.) =
c2e3i0,,Q., therefore

Bq.(p) = K720 |12 + 2c%e3(¢" 102, Qc) + €3¢ Bq, (0:Q).
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Since (p,10,,Qc) =0 and ¢ =@*+e10,, Qct+e20,, Q. + c*€30.Q., we have
<SO*7 iawz QC> = _<€18w1 Qe+ 528962 Qe+ 62638CQC7 iaam Qc)
We have (€10, Q¢,10:,Qc) = 0 since 0, Q. is odd in 7 and id,,Q. is
even in x1. Furthermore,
(2002, Qe i0,Qc) =2 | 101, Quf") =0,
R2

and, from Lemma 2.10, we have

Ba.(0:Qe) = (0:Qe, 102, Q) = —27+0e=0ll)

’
C2

thus
(0", Lq. (10, Qc + €202, Qe + €°230:Qc)) = (27 + 0c—0(1))e3 Bq, (0cQe),
and
BQC (‘)0) 2 KCQ-"_BO/QHL’D*Hg - €§C4BQC (BCQC)
> K202 %12 4 2me3c (1 + 0c0(1)) = 0
for ¢ small enough. This also shows that if ¢ € H*(R?), Bg,(¢) = 0,
and (p,10,,Q.) = 0, then ¢ € Spang{9d,, Qc, 0z, Qe }- O

We can now finish the proof of Proposition 1.8.

Proof of Proposition 1.8: First, we have from Theorem 2.5 that i0,,Q. €
L?(R?). Now, with Corollary 1.7, it is easy to check that n™(Lg,) < 1.
Indeed, if it is false, we can find u,v € H'(R?) such that for all \, u € R
with (A, 1) # (0,0), Au+ pv # 0, and Bg, (Au + pv) < 0. Then, we can
take (A, ) # (0,0) such that

(Au + pw,102,Qc) = 0,

which implies Bg, (Au + pv) > 0 and is therefore a contradiction.

Let us show that Ly, has at least one negative eigenvalue (with eigen-
vector in H'(R?)), which implies that n=(Lg,) = 1 and that it is the
only negative eigenvalue. We consider

Qe = Ba.(#)-

inf
PEH(R?), [l 12 g2y =1

We recall, from Lemma 5.7, that (since ¢ € H'(R?))
Ba.(e) = [ | Vl” = Relicdny o) = (1 = [Qcl)ol” + 2016 @),
and if ¢ € H'(R?) with ||¢||z2(re) = 1, we have, by Cauchy—Schwarz,
Bo.(9) > [ 196l = Kelduagliagen) — K > ~K (o)

In particular, this implies that a. # —oo.
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Now, assume that there exists no ¢ € C°(R?, C) such that Bg_(p) <
0. Then, for any ¢ € C>(R?,C), we have Bg, () > 0. Following the
density argument at the end of the proof of Proposition 1.4, we have
Bg,(¢) > 0 for all ¢ € Hg,, and in particular Bg, (0.Q.) > 0 (we
recall that 8.Q. € Hg, but is not a priori in H'(R?)), which is in con-
tradiction with Lemma 2.10. Therefore, there exists ¢ € C®(R?,C) C

H'(R?) such that Bg, (¢) < 0, and in particular Bg, (m) < 0 and

||m||L2(R2) =1, hence a, < 0.

Note that we do not show that 9.Q. € L?(R?), and we believe this to
be false. This estimate on «. is the only time we need to work specifically
with Q. from Theorem 1.1. From now on, we can suppose that Q. is a
travelling wave with finite energy such that o, < 0.

To show that there exists at least one negative eigenvalue, it is enough
to show that o is achieved for a function ¢ € H'(R?). Let us take a mini-
mizing sequence ¢, € H'(R?) such that ||¢n||2r2) =1 and Bg, (¢,) —
a.. We have

[ IVenf=Ba.en)+ | Selicduspuzm) + (1= 1QuPlienl* — 206 @eipn),
R R
therefore, by Cauchy—Schwarz,
[ 190l < lacl + Kell Vil 2, + K.
R

We deduce that, for ¢ small enough,
||V80n||2L2(1R2) — Kc||VnllL2@mey < K(c),

hence [[Vn |72 g2y is bounded uniformly in n given that ¢ < ¢o for some

constant ¢g small enough. We deduce that ¢, is bounded in H*(R?),
therefore, up to a subsequence, ¢,, — ¢ weakly in H!(R?).

Now, we note that for any ¢ € H'(R?), by integration by parts (see
Lemma 5.7),

~Re(icey0) = —c [ | RelDrae)Im(ie) + ¢ [ Rel) (01

R2
=2c | Re(p)Im(0z,).
R2

For R > 0, since ¢, — ¢ weakly in H!(R?), this implies that ¢, — ¢
strongly in L?(B(0, R)) by the Rellich-Kondrachov theorem. In partic-
ular, we have

/ Re(ipn) I (Dy o) - Re(i2) Im (e p),
B(0,R) B(0,R)
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since ¢, — ¢ strongly in L?(B(0,R)) and O,¢n — O, weakly in
L?(B(0, R)). We deduce that, up to a subsequence,

/ o [T+ 2EIMO0) — (1 Qg + 26 @)
B(0,R

timint [ Vi !+ 2ee(p) In(Draipn) = (1~ Qe
n— oo B(0,R)
+29%e* (Qcon) + 0n oo (1)
Furthermore, we have, by weak convergence,

ol 1 ey < liminf |ln] g1 r2)y < K(c),
n—oo

therefore, we estimate
/ IVl + 26Re(2)Im (D) — (1 — [Q)Ipl? + 29%6%(@gp)
R2\ B(0,R)

< K@l fn @2\ 50,ry) = 0r—o0(1).
We deduce that

n—roo

Bo. () < limint [ o [Tl 2RI Ouen) — (1 QP
B(0,R

+20Re*(Qcpn) + 0n—oo(1) + 0R 00 (1).

Now, we have

n—r00

1iminf/ [Von|*+2cRe(0n)IM(Dryn) — (1 = |Qel*)on|* + 20R¢° (Qetpn)
B(0,R)

— lim inf Bo, (pn) — lim inf / Vonl? + 26Re(00) Iy o)
R2\ B(0,R)

n— 00 n—r00

= (1= 1Qe)enl* +29¢*(Qcipn)

and Bg, (¢n) — ., therefore

B () < e + 0500 (1) + 0r—s00(1)

n—oo

—lim inf/ |Von|? + 2¢9Re(0n)I0(Day 0n)
R2\B(0,R)

— (1= 1Qel*)en|* +2%R¢* (Qcion).

From Theorem 2.5, we have (1—|Q.|?)(z) — 0 when |z| — oo, therefore,
since ||, £2(r2) = 1, we have by dominated convergence that

/ (1— 1Qel)pnl? < 0rsoo(1).
R2\ B(0,R)
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Furthermore, we check easily that (since (4 + B)? > 1A% — B?)

- / 2 (Qe) I (ipn),
R2\B(0,R)

and from Theorem 2.5, Jm(Q.)(x) — 0 and Re(Q.)(z) — 1 when |z| —
o0, therefore, since ||y, | z2®2) = 1, by dominated convergence,

/ 27 Qo) > [ Re(9n) — oo (1).
B2\ B(0,R) R2\ B(0,R)

We deduce that, since ¢ < v/2,
Bq. () < @ + 05 00(1) + 0r-300(1)

— lim inf </ |Von|? + 2¢9Re(0n ) T0(ry on) + 9%2(g0n)>
R2\B(0,R)

n—o0

< ae+ Orljéoo(l) + 0rR—>00(1)

— lim inf (/ (V| + Re(pn))? + (2 — 02)9%2(9%))
n—0o0 R2\B(0,R)
< e+ 0500 (1) + 0R—s00(1).
Thus, by letting n — co and then R — oo,
Bq.(¢) < ac.

In particular, this implies that [|¢||z2®2) # 0, or else Bg, () = 0 < a,
and we know that a. < 0. Furthermore, by weak convergence, we have
llollz2 2y < 1, and if it is not 1, then, since o, < 0,

Bg. ( L2 ) < gc < Q,
Telee ) < Tolagn

which is in contradiction with the definition of a... Therefore |||/ 2 g2y =
1 and Bg, () = .. This concludes the proof of Proposition 1.8. O

Proof of Corollary 1.10: The hypotheses to have the spectral stability
from Theorem 11.8 of [15] are:

(1) The curve of travelling waves is C' from ]0, co[ to C*(R?,C) with

respect to the speed. This is a consequence of Theorem 1.1. This

is enough to legitimate the computations done in the proof of The-
orem 11.8 of [15].



COERCIVITY FOR TRAVELLING WAVES IN GP 359

(2) Re(Q.) — 1 € HY(R?), VQ. € L*(R?), |Q.| — 1 at infinity, and
|Qcllc1(r2y < K. These are consequences of Theorem 7 of [11].

(3) n(Lg,) < 1. This is a consequence of Proposition 1.8.

(4) 0.P2(Q.) < 0. This is a consequence of Proposition 1.2. O

6. Coercivity results with an orthogonality condition on
the phase

This section is devoted to the proofs of Propositions 1.11 and 1.12
and Theorem 1.13.

6.1. Properties of the space Hg~. In this subsection, we look at
the space Hy,". We recall the norm
s

2 2 2 2
el = lellnraron + [ 997 49w + il

The quadratic form we look at is

BgP ()= / L (Vel® = Re(icda, 07) — (1= |Qel) o) +20¢* (Qey))
- / V- (Re(VQQOIHI — 29m(VQoQo)Re()Im(v)
+ /R  Dia|Qel*Re()Im(v)
4 / A=) (IVHPIQ:I + 2R ()] Qe)

+ [ (=1 490V Q@0 30 (V)Ke () +261Qc T 0y ) ().

We will show in Lemma 6.1 that B5™ () is well defined for ¢ € H,".
The main difference between Bg, and Bg,”" is the space on which they
are defined. In particular, we can check easily for instance that, for ¢ €
C*(R?) with support far from the zeros of Q., we have BoP(p) =
Bg. (), as the terms with the gradient of the cutoff are exactly the ones
coming from the integrations by parts. We start with a lemma about the

exp

space HQC .
Lemma 6.1. The following properties of Hg, " hold:
Hg. C HG®,

iQ. € HG™.



360 D. CHIRON, E. PACHERIE

Furthermore, there exists K(c) > 0 such that, for ¢ € H;,",

lelles Klplluz,
(6.1) S SCI

and the integrands of BGP (), defined in (1.4), are in L*(R?) for ¢ €
H,P, and BGP does not depend on the choice of 1. Finally, if ¢ €
HQC C Hg(cp,

Ba. () = BG. (¢)-

See Appendix B.3 for the proof of this result.

Now, we state some lemmas that were shown previously in Hg_, which
we have to extend to Hy," to replace some arguments that were used in
the proof of Proposition 1.4 by the proofs of Propositions 1.11 and 1.12
and Theorem 1.13. We start with the density argument.

Lemma 6.2. C°(R2\{d.é,,—d.é,},C) is dense in HGP for || - e

Proof: The proof is identical to that of Lemma 3.4, as we check easily
that, for A > 10 large enough,

C

qp 2
||<PH§11({7=<10}) +/ \V¢|2+9%2(1/1)+L <Ki(A, C)”SDHEP(B(O,A))

{F=5}NB(0,)\) 72 In(7)?

and

¢2
||w||zl({;<m})+/{ Vo249 W)+ =1 > Ko Ol s

F25}NB(0,)) 72 In(7)?

O

We also want to decompose the quadratic form, but with a fifth pos-
sible direction: ().

Lemma 6.3. For A € Span{0,,Qc, 0z,Q¢, 0:Qc, 0.1 Qc,1Q.} and ¢ €
C=(R?\{d.e1,—d.e1},C), we have

(Lac(p+A), o+ A) = (Lq.(#), 0) + (2Lq.(A), ¢) + (Lq.(A), A).
Furthermore, (Lq (¢ + A),p + A) = Bo (¢ + A), Lo (iQ.) =0 and
||az1Qc||Hg‘cp + Haacch”Hg‘CP + HCQaCQc”Hg‘CP + Cﬁ0/2||CaCJ_Qc||Héxcp

F1iQcll gr < K(Bo)-

Proof: As for the proof of Lemma 5.2, we only have to show that
Re(Lg,(A)A) € L' (R?) to show the first equality.
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By simple computation (or by invariance of the phase), we check that
Lo, (iQ.) = 0. Writing A = T +¢iQ, for e € R, T € Span{9,, Q., 9, Qc,
0:Q¢, 0,1 Q. }, we compute from Lemma 2.8 that

LQc (A) = LQc (T) € SpanR(iaﬁfl QC7 Zaﬂ?2 QC)7

thus

Re(Lq. (A)A) = Re(Lq.(T)T + €iQc) = Re(Lq, (T)T) + eRe(La. (T)iQc).
From the proof of Lemma 5.2, we have Re(Lq (T)T) € L'(R?), and
since Lo, (T') € Spang(i0z, Qc, 105,Q.), with Theorem 2.5, we have

K(c)
Aty
Let us check that, for p € Ho, BoP(p +¢iQ.) = B, (p) for e € R.

We check, from (1.4), that, for ¢ € C>®(R2\{d.e1,—d.e1},C), this
equality holds by integration by parts and because fe(¢) + i) = Re (1)),
Im(V(y +4)) = Im(Ve). We then argue by density, as in the proof of
Proposition 1.4. N

We deduce, from Lemmas 2.8 and 5.2, that for ¢ € C°(R?\{d.e7,
_dce—1>}7 (C)a

By (o +A) =By (¢ +T) = Ba.(p +T)
=(Le.(p+T),p+T)=(La.(¢+A),p+T)
= (La.(p+A), o+ A) — (Lo (¢ + A),€Qc),
and we check, with Lemma 2.8, that for some v € R? depending on A,

(Lo.(p + A),€iQc) = (Lq.(¢),€1Qc) + (L. (P),€iQc)

= c(p. L. (iQe)) +ev- /
=0.

|Re(Lq. (T)iQc)| < € L*(R?).

R(VQQ)

From Lemma 2.9, we have
102, Qelle + 1922 Qclle + [I°0eQelle + ¢™/?[[cdor Qclle < K (Bo),

and with Lemmas 2.1 and 2.3 and equations (2.9), (2.10), and (2.11), we
check with the definition of ||'||H§;‘P and ||-||¢ that, for A € {04, Qc, 0, Qec,

C280QC701+'60/280J-QC}7
||A||§{§QXCP < KHAHill({i“élO}) +[|A]12 < K(Bo).

Finally, we check that

. 2 s 2 12 2. MQ
HZQCHHSQ"CP = HZQC||H1(W<10}) + /{;25} [Vil” + Re”(4) + 72 In(7)2 <K. O
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We can now end the proof of Proposition 1.11.

Proof of Proposition 1.11: From Theorem 1.5, for ¢ € C°(R2\{d.ée7,
—d,ei},C), under the four orthogonality conditions of Proposition 1.11,
we have, by Lemma 6.1,

BT (9) = Ba.(¢) = (La.(¢),9) > Kll¢l.

We then conclude by density, as in the proof of Proposition 1.4, using
Lemma 6.2. The proof for the density in Bg(cp is similar to the one for By,
in the proof of Proposition 1.4. Coercivity under three orthogonality
conditions can be shown similarly.

Then, for the computation of the kernel, the proof is identical to that
of Corollary 1.6. With Lemma 6.1, we check easily that we can do the
same computation simply by replacing Bg,(¢) by B, (¢). The only
difference is at the end, when we have ||¢*||c = 0; this implies that
©* = AiQ, for some A € R, and we cannot conclude that A = 0, since we
only have ¢* € H;, " instead of ¢* € Hg,. This implies that

¢ € Spang(0z; Qc, Oz, Qec, iQc).

Using Lemmas 2.8 and 6.3, we check easily the implication from (ii)
to (i). O

6.2. Change of the coercivity norm with an orthogonality con-
dition on the phase. We now focus on the proofs of Proposition 1.12
and Theorem 1.13. In these results, we add an orthogonality condition
on the phase. We start with a lemma giving the coercivity result but
with the original orthogonality conditions on the vortices, adding the
one on the phase.

Lemma 6.4. For ¢ = Q. € H, ", if the following four orthogonality
conditions are satisfied:

/ e, iViY) = / Re(Day Vi Va1)) = 0,
B(dcet,R)

B(dcet,R)

/ C Re(@, Ve V) :/ Re(Day V1V 11) = 0,
B(—dcel,R) B(—dc&{,R)
then, if Re fB(O ) 1% =0, we have (with K(c) <1)

BE2(9) > K@) leligr + Klol2,
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or if Ve eR, p(x1,22) = p(—x1,72) and Re fB(JCH,R)uB(—&Ce_{,R) iQ.p =
0, then

X 2
BGP(0) > Klellzge-

Proof: Let us show these results for o =Q 1 € C° (R?\{&Ca, —d&ﬁ}, C).
We then conclude by density. We start with the nonsymmetric case.
By Lemma 4.4, for ¢ = Q% € C°(R*\{d,.€1, —d.€},C) such that

/ Re(D, Vi Vi0)) = / Re(Day Vi Va1)) = 0,
B(dc&{,R) B(d.&1,R)
we have
loc
BSTP (4) > K(D) / O IVRRIQ + Rl
B(dcet,D)

By Lemma 4.3, we infer, by a standard proof by contradiction (with the
first two orthogonality conditions),

2

3m(¢)> :

locy, p 2
B2 (0) > K D)l pa.mt oy~ Ko(D) ([
e HEB(deeT D)) B(dc&l, R\B(d.e1,R/2)

We deduce, with Lemma 4.3, that for any small € > 0,

loc
Byt P(p) = K(D)(1 —¢) / ) V|2 1Qe|* + 2e? (1) ]Qe|*
B(dcet,D)
2
+K1(D)ello|)? o —K2Da/ Jm(y) ] .
( )” HHI(B(dC—{,D)) ( ) 5.t R)\B(do21.R)2) ( )

By Poincaré inequality, if Re || B(o.r) 1 =0, then

0,R)

[ amwskE, [ e
B(d.&l,R)\B(dc&1,R/2) R2\(B(d.e1,R/2)UB(—d.&,R/2))

<Ky [ IVoPIQd.

Therefore, for any small x> 0, taking € > 0 small enough (depending
on ¢, D, and p),

B(dce1,D)

BSTP () > K(D) / IVOPIQel* + Re?(1)|Q.*

Dl et o — | IVOPIQCL"
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With similar arguments, we have a similar result for B10C b2 (). Now,

as in the proof of Proposition 1.4, we have, taking pu > 0 small enough
and D > 0 large enough,

loc loc_
Bq.(¢) = By, " (@) + By, " (#)

(o VORI + mEW)] Q.
R2\(B(dc&1,D)UB(—dce{,D))

> K [ VORI + REWIQL + Kaleo) e ogaataon

_ 2 4
n [ IvuriQ

2 2
= Klelle + K)ol sd.zt,100)-

Then, by the same Hardy-type inequality as in the proof of Proposi-
tion 1.4, we show that

|l 2 / 2 4
gK 7 v )
L arnears <X (19l saanm + [, 19610

therefore

Ba.(9) > Kllgl2 + K@) el

In the symmetric case, the proof is identical, except that, by symme-

try,
E)‘ie/ 1Qc.p =0,
B(dc&1,R)

and we check by Poincaré inequality that for a function ¢ satisfying this
orthogonality condition, ¢ = Q. 1,

Jm(y)| < KH‘P”Hl(B(JC?l,R)):

/B(Jca’,R)\B(Jca,R/m

for a universal constant K > 0. By a similar computation as previously,
we conclude the proof of this lemma. O

We now have all the elements necessary to conclude the proof of
Proposition 1.12.

Proof of Proposition 1.12: This proof follows the proof of Lemma 5.5.
For ¢ € C*(R?\{d.€1,—d.€1},C) and five real-valued parameters &1,
€9, €3, €4, €5 we define * = Q. ¢¥* by

6:c1Qc E 628CQC 6332620 + Caci Qc

Q. g, T, T

P =+ + e5i.
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With Lemma 6.3, we check that ¢* € H,". Now, similarly as in the
proof of Lemma 5.5, we check that

/ Re(0r, Vi Vi +) = / Re(De, Vi Vi e)
B(dcei,R) B(dcet,R)

+51 / Re 811018%1 Qcﬁ
B(d.e1,R) Q.

<8lelc 9.Q.

-I-Ez/
B
+53/ NRe azlvvlazchE
B(d.e1,R) Qe
+€4/
B

Re (811 /Vvlcacl Qe Vl)
) Qe

+es / %e(@mlﬁﬁ).
B(d.e1,R)

§>\<

;£|
2l
&)

Furthermore, with Lemma 2.1, we check that

/ Re(a, ViiV1) = O,
B(dc&l,R)

and the other terms are estimated as in the proof of Lemma 5.5. Simi-
larly,

/ Re(Da, ViiVh) — / Re(Day VoriV 1)
B(dcei,R) B(—d.&f,R)

:/ Re(Day V_riV 1) = 0
B(—dce1,R)

We also check that, from (2.9) and (2.10) and Lemmas 2.3 and 2.7 that

02, Qc > ( azch)
R R
/B(O,R) e( Qe /B(O,R) ‘ Qe ‘
. 20:Qc
/B(O,R) e (Zc Qe >

= Oc—>0(1)7

+

+ +

.0.1.Qc
/B(O,R) e ( Qc >'

and

/ Re(i x i) = —mR> < 0.
B(0,R)
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We deduce, as in the proof of Lemma 5.5, that

Re (D, Vi Vi)™
Re(8ey Vo1 Vo100%)
fB(Jce_{,R) Re(De, ViVIY")
fB(fdle_f,R) Re(By Vo1 V_100%)
Re fB(O,R) i) =0

fB@cei’,R)

fB(—Jce—{,R)

K(R) —K(R) 0 0 ce1

K(R) K(R) 0 0 0 €2

= 0 0 K(R) —-K(R) 0 + 0c—0(1) €3
0 0 K(R) K(R) 0 €4

0 0 0 0 —TR? €5

+0cs0(¢P)E|gle
Therefore, we can find e1,e9,€3,4,65 € R such that
lex] + le2] + lea| + leal + les| < 0emo(¢™)plle

and ¢* satisfies the five orthogonality conditions of Lemma 6.4. There-
fore,

BEP(0") 2 K(O)lle" Iz + Ko 2.

We continue as in the proof of Lemma 5.5, and with the same arguments,
we have

X * (12 2
BEP(¢) 2 K06 e + Kl
Now, by Lemma 6.3, we have
I Lage > lllezs €10, Qeteac*0eQet esey Qe-teach,s Qe + il g

2
Bo/ )

2 llellagr —oc—olc llelle,
.

thus, since we can take K (c¢) < 1, we have
B3P (9) > K(Ollpllere-

We conclude by density as in the proof of Proposition 1.4, thanks to
Lemma 6.2. We are left with the proof of Bo®(¢) < K|[¢]|7exs. With
e Qe
regard to (1.4), the local terms can be estimated by K||<p||§{1({;<10}) <
K ||<,0||%,exp and the terms at infinity, by Cauchy—Schwarz, can be esti-
QC

2
mated by K [i;o5 [Vo[? + Re2 () + mlth < K]} O
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As it was done in equation (5.12), we can replace the orthogonality
condition Re fB(JCe_{,R)UB(—JCe—{,R) 0.Q.Qcb?0 = 0 by

(62) ERR/ 8d(V1 (iljfdé'l)v_1 (x+d€1))‘d:chclﬁ#0($) dz=0
B(dcel,R)UB(—d.2l,R)

in Propositions 1.11 and 1.12.

Proof of Theorem 1.13: This proof follows closely the proof of Proposi-
tion 1.12.

First, with Lemma 2.3 and the definition of 0,.Q. in Lemma 2.7,
we check that 0, Q. and 0,.Q. are odd in z;, and for p = Q¢ €
C2(R*\{d.€1, —d.€1},C) with V(z1,25) € R?, (21, 22) = p(—a1,22),
we check that in B(d.e1, R)UB(—d.et, R), Qc1)7° is even in x1. There-
fore, these two orthogonality conditions are freely given.

We decompose as previously, for €1, €3, €3 three real-valued parame-
ters,

© =" +61iQc + €202, Qe + €370 Q...
We suppose that
0.Qup =% [ 0:,Qe7 = 0.

D‘ie/
B(dc&,R)UB(—d.&1,R) B(d.&,R)UB(—d.&1,R)

S)fie/ iQcp =0,
B(dcel,R)UB(—dce{,R)

and we show, as in the proof of Lemma 5.5, that we can find £1,e5,e3 € R
such that
le1| + le2| + les| < OC—W(CBO)HSOHHS‘IU

and ¢* satisfies the five orthogonality conditions of Lemma 6.4 (we recall
that two of them are given by symmetry). Here, since we did not remove
the 0-harmonics, the error is only controlled by |\cp||ngp instead of ||¢]lc.

For instance, we have

[ (0T - 9,0@09)| < oD@ a2 ey
B(dcet,R)
= ocso(Dlell g
Now, from Lemma 6.4, since ¢* € H,, ", we have
BoP(e") 2 KHQO*H?-IEXCI"

We continue, as in the proof of Lemma 5.5, with |e1]| + |ea| + |es]| =
0c—>0(1)||§0||HfQX? and Lemma 6.3. We show that

ex; 2
Bgr(¢) = Kl

We conclude the proof of Theorem 1.13 by density. O
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7. Local uniqueness result

This section is devoted to the proof of Theorem 1.14. This proof will
follow classical schemes for local uniqueness using coercivity. Here, we
will use Propositions 1.11 and 1.12, with equation (6.2).

7.1. Construction of a perturbation. For a given de R2,0 < |c7| <
co (co defined in Theorem 1.1), X € R? and v € R, we define, thanks
to (1.1), the travelling wave

(7.1) Q= QE,(-—X)eM.

We define a smooth cutoff function 7, with value 0 in B(El:(ice_f, R+1)
(R > 10 is defined in Theorem 1.5), and 1 outside of B(d.ei,R+2)U
B(—dce_f7 R+ 2). The first step is to define a function 1 such that

(7.2) (1-nQY+n1Q(e¥ —1) =2 - Q,

with Qv satisfying the orthogonality conditions of Propositions 1.11
and 1.12. We start by showing that there exists a function ¥ solution

of (7.2). We denote 6l (ce3, ) = ‘(C€_2> —d). \gl and 0+ (ce3,d) ==
Gt . L=
|ce_2> . ICCT’I . At fixed ¢, these two quantities characterize ¢/, since they are

g dt
~ EIEd
them as variables instead of ¢/, this decomposition being well adapted
to the problem.

Since both Z and |Q] go to 1 at infinity, we have that such a function v
is bounded at infinity. The perturbation here is chosen additively close
to the zeros of the travelling wave, and multiplicatively at infinity. This
seems to be a fit form for the perturbation, and we have already used it

in the construction of Q..

the coordinates of the vector ces — ¢ in the basis ( ). We will use

Lemma 7.1. There exists cg > 0 such that, for 0 < ¢ < ¢g and any A >

%, with Z a function satisfying the hypothesis of Theorem 1.14 and

Q defined by (7.1) with § < || < 2¢, there exist K, K(A) > 0 such that

sl ce_>7c ot ce_>7c
||ZQ|01<B<O,A>)<K(A>||ZQC|Hg;+K<|X|+ Ehe) 2D ).

-
/

We will mainly use this result for A = A+ 1, A > 0, defined in
Theorem 1.14.

Proof: We recall that such a function Z is in C°°(R?, C) by elliptic reg-
ularity.
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We start with the estimate of w := Q. — Z in B(0,A). Since both Z
and Q. solve (TW,), we have

“Aw=(1-1Q)Qc — (1 = |Z])Z + icdu,w.
From Theorem 8.8 of [7], 2 := B(0,A), 2Q = B(0,2A),
[wll g2 0) KA (Jw]l g1 20y Fllicdesw + (1 = 1Qc|*)Qc — (1 = |Z]*) Z]| 12 20)-
We compute that
(1= 1Qc)Qc = (1 = Z)Z2=(Qc = Z)(1 = 1Qc|*)+Z(|1Qc| = 1Z)(1Qc| + |2]).

From [6], we have that any travelling wave of finite energy is bounded
in L°°(R?) by a universal constant, i.e.

Qe + 2] < K,

therefore
11— Q| +121(1Qc| +12]) < K
for a universal constant K. Thus,

(1 =1Qel)Qec = (1 = 121*) Z L2 20) < K w2200
and we deduce, from Lemma 2.6, that
lwll 2 ) KK (A)(lwl 1 20) + ez, wll L2 20) + [[wllL2(20)) < K(A)”wHHg‘f-
By standard elliptic arguments, we have that for every k > 2,
el < KA Blwlluge.
By Sobolev embeddings, we estimate
(7.3) [wller@) < K(M)[[wllwaz@) < K(A)|wllmge-
From (7.3), we have
12 =@l () SNQ—=QcllLoe () +l[wl| Loe (9) S [1Q = Qell oo r2) + K (M) [w]| regr-
We estimate
||Q—QCHL<><>(R2):HQ&('—X)ei’Y - QcHLOO(JR?)
<NQu (= X)e"=Q (= X)lpoo 2) + Q3 (- = X) = Q| m2)
+||ng - Q\c'7|g2||L°°(]R2) + ||Q‘c7|€2 - QCHLOO(R2)~
We check, with Theorem 1.1 and Lemma 2.7, that
||VQHL°<>(R2) + C2||6CQ||L°°(1R2) + CH(?CLQHLOO(RZ) + ||iQ||L°°(R2) <K,

and that it also holds for any travelling wave of the form Q(- — Y )e? if
2c> (¢ >¢/2,Y € R? and B €R.
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We check that [|Qz (- — X)e™ — Qz (- — X)| Lo (r2) < €7 = 1]|Qz (- —
X) | Loem2y < K|, and we estimate (by the mean value theorem)
Qs (- — X) = Qzll oo m2y < KIX[IVQ gl Loo r2y < K|[X].
Similarly, we have
6+ (ces, ) + 6\ (ces, &)
C

and [|Q 7z, — QellL~(r2) < K%Z_g’g/). We deduce that (since ¢ < 1)

”Qc’? - Q|J‘52||L°°(]R2) <K

-
/

sl ce_>,c 5t ce_>,c7
|QQC||LOC<R2)<K(|X|+ 059 T 1),

and thus
12 = QllL=Bo.0) < KMIZ = Qcllmgr

s(ces, &) ot(ces.d
+K<X|+ ) A ).

Finally, from Lemmas 2.1, 2.2, and 2.3, 8,. Q. = —z+ - VQ. and equa-
tion (2.11), we have

HvazzQHLOO(R?)+62||vacQ||L°°(R2) + ||V, 1 Q|| Lo (r2) +[[iVQel Lo r2) < K.
We deduce that

st(ces, §t(ces, d
|v<Q—Qc>||Lm<Rz><K(|X|+ (6%,9) L 7% 4 1y),

and, by (7.3),
IV(Z = Q)L (B0,a)) < K(A)||Z - QcHHeQXCP

6|'|(ce_2>,c’
o2

A d
VK <X|+ )9 (Ci2’0)+|y|>. O

Lemma 7.2. There exists eg(c) > 0 small such that, for Z a function
satisfying the hypothesis of Theorem 1.14 with

sM(ce. ) 5 (e, d
) G SR Ly <o,

there exists a function Qi € C1(R2,C) such that (7.2) holds. Further-
more, for any A > 1—00, there exist K, K(A) > 0 such that

stlices, &) 6%(ces,d
|Q¢|cl<B<o,A>><K(A)|Z—QcIIngCv+K<|X|+ (h) 2R ).
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Proof: First, taking £¢(c) small enough (depending on ¢), we check that

-

5 <|d] < 2e
We recall equation (7.2):

(1-nQY+nQ(e’ —1)=Z - Q.

We write it in the form

vn(e’ —1-v) ===,
and in {n = 0}, we therefore define
(7.4) = """

Now, we define the set Q := B(0, A+1)\(B(d.€1, R—1)UB(—d €1, R—1)).
In this set, we have that

%a°
Q

< Keo(e) + KW Z ~ Qell gy
cv @) °

by Lemma 7.1 and (2.12). Therefore, since e¥ —1—1) is at least quadratic
in ¢ € C1(Q,C), by a fixed point argument (on H(¢)) := % —n(e¥ —
1 — %), which is a contraction on [[9[| Lo ({y201) < p for g > 0 small
enough), we deduce that on 2, given that g and ||Z — Q.|| HEp are
small enough (depending on A for ||Z — Q.|| chcp), there exists a unique
function ¢ € C*(Q,C) such that ¢ +n(e¥ — 1 —1¢) = £5& in Q. By
uniqueness, since we have a solution of the same problem on {n = 0}
which intersects €2, we can construct Qv € C*(B(0, A+ 1), C) such that
nQY + (1 —n)Q(e¥ —1) = Z — Q in B(0, A +1).

Furthermore, here we use the hypothesis that, outside of B(0,\),
|Z — Qc| < po. We deduce that (taking po < 1) there exists § > 0 such
that |Z] > § outside of B(0, ). In particular, since A can be taken large,
we have that outside of B(0, A), n = 1. The equation on v then becomes

and by equation (2.12) and |Z| > 4, we deduce that there exists a unique
solution to this problem in C'(R2?\B(0, \), C) that is equal on B(0, X +
1)\B(0, ) to the previously constructed function .
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Therefore, there exists Qi) € C*(R?, C) such that (1—7)Q¢+nQ(e¥ —
1) = Z — @ in R?. Furthermore, we check that (by the fixed point
argument), since {n # 1} C B(0, \),

Z-Q
IVllor ey < KHT

Cl({n#1}) NP _
6"'(ce 7c_; 5t (ce ,c_;
< K<A>|Z—QC||Hg;+K<X|+ o) I )+v|>-

From equation (2.12) and Lemma 7.1, we have
||Q7/1||c1(5(0,1\))< lZz— QHOl(B(o,A)) +KH1/J||C1({77¢1}) + KM Z - QCHHZ;?

c? c

sl ce_>,c_; 5+ ce_>,c7
<K(A>||ZQC||H35+K(|X+ (€2,¢) O L),

This concludes the proof of the lemma. O

Lemma 7.3. The functions Q and ¥, defined respectively in (7.1) and
Lemma 7.2, satisfy

pi=Qy e Hy".
Furthermore, p€ C?(R?,C) and there exists K(\, c, HZ—QCHngCp, €0,2)>
0 such that, in {n =1} (i.e. far from the vortices),
KOhe |2 = Qell o 0. 2)
TS :
K()‘v C, HZ - QC||H5X:’7 €o, Z)
(I+r)? ’

VY[ + [Re()] + [A9] <

[VRe(y)| <
and
K()‘y ¢, ||Z - QC”HZ?XCP7 €0, Z)
(1+7)
We note that here, since ) - 0 at infinity (if v # 0), we do not have

Qv € Hg. This is one of the main reasons to introduce the space HCCQXP.
See Appendix C.1 for the proof of this result.

Lemma 7.4. The functions Q and ¥, defined respectively in (7.1) and
Lemma 7.2, satisfy, with ¢ = Q,

(LGP (), (¢ +17vQ)) = B5™" (),
where L5 () = (1 —n)Lq(p) + nQLg(V), with

L) = —Ay — Q%Q SV 4 i@ Vb + 2%e(4)| Q.

[Im(y +iy)[ <

Furthermore,
Lq(p) = QLo(¥).
See Appendix C.2 for the proof of this result.
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The equality (L, (¢), (¢ +i7Q)) = B, (¢) is not obvious for func-
tions ¢ € C*(R?* C) N Hy," (because of some integration by parts to
justify) and we need to check that, for the particular function ¢ we have
constructed, this result holds. We will use mainly the decay estimates of
Lemma 7.3.

Morally, we are showing that, since Lg(i7Q) =0, we can do the fol-

lowing computation: (Lq (), p+ivQ) =(p, Lq(p+ivQ)) = (¢, Lo()) =
Bg(p). The goal of this lemma is simply to check that, with the esti-

mates of Lemma 7.3, the integrands are integrable and the integration
by parts can be done to have (L (¢), (¢ +17Q)) = Bo ().

7.2. Properties of the perturbation. We look for the equation sat-
isfied by ¢ = Qv in the next lemma.

Lemma 7.5. The functions Q and v, defined respectively in (7.1) and
Lemma 7.2, with ¢ = Q, satisfy the equation

Lo(Qy) —i(ces — &) - H(y) + NLioc() + F(¢) = 0,

with Lg the linearized operator around Q: Lo(p) := —Ap —ic- Vi —
(1= 1QP)p + 2%e(Q)Q,

S() = ) _ 1 — 2%Re(v),
F(¥) == Qn(-V¢ - Vi + QI S(¥)),

V(Q¥)(1 —n) + QVime”
1

HE)=ve+ (I —mn) +mnev

’

and NLjoc(¥) is a sum of terms at least quadratic in 1, localized in the
area where n # 1. Furthermore,

[(NLioc(v), Q(¢ +i7))| < K(|Q¥lcr ((nz1y) + |7|)HQ1/J||?{1({7,¢1})~

Note that here, the equation satisfied by ¢ has a “source” term, i(ce_ﬁ—
') - H(v), coming from the fact that Z and Q. might not have the same
speed at this point. We will estimate it later on.

Proof: The function Z solves (TW,), hence,

i(ces —)-VZ=—id -VZ—-ANZ—(1-|Z)*)Z.
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From (7.2), we have
Z=Q+ (1 -n)Qv+nQe’ —1).
We define
Ci=1+y—ev.

We replace Z = Q-+(1-n)Qu-+nQ(e? 1) in —id-VZ—AZ—(1-|Z]2)Z
exactly as in the proof of Lemma 2.7 of [4], by simply changing V', U,
c€y, M respectively to @, 1, d, 1—mn. In particular, £ —ic0,,V becomes 0
(since TW ;(Q) = 0). This computation yields

i(ces — &) -VZ = ((1 - n) +ne”)(Lo(Q¥) + NLioe(¥)) + F(1)).

Furthermore, we have that ((1 —7) + ne¥) # 0 by Lemma 7.2 and
equation (C.2) (for the same reason as in the proof of Lemma 2.7 of [4]),
and we compute (as in Lemma 2.7 of [4]) that

_oomet (et -1
(7.5) (1 —n) + ne? =n+n{ n)((l—n)Jrne‘”)'

Furthermore, we have
VZ=YQ-QVn¢+VQl—ny+n(’ —1)+QVy((1—n) +ne?)
= VQ(L—n+ne’) = QVn( + V(Qy)(1 —n) + QVime,
hence

VZ_ g QVrC | V(@Y =) +QVyne”
(1—n) +ne¥ (1 —=mn) +nev (1—n)+ne¥ ’

therefore, with NLjoc(1)) = ﬁloc(w) +i(ces — ) - (1:%%, we have

Lo(Qy) —i(ces — &) - H(¢) + NLioc () + F(¢) = 0.

Finally, we check, similarly as in the proof of Lemma 2.7 of [4], that

|(NLioc(¥), Q¥ +i7))| < K([|Q¥|lc1((ne1y) + 7)) /11«2 | NLioc(®)],
hence

[(NLioc (1), Q(¢ +iv))| < K(|Q¥lcr (gne1y) + |’Y|)||Q1/J|ﬁ11<{n¢1}>~ O
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Now, we want to choose the right parameters +, 0_7, X so that ¢ sat-
isfies the orthogonality conditions of Propositions 1.11 and 1.12 (with
equation (6.2)).

Lemma 7.6. For the functions Q and v, defined respectively in (7.1)
and Lemma 7.2, there exist X,c_; € R?, v € R such that

oM (ce3, ) | 0% (ce3, ) "
X+ 2 + c +hl< OHZC—QcHHZprﬂo(l)’

and

Re / 02, QQUA0 = Re / 02, QQUA0 =0,
B(d; ,R)UB(d; ,.R) B(d; ,R)UB(d ,.R)
9%/ aci QQlﬁ'gO =0,
B(d5 ,RUB(d; ,,R)

9%/ 4V QY70 =0,
B(dy JRUB(j ,R)

i)‘ie/ ih =0,
B(dg ,+dg ,)/2,R)

where dg , and d; , are the zeros of Q, d
to deei, and 8V is the first order of Q by Theorem 1.1 and (1.1).

being the closest one

See Appendix C.3 for the proof of this result.

Here, the notations for the harmonics are done for @@, and are therefore
centred around dy | or d ,. This means that P70(x) = () — Ot (ry)
withry =z —dg [,z —d5, = r1e?% € R? and 922 being the 0-har-
monic of ¢ around d | in B(d; ,, R), and P70(x) = P(z) — Y22 (ry)
with ro == |z —dj ,| in B(dg ,, R) and %! being the 0-harmonic of v
around dz ,. We will denote ¢°(z) the quantity equal to ¥%'(r1) in
the right Half—plane and to 19%2(ry) in the left half-plane. Note that
d;, € R2, whereas d. € R. We recall that, taking ||Z — Qc”H"Q"C" small

8l (c23,8)
c2

enough, we have < 1, and in particular, for ¢ small enough,

< || < 2¢c. We recall that oS (1) is a

this implies that 12=Qell ez 0

(4
2

quantity going to 0 when ||Z — QCHHgXP — 0 at fixed X and c.
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7.3. End of the proof of Theorem 1.14. From Lemmas 7.3 and 7.6,
we can find ¢ = Qi € Hy," such that

-

6“(66—2)7 g/) (sl (ce—2>7cl) A
(7.6) | X|+ = + . +1vl < 0H7ZC—QCHH(e?xP—>0(1)7
and
we [ 0.,QQV7 = e [ 022 QQUFI =0,
B(dj; ,R)UB(dj ,.R) B(dy sRUB(d; ,.R)

Re / 94V QY70 = Re / 9,1 QQUF0=0,
B(dC«, 1,R)UB(dC-, 2,R) B(dg, 1,R)l_JB(dC«,.Q,R)

iRe/ ip = 0.
B((dy +d ,)/2.R)

Now, from Lemma 7.5, ¢ satisfies the equation

(7.7) Lq(Qv) —i(d — c&3) - H(v) + NLioe(v) + F (1) = 0.

We note that

Le(QY) = (1 —1)Le(Q¥) + nQLo (1Y),

and by Lemmas 7.3 and 7.4,

(1 =n)Lo(QY) +1QLo (), Q¢ +iv)) = B5™ (¢).
We deduce that

BG® () — (i(d — ces) - H(), Q¥ + iv))

(7.8)
+(NLioc (v), Q¥ + 7)) + (F(¥), Q¢ + iv)) = 0.

Since Q¢ € H, " by Lemma 7.3, with the orthogonality conditions sat-
isfied (see Lemma 7.6), we can apply Propositions 1.11 and 1.12 with
equation (6.2). We have

(7.9) B (9) = Kllellé + K (c)llell -

7.3.1. Better estimates on ¢/ — ces. The term i(¢ — ce3) - H(v)
contains a “source” term, because Z and ) do not satisfy the same
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equation (since the travelling waves Z and () may not have the same
speed at this point). We want to show the following estimates:

. o 1 .
s (ce3, ) < (KCQ In (E> + oﬁﬁzfQCHHgﬁo(n) Il

(7.10) \
,c
+ OHZ_QCHHZ2XP _>0(1)||90||H8‘Cp
and
- 1 .
54(624,9) < (Kt (1) + 0171 mg D) Il
(7.11) ¢ HQe
A,c
+ 0\|27Qc\|H8‘p So(1) ||80HH6Q"CP~

This subsection is devoted to the proof of (7.10) and (7.11).

Step 1. We have the estimate (7.10).
We take the scalar product of (7.7) with ¢29.Q, which yields

(i(d — ced) - H(¥),c*0.Q) = (Qv, ¢® L (9:Q)) + (NLioe (¥) + F(1), c*0cQ).

We check here, with the L estimates on v and its derivatives, as well as
on 9.Q (see Lemmas 2.3 and 7.3), that (Lg(Qu), c*0.Q) is well defined
and that all the integrations by parts can be done.

We recall that H(¢) — VQ + V(sz(llijg)j;gywnew s and we check with
equation (7.5) that, since 1 — n is compactly supported (in a domain

with size independent of c, d ), we have

. _ P
<i(c,_ce—2>).V(ng(i n;z):fjwne @ aCQ>

<K|(d—ceb)-(niQVY, 0.Q))|

+KIE — @l eze-

We compute with Lemma 2.3 that
0iQVe. 0. = | [ ae(vviaea)
R

< / nme(w)ﬁm(czc"’@)’+
R2

[ mam(vne@c0)

<| [ meto) v om(@eQ))| + Kilelnge
R2 e

+||<P|c¢ |, me@ena.
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With Lemmas 2.2 and 2.3, we check that fR2 nRe?(Qc?0.Q) < K, and
furthermore,

IV(Im(Qc?0:Q))| < ¢*|0:Q||VQ| + Kc?|Va.Q|
and with Lemma 2.3 (with o = 1/2), we check that

o K
|V(Im(Qc”0.Q))| < ek
thus, by Cauchy—Schwarz,
[ ) vom@eaa) ] Kol
]R2
Using [¢ — 25| < K()(01(c5, ) + 6 (c85,)) < g, ymns0(1)

and ||¢lle < K||gp||Hexp we deduce that

Lo sy (1=n)V(Qy) +77€¢QV¢ 2
<Z(c —ces) - (=1 +ne? ¢0:Q )| <oy quHgv%(l)
Furthermore, we check that, by symmetry (see (2.3)),

||
Furthermore, from Lemma 2.8, we have Lg(0.Q) = iV ;Q, therefore,
from Proposition 1.2,

(i(d — ce3) - V.Q,*0.Q) = 6 (ce3, ) <zc_t ~VQ76280Q> .

<|| ' VQ,c280Q> = ®Bo(0:Q) = —27 + 0c0(1).
cl

We deduce that
" (ce3,d) < K|{Qy, L (eQ)) + (NLioc(¥)) + F(4), *0.Q)|

A,
017 0ol exp—0(1) ||90||H22XP~

Il
HQC

Now, since Lg(0.Q) = z% -VQ, we check that

<Qw702LQ(6CQ)> = 02 <Q¢JZ——:| : VQ> ’
and
<Q¢,z‘i'~vc2> < i’-vcgg) +

|c/| Ed

/ Im()Re | =-VQQ ||
R? ||
From Lemma 5.4, we deduce that

Qv P La(0.Q))| < K 1n( )Hsﬂl\c

9%2(1/1)3111(

R2
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Now, we check easily that, with Lemmas 7.1 and 7.5,

(NLioe (), 0:Q)) < K@l [l 500,00 <015 -0 Dl

To conclude the proof of estimate (7.10), we shall estimate

), Q<05 s DllPlagn + (KN 4015 g, oDl
Qe

e

with F(v) = Qn(=V - Vi +|Q|*S(¢)). First, we estimate, for A > A >
10 , with Lemma 7.2,

(—@QnVi - Vi, 0:Q)| = ’/RQ nRe(Vp - WCQQ&Q)‘

< / IV P12Qo.Q)
]RZ
< K||V1/)||LM(B(0,,\)m{n¢o})\// 77|V1/)|2\// n]c2Q0.Q|?
B(0,)) B(0,))
H2Q0:Q L 52\ 2oy / |V
2\B(0,\)

A,c
<Oz QCHHeQXpﬁo( Mielle + 0asoo (D],

since, by Lemma 2.3, |c2Q3.Q| < W

(—=QnVY - Vi, 0.Q)| < o)y _. g0 (Dlllle:

We deduce that

Now, in {n = 1}, since e¥ = % and 1 — KXo < % 1+ Kpup (by our as-

sumptions on Z), we have |Re(y)| < Kpo. We deduce, with Lemma 7.1,
that in {n # 0},

Re()| < Ko+ 005,

5%

cxp*}O(l)'
QC

With S(¢) = ?R¢(¥) — 1 — 29e(1)), we check that, in n # 0, [S(¥)] <
K|9Re()|? (given that ug and ||Z — QC||He-xp are small enough), and with

similar computations as for [(—QnV - Vw, c29.Q)|, we conclude that
(F(¥),c*0.Q)| < uz Qell s —o(Dl#lle-
Qe
This concludes the proof of

. — A,
6‘ ‘(CCQ,CI) < O”Zcch”chpﬁo(l)“sDHHS{p
Qe

(K () + 0 a1y 00) el
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Step 2. We have the estimate (7.11).
Now, we take the scalar product of (7.7) with ¢d,.Q:

(i(d = ce3) - H(¥), 0.1 Q) = (Qu, cLo(9.1 Q) + (NLioc(v) + F (1), .1 Q).
We check that

_ P

< K|(¢ = ce3) - (1 = m)iQV, cd.. Q)| + K| — C€—2>H|<PHH§;CP

and

Q0.4 Q)|=| [ 19e(T0iQeDQ)|

</ n%e(vw)rfm(czcacfcz>‘+ [ mm(vone@d Q)
R2 R2

<| [, eI v m(@aaz )| + Klielnge
R2 ¢

Hiele [ | (Q0Q).
We check, with Lemmas 2.2 and 2.3, that
[, me@ae < K
and

K(c)

IV (Om(QD Q)| < IVQII. Q1 + V0. Q1 < 7 oy

therefore, as for the previous estimate,

<z'(c7_(;e—2>). (1 —n)V(Q¥)+ne’QVy
(I —n) +mne?¥

) CaCLQ>‘ gOﬁ’ZC_QC”Hepr_w(l)HgOHHZ?xp.
We check that, by symmetry (see equation (2.3)),

o
- !
—

(i(d = ce3) - VQ,¢0,. Q) = 5™ (ce3, ) <i| d
C

7L
Furthermore, from Lemma 2.8, we have Lo (0,1 Q) = —icﬁ -V@Q, there-

fore, from Proposition 1.2,

'VQ,CBCLQ>.

—1
c <|| 'VQ,OCLQ> = —Bq (9.1 Q) = =27 + 0c0(1).
Cl
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We deduce that
5 (ce3, ) < K|(Qy, cLq(8.1Q)) + (NLioe () + F(1), c0,1 Q)|

A,
+ O”ZC*Qc||Haxp4>0(1)||LP||H(e?Xp~
c

As previously, we check that

|(NLioe(¢) + F (1), 0,1 Q)| < 05 _ Qellyrexp =0 (Dl llzrg

Jr"uzfcgcuHexpao(l)||<P|\c
Qe
and from Lemma 2.8, we have
(Q%LQ(@CLQ)H:KQM = >‘
5L Ea
< (Wm( vcm) [ amiwmn < vcm)‘
R2 || R? Ed

and with Lemma 5.4, we deduce that

(@, Lo (9, Q)] < Kc1n< )le\c

We conclude that

6" (ces,d) < (Kc 1n< ) -|—OHZC 0. |\szxpﬁ>o( )) llelle

+ OHZ—QC exp_m( )H@HHS‘:’-

Il
Hae

7.3.2. Estimates on the remaining terms. Let us show in this sub-
section that

(i(d — ce3) - HW), Q(r+i7))|+|(NLioe (1), Q(¢) + iv)) |+ (F (¥), Q(eh+i7))|

Z.fpao( )+K)‘0)H‘P”C +O|\Z Q.

A, 2
< (0c0(1) +0)7_q, szﬁo( Melzrgs-

Il I 7

Step 1. Proof of [(NLioc(¥), Q¥ +i7))| < HZ Q. HHexp—>0< )H‘P”%gp.

From Lemma 7.5, we have

|<NLloc(’¢)7Q(1/} + W))‘ < K(HQd)Hcl({n#}) + |’YDH<PH?11({7;¢1})7

therefore, from Lemmas 7.2 and 7.6 and equation (7.6), we deduce

[{(NLioc(v), Q)| < HZ Qell e =0 )I|<‘0H?{§QXP'
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Step 2. Proof of

(i(& — ced) - H(1), Q¥ + i7))] < (0e0(1) +0)5 o,

A, ¢
+9)z-q.

M g

Il

e —o(Wlllle
Qe

oDl
Qe

We separate the estimate into two parts. First, we look at (i(¢/ — ce3) -

H(¥), Q). Werecall that H(v) = VQ+ (=n (1(8;!;);722”’va’ and, since

(1) and 1—n is compactly supported, we check

R e
|/ —ce3| < OHZ—QCHHZ)XPAO

eagsily that

(i@ - cary. LIV QOLIQVE )

< Oﬁ’Zc—QCHHepr oM ([(miQVY, Q)| + K(c)|\gp||§,(3xp).

Furthermore, we check that

i@V, Qull <| [ Sewyamviry

. ‘ /R | Im()R(VD)|QI |,

and by Cauchy-Scwharz | [ Re(v)Im(Vy)|Q[*n| < Kll¢[|3. Now, by
integration by parts (using Lemma 7.3), we have

[, me)nevniery

< ‘ /  Re(¥)Im(V) QI

_|_

[, w0
+| [ mtme(iarva.
R2
and by Cauchy—Schwarz we check that

Jm(4)Re(V4)|Q|™n

R2

2
< Kllellese-

We deduce that

<i(c7 — ce3) - (1 =n)V(QY) +1e’QVY
(1 —=mn) +ne?

2
»Q¢>‘ HZ QCHHepr—>O( )H‘PHH%"P-
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Finally, we write

(i(d — ce3) - VQ, Q)| < 8"(ce3, &)

With Lemma 5.4, we check that

- =L
<‘i,| vQ, Qw> <| Ve Qw>

With (7.10) and (7.11), we deduce that

K1 (1) lgle

07 - e22)- 7. Qul < (Kt (1) 40,1,y alD) 12
Qe

A,c
T OHZL—chngp S0 )||90|\H3xp
;

A,c 2
< (Oc—m(l) + OHZ,QCHHeXpﬁ()(1)> ”LPHC
QC

A, 2
0Nl e o Dlllese.
QC

(5%
Now, we look at (i(¢/ — ce3) - H(v), Qiry). We check that
(1vQ.Qin) = [ :e(vQQ) = 3 [ v(QP~1)

thus

—n)V(QY) + ne”QVw7Qh> .

(& — cal) - i) = (i(& - cap)- &
(@ — ) 1), Qin) = (i(? - ). LT @D e

In the area {n # 0}, since |y| = O”Z ol by Lemma 7.6, since
H

exp*}O( )

7-catl<x (em(2) +ols g, — ) lelle-+ofs @etygr-so Dl

by estimates (7.10) and (7.11), we check that
o (L= )V(QU) + ne’QVY o)
/{n¢o} ‘ < (¢ —eed): (1 —=mn) +nev @iy

A, 2
< OHZC—QCHHEXP—>o(1)||<ﬁ||HgP,
.
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and therefore (with Lemma 7.3, which justifies the integrability)
(1@ = ) (). < 1@ -2+ [ alQPoe(v)

A, 2
+ OHZC—chHexp_)o(l)||<PHH§QXP-
Qe

K()HCaHZ_QcHHS‘P ,€0,Z)

a2 and

By integration by parts (since |Re(y)| <
K\, || Z=Qc| grexp €0,2)

[Re(V))| < e e by Lemma 7.3) and Cauchy—Schwarz

] [, narsevs)

<| [, wuiermeco| + | [ av P
< K@lelluge

Since |y| = oﬂ"ZC_QC by Lemma 7.6 and |¢ — ce3| < (K(c) +

HHPQXP—W(I)
HZ @l pr_}0( ))||<p||HZ)xp by (7.10), (7.11), and Lemma 6.1, we con-

clude that

(i(¢ = ce3) - H(¥), Qiv)| < o) QCHHaxp_»o( )H@Hi;gp-

Step 8. Proof of [{F(1), QY + )| < (0,0 0(V) + KA

We recall
F(y) = Qn(=V¢ - Vi +QI*S(v)),

)
S() = ¥ — 1 — 2%e(y)).
First, we look at (F'(¢), Q). We have

HE®), QY)Y < (Q(L —n)VY - Vb, QY)| + [(Q(L — n)|QI*S(¥), Q).
We check that |||l ®e) < Kl[t]lLe®\Bo,n) + Kllelle (o) <
Ko+ oj; anHexHo(l)

QY - Vb, Qu) < [l oo 2y / MVl < (KXo + 05 gy o)l
Qe

Finally, since [|¢|| 7 ®2) < K a uniform constant for ¢ and [|Z — Q.|| HEP
small enough,

HQNIQIPS (), Q) < Il oo 2y / TR W) SR +01 gy (DI

Now, we compute

(P@).Q)I < bl | [ =9tV To)lf + @l Re(s()).
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and since S(1) is real-valued, we check that, since |'y|—0“Z Qull e ao(l)
HEP
by Lemma 7.6,
P, Qi < 1l [ IV0PIQ < 0y oDl
Qe

7.3.3. Conclusion. Combining the steps 1 to 3 and (7.9) in (7.8), we
deduce that, taking ¢ small enough, and then ||Z — Q.|| HEP small enough

(depending on ¢ and ), we have

0> Kllelle + K (c)llellzre

A,c 2
— (05%0(1)"‘[(,‘10 + OHZ*QCHHZ?XP"O( ))HSD”C |Z Q(,HHEXPHO( )H@HHa"pv

hence, if po is taken small enough (independently of any other parame-
ters), then ¢ small enough and ||Z — Q.|| e small enough (depending
on \ and ¢),

E(o)llelige + Klelé <0
We deduce that ¢ = 0, thus Z = Q. Furthermore, from (7.10) and (7.11)

we deduce that ¢ = ce_2>, and since Z — 1 at infinity, we also have v =0
(orelse | Z—Q. HH;"" = +00). This concludes the proof of Theorem 1.14.

Appendix A. Estimates on the travelling wave

A.1. Proof of Lemma 2.6. From Propositions 5 and 7 of [10] (where
n =1-1Q.*), we have in our case, for z = ro € R? with r € R,
lo| =1, 0 = (01,02) € R?, that

1 205

2 N c2 202 2
(%)

uniformly in ¢ € S' when » — +o00, where a(c) > 0 depends on ¢

and Q.. Note that our travelling wave is axisymmetric around axis xs

(and not z, for which the results of [10] are given), hence the swap
between o1 and oy between the two papers. We have

(1= 1Qc|*)(ro) — ca(c)

1 203 _1—ﬁ—(2—ﬁ)a§
c2 202 - c2 c202\2 c202\2
E T (5T g
which shows in particular that |Q.| = 1 when r > 1 is possible only in
1—c?/2

cones around sin(f) = oy = £1/5- 73 Therefore, for ¢ small enough,

for some v > 0 small and R > 0 large (that may depend on c¢), we have

lo|?
L= 1Q:Pllel > K(e 6, R) [ lel®
/]R2 - R2\(B(0,R)UD(y)) (1 +7)2
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where D(vy) = {re? € R?,
that, for ¢ € Hg,,

X s )y .
DuE2\B(0o,R)) (1 +7)? R2 ®2\(B(0,R)UD (7)) (1 +7)?

For 6y any of the four angles such that sin(6) + \/;%zg =0, we fix
r > 0 and regard ¢(6) as a function of the angle only. We compute, for
0 € [6o—28,00+208] (B > 0 being a small constant depending on + such
that {z = re'® € R?, 0 € [y + 38,00 + B8]} N D(y) = 0, and such that
D(7) is included in the union of the [#y — 3, 0y + f] for the four possible
values of 6y),

sin(0) + ;:zz;y < 7}. We want to show

2B+6
o(0) = p(26 + ) - / dop(©) dO,
hence,

00+383

\so(0)|<|<p(26+9)\+/9 L |06 (©)] dO.

This implies that
2w
PO <20p(28+ O + K [ onp(O)]* dO
0
by Cauchy—Schwarz and integrating between 6y — 8 and 6y + 5 yields

0o+8 9 00+38 5 27 )
/ 0(0)] d9<2/ 10(0)] de+K/ 190062 db.
00—p 6o+8 0

Now multiplying by 7775z and integrating in r on [R, +oo[, we infer

/ / ‘90'2 27‘d7"d9
0—00e[—p,8] Jre(Roof (1 +T)

2
< 2/ / el ar o
0—00€(8,38] J re[R, 400l (1 FT)

+K(c, B3, R) / |V<,0|2 dx
R2

lop|? da

< 2/ el de
h B2\ (B(0,R)UD(v)) (1 +[z])?

+ K(c¢, 8, R) / |V<p\2 dx,
R2
using

100 < 100

< < 2
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Therefore,

/ s < / || da
D(y)U®A\B(0,R)) (1 +7)? R2\(B(0,R)UD(y)) (1 +7)?
K(e.p, . 8) [ Vol da.
R

and thus

|l / , .
< K(e, 8,7, R Vol? + |1 - Q. _
/RQ\B((),R) @+ S5 ) |, Vel + 11— 1Qc el

We are left with the proof of

B(0,R) (1+7r)2 o R2 R2\B(0,R) (1+7r)2

We argue by contradiction We suppose that there exists a sequence ¢,, €

Hyg, such that deal — 1 and [, [V ? deal

Q. such tha fB (0,R) (1+r)2 and [p. [Veon|* + fRz\B(o,R) at+rz
0. Since ¢, is bounded in H'(B(0,R + 1)), by Rellich’s theorem, up
to a subsequence, we have the convergences , — ¢ strongly in L2
and weakly in H' to some function ¢ in B(0, R + 1). In particular,
fB(07R+1) |[V|? = 0, hence ¢ is constant on B(0,R + 1), and with

fB(o R+1)\B(0,R) % = 0 we have cp = 0, which is in contradiction

with 1= [0 t8els = [oom aihe by L2(B(0,R + 1)) strong
convergence. This concludes the proof of this lemma. O

A.2. Proof of Lemma 2.14. From equations (2.7) and (2.1), Lem-
ma 2.6 of [4], Lemma 2.13, and the mean value theorem, in B(d e, (fl/Q),

1Qc — Vi| < |Qc — V| + |V — Vi

A < 0c—o(1) + [Va(: _~d~£6_1>) - Vil
< 0c—0(1) + |de — del[|0z, V|| oo (r2)
< 0c—>0(1)7

which is the first statement.
For the second statement, we write Q. = V; (-—dce_f)V_l (~—dce_1>)—|—l“C
and from equation (2.5) (with some margin), we have

0c—>0(1)
147

VL] <
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Furthermore, since V; = Vi(- —d;?f),

V(Vi(- = deel)Vo1(- + deel)) — VVI
=VVi(- — deel)Vor(- + de€l) — VVA 4+ Vi(- — de&?)VV_1(- + deed),

and from (2.2), in B(czce_f, cﬁm), we have

0c—>0(1)

|VV_i(- + deef)| < T

We compute

VVi(- = de&)Vor (- + deel) — VVi
= VVi(- — de@))(Voi(- + deel) — 1) = VVi + VVi(- — dee)

and, from (2.1), in B(d,e1, CE/Q), we have [V_1(- +deep) — 1] = 0c0(1).
Finally, from Lemmas 2.1 and 2.13, we estimate (with the mean value
theorem)

[VVA(- = deel) — VVAi| < |de — dol sup V2Vi(z — d)]
d€[de,de]U[de,dc]
|de — de| _ OHo( )
(1 +T’1) (1 +T'1)
hence
— 1)
A2 . — < Oco(1)
(A.2) VQ. - VWi < =0

Now, ertmg w=Q.— Vl, in B(dC el,2d ) we estimate (since TW,(Q.)=
0 and AV1 (|V1|2 - 1)V1 =0)

0c—>0(1)

1471

by equations (2.6) to (2.10) and (2.1). Furthermore, by equations (2.6)
o0 (2.2), we have

[Aw| = | —icds, Qe — (1= |Qc*)Qe + (1 — [VII*)VA| <

OC*)O(]-)
(1+7)

We check, as the proof of (A.1), that, in B(d.&{ ,2d? ),

V(Aw)| <

lw| = 0c—0(1),
and, similarly, with equations (2.2) and (A.2), that

|Vw| = 0c—0(1)
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in B(d.e7, 2cﬁ/2). By Theorem 6.2 of [7] (taking a domain Q = B(z —
d:;e_1>7 \z—gce—{\)7 and o = 1/2, but it also holds for any 0 < a < 1), we

have, for z € B(d.ef, 2612/2)7

(1+71)*|VPw(e — deel)| < K(|lwlleigo) + (1+71)*[Awllor o),

and from the previous estimates, we have [|w|c1(@) = 0c-0(1) and
[Awl[cr ) < O(“ljr‘;(ll)), therefore
— 1)
V2(Qe - Th)| = V2w < 220 O
VA (@ - Tl = V7] < 2=

Appendix B. Proofs related to the energy space
B.1. Proof of Lemma 3.4. We recall that

lolfg, = [ 176l + 1L~ 1QcP ol + 96 @ce),
R
and since, for all A > 0,
) [ el < [ [Tl - QuPllel® + R @)
B(0,)) B(0,\)
<k [ [Vl el
B(0,\)

by a standard density argument, we have that C°(R?, C) is dense in Hg,
for the norm | - || a,, -

We are therefore left with the proof that C°(R2\{d.e1,—d.e; },C)
is dense in C2°(R?,C) for the norm || - || g, . For that, it is enough
to check that C2°(B(0,2)\{0},C) is dense in C*(B(0,2),C) for the
norm || - [|g1(B(0,2))- This result is a consequence of the fact that the
capacity of a point in a ball in dimension 2 is 0. For the sake of com-
pleteness, we give here a proof of this result.

We define . € CY(B(0,2),R) the radial function with n.(z) = 0 if
o] <&, me(w) = — L +1if |2] € e, 1], and ne(w) = 1if 2 > |2] > 1.
Then, we define n. » € C*(B(0,2),R) a radial regularization of n. with
ne(z) = 0 if |2| < &/2 such that n. \ — 7. in H'(B(0,2)) when A — 0.
Finally, we define n. » 5 = n57>\(§) for a small 6 > 0.

Now, given ¢ € C°(B(0,2),C), neasp € C(B(0,2)\{0},C) for
alle >0, A >0, § >0, by dominated convergence, we check that

/ n- s — |l
B(0,2) B(0,2)

2
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when § — 0. Furthermore, we compute by integration by parts

/ IV(ners0)” = / nZ sVl + 2/ Ve 6Mex,6Re(Vpp)
B(0,2) B(0,2) B(0,2)

+/ V1250l
B(0,2)

:/ W?,A,&WWP‘/ lo]* Anex 57e 0,5
B(0,2) B(0,2)

Now, extending ¢ to R? by ¢ = 0 outside of B(0,2), we have by change
of variables

/ o> Ane x 5me.x,5 :/ o> Ane,x 5me.x,5 :/ lo|* (26) Ame A7z 2.
B(0,2) R2 R2

When § — 0, we have by dominated convergence that fB(o 2)77{?»\75 |Vo|?2—
J5(0.2) IVel* and

/ |0[2(@6) Ane rien — |0[2(0) / Anenien = —lol2(0) / Vel
R2 R2 R2
Now, taking A — 0, we deduce that

lim lim IV (e 59)* = / IVel? - 102(0) / V. 2.
B(0,2) R2

A—086—0 B(0,2)

From the definition of 7., we compute

1
1
2 J—
/R2\V775| _/E ln(5)2r2rdr

1 1
o ln(s)Z/E ;dr

-1
“ @ Y

when € — 0. We deduce that

lim lim lim |V(775,,\,5tp)|2 :/ \th|2.
B(0,2)

e—=0A—=05—0 B(0,2)

This concludes the proof of this lemma. O

B.2. Proof of Lemma 4.1. We recall that Lg () =—icOs,¢ — Ap —

(1-]Qc[?)+2%Re(Qep) Q. Writing = Qv € C°(R?\{d.e1, —d.e1 }, C),
we decompose

Lo.(p) = —icdsy¥Qc — AYQc — 2V Qe - Vb + 2Re(¥)|Qc*Qc + TWe(Qe ).
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Since TW.(Q.) = 0,
(Lo (#)yp)=((1 —=n)Lq.(¢), ») + (nLq.(¢), Qcy))

= [0 = Rty = Ap = (1= Q) + 28e(Qep)Qe)9)
4 ey Qe — AQe —2V Qe T+ 20e(1)] Qe 1Qe)QV).

By integration by parts,

[ 0= Ry = Ap = (1= Qc ) + 2e(@ep)Q:)7)
= [ 0=Vl = 9ieiedop) — (1= Qe el + 2%°(@e)
— [ V- Re(Vep).

RrR2

Similarly, we compute

[, mel(=ic0.,0Qc = AvQe = 29Qe- Vo + 2e(1)]Q- Q0T

= [, MO DIQLI) — Rel M) Qe + 29864 Qe
(V@ - VYD)

= /R? 1(c|Qel* (IM(Bay Y)Re(v) — Re(Day ) I (1)) + 298¢ (1) |Qcl”
- Q%Q(VQC . Vﬁbm))

+ [ nivulQuf+2 [ nne(vQQn) se(ved)+ [ Vane(vudiQl
R2 R2 R2
Continuing, we have

- / 7] Qe Re(Dry ) Im(1) = / 7] Qel29Re()Tm(Da 1)
R2 R2

+ / D] Qe *Te() Im(1) + 2 / Re(D2 Q. Q) Re(1))Im (1),
R2 R

2

as well as

[ metwee v = [

R

1Re(VQQ) - Re( Vo))

+ / IV QoG I(Vei),
]RZ
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therefore

/ nRe((—icDry Qe — AGQe — 2VQe - Vb + 2Re(t)| Qo Q) 0o)
]RZ
= [ ITOP QL + 2916 () Qcl* + 26m(0y ) ()
+ / D(2Re(02,Q.Q0)Pe(¥)IM(Y) — 2Im(VQQ)IN(Vi))

te / BayRe()Im()| Qe ? + / V- Re(V)|Q. 2.
R2 R2

AS 0., Qe =AQA+(1—]Q.*)Q., we have cRe(0,,Q.Qc) =Re(IAQ.Q..).
By integration by parts,

2 / , MRAQQR(w)In(w) =2 [ V- Im(VQLQL)Re(w)Im(v)

2 [ Im(VQQL) - Re(V)Im(w) — 2 [ nIm(VQLQ) - Re(w)Im(V),
R2 R2
and
—2 [ Im(VQQIN(T D) = -2 [ nIm(VQ.Q0)(m(TY)e(w)
R2 R2
—Im(Y)Re(VY)).
Combining these estimates with
[ V0 96(Vep) = [ Vn- R(VQQI + Re(VD)IQ.L).
we conclude the proof of

(La.(p), ) = BoY ().

Now, for the proof for By, (¢), the computations are identical, simply
replacing ¢ by 0, n by 1, and Q. by V7. O

B.3. Proof of Lemma 6.1. First, let us show (6.1). We have

||<PHH1({%<10}) < KH@HHch
and, by equation (2.12) and Lemma 2.6, we check that

/ Re2 (1) < Kol
{r>5}

and also that

W'Q / |<P‘2 2
— <K __ < Kl(e )
/{;;5} 72 In(7)? oy (1 +7)2 ©@llellzg,
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Furthermore, we compute, by equations (2.12) and (3.1) and Theo-
rem 2.5,

/ \VWéK/ Vo Quf?
{7=5} {7=5}

<K ( / Vol? + / IVQc|2|90|2> < K(©) ¢l -
{'F>5} {'F>5}

=z =z

We deduce that (6.1) holds, and therefore Hg, C Hg,". Now, we check
that

.12
. 2 . 2 l4] )

c exp K c 7 K = 5 \% < .
IiQulizgy < 1iQulineeron +K [ miim+ [ 9l < oo

With regard to the definition of || - ||c, we check easily that

lelle < llellzge-

Finally, we recall the definition of B, () from equation (1.4),

Bo.(#) = /R2(1 = 0)(|Vepl* — Re(icdey 0p) — (1= |Qcl*)ol” + 29e*(Qeyp))

— [ Vn- (Re(VQeQo)|[¢]* — 20m(VQcQc)Re(v)Im(v)))

R2

+ [ cteanlQRe() )
+ / (VB 21Qul? + 2932 ()] Qel )

/R 0(VQeQ)IM(V)Re() + 26| Qe [T Dy 1)) Re(1)).

For A > 0, we have [[¢]la1(Bo,n) < K(e;N)|[@lluge, therefore (since

1 —mn is compactly supported) we only have to check that the integrands
in the last two lines are in L*(IR?), and this is a consequence of Cauchy—
Schwarz since

/R L IVEP Qe +2Re ()| Qel " + 413m(VQeQe) Im (V) Re ()]

F2IQul (., 0Re)) < K [ 0TI + R ) < Kol
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Furthermore, for two cutoffs 7, ' such that they are both 0 near the
zeros of Q. and 1 at infinity, we have

Bola(e) = Byl (@)
= /}R2 (1" =) (IVel* = Re(icdzy 0p) — (1 = 1Qc|*)|pl* + 2R (Qcp))

+ [ V=) e(VQQI — 2Im(VQQ)Re()Im()
—€0r; (1= 1) |Qel*Re (1)) Im()

+ / 0 = M (VERIQI + 293¢ (1)|Qe[*)
]R2

+ [0 = mEIn(TQQ)IM(T)Re(w) + 261Qe *Tm(0ey ) Re()

and, developing ¢ = Q.1 (see the proof of Lemma 4.1) and by integra-
tion by parts using that n — ' # 0 only in a compact domain far from
the zeros of ()., we check that it is 0.

Finally, for ¢ € Hq,, Bq.(¢), and B, (p) are both well defined. We
recall

Ba.(e) = [ | I96l" = (1= 1QePlel* + 2% @cp)
- 1- m ‘8352 p) — SR ‘8332 cic 2
o [, 0=melitnsop) —c [ aeion, Qi
v2e [ nmeramd,, Qe + ¢ [ onnesamil Qo
R2 R2

te /R nedmd, Q)

With the same computation as in the proof of Lemma 4.1, we check that
for p € C*(R?\{d.€}, —d.€1},C), we have

Ba.(p) = B5 ()
With the same arguments as in the density proof at the end of the proof

of Proposition 1.4, we check that this equality holds for ¢ € Hg, . O
Appendix C. Proofs related to the local uniqueness
C.1. Proof of Lemma 7.3. From Lemma 7.2, for any A > %,
1QYllcr(Bo,ay < KMIZ — QcHHg‘?"CP

(C.1) M 3 L= 5
1) / 1) /
K <X| LAl N n G o h) ,
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therefore, we only have to check the integrability at infinity of Qv to
show that ¢ = Q¢ € H,". In { = 1}, we have

Z
e = 2.

Q

We have shown in the proof of Lemma 7.2 that K > |g’ > 0/2 outside
of B(0, A) for some 6 > 0, and together with (C.1), we check that

(C.2) l¥llcogn=1y) < KA Z — QC”HS‘;”EO)'
This implies that

2
/ |Q¢| < +o0.
{

n=1} 72 ln(';")Q

Similarly, we check that, in {n = 1}, since e¥ = %7

671& VQ —p
VY =—V(Z - - —(1- ,
0 0 (Z-Q) 0 (I—e")
therefore
(C.3) VY[ < KA (12 = Qellgge, 20)(IV(Z = Q) + [VQ).
From Theorem 2.5, we have
K(c,Z)
V2] +1val < G,
therefore,
| vQrE < o
{n=1}
and

K(c, Z)
V(Z-Q) < )
Jo FE= QR [ G < s

We deduce that f{nzl} |Vy|? < +00, and, furthermore, equation (C.3)

shows that
K(Aa C, ||Z - QCHHEJXC]%&O: Z)

(1+7)2

VY| <
in {n=1}.
Now, still in {n = 1}, we have
Qe =2,

and we deduce that Qe (et — 1) = Z — Qe™ . Now, we recall
that [[0llco(n=1}) < K\, 1Z = Qcllugr €o), thus [Re(e?+™ — 1 — (¢ +
i) < K\ || Z — QCHng,EO)D%e(ewH'V —1)]. With (C.1), we deduce
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from this that, in {n = 1}, with }[|¢ + @] L @2) < [Re(e?T —1)] <
K|y + Z'V”L‘X’(]R?)a

[Re(P)] = [Re(Y +i7)|
< [Re(e” ™ = D)+ [Re(e" ™ — 1= (¢ +iv))]

K12~ Qelleze,0) 9e(e” 7 — 1)

(Z — Qe "™)Qe™
”( QP >

K, HZ - QC||H5"CP>50)(|%2(Z — Qe—i’v)‘

K()‘v ”Z - QC”H%"C‘)?EO)

+Im(Z — Qe Im(Qe — 1))).

From Theorem 2.5,

IR — Q™) < e(Z ~ D] + el — e < 2]
and
3m(Z — Qe YIm(Qe™ — 1)] < g (j 53
We conclude that, in {n = 1}, we have |Re(¢)| < K(A’C’szlcjjl)faxcp’EO’Z)

hence

/ Re’ (1Y) < +oo.
{n=1}

This concludes the proof of ¢ = Qv € H, oP We are left with the proof
K(/\CHZ Qell e €0.2)

of the following estimates: |Aw)| < gE=oE Qe , | Im(+iy)| <
K\ e, || Z=Qc|| gyexp ,€0,2) K()\,C,HZ*QCHHexp,Eo,Z) .

== e , and |Re(V)| < are Qe in {n =
1}.

We recall that, in {n =1}, V¢ = V(Z-Q)— ( —e~¥), from
which we compute, by differentiating a second time,

VeVZ-Q) v Y v gz oy Az Q)

Q
A _ vQ@-v _ v _
SR XTIy - e,

At =
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Using Theorem 2.5, AQ = —icd - VQ — (1 —|Q|?)Q, Z = —icd,, Z — (1 —
|Z|?)Z and previous estimates on 9, we check that, in {n = 1},

K()ch HZ - QCHHE""vng)

AP <

1+

We have Qe (e¥*" — 1) = Z — Qe™ in {n = 1}, therefore

ew+m _

Z
1= — —
Qeil’y

We check, since [[¥corn=13) < K\, [|Z — Qc||Hg‘}’7€0), that we have

by Theorem 2.5

am(w + )| < K12~ Qell e 20)Im(e 7 1)

S KO

Z = Qcllug»,eo)
Qc

K()\,C, HZ - QC||HZ‘2"§’76072)

X

e~V

Finally, since Vi =

v(z -

(1+7r)

Q) -

=201 o)

check with Theorem 2.5 that, in {n =1}

A\

[VRe(y)] < 0

n
<

Im(VZZ)Im (

)
)

e ¥

QZ

vzze
QZ

N

Jr

N

+‘9%e<

K(}\,C, ||Z - QCHHZQXCP7€07Z)

Ve

Z)

[Re(VQQ)|
Q[

)’ +|Re(VZ2Z)| '%e (

N

(IL+r)?

K()‘7C7 ||Z - QC||HS‘D7EO7Z)

FESE

Z
W”’

VZ,-% _ YQ

Q

e”
QZ

)

o s we

v(QP)|

21QI?
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We compute in {n = 1}, still using Theorem 2.5,
Jm (ﬂ) -

QZ QZ|?
< K(Im(e™ ™ — DR(QZe™)| + [Re(e ™) Im(GZe™))

[am(e ™ TQZe)|

K()\7C7 ||Z - QCHHS‘CP>807Z)
1+7r
+E ¢ [1Z = Qellugze, €0, 2)|Im(QZe™))

X

K()\,C, ||Z - QCHHZQXCP,EO7Z)
(I+7)
SR 2 - Qs c0. 2)(1Qe — 1 +12 - 1)

X

K\ ¢ | Z — Qcll gexe, €0, Z)
< Qe
(I47r)
This concludes the proof of this lemma. O

C.2. Proof of Lemma 7.4. First, let us show that L, (®)=QcLg (V)
if ® =Q.V € C*(R?,C). With equation (7.1), this implies that Lg(p) =
QL4 (). We recall that

L. () = —A® — icde, ® — (1 — [Qc|*)® + 2%e(Qe®)Q,
and we develop with & = Q. .V,
Lo, (®) = TW.(Qo)¥ — QeAY — 2VQ. - VU — icQc8:, ¥ + 2Re(¥)|Q.* Qo
thus, since (TW.)(Q.) = 0, we have Lq (®) = Q.Lg_(¥).
Now, for ¢ = Qv, we have
(1 =n)La(p) + nQLG(Y), (¢ +1Q)) = /Rz Re((1 —n)Lo(p) (v +iVQ))

\Y . ——
+ / QI Re ((—Aw - 2§ Vi vw) W+ w)) +nlQI % ().
R
With Lemma 7.3, we check that all the terms are integrable indepen-
dently (in particular since ¢ + ivQ = Q¢ + ivy) and |[(v¥ + ivy)(1 +
") Lo ({n=1}) < +00 by Lemma 7.3). We recall that Lg(¢) = —Ap +ic-

Ve — (1 —Q*)¢ + 2Re(Qyp)Q, and thus
[, 36l =) Lae)e+ 1)
= [0 =mE(ic- Viop) - (1= 1QPIel + 2%(Q)

+ [ 0= me-aep) £ [ 1- (o).
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We recall that 1 —17 is compactly supported and that ¢ € C?(R?,C). By
integration by parts,

[ a-mne-ae0) = [ a-mivel - [ In-me(Vop)
R2 R2 R2
and we decompose

[ 0= 0%elnLa()iQ) = [ (1= ne(-AgiQ+ - Vi)

]R2
- [ 0= - QP
By integration by parts, we have
0=l V@) = = [ ~Tumte(oQ) + (1 = )Re(¥ Q)

and
[ a=nmeagia)= [ ~Vn- (Re(ieVQ)~Re(iVieQ))+ [ (1-me(ioQ).

Combining these computations, we infer

Re((1 —n)La(p)(p +ivQ))

R2

= [ A=Vl + 97 Viog) = (1 = [QPel” +286*(Q)

- Vn-%e(vsosﬁ)w“-/w VnHRe(eQ)

R2

. ( /R V- (Re(ipVQ) - ‘ﬁe(iVsOQ)))

4y [ (= B2 TQ +i(1 - Q) +AQ).

Since —AQ+ic-VQ—(1-]Q|*)Q = 0, we have —¢- VQ+i(1-1Q1*)Q+
1AQ = 0, therefore

Re((1 —n)La(p)(p +i1Q))

R2

= [ A=Vl + 97 Viog) = (1 = [QPlel” + 296 (Q)

— [ Vn-Re(Vepp)

R2

— (—6- 5 VnPRe(Q) + /Rz Vi - (Re(ipVQ) — me(iv%p@») :
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Until now, all the integrals were on a bounded domain (since 1 — 7 is
compactly supported).

Now, by integration by parts (which can be done thanks to Lemma 7.3
and Theorem 2.5),

[ nQPe-av@m) = [ V0 1QPR(v+ )
+ [ av(ar) - (v + )

2 2
+ [ nlarvu

Now, we decompose (and we check that each term is well defined at each
step with Lemma 7.3 and Theorem 2.5)

/Rz n|QI*Re ((72%“2 : vw) (W)) = -2 /R2 1Re(VQQ - Vi)

9 / 1Re(VQQ - Vi (iy)),
]R2
with

~2 [ ievQQ- Vi) = -2 [

R

1Re(VQQ) - Re(Vyv)

1o /R _Im(VQQ) - Im(Ve),

and since V(|Q]?) = 2R¢(VQQ), we have

/R nlQPe ((wa -2%2 ~vw) (W))

- / QEIVYP +2 / (1 - )IM(VQQ) - Im(Vei)
R2 ]R2

+ [ Vi lQPR(Ve @) +2 | 19m(VQQ) - (Vi)

2

We continue. We have

2 / PIN(VQQ) - Im(Vipd) = 2 / PIM(VQQ) - Re(1)Im(Ve)
R2 R

2

- /R Im(VQQ) - Re(Ve)Im(y),
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and by integration by parts (still using Lemma 7.3 and Theorem 2.5),

—2 /Rz nIm(VQQ) - Re(Ve))Im(y) = Q/R 1Im(VQQ) - Re(¥)Im(V)

2

+2 [ nIm(AQQ)Re(w)Im(w) +2 [ | V1 In(VQQ)Re(w)Im(v).

We have Im(AQQ) = Jm(ic- VQ — (1 - [QI*Q)Q) = Re(¢- VQQ),

therefore

2 vQ Wb L i~y
/R2 n|Q|"Re ((—Al/) — 2? : VT/J) (W + Z'Y))
= /R2 QI Vy|* + 4/RQ nIM(VQQ) - Re(v)Im(Ve))
+2 / _mIm(VQQ) - Im(V4:(i7))
42 / | MRe(e- VQQ)Re(t)Im (1)

+ [ V@I R(T 0T 7)) + 23m(TQQ)Re(0)Im().
Now, we compute

3 / QPR Y(FT T ) = & / 7 Q2Re (V) Im(e) + i)
R2 R2

~o- [ nlQPam(ve)ew),
and by integration by parts (still using Lemma 7.3 and Theorem 2.5),

z. / N QPRe(V)Im(p + in) = —&- / V| QP Re(t)Im(y + iv)
R2 R2
_z. / IV (1QI)%Re()Tm () + i)
]R2

—o- [ nlQPe(w)Im(7).
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Since V(|Q[2) = 2R¢(VQQ), we infer
[ nierne ((~av -2 T2 vo - ie-vo) @)
= [ IQEIVH* +430(VQQ) - Re()Im (V) — 22 Im(Vo)Re(1)
+2 [ nIm(vQQ) - Im(Vu(in))
2 [ (e VQQ)Re(w)
+ [ V0 (QPR(TU(T 7)) + 20m(VQQ)e(w)Im(1)
42 [ ValQPRe()Im(w + i)

Combining these computations yields

Re(Lg" (0) (¢ +i7Q)) = B5 ()

1 (~e [ vumee@) + [ V0 (19 Q) - meivo@) )
+2 /]R _1Im(VQQ) - Im(Vih(i))

9y /R %@ VQQ)Re(v)

+ / V- [QIPRe(Ve (i)

~e [, VnlQPse(w).

We compute, by integration by parts (still using Lemma 7.3 and Theo-
rem 2.5), that

2 [ nIm(VQQ) - In(Vul) = ~2y [ 19m(VQQ) - :e(V1)

=2y s V- Im(VQQ)Re ()

427 [ nm(AQQ)(w),
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and since IM(AQQ) = Re(¢- VQRQ) and Re(V(iv)) = yIm(Vy), we

have

Re(Lg " (@) (¢ +i7Q)) = B5T ()

R2

— <_5. /}R2 VnRe(pQ) + /R2 V1 - (Re(ipVQ) — me(iV@Q)O

2 [ Vi m(VQQ)Ke(v)
4 [, V0 1QPIm(v )

—e- [, VnlQPos(w).

We check that Re(pQ) = |Q*Re(v), Re(ipVQ) = —Re(VQQ)Im(v)) +

Tm(VQQ)Re(1) and that
—Re(iVeQ) = —Ne(iVQ.Qv) — Re(iV)|Q[?

= Im(VQQ)Re(¥) + Re(VQQ)Im(v) + Im(Ve)|Q|?,

thus concluding the proof of

Re(Lg" (9) (¢ +17Q)) = BT ().

R2

O

C.3. Proof of Lemma 7.6. For X = (Xl,XQ),C_; € R2, we define, as

previously, the function

Q=Qs(—X)e".
We define, to simplify the notations,
Q:=B(d;,,R)UB(d;,.R)

and

QO =B ((dc_;’l ;dc_;’Q),R> R

which is between the two vortices. We define

X Re [, 0, QQY7°
X Re [, 92, QQY#0
G| 61 | =]cRe[,0aV Q7 |,
02 cRe [, 0.1 QQY#0
0 Re [, i)

where ¢ (used to defined Q = Qg (-—X)e") is given by 01 = sl (ced, )

and 6, = 0+ (ce3, ).
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Here, we use the notation 9.Q for 0.Qc|c—.. We note from (7.4) and
the definition of 1 that in 2 we have

Qv=27-0Q.
First, we have

QY1 (@) < oﬁch”HgHou)
(C.4)

-
/

+K <X| + ==

which is a consequence of Lemma 7.1. By Lemma 5.1, we compute that

A, ¢
< °|\Z—Qu||H5xwo(1)~
;

@
coocoo

We are going to apply the implicit function theorem on H = G — G(0),
and find a point A such that H(A) = G(0) since G(0) is small, which
implies G(A4) = 0.

Let us compute dx,G. We recall that Qi € C'(R? C). Since Q de-
pends on X, we have

8X2me/ 8952QQ¢7£0 = ma(amQQw#O)
Q

o0

- / Re(92,,,00070)
Q

+ / Re(De, QO (V7).
Q

By estimate (C.4), we have
%e(0r, QQUA)| + / %e(02,,,QQ070)
N Q

o'l(ces,d) ot (ces,d)

A,c 2 2

SO Z-qul yexo o) + K <|X t—a T, :
Qe

and since QY = Z — Q and ¥7#0 = ¢ — 4% in Q, we check that,

/ Re(Dey QOx, (QTFY)) = — / 10, QP + / Re(D, QO (QU0)).
Q Q Q
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Now, using Qv = Z— @, we check that, in B(d

27
20, (QU°) = O, (Q / Z-0Q del)
0

R), where z = 111

¢, 1

Q

_ 27 Z—Q
—81262/(; Q dé,

°r _8922Q °m _(Z — Q)ale
+Q/O 0 d91+Q/0 ——=—"=db:

QQ
27
w2, o (757 o

Therefore, we estimate (since R is a universal constant)

/ Re(9y QOx (QU0))
B(dc—,,1 ,R)

S 27 781 Q
= xTo —=2x 0
) l/B(d;/,laR) e <8 QQ/O Q ! 1>

Let us show that, in B(d , R),

+ K[| Z - Qllcr(a)-

27
Q/O _‘?%Qdol = 0esso(1).

We have in this domain that ‘% =14 0.50(1) and |VQ. — VV1| =
0c—0(1) by Lemmas 2.14 and 2.15, where V; is the vortex centred
at d ;. We deduce that, in B(d; |, R),

c/, 1’

2m 27
—Or —02,V
Q/ TQQdel :Vl/ S 01+ ocmo(1).
0 0

1

812 Vi

A has no 0-harmonic around

Finally, by Lemma 2.1, we check that
d therefore

1’

27
(C.5) Vl/ 0:aVi 49—,
0 Vi

By symmetry, the same proof holds in B(d ., R).

Adding up these estimates, we get

/27

B, Re /Q D0y QU + /Q 102, Q2

-
/

: $H(ced, @) 6 (ce}, )
<OT’Z_QCngﬁo<1>+oHo<1>+K<|X+ e ).
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By a similar computation, we have

’8;(29%/ adVQd}#O*/ %e(adV8g,2Q)‘
Q Q

5l ce_2>,c_;) 5+ ce_g, o
<o)%-q. ||Hzgquo(1)+0cﬂ0(1)+K<|X|+ (c2 + 24 . ).

By Lemma 5.1 and Theorem 1.1 (for p = +00), we have

/ sm(advan)' <
Q

/ %e(cQOCQ&QQ)'
Q

+ / %e((&dV — CQQCQ)azQQ)‘ = 05%0(1)~
Q

Similarly, we check

]8x2 /Q 90, QQUP0|

/ Re(0ry Q0x, Q)’
Q

5l 06_2),8_7 5t ce_g,c_;
<o..zQ|.Hamo<1>+oﬁo<1>+f<(|X|+ (0,€) 6B 11y,

Still by Lemma 5.1, we have

Tl 2

7)' = 00-0(1).

With the same arguments, we check that

o, /Q 0,1 QQUA0

ol(ces, d) ot (ced,d
<ol o, g0l )+oc_,o(l)+K(|X|+ (C2 ) 4 (C ) ).

Finally, with equations (2.6) to (2.10) and (C.4), we check easily that

‘9X2< / “ﬁ) |Z QCHHS(p—W(l)

sV(cat.dy  si(cal.d
+0c—>0(1)+K<X|+ (Ci ¢) (ke )+|7|




COERCIVITY FOR TRAVELLING WAVES IN GP 407

We deduce that

X, 0
Xz fQ |812Q|2

9x,G | 61 |+ 0 <01 Qullerm—0(1) + 0cs0(1)
52 0 Qe
o1 0

s ety si(eat.a
+K<|X|+ (cef, &) | (C?’C)Hv\.

c2

We can also check, with similar computations, that
X, Jo 102, Q|

X 0

x,G | 61 |+ 0 <oﬁ’;_Qc”Hemo(l)+oHo(1)
52 0 Qe
o1 0

SHiees. & 5t v
+K(|X|+ (Ccej’c)+ (Ci2’6)+|w.

We infer that this also holds with a similar proof for the last two
directions, namely

Xi 0
Xo 0
?05,G | 1 |+ Jo®0eQI [ |< 017 g, cepso(D) + 0cs0(1)
02 0 Qe
Y

sty si(cat.d

+K<|X+ (cej’c)+ (et ) 4y
C C

(using the fact that 94V is differentiable with respect to d1, which is not

obvious for ¢?0,.Q and is the reason why we have to use this orthogonal-

ity) and

X3 0
Xo 0
A,c
c05,G | 01 [+ 0 , < OHZfQCHHexpﬂo(l) + 0c-0(1)
62 fQ ‘Calel Qe
ol 0

sl ce_2>,c7 ot ce_2>,c’
—|—K<|X—|— (02 )—I— (c )—|—\’y| .

—

We will only show for these directions that, in B(d; ;, R),

27 CQacQ 27 CaCLQ
o gt +le [ <5

and the other computations are similar to the ones done for dx, F' (using
Lemma 5.1).

+ = 05*}0(1)7
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We recall from Lemma 2.3 that, in B(d; ;, R),
l[c®0.Q — adv”c’l(B(dg/ll,R)) = 0c—0(1),
Where ||3dV =+ 8961‘/1 ||Cl(B(dC7 "
a point d; € R? such that
lds —d

o

R)) = 0c—0(1), V1 being centred around

57,1| = Ocﬁo(l).
Therefore, we check that

of %

2™ 0y V1

0 1
= 0c—0(1)

from (C.5). Finally, we have from Lemma 2.7 that 9.. Q= — gLt (@)

V@, where 2107 s 2L rotated by an angle (5L(ce_2>7c7). We note

that, in B(d;/ L R),

Cd7 VQ
c/,1
————df
‘Q/O Q 1
2 ed5 - V'V

v e T 40
‘ 1/o \Z! '

by (C.5) and the same result for 9., instead of 0,,. Therefore, since
a8 (TR K in B(dg,, R),

de,| < |Vi dO1| + 0c—0(1)

2m Cdcv 1 VVl
< ‘Vlf AL
0

Vi + 0c~>0(1)

and
=0

/1|

N
271'8 2"C(J—6(ec)—d£, )VQ
‘Q/ ¢ de& < Q/ 0 = d@1| + oc—o(1)
0 0
< Ke+ 0cso(1)
= Oc_>()(1).
Finally, we infer that
X1 0
X5 0
A,c
0,G gl 0 S Oz-qel gm0 (1) +0em0(D)
2
vy Re [, Q

S ) s (em.d
+K<|X+ 6,9) 4 TR 4 1y).

The proof is similar to those of the previous computations, and we will
only show that, in

105(QU™0)| <o)y, HHépoo(l)
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‘We have
105(Qu7 )| = 105(Q) — 0,(Qy°)|

. Q 7 72@ A,c
< ‘_Z o )y @ Y|t eiz-a.
¢

< OHZ—QCHHEXP—»o(l)'

”HEXJHO(I)

From Theorem 1.1, Re [, Q = Re [, —1 + 0.0(1) < —K < 0. We
conclude, by Lemma 5.1, that, for ¢ and || Z — Qc||H2_2xp small enough,

dG is invertible in a neighbourhood of (0,0,0,0,0) of size independent
of |Z — Q.|| HE®- Therefore, by the implicit function theorem, taking ¢

small enough and (¢, A) small enough, we can find X, = R2, vy €R
such that

51, @) 5 (6 ) .
| X+ = + . +|v] < O‘lyz*QcHHexp%O(l)’
QC

and satisfying

e [ 0., Q@7 =5k [ 0., QQUA=0),
B(d; ,R)UB(d; ,,R) B(d5 ,R)UB(dy ,.R)
9%/ 8dVQ’(/)7£O :?}ie/ acl QQi/ﬁéO :0,
B(d; ,RUB(dy ,R) B(dg ,R)UB(d ,R)
me/ i = 0. O
B((dc7,1+dc-’,2>/2’R)
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