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COERCIVITY FOR TRAVELLING WAVES

IN THE GROSS–PITAEVSKII EQUATION IN R2

FOR SMALL SPEED

David Chiron and Eliot Pacherie

Abstract: In a previous paper, we constructed a smooth branch of travelling waves

for the 2-dimensional Gross–Pitaevskii equation. Here, we continue the study of this

branch. We show some coercivity results, and we deduce from them the kernel of the
linearized operator, a spectral stability result, as well as a uniqueness result in the

energy space. In particular, our result proves the nondegeneracy of these travelling

waves, which is a key step in their classification and for the construction of multi-
travelling waves.
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1. Introduction and statement of the results

We consider the Gross–Pitaevskii equation

0 = (GP)(u) := i∂tu + ∆u− (|u|2 − 1)u

in dimension 2 for u : Rt × R2
x → C. The Gross–Pitaevskii equation is a

physical model for Bose–Einstein condensates [8], [17], and is associated
with the Ginzburg–Landau energy

E(v) :=
1

2

∫
R2

|∇v|2 +
1

4

∫
R2

(1− |v|2)2.

The condition at infinity for (GP) will be

|u| → 1 as |x| → +∞.

The equation (GP) has some well-known stationary solutions of infinite
energy called vortices, which are solutions of (GP) of degrees n ∈ Z∗
(see [2]):

Vn(x) = ρn(r)einθ,

where x = reiθ, solving{
∆Vn − (|Vn|2 − 1)Vn = 0,

|Vn| → 1 as |x| → ∞.
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Amongst other properties, V1 and V−1 have exactly one zero (ρn(r) = 0
only if r = 0), and we call it the centre of the vortex. Since the equation
is invariant by translation, we can define a vortex by its degree and its
centre (the only point where its value is zero).

We are interested here in travelling wave solutions of (GP):

u(t, x) = v(x1, x2 + ct),

where x = (x1, x2) and c > 0 is the speed of the travelling wave, which
moves along the direction −−→e2 . The equation on v is then

0 = (TWc)(v) := −ic∂x2v −∆v − (1− |v|2)v.

We use the following notations throughout this paper. We denote, for
functions f, g ∈ L2

loc(R2,C) such that Re(fḡ) ∈ L1(R2,C), the quantity

〈f, g〉 :=

∫
R2

Re(fḡ),

even if f, g 6∈ L2(R2,C). We also use the notation B(x, r) to define the
closed ball in R2 of centre x ∈ R2 and radius r > 0 for the Euclidean
norm. We define between two vectorsX = (X1, X2) ∈ R2, Y = (Y1, Y2) ∈
C2 the complex quantity

X · Y := X1Y1 +X2Y2.

Finally, we use the notation oνc→0(1) to describe a quantity that goes
to 0 when c→ 0 for a fixed value of ν.

1.1. Branch of travelling waves at small speed. In the previous
paper [4], we constructed solutions of (TWc) for small values of c as a
perturbation of two well-separated vortices (the distance between their
centres is large when c is small). We showed the following result.

Theorem 1.1 ([4, Theorem 1.1]). There exists c0 > 0 a small constant
such that for any 0 < c 6 c0, there exists a solution of (TWc) of the form

Qc = V1(· − dc−→e1)V−1(·+ dc
−→e1) + Γc,

where dc = 1+oc→0(1)
c is a continuous function of c. This solution has

finite energy (E(Qc) < +∞) and Qc → 1 at infinity.
Furthermore, for all +∞ > p > 2, there exists c0(p) > 0 such that if

c 6 c0(p), for the norm

‖h‖p := ‖h‖Lp(R2) + ‖∇h‖Lp−1(R2)

of the space Xp := {f ∈ Lp(R2), ∇f ∈ Lp−1(R2)}, one has

‖Γc‖p = oc→0(1).
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In addition,
c 7→ Qc − 1 ∈ C1(]0, c0(p)[, Xp),

with the estimate∥∥∥∥∂cQc +

(
1 + oc→0(1)

c2

)
∂d(V1(· − d−→e1)V−1(·+ d−→e1))|d=dc

∥∥∥∥
p

= oc→0

(
1

c2

)
.

The main idea of the proof of Theorem 1.1 is to use perturbative meth-
ods around a quasi-solution V1(· − d−→e1)V−1(· + d−→e1), get Γc by a fixed
point theorem and the value of dc by the cancellation of a Lagrange
multiplier. With an implicit function theorem, we can show that this
construction gives us a C1 branch with respect to the speed c. In [4],
we showed additional and more precise estimates on Qc and ∂cQc in
some weighted L∞ norms that will be useful in the proof of the next
results (they will be recalled later on). Still in [4], we wrote the pertur-
bation Γc,dc to make the dependence on c and dc clearer, but it is no
longer needed here, and we will only write Γc.

With this solution Qc, we can construct travelling waves of any small
speed, i.e. solutions of

(TW~c)(v) := i~c · ∇v −∆v − (1− |v|2)v

for any ~c ∈ R2 of small modulus. For ~c = |~c|ei(θ~c−π/2) ∈ R2, |~c| 6 c0, we
have that

(1.1) Q~c := Q|~c| ◦R−θ~c
is a solution of (TW~c), with Rα being the rotation of angle α and Q|~c| de-
fined in Theorem 1.1. Furthermore, the equation is invariant by trans-
lation and by changing the phase. Thus, we have a family of solutions
of (GP) depending on five real parameters, ~c ∈ R2, |~c| 6 c0, X ∈ R2,
and γ ∈ R:

Q~c(· −X − t~c)eiγ .
We note that, for a vortex of degree ±1, the family of solutions has
three parameters (the two translations and the phase): V±1(· −X)eiγ is
a solution of (GP) for X ∈ R2, γ ∈ R. In particular, between a travelling
wave and the two vortices that compose it, we lose a parameter (since
the phase is global). This is one of the difficulties that will appear when
we study the stability of this branch.

First, we give additional results on this branch of travelling waves: we
will study the position of its zeros, its energy and momentum, as well
as some particular values appearing in the linearization. The (additive)
linearized operator around Qc is

LQc(ϕ) := −∆ϕ− ic∂x2ϕ− (1− |Qc|2)ϕ+ 2Re(Qcϕ)Qc.
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We want to define and use four particular directions for the linearized
operator around Qc, which are

∂x1Qc, ∂x2Qc,

related to the translations (i.e. related to the parameter X ∈ R2 in the
family of travelling waves), and

∂cQc, ∂c⊥Qc,

related to the variation of speed (i.e. related to the parameter ~c ∈ R2), if
we change respectively its modulus or its direction. The functions ∂x1

Qc,
∂x2

Qc, and ∂cQc are defined in Theorem 1.1, and we will show that

∂c⊥Qc(x) := ∂α(Qc ◦R−α)|α=0 = −x⊥ · ∇Qc(x),

with x⊥ = (−x2, x1) (see Lemma 2.7). We infer the following properties.

Proposition 1.2. There exists c0 > 0 such that, for 0 < c 6 c0, the mo-

mentum ~P (Qc) = (P1(Qc), P2(Qc)) of Qc from Theorem 1.1, defined by

P1(Qc) :=
1

2
〈i∂x1Qc, Qc − 1〉,

P2(Qc) :=
1

2
〈i∂x2Qc, Qc − 1〉,

verifies c 7→ ~P (Qc) ∈ C1(]0, c0[,R2),

P1(Qc) = ∂cP1(Qc) = 0,

P2(Qc) =
2π + oc→0(1)

c
,

and
∂cP2(Qc) =

−2π + oc→0(1)

c2
.

Furthermore, the energy satisfies c 7→ E(Qc) ∈ C1(]0, c0[,R), and

E(Qc) = (2π + oc→0(1)) ln

(
1

c

)
.

Additionally, Re(LQc(A)Ā) ∈ L1(R2,R) for A ∈ {∂x1Qc, ∂x2Qc, ∂cQc,
∂c⊥Qc}, and

〈LQc(∂x1Qc), ∂x1Qc〉 = 〈LQc(∂x2Qc), ∂x2Qc〉 = 0,

〈LQc(∂cQc), ∂cQc〉 = ∂cP2(Qc) =
−2π + oc→0(1)

c2
,

〈LQc(∂c⊥Qc), ∂c⊥Qc〉 = cP2(Qc) = 2π + oc→0(1),

and
∂cE(Qc) = c∂cP2(Qc) =

−2π + oc→0(1)

c
.

Finally, the function Qc has exactly two zeros. Their positions are ±d̃c−→e1 ,
with

|dc − d̃c| = oc→0(1),

where dc is defined in Theorem 1.1.
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The momentum has a generalized definition for finite energy functions
(see [16] in 3d and [3]). For travelling waves going to 1 at infinity, it is
equal to the quantity defined in Proposition 1.2. The proof of Proposi-
tion 1.2 is done in Section 2.

The equality 〈LQc(∂cQc), ∂cQc〉 = ∂cP2(Qc) is a general property for
Hamiltonian systems; see [12]. The equality ∂cE(Qc) = c∂cP2(Qc) was
conjectured and formally shown in [14], provided we have a smooth
branch c 7→ Qc, which is precisely shown in Theorem 1.1. We note that
the energy E(Qc) is of the same order as the energy of the travelling
waves constructed in [1], which also exhibit two vortices at a distance
of order 1

c . We believe that both constructions give the same branch,
and that this branch minimizes globally the energy at fixed momentum.
However, we were not able to show even a local minimization result of
the energy for Qc defined in Theorem 1.1.

In the limit c→ 0, the four directions (∂x1
Qc, ∂x2

Qc, c
2∂cQc, c∂c⊥Qc)

are going to zeros of the quadratic form (while being of size of order
one), and we see here the splitting for small values of c. In particular, two
directions give zero (∂x1

Qc and ∂x2
Qc), one becomes positive (∂c⊥Qc),

and one negative (∂cQc).

1.2. Coercivity results. One of the main ideas is to reduce the prob-
lem of the coercivity of a travelling wave to the coercivity of vortices.
We will first state such a result for vortices (Proposition 1.3) before the
results on the travelling waves (see in particular Theorem 1.5).

1.2.1. Coercivity in the case of one vortex. A coercivity result
for one vortex of degree ±1 is already known; see [5], and in particular
equation (2.42) there. We consider both vortices of degrees +1 and −1
here at the same time, since V1 = V−1. Here, we present a slight variation
of the results in [5] that will be useful for the coercivity of the travelling
waves. We recall from [5] the quadratic form around V1:

BV1(ϕ) =

∫
R2

|∇ϕ|2 − (1− |V1|2)|ϕ|2 + 2Re2(V1ϕ),

for functions in the energy space

HV1 =

{
ϕ∈H1

loc(R2,C), ‖ϕ‖2HV1 :=

∫
R2

|∇ϕ|2+(1−|V1|2)|ϕ|2+Re2(V1ϕ)<+∞
}
.

As the family of vortices has three parameters, we expect a coercivity
result under three orthogonality conditions. The three associated direc-
tions are ∂x1

V1, ∂x2
V1 (for the translations), and iV1 (for the phase).
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Proposition 1.3. There exist K > 0, R > 5, such that, if the following
three orthogonality conditions are satisfied for ϕ=V1ψ ∈ C∞c (R2\{0},C),∫
B(0,R)

Re(∂x1V1V1ψ) =

∫
B(0,R)

Re(∂x2V1V1ψ) =

∫
B(0,R)\B(0,R/2)

Im(ψ) = 0,

then

BV1(ϕ)>K

(∫
B(0,10)

|∇ϕ|2+|ϕ|2+

∫
R2\B(0,5)

|∇ψ|2|V1|2+Re2(ψ)|V1|4+
|ψ|2

r2 ln2(r)

)
.

The same result holds if we replace V1 by V−1. We note that the
coercivity norm is not ‖ · ‖HV1 , but is weaker (the decay in position is

stronger), and this is due to the fact that iV1 6∈ HV1
. That is why this

result is stated for a compactly supported function. The fact that the
support of ϕ avoids 0 is technical at this point.

Proposition 1.3 is shown in Subsection 4.2. The proofs there are mostly
slight variations or improvements of proofs given in [5].

1.2.2. Coercivity and kernel in the energy space. The main part
of this section consists of coercivity results for the family of travelling
waves constructed in Theorem 1.1. We will show them on Qc defined in
Theorem 1.1, and with (1.1), they extend to all speed values ~c of small
norm. We recall the linearized operator around Qc:

LQc(ϕ) = −∆ϕ− ic∂x2ϕ− (1− |Qc|2)ϕ+ 2Re(Qcϕ)Qc.

The natural associated energy space is

HQc := {ϕ ∈ H1
loc(R2), ‖ϕ‖HQc < +∞},

where

‖ϕ‖2HQc :=

∫
R2

|∇ϕ|2 + |1− |Qc|2||ϕ|2 + Re2(Qcϕ).

First, there are difficulties in the definition of the quadratic form for ϕ ∈
HQc , because of the transport term. A natural definition for the associ-
ated quadratic form for ϕ ∈ HQc could be

(1.2)
∫
R2

|∇ϕ|2 − (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ)−Re(ic∂x2ϕϕ̄).

Unfortunately the last term is not well defined for ϕ ∈ HQc , because

we lack a control on Im(Qcϕ) in L2(R2) in ‖ · ‖HQc ; see [16]. We can
resolve this issue by decomposing this term and doing an integration by
parts, but the proof of the integration by parts cannot be done if we only
suppose ϕ ∈ HQc (see Section 3 for more details). We therefore define
the quadratic form with the integration by parts already done. Take a

smooth cutoff function η such that η(x) = 0 on B(±d̃c−→e1 , 1), η(x) = 1
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on R2\B(±d̃c−→e1 , 2), where ±d̃c−→e1 are the zeros of Qc. We define, for
ϕ = Qcψ ∈ HQc ,

(1.3)

BQc(ϕ) :=

∫
R2

|∇ϕ|2 − (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ)

−c
∫
R2

(1− η)Re(i∂x2ϕϕ̄)− c
∫
R2

ηRe(i∂x2QcQc)|ψ|
2

+2c

∫
R2

ηReψIm(∂x2ψ)|Qc|2 + c

∫
R2

∂x2ηReψImψ|Qc|2

+c

∫
R2

ηReψImψ∂x2(|Qc|2).

See Subsection 3.3 for the details of the computation. For functions ϕ ∈
H1(R2) for instance, both quadratic forms (1.2) and (1.3) are well defined
and are equal (see Lemma 5.7). We will show that BQc is well defined for
ϕ ∈ HQc (see Lemma 3.3), and that for A∈{∂x1

Qc, ∂x2
Qc, ∂cQc, ∂c⊥Qc},

BQc(A) = 〈LQc(A), A〉.
From Proposition 1.2, we know that Qc has only two zeros. We will

write the quadratic form BQc around the zeros of Qc (for a function ϕ =
Qcψ ∈ HQc) as the quadratic form for one vortex (computed in Propo-
sition 1.3), up to some small error. As we want to avoid adding an
orthogonality condition on the phase, we change the coercivity norm to
a weaker seminorm that avoids iQc, the direction connected to the shift
of phase.

We will therefore infer a coercivity result under four orthogonality
conditions near the zeros of Qc (two for each zero). Then we shall show
that, far from the zeros of Qc, the coercivity holds, without any addi-
tional orthogonality conditions.

Proposition 1.4. There exist c0, R > 0 such that, for 0 < c 6 c0, if

one defines Ṽ±1 to be the vortices centred around ±d̃c−→e1 (d̃c is defined
in Proposition 1.2), there exists K > 0 such that for ϕ = Qcψ ∈ HQc ,
0 < c < c0, if the four orthogonality conditions∫

B(d̃c
−→e1,R)

Re(∂x1 Ṽ1 Ṽ1ψ) =

∫
B(d̃c

−→e1,R)

Re(∂x2 Ṽ1Ṽ1ψ) = 0,∫
B(−d̃c−→e1,R)

Re(∂x1 Ṽ−1Ṽ−1ψ) =

∫
B(−d̃c−→e1,R)

Re(∂x2 Ṽ−1Ṽ−1ψ) = 0

are satisfied, then, for

‖ϕ‖2C :=

∫
R2

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4,

the following coercivity result holds:

BQc(ϕ) > K‖ϕ‖2C .



284 D. Chiron, E. Pacherie

We will check that ‖ϕ‖C is well defined for ϕ ∈ HQc (see Section 3).
Proposition 1.4 is proven in Subsection 4.4.

We point out that ϕ = Qcψ 7→ ‖ϕ‖C is not a norm but a seminorm
since

∫
R2 |∇ψ|2|Qc|4 + Re2(ψ)|Qc|4 = 0 implies only that ϕ = λiQc for

some λ ∈ R, and iQc is the direction connected to the shift of phase. Note
also that in this proposition ϕ = Qcψ but the orthogonality conditions

are on Ṽ1ψ. This is a consequence of Proposition 1.3 and the fact that
the coercivity is shown with a seminorm.

Now, we want to change the orthogonality conditions in Proposi-
tion 1.4 to quantities linked to the parameters ~c and X of the travelling
waves, that is, ∂x1

Qc, ∂x2
Qc, ∂cQc, and ∂c⊥Qc. We can show that for

ϕ = Qcψ ∈ HQc , for instance∣∣∣∣∣
∫
B(d̃c

−→e1,R)

Re(∂x1 Ṽ1Ṽ1ψ)

∣∣∣∣∣ 6 K‖ϕ‖C ,

but such an estimate might not hold for Re
∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)
∂x1QcQcψ

(because of the lack of control on Im(ψ) in L2(R2) in the coercivity
norm ‖ · ‖C). It is therefore difficult to have a local orthogonality condi-
tion directly on ∂x1Qc for instance.

To solve this issue, we shall use the harmonic decomposition around
±d̃c−→e1 . For the constructed travelling wave Qc, two distances play a

particular role: dc (defined in Theorem 1.1) and d̃c (defined in Proposi-
tion 1.2 and connected to the position of the zeros of Qc). In particular,
we define the following polar coordinates for x ∈ R2:

reiθ := x ∈ R2,

r±1e
iθ±1 := x− (±dc)−→e1 ∈ R2,

r̃±1e
iθ̃±1 := x− (±d̃c)−→e1 ∈ R2.

We will also use r̃ := min(r1, r−1) and ř := min(r̃1, r̃−1). For a func-
tion ψ such that Qcψ ∈ H1

loc(R2) and j ∈ Z, we define its j-harmonic

around ±d̃c−→e1 by the radial function around ±d̃c−→e1 :

ψj,±1(r̃±1) :=
1

2π

∫ 2π

0

ψ(r̃±1e
iθ̃±1)e−ijθ̃±1 dθ̃±1.

Summing over the Fourier modes leads to

ψ(x) =
∑
j∈Z

ψj,±1(r̃±1)eijθ̃±1

and we define, to simplify the notations later on, the function ψ 6=0, by

ψ 6=0(x) := ψ(x) − ψ0,1(r̃1)

in the right half-plane, and

ψ 6=0(x) := ψ(x) − ψ0,−1(r̃−1)
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in the left half-plane. This notation will only be used far from the
line {x1 = 0}. We now state the main coercivity result.

Theorem 1.5. There exist c0,K, β0 > 0 such that, for R > 0 defined
in Proposition 1.4, for any 0 < β < β0, there exist c0(β),K(β) > 0
such that, for c < c0(β), if ϕ = Qcψ ∈ HQc satisfies the following three
orthogonality conditions:

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂x1QcQcψ
6=0 =Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂x2QcQcψ
6=0 =0,

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂cQcQcψ 6=0 = 0,

then
BQc(ϕ) > K(β)c2+β‖ϕ‖2C ,

with

‖ϕ‖2C =

∫
R2

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4.

If ϕ = Qcψ also satisfies the fourth orthogonality condition (with 0 <
c < c0)

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂c⊥QcQcψ
6=0 = 0,

then
BQc(ϕ) > K‖ϕ‖2C .

Theorem 1.5 shows that, under four orthogonality conditions, we have
a coercivity result in a weaker norm ‖ · ‖C , instead of ‖ · ‖HQc with a
constant independent of c, and with only three orthogonality conditions,

we have the coercivity but the constant is a Oβc→0(c2+β). This is because,
of the four particular directions of the linearized operator, ∂x1

Qc, ∂x2
Qc

are in its kernel, ∂cQc is a small negative direction, and ∂c⊥Qc is a small
positive direction (see Proposition 1.2). Concerning the orthogonality
conditions, we note that, for ϕ = Qcψ ∈ HQc ,

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂x1QcQcψ
6=0

is close to

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂x1QcQcψ

(we have Re
∫
B(d̃c

−→e1,R)
∂x1

QcQcψ0,1 = oc→0(1)‖ϕ‖HQc for instance), but

the first quantity can be controlled by ‖ϕ‖C , and the second cannot be.
Theorem 1.5 is a consequence of Proposition 1.4, and is shown in Sec-

tion 5. From this result, we can also deduce the kernel of the linearized
operator in HQc .
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Corollary 1.6. There exists c0 > 0 such that, for 0 < c < c0, Qc defined
in Theorem 1.1, for ϕ ∈ HQc , the following properties are equivalent:

(i) LQc(ϕ) = 0 in H−1(R2), that is, ∀ϕ∗ ∈ H1(R2),∫
R2

Re(∇ϕ · ∇ϕ∗)− (1− |Qc|2)Re(ϕϕ∗) + 2Re(Qcϕ)Re(Qcϕ
∗)

−Re(ic∂x2ϕϕ
∗) = 0.

(ii) ϕ ∈ SpanR(∂x1
Qc, ∂x2

Qc).

This corollary is proven in Subsection 5.5. This nondegeneracy result
is, to our knowledge, the first one on this type of model. It is a building
block in the analysis of the dynamical stability of travelling waves and
the construction of multi-travelling waves. Here, the travelling wave is
not radial, nor has a simple profile, which means that we cannot use
classical techniques for radial ground states for instance (see [19]).

1.2.3. Spectral stability in H1(R2). In this subsection, we give some
results on the spectrum of LQc : H2(R2)→ L2(R2). In particular, we are
interested in negative eigenvalues of the linearized operator. We can show
that H1(R2) ⊂ HQc and prove the following corollary of Theorem 1.5.

Corollary 1.7. There exists c0 > 0 such that, for 0 < c 6 c0, Qc defined
in Theorem 1.1, if ϕ ∈ H1(R2) satisfies

〈ϕ, i∂x2Qc〉 = 0,

then
BQc(ϕ) > 0.

We can show that LQc(∂cQc) = i∂x2Qc ∈ L2(R2), and thus ϕi∂x2Qc ∈
L1(R2) for ϕ ∈ H1(R2). This result shows that we expect only one nega-
tive direction for the linearized operator, and it should also hold in HQc .
For ϕ ∈ H1(R2), we have that BQc(ϕ) is equal to the expression (1.2).

Now, we define G to be the collection of subspaces S ⊂ H1(R2) such
that BQc(ϕ) < 0 for all ϕ 6= 0, ϕ ∈ S, and we define

n−(LQc) := max{dimS, S ∈ G}.

Proposition 1.8. There exists c0 > 0 such that, for 0 < c < c0, for Qc
defined in Theorem 1.1,

n−(LQc) = 1.

Furthermore, LQc : H2(R2) → L2(R2) has exactly one negative eigen-
value with eigenvector in L2(R2).

With this result, Theorem 1.1 and Proposition 1.2, we have met all
the conditions to show the spectral stability of the travelling wave:
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Theorem 1.9 (Theorem 11.8(i) of [15]). For 0 < c1 < c2 and c 7→ Uc a
C1 branch of solutions of (TWc)(Uc) = 0 on ]c1, c2[ with finite energy,
for c∗ ∈ ]c1, c2[, under the following conditions:

(i) for all c ∈ ]c1, c2[, Re(Uc−1)∈H1(R2), Im(∇Uc)∈L2(R2), |Uc| →
1 at infinity, and ‖Uc‖C1(R2) < +∞,

(ii) n−(LUc∗ ) 6 1,

(iii) ∂cP2(Uc)|c=c∗ < 0,

then Uc∗ is spectrally stable. That is, it is not an exponentially unstable

solution of the linearized equation in Ḣ1(R2,C).

Corollary 1.10. There exists c0 > 0 such that, for any 0 < c < c0, the
function Qc defined in Theorem 1.1 is spectrally stable in the sense of
Theorem 1.9.

The notion of spectral stability of [15] is the following: for any u0 ∈
H1(R2,C), the solution to the problem{

i∂tu = LQc(u),

u(t = 0) = u0

satisfies that, for all λ > 0,(∫
R2

|∇u|2(t) dx

)
e−λt → 0

when t→∞. The result of [15] is a little stronger: the norm that does

not grow exponentially in time is better than the one on Ḣ1(R2,C), but
weaker than the one on H1(R2,C), and is not explicit.

1.3. Generalization to a larger energy space and use of the
phase. There are two main difficulties with the phase. The first one, as
previously stated, is that we lose a parameter when passing from two
vortices to a travelling wave. The second one is that for the direction
linked to the phase shift, namely iQc, we have iQc 6∈ HQc (and even for
one vortex, iV1 6∈ HV1). This will be an obstacle when we modulate the
phase for the local uniqueness result. Therefore, we define here a space
larger than HQc .

1.3.1. Definition and properties of the space Hexp
Qc

. We define

the space Hexp
Qc

, the expanded energy space, by

Hexp
Qc

:= {ϕ ∈ H1
loc(R2), ‖ϕ‖Hexp

Qc
< +∞},

with the norm, for ϕ = Qcψ ∈ H1
loc(R2),

‖ϕ‖2Hexp
Qc

:= ‖ϕ‖2H1({r̃610}) +

∫
{r̃>5}

|∇ψ|2 + Re2(ψ) +
|ψ|2

r̃2 ln2(r̃)
,
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where r̃ = min(r̃1, r̃−1), the minimum of the distance to the zeros of Qc.
It is easy to check that there exists K > 0 independent of c such that,
for ϕ = Qcψ ∈ Hexp

Qc
,

1

K
‖ϕ‖2H1({56r̃610})6

∫
{56r̃610}

|∇ψ|2+Re2(ψ)+
|ψ|2

r̃2 ln(r̃)2
6 K‖ϕ‖2H1({56r̃610}).

We will show that HQc ⊂ Hexp
Qc

and iQc ∈ Hexp
Qc

, whereas iQc 6∈ HQc .

This space will appear in the proof of the local uniqueness (Theorem 1.14
below). The main difficulty is that BQc(ϕ) is not well defined for ϕ ∈
Hexp
Qc

because, for instance, of the term (1 − |Qc|2)|ϕ|2 integrated at
infinity. If we write the linearized operator multiplicatively, for ϕ = Qcψ
(using (TWc)(Qc) = 0),

QcL
′
Qc(ψ) := LQc(ϕ) = Qc

(
−ic∂x2ψ −∆ψ − 2

∇Qc
Qc
· ∇ψ + 2Re(ψ)|Qc|2

)
,

then there will be no problem at infinity for ϕ ∈ Hexp
Qc

for the associated

quadratic form (in ψ), but there are instead some integrability issues
near the zeros of Qc. We take as before a smooth cutoff function η such

that η(x) = 0 on B(±d̃c−→e1 , 1), η(x) = 1 on R2\B(±d̃c−→e1 , 2), where ±d̃c−→e1

are the zeros of Qc. The natural linear operator for which we want to
consider the quadratic form is then

Lexp
Qc

(ϕ) := (1− η)LQc(ϕ) + ηQcL
′
Qc(ψ),

and we therefore define, for ϕ = Qcψ ∈ Hexp
Qc

,

(1.4)

Bexp
Qc

(ϕ) :=

∫
R2

(1−η)(|∇ϕ|2−Re(ic∂x2ϕϕ̄)−(1−|Qc|2)|ϕ|2+2Re2(Qcϕ))

−
∫
R2

∇η · (Re(∇QcQc)|ψ|2 − 2Im(∇QcQc)Re(ψ)Im(ψ))

+

∫
R2

c∂x2ηRe(ψ)Im(ψ)|Qc|2

+

∫
R2

η(|∇ψ|2|Qc|2 + 2Re2(ψ)|Qc|4)

+

∫
R2

η(4Im(∇QcQc)Im(∇ψ)Re(ψ)+2c|Qc|2Im(∂x2ψ)Re(ψ)).

This quantity is independent of the choice of η.
We will show that Bexp

Qc
(ϕ) is well defined for ϕ ∈ Hexp

Qc
and that,

if ϕ ∈ HQc ⊂ Hexp
Qc

, then Bexp
Qc

(ϕ) = BQc(ϕ). Writing the quadratic

form Bexp
Qc

is a way to enlarge the space of possible perturbations to add
in particular the remaining zero of the linearized operator. We infer the
following result.
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Proposition 1.11. There exist c0,K,R, β0 > 0 such that, for any 0 <
β < β0, there exist c0(β),K(β) > 0 such that, for 0 < c < c0(β), if
ϕ = Qcψ ∈ Hexp

Qc
satisfies the following three orthogonality conditions:

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂x1QcQcψ
6=0 =Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂x2QcQcψ
6=0 =0,

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂cQcQcψ 6=0 = 0,

then

Bexp
Qc

(ϕ) > K(β)c2+β‖ϕ‖2C ,
with

‖ϕ‖2C =

∫
R2

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4.

If ϕ = Qcψ also satisfies the fourth orthogonality condition (with 0 <
c < c0)

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂c⊥QcQcψ
6=0 = 0,

then

Bexp
Qc

(ϕ) > K‖ϕ‖2C .

Furthermore, for ϕ ∈ Hexp
Qc

, the following properties are equivalent:

(i) LQc(ϕ) = 0 in H−1(R2), that is, ∀ϕ∗ ∈ H1(R2),∫
R2

Re(∇ϕ · ∇ϕ∗)− (1− |Qc|2)Re(ϕϕ∗) + 2Re(Qcϕ)Re(Qcϕ
∗)

−Re(ic∂x2ϕϕ
∗) = 0.

(ii) ϕ ∈ SpanR(iQc, ∂x1
Qc, ∂x2

Qc).

Proposition 1.11 is proven in Subsection 6.1. The additional direction
in the kernel comes from the invariance of phase (LQc(iQc) = 0). The
main difficulty, compared to Theorem 1.5, is to show that the considered
quantities are well defined with only ϕ ∈ Hexp

Qc
, and that we can conclude

by density in this bigger space.

1.3.2. Coercivity results with an orthogonality condition on the
phase. The main problem with adding a local orthogonality condition
on iQc is to choose where to put it. Indeed, we want this condition
near both zeros of Qc, or else the coercivity constant will depend on the
distance between the vortices, which itself depends on c.

The first option is to let the coercivity constant depend on c. In that
case, we can also remove the orthogonality condition on ∂c⊥Qc, the small
positive direction. We infer the following result.
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Proposition 1.12. There exist universal constants K1, c0 > 0 such that,
with R > 0 defined in Proposition 1.4, for 0 < c < c0, for the function Qc
defined in Theorem 1.1, there exists K2(c) > 0 depending on c such that,
if ϕ = Qcψ ∈ Hexp

Qc
satisfies the following four orthogonality conditions:

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂x1QcQcψ
6=0 =Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂x2QcQcψ
6=0 =0,

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂cQcQcψ 6=0 = Re

∫
B(0,R)

iψ = 0,

then

K1‖ϕ‖2Hexp
Qc

> Bexp
Qc

(ϕ) > K2(c)‖ϕ‖2Hexp
Qc
.

Here, the orthogonality condition on iQc is around 0, between the two
vortices, but it can be chosen near one of the vortices for instance, and
the result still holds.

The second possibility is to work with symmetric perturbations, since
the orthogonality condition can then be at both the zeros of Qc. We then
study the space

Hexp,s
Qc

:= {ϕ ∈ Hexp
Qc

, ∀x = (x1, x2) ∈ R2, ϕ(x1, x2) = ϕ(−x1, x2)}.

We show that, under three orthogonality conditions, the quadratic form
is equivalent to the norm on Hexp

Qc
.

Theorem 1.13. There exist R,K, c0 > 0 such that, for 0 < c 6 c0,
Qc defined in Theorem 1.1, if a function ϕ ∈ Hexp,s

Qc
satisfies the three

orthogonality conditions:

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂cQcϕ̄ = Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂x2Qcϕ̄ = 0,

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

iQcϕ̄ = 0,

then
1

K
‖ϕ‖2Hexp

Qc
> Bexp

Qc
(ϕ) > K‖ϕ‖2Hexp

Qc
.

We note that here the orthogonality conditions to ∂x1Qc and ∂c⊥Qc
are freely given by the symmetry. We also do not need to remove the
0-harmonic near the zeros of Qc.

If we remove the symmetry, and if we add the two orthogonality condi-
tions related to ∂x1

Qc and ∂c⊥Qc, it is not clear that we can get a similar
result (with a coercivity constant independent of c). The main difficulty
would come from the phase, because we would have one orthogonality
condition on it, but we would like two, one on each vortex.
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Proposition 1.12 and Theorem 1.13 hold if we replace Bexp
Qc

by BQc
for ϕ = Qcψ ∈ HQc with the symmetry, but the coercivity norm will
still be ‖ · ‖Hexp

Qc
.

1.4. Local uniqueness result. With Propositions 1.11 and 1.12, we
can modulate the five parameters (~c,X, γ) of the travelling wave, and
these coercivity results will be enough to show the following theorem.

Theorem 1.14. There exist constants K, c0, ε0, µ0 > 0 such that, for
0 < c < c0, Qc defined in Theorem 1.1, there exists Rc > 0 depending
on c such that, for any λ > Rc, if a function Z ∈ C2(R2,C) satisfies,
for some small constant ε(c, λ) > 0, depending on c and λ,

(i) (TWc)(Z) = 0,
(ii) E(Z) < +∞,
(iii) ‖Z −Qc‖C1(R2\B(0,λ)) 6 µ0,
(iv) ‖Z −Qc‖Hexp

Qc
6 ε(c, λ),

then, there exists X ∈ R2 such that |X| 6 K‖Z −Qc‖Hexp
Qc

, and

Z = Qc(· −X).

The conditions E(Z) < +∞ and ‖Z−Qc‖Hexp
Qc

6 ε(c, λ) imply that the

travelling wave Z → 1 at infinity, and therefore Z = Qce
iγ with γ ∈ R,

γ 6= 0, is excluded. The fact that ε(c, λ) depends on c comes in part
from the constant of coercivity in Proposition 1.12, which itself depends
on c. The condition that ‖Z −Qc‖C1(R2\B(0,λ)) 6 µ0 outside of B(0, λ)
is mainly technical. We believe that this condition is automatically sat-
isfied with the other ones (with λ depending only on c), but we were not
able to show it.

To the best of our knowledge, this is the first result of local uniqueness
for travelling waves in (GP). It does not suppose any symmetries on Z,
and therefore shows that we cannot bifurcate from this branch, even to
nonsymmetric travelling waves.

We believe that, at least in the symmetric case, Theorem 1.14 should
hold for ‖Z − Qc‖Hexp

Qc
6 ε with ε > 0 independent of c and λ. We

also note that the condition ‖Z − Qc‖Hexp
Qc

6 ε(c, λ) is weaker than

‖Z −Qc‖HQc 6 ε(c, λ), and thus we can state a result in HQc .

1.5. Plan of the proofs. Section 2 is devoted to the proof of Proposi-
tion 1.2. We start by giving some estimates on the branch of travelling
waves in Subsection 2.1. We then show the equivalents when c → 0 for
the energy and momentum, as well as the relations between them and
some specific values of the quadratic form in Subsection 2.2. Finally, in
Subsection 2.3, we study the travelling wave near its zeros.
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In Section 3, we infer some properties of the space HQc . First, we
explain why we cannot have a coercivity result in the energy norm in
Subsection 3.1, and we show the well-posedness of several quantities in
Subsections 3.2 and 3.3. A density argument is given in Subsection 3.4
that will be needed for the proof of Proposition 1.4.

Section 4 is devoted to the proofs of Propositions 1.3 and 1.4. We
start by writing the quadratic form for test functions in a particular
form (Subsection 4.1), and we then show Propositions 1.3 and 1.4 re-
spectively in Subsections 4.2 and 4.4. To show Proposition 1.4, we use
Proposition 1.3 and the fact that we know well the travelling wave near
its zeros from Subsection 2.3.

The next part, Section 5, is devoted to the proof of Theorem 1.5
and its corollaries. We show the coercivity under four orthogonality con-
ditions by showing that we can modify the initial function by a small
amount to have the four orthogonality conditions of Proposition 1.4, and
that the error committed is small in the coercivity norm. We then focus
on the corollaries of Theorem 1.5 in Subsection 5.5. We show the com-
position of the kernel of LQc (Corollary 1.6), and the results in H1(R2):
Corollary 1.7, Proposition 1.8, and Corollary 1.10.

The penultimate Section 6 is devoted to the proofs of Propositions 1.11
and 1.12 and Theorem 1.13. In Subsection 6.1, we study the space Hexp

Qc
;

in particular, we give a density argument that allows us to finish the
proof of Proposition 1.11. Then, in Subsection 6.2, we compute how the
additional orthogonality condition improves the coercivity norm, both
in the symmetric and nonsymmetric case, and we can then show Propo-
sition 1.12 and Theorem 1.13.

Section 7 is devoted to the proof of Theorem 1.14. Here we use classical
methods for the proof of local uniqueness, by modulating the five param-
eters of the family and using a coercivity result. One of the main points
is to write the problem additively near the zeros of Qc and multiplica-
tively far from them. The reason for that is that we do not know the link
between the speed and the position of the zeros of a travelling wave in
general, and we therefore cannot write a perturbation multiplicatively
in the whole space. Because of that, here we require an orthogonality
condition on the phase, and we cannot avoid it, as we did for instance
in the proof of Proposition 1.4 by choosing correctly the position of the
vortices.

We will use many cutoffs in the proofs. As a rule of thumb, a function
written as η, χ, or χ̃ will be smooth and have value 1 at infinity and 0 in
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some compact domain. The function η itself is reserved for BQc and Bexp
Qc

(see equations (1.3) and (1.4)).

Acknowledgments. The authors would like to thank Pierre Raphaël
for helpful discussions. E. Pacherie is supported by the ERC-2014-CoG
646650 SingWave.

2. Properties of the branch of travelling waves

This section is devoted to the proof of Proposition 1.2. In Subsec-
tion 2.1, we recall some estimates on Qc defined in Theorem 1.1 from
previous works ([2], [4], [9], and [13]). In Subsection 2.2, we compute
some equalities and equivalents when c → 0 on the energy, momentum
and the four particular directions (∂x1

Qc, ∂x2
Qc, ∂cQc and ∂c⊥Qc). Fi-

nally, the properties of the zeros of Qc are studied in Subsection 2.3.

2.1. Decay estimates.

2.1.1. Estimates on vortices. We recall that vortices are stationary
solutions of (GP) of degrees n ∈ Z∗ (see [2]):

Vn(x) = ρn(r)einθ,

where x = reiθ, solving{
∆Vn − (|Vn|2 − 1)Vn = 0,

|Vn| → 1 as|x| → ∞.

Here we regroup estimates on quantities involving vortices. We start with
estimates on V±1.

Lemma 2.1 ([2] and [13]). A vortex centred around 0, V1(x)=ρ1(r)eiθ,
verifies V1(0) = 0, and there exist constants K,κ > 0 such that

∀r > 0, 0 < ρ1(r) < 1, ρ1(r) ∼r→0 κr, ρ
′
1(r) ∼r→0 κ,

ρ′1(r) > 0; ρ′1(r) = Or→∞

(
1

r3

)
, |ρ′′1 (r)|+ |ρ′′′1 (r)| 6 K,

1− |V1(x)| = 1

2r2
+Or→∞

(
1

r3

)
,

|∇V1| 6
K

1 + r
, |∇2V1| 6

K

(1 + r)2
,

and

∇V1(x) = iV1(x)
x⊥

r2
+Or→∞

(
1

r3

)
,
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where x⊥ = (−x2, x1), x = reiθ ∈ R2. Furthermore, similar properties
hold for V−1, since

V−1(x) = V1(x).

We also define, as in [4],

V (·) := V1(· − dc−→e1)V−1(·+ dc
−→e1)

and

∂dV (·) := ∂d(V1(· − d−→e1)V−1(·+ d−→e1))|d=dc .

We will also estimate

∂2
dV := ∂2

d(V1(· − d−→e1)V−1(·+ d−→e1))|d=dc .

The function V (x) = V1(x− dc−→e1)V−1(x+ dc
−→e1) is close to V1(x− dc−→e1)

in B(dc
−→e1 , 2d

1/2
c ), since, from Lemma 2.1 and [2], we have, uniformly in

B(dc
−→e1 , 2d

1/2
c ),

(2.1) V−1(·+ dc
−→e1) = 1 +Oc→0(c1/2)

and

(2.2) |∇V−1(·+ dc
−→e1)| 6 oc→0(c1/2)

(1 + r̃1)
.

We recall that B(dc
−→e1 , 2d

1/2
c ) is near the vortex of degree +1 of Qc and

that r̃ = min(r1, r−1), with r±1 = |x∓ dc−→e1 |.

2.1.2. Estimates on Qc from [4]. We recall, for the function Qc de-
fined in Theorem 1.1, that

(2.3) ∀(x1, x2) ∈ R2, Qc(x1, x2) = Qc(x1,−x2) = Qc(−x1, x2).

In particular, ∂cQc enjoys the same symmetries, since (2.3) holds for any
c > 0 small enough. We recall that Qc ∈ C∞(R2,C) by standard elliptic
regularity arguments.

Finally, we recall some estimates on Qc and its derivatives, coming
from Lemma 3.8 of [4]. We denote r̃ = min(r1, r−1), the minimum of
the distances to dc~e1 and −dc~e1, and we recall that V (x) = V1(x −
dc
−→e1)V−1(x+ dc

−→e1).
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We write Qc = V + Γc or Qc = (1 − η)VΨc + ηV eΨc , where Γc =
(1−η)VΨc+ηV (eΨc−1) (see equation (3.4) of [4]). There exists K > 0
and, for any 0 < σ < 1, there exists K(σ) > 0 such that

|Γc| 6
K(σ)c1−σ

(1 + r̃)σ
,(2.4)

|∇Γc| 6
K(σ)c1−σ

(1 + r̃)1+σ
,(2.5)

|1− |Qc|| 6
K(σ)

(1 + r̃)1+σ
,(2.6)

|Qc − V | 6
K(σ)c1−σ

(1 + r̃)σ
,(2.7)

||Qc|2 − |V |2| 6
K(σ)c1−σ

(1 + r̃)1+σ
,(2.8)

|Re(∇QcQc)| 6
K(σ)

(1 + r̃)2+σ
,(2.9)

|Im(∇QcQc)| 6
K

1 + r̃
,(2.10)

and for 0 < σ < σ′ < 1, there exists K(σ, σ′) > 0 such that

(2.11) |D2Im(Ψc)|+ |∇Re(Ψc)|+ |∇2Re(Ψc)| 6
K(σ, σ′)c1−σ

′

(1 + r̃)2+σ
.

From Lemma 2.1, with Theorem 1.1, we deduce in particular that, for c
small enough, there exist universal constants K1,K2 > 0 such that on
R2\B(±dc−→e1 , 1) we have

(2.12) K1 6 |Qc| 6 K2.

To these estimates, we add two additional lemmas. We write

‖ψ‖σ,dc :=‖V ψ‖C1({r̃63})+‖r̃1+σRe(ψ)‖L∞({r̃>2})+‖r̃2+σ∇Re(ψ)‖L∞({r̃>2})

+‖r̃σIm(ψ)‖L∞({r̃>2}) + ‖r̃1+σ∇Im(ψ)‖L∞({r̃>2}),

where r̃ = min(r1, r−1), with

(2.13) r±1 = |x∓ dc−→e1 |,

and with dc defined in Theorem 1.1. The first lemma is about Qc and
the second one about ∂cQc.
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Lemma 2.2. For any 0 < σ < 1, there exist c0(σ),K(σ) > 0 such that,
for 0 < c < c0(σ) and Qc defined in Theorem 1.1, if

Γc = Qc − V,

then ∥∥∥∥Γc
V

∥∥∥∥
σ,dc

6 K(σ)c1−σ.

Proof: This estimate is a consequence of

Γc = (1− η)VΨc + ηV (eΨc − 1)

and equation (3.10) of [4].

Lemma 2.3 (Lemma 4.6 of [4]). There exists 1 > β0 > 0 such that, for
all 0 < σ < β0 < σ′ < 1, there exists c0(σ, σ′) > 0 such that for any
0 < c < c0(σ, σ′), Qc defined in Theorem 1.1, c 7→ Qc is a C1 function
from ]0, c0(σ, σ′)[ to C1(R2,C), and∥∥∥∥∥∂cQcV

+

(
1 + oσ,σ

′

c→0(c1−σ
′
)

c2

)
∂dV|d=dc

V

∥∥∥∥∥
σ,dc

= oσ,σ
′

c→0

(
c1−σ

′

c2

)
.

These results are technical, but quite precise. They give both a de-
cay in position and the size in c of the error term. The statement of
Lemma 4.6 of [4] has oc→0(1) and oc→0

(
1
c2

)
instead of respectively

oc→0(c1−σ
′
) and oc→0

(
c1−σ

′

c2

)
, but its proof gives this better estimate

(given that σ′ is close enough to 1). We recall that oσ,σ
′

c→0(1) is a quantity
going to 0 when c→ 0 at fixed σ, σ′. We recall that ∂c∇Qc = ∇∂cQc. We
conclude this subsection with a link between the ‖·‖σ norms and ‖·‖HQc .
We recall

‖ϕ‖2HQc =

∫
R2

|∇ϕ|2 + |1− |Qc|2||ϕ|2 + Re2(Qcϕ).

Lemma 2.4. There exists a universal constant K > 0 (independent
of c) such that, for Qc defined in Theorem 1.1,

‖h‖HQc 6 K

∥∥∥∥ hV
∥∥∥∥

3/4,dc

.

The value σ = 3/4 is arbitrary here; this estimate holds for σ ∈
]

1
2 , 1
[
.

Proof: We compute, using Lemma 2.1, that∫
R2

|∇h|2 6 K

∥∥∥∥ hV
∥∥∥∥2

3/4,dc

+

∫
{r̃>1}

∣∣∣∣∇( hV V
)∣∣∣∣2

6 K

∥∥∥∥ hV
∥∥∥∥2

3/4,dc

+ 2

∫
{r̃>1}

∣∣∣∣∇( hV
)∣∣∣∣2 + |∇V |2 |h|

2

|V |2 .
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With Lemma 2.1 and the definition of ‖ · ‖3/4,dc , we check that

2

∫
{r̃>1}

∣∣∣∣∇( hV
)∣∣∣∣2+|∇V |2 |h|2|V |2 6K

∥∥∥∥ hV
∥∥∥∥2

3/4,dc

∫
{r̃>1}

1

(1+r̃)3+1/2
6K

∥∥∥∥ hV
∥∥∥∥2

3/4,dc

.

Indeed, we have the estimate∫
{r̃>1}

1

(1 + r̃)3+1/2
6 2

∫
{r>1}

1

(1 + r)3+1/2
6 K.

Furthermore, from equation (2.6) with σ = 1/2, we have the estimate∫
R2

|1− |Qc|2||h|2 6 K

∥∥∥∥ hV
∥∥∥∥2

3/4,dc

∫
R2

1

(1 + r̃)9/4
6 K

∥∥∥∥ hV
∥∥∥∥2

3/4,dc

.

Finally, we compute∫
R2

Re2(Qch) 6 K

∥∥∥∥ hV
∥∥∥∥2

3/4,dc

+

∫
{r̃>1}

Re2(Qch),

and∫
{r̃>1}

Re2(Qch) =

∫
{r̃>1}

Re2
(
V Qc

h

V

)
6 2

∫
{r̃>1}

Re2
(
h

V

)
Re2(V Qc) + Im2

(
h

V

)
Im2(V Qc).

With the definition of ‖ · ‖3/4,dc , Lemmas 2.1 and 2.2, we check that∫
{r̃>1}

Re2
(
h

V

)
Re2(V Qc)6K

∫
{r̃>1}

Re2
(
h

V

)
6K

∥∥∥∥ hV
∥∥∥∥2

3/4,dc

∫
{r̃>1}

1

(1 + r̃)3+1/2
6K

∥∥∥∥ hV
∥∥∥∥2

3/4,dc

.

With Lemma 2.2 with σ = 1/2, we check that, since Im2(V Qc) =
Im2(V V + Γc) = Im2(V Γ̄c), we have∫
{r̃>1}

Im2

(
h

V

)
Im2(V Qc)6K

∥∥∥∥ hV
∥∥∥∥2

3/4,dc

∫
{r̃>1}

1

(1 + r̃)2+1/2
6K

∥∥∥∥ hV
∥∥∥∥2

3/4,dc

.

Combining these estimates, we end the proof of this lemma.

2.1.3. Faraway estimates on Qc. Since E(Qc) < +∞ thanks to The-
orem 1.1, from Theorem 7 of [9], we have the following result.
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Theorem 2.5 ([9, Theorem 7]). There exists a constant C(c) > 0 (de-
pending on c) such that, for Qc defined in Theorem 1.1,

|1− |Qc|2| 6
C(c)

(1 + r)2
,

|1−Qc| 6
C(c)

1 + r
,

|∇Qc| 6
C(c)

(1 + r)2
,

and

|∇|Qc|| 6
C(c)

(1 + r)3
.

Furthermore, such estimates hold for any travelling wave with finite en-
ergy (but then the constant C(c) also depends on the travelling wave, and
not only on its speed).

This result is crucial to show that some terms are well defined, since
it gives better decay estimates in position than the estimates in Sub-
section 2.1.2 (but with no smallness in c). Note that 1 − |Qc|2 is not
necessarily positive. In fact it is not at infinity (see [10]). In particular,
the estimate

|1− |Qc|2| >
C(c)

1 + r2

does not hold because of the possibility of |Qc| = 1. This happens, but
only for few directions and it can be offset. We show the following suf-
ficient result, which is needed to show that some quantities we will use
are well defined. Furthermore, in these estimates, the constant depends
on c, and thus cannot be used in error estimates (since the smallness of
the errors there will depend on c).

Lemma 2.6. There exists c0 > 0 such that, for 0 < c < c0, there
exists C(c) > 0 such that for ϕ ∈ HQc and the function Qc defined in
Theorem 1.1,∫

R2

|ϕ|2

(1 + |x|)2
dx 6 C(c)

(∫
R2

|∇ϕ|2 + |1− |Qc|2||ϕ|2
)
.

See Appendix A.1 for the proof of this result.

2.2. Construction and properties of the four particular direc-
tions.

2.2.1. Definitions. The four directions we want to study here are
∂x1

Qc, ∂x2
Qc, ∂cQc, and ∂c⊥Qc. The first two are derivatives of Qc

with respect to the position, the third one is the derivative of Qc with
respect to the speed, and we have its first order term in Theorem 1.1.
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The fourth direction is defined in Lemma 2.7 below. The directions ∂x1
Qc

and ∂x2
Qc correspond to the translations of the travelling wave, ∂cQc

and ∂c⊥Qc to changes respectively in the modulus and direction of its
speed. These directions will also appear in the orthogonality conditions
for some of the coercivity results.

Lemma 2.7. Take ~c ∈ R2 such that |~c| < c0 for c0 defined in Theo-
rem 1.1. Define α such that ~c = |~c|Rα(−~e2), where Rθ : R2 → R2 is the
rotation of angle θ. Then, Q~c := Q|~c| ◦R−α solves{

(TW~c)(v) = i~c · ∇v −∆v − (1− |v|2)v = 0,

|v| → 1 as |x| → +∞,

where Q|~c| is the solution of (TW|~c|) in Theorem 1.1. In particular, Q~c is

a C1 function of α and

∂αQ~c(x) = −R−α(x⊥) · ∇Q|~c|(R−α(x)).

Furthermore, at α = 0, the quantity

∂c⊥Qc := (∂αQ~c)|α=0

satisfies
∂c⊥Qc(x) = −x⊥ · ∇Qc(x),

is in C∞(R2,C), and
LQc(∂c⊥Qc) = −ic∂x1Qc.

Proof: Since the Laplacian operator is invariant by rotation, it is easy to
check that Q|~c|◦R−α solves (TW~c)(Q|~c|◦R−α) = 0. The function θ 7→ Rθ
is C1, hence (α, x) 7→ Q~c(x) is a C1 function, and we compute

(∂αQ~c)(x) = ∂α(Q|~c| ◦R−α)(x) = ∂α(R−α(x)) · ∇Q|~c|(R−α(x)).

We note that
∂α(R−α(x)) = −R−α(x⊥),

where x⊥ = (−x2, x1), hence

∂αQ~c(x) = −R−α(x⊥) · ∇Q|~c|(R−α(x)).

In particular, for α = 0,

∂αQ~c(x)|α=0 = −x⊥ · ∇Qc(x).

We recall that Q~c solves

i~c · ∇Q~c −∆Q~c − (1− |Q~c|2)Q~c = 0,

and when we differentiate this equation with respect to α (with |~c| = c),
we have

−i∂α~c · (∇Q~c) + LQ~c(∂αQ~c) = 0.

At α = 0, Q~c = Qc, ∂α~c = −c~e1, and ∂αQ~c|α=0 = ∂c⊥Qc, therefore

LQc(∂c⊥Qc) = −ic∂x1Qc.
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2.2.2. Estimates on the four directions. We shall now show that
the functions ∂x1

Qc, ∂x2
Qc, ∂cQc, and ∂c⊥Qc are in the energy space

and we will also compute their values through the linearized operator
around Qc, namely

LQc(ϕ) = −∆ϕ− ic∂x2ϕ− (1− |Qc|2)ϕ+ 2Re(Qcϕ)Qc.

Lemma 2.8. There exists c0 > 0 such that, for 0 < c < c0, Qc defined
in Theorem 1.1, we have

∂x1Qc, ∂x2Qc, ∂cQc, ∂c⊥Qc ∈ HQc ,

and
LQc(∂x1Qc) = LQc(∂x2Qc) = 0,

LQc(∂cQc) = i∂x2Qc,

LQc(∂c⊥Qc) = −ic∂x1Qc.

We could check that we also have ∂x1Qc, ∂x2Qc ∈ H1(R2) (see [10]),
but we expect that ∂cQc, ∂c⊥Qc 6∈ L2(R2). For ∂c⊥Qc, this can be shown
with Lemma 2.7 and [10].

Proof: We have defined

‖ϕ‖2HQc =

∫
R2

|∇ϕ|2 + |1− |Qc|2||ϕ|2 + Re2(Qcϕ).

For any of the four functions, since they are in C∞(R2,C), the only
possible problem for the integrability is at infinity.

Step 1. We have ∂x1Qc, ∂x2Qc ∈ HQc .
From Lemma 2.1 and equation (2.11) (for 1 > σ′ > σ = 3/4), we have∫

R2

|∇∂x1Qc|
2 +

∫
R2

|∇∂x2Qc|
2 6

∫
R2

K(c, σ′)

(1 + r)7/2
< +∞.

From Theorem 2.5, we have∫
R2

|1− |Qc|2||∇Qc|2 + Re2(Qc∇Qc) 6
∫
R2

K(c)

(1 + r)4
< +∞,

hence ∂x1
Qc, ∂x2

Qc ∈ HQc .

Step 2. We have ∂cQc ∈ HQc .
From Lemmas 2.3 and 2.4, we have that for σ > 0 small enough

∂cQc +
1 + oσc→0(cσ)

c2
∂dV|d=dc ∈ HQc ,

therefore we just have to check that ∂dV|d=dc ∈ HQc , which is a direct
consequence of Lemma 2.6 of [4].
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Step 3. We have ∂c⊥Qc ∈ HQc .
From Lemma 2.7, we have ∂c⊥Qc = −x⊥ · ∇Qc. With Theorem 2.5,

Lemma 2.1, and equation (2.11), we check that∫
R2

|∇∂c⊥Qc|
2 + |(1− |Qc|2)||∂c⊥Qc|

2 < +∞.

Now, from Lemma 2.1 and equation (2.6) (with σ = 1/2), we have∫
R2

Re2(Qc∂c⊥Qc) 6 K

∫
R2

(1 + r2)Re2(∇QcQc) 6 K(c)

∫
R2

1

(1 + r)3
< +∞,

thus ∂c⊥Qc ∈ HQc .

Step 4. Computation of the linearized operator on ∂x1Qc, ∂x2Qc, ∂cQc,
∂c⊥Qc.

For the values in the linearized operator, since

−ic∂x2Qc −∆Qc − (1− |Qc|2)Qc = (TWc)(Qc) = 0,

by differentiating it with respect to x1 and x2, we have

LQc(∂x1Qc) = LQc(∂x2Qc) = 0.

By differentiating it with respect to c, we have (we recall that ∂cQc ∈
C∞(R2,C))

−i∂x2Qc + LQc(∂cQc) = 0.

Finally, the quantity LQc(∂c⊥Qc) is given by Lemma 2.7.

The next two lemmas are additional estimates on the four directions
that will be useful later on. They estimate in particular the dependence
on c of ‖ · ‖C on these four directions.

Lemma 2.9. There exists K > 0 a universal constant, independent of c,
such that, for Qc defined in Theorem 1.1,

‖∂x1Qc‖C + ‖∂x2Qc‖C + ‖c2∂cQc‖C 6 K.

Furthermore, for any 1 > β > 0,

‖c∂c⊥Qc‖C = oβc→0(c−β).

Proof: We have defined, for ϕ = Qcψ ∈ HQc ,

‖ϕ‖2C =

∫
R2

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4.

We recall that, since ϕ = Qcψ,

(2.14)
∫
R2

|∇ψ|2|Qc|4 =

∫
R2

|∇ϕ−∇Qcψ|2|Qc|26K
∫
R2

|∇ϕ|2|Qc|2+|∇Qc|2|ϕ|2.
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Step 1. We have ‖∂x1
Qc‖C + ‖∂x2

Qc‖C 6 K.
From Lemmas 2.1 and 2.2 and equations (2.9) to (2.11), we have that,

for r̃ = min(r1, r−1),

|∇Qc| 6
K

(1 + r̃)
and |∇2Qc| 6

K

(1 + r̃)2
.

Therefore, ∫
R2

|∇(∂x1Qc)|
2|Qc|2 + |∇(∂x2Qc)|

2|Qc|2 6 K,

and we also have ∫
R2

|∇Qc|2|∇Qc|2 6 K,

thus, with equation (2.14),∫
R2

∣∣∣∣∇(∂x1QcQc

)∣∣∣∣2 |Qc|4 +

∫
R2

∣∣∣∣∇(∂x2QcQc

)∣∣∣∣2 |Qc|4 6 K.

By equation (2.9) (for σ = 1/4), we have∫
R2

Re2
(
∇Qc
Qc

)
|Qc|4 6 K

∫
R2

Re2(∇QcQc) 6 K

∫
R2

1

(1 + r̃)5/2
6 K.

We conclude that ‖∂x1
Qc‖C + ‖∂x2

Qc‖C 6 K.

Step 2. We have ‖c2∂cQc‖C 6 K.
From Lemma 2.3, we have, writing c2∂cQc = (1+oc→0(1))∂dV|d=dc+h,

that
∥∥ h
V

∥∥
σ,dc

= oc→0(1). In particular, if we show that ‖∂dV|d=dc‖C 6 K

and ‖h‖C 6 K, then ‖c2∂cQc‖C 6 K. With Lemma 2.6 of [4], we check
directly that∫

R2

|∇∂dV|d=dc |
2 +
|∂dV|d=dc |

2

(1 + r̃)3/2
+ Re2(V ∂dV|d=dc) 6 K.

In particular, with (2.14), this implies that∫
R2

∣∣∣∣∇(∂dV|d=dcQc

)∣∣∣∣2 |Qc|4 6 K

and we estimate∫
R2

Re2
(
∂dV|d=dc
Qc

)
|Qc|4 6 K

∫
R2

Re2(V̄ ∂dV|d=dc)+|V −Qc|2|∂dV|d=dc |
26K

with the same arguments and equation (2.7). Similarly,∫
R2

∣∣∣∣∇∂dV|d=dcQc

∣∣∣∣2 |Qc|4 6 2

∫
R2

|∇∂dV|d=dc |
2|Qc|2 + |∇Qc∂dV|d=dc |

2 6 K,
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therefore ‖∂dV|d=dc‖C 6 K. We now have to estimate ‖h‖C . The com-
putations are similar, since we check easily that∫

R2

|∇h|2 + |∇Qc|2|h|2 6 K

∥∥∥∥ hV
∥∥∥∥2

3/4,dc

and ∫
R2

Re2(Q̄ch) 6 K

∫
R2

Re2(V̄ h) + |V −Qc|2|h|2 6 K

∥∥∥∥ hV
∥∥∥∥2

3/4,dc

.

Step 3. We have ‖c∂c⊥Qc‖C = oβc→0(c−β).
By definition, c∂c⊥Qc = −cx⊥ · ∇Qc(x), and we check by triangular

inequality that c|x⊥| 6 K(1 + r̃) since r̃ = min(|x − d̃c−→e1 |, |x + d̃c
−→e1 |)

and cd̃c → 1. Therefore,∫
R2

|∇(c∂c⊥Qc)|
2 6 c2

∫
R2

|∇Qc|2 +

∫
R2

(c|x⊥|)2|∇2Qc|2

6 K

(
1 +

∫
R2

|∇2Qc|2(1 + r̃)2

)
.

We have |∇2Qc| 6 |∇2V | + |∇2Γc|, and with equation (2.11), we check
that

∫
R2 |∇2Γc|2(1 + r̃)2 6 K. With computations similar to the ones of

Lemma 2.3 of [4] and Lemma 2.1, we can show that

|∇2V | 6 K

(1 + r̃)2
and |∇2V | 6 K

c(1 + r̃)3
,

therefore, for any 1 > β > 0,

|∇2V | 6 Kc−β

(1 + r̃)2+β
,

and thus, by (2.14),∫
R2

∣∣∣∣∇(c∂c⊥QcQc

)∣∣∣∣2|Qc|46K∫
R2

|∇c∂c⊥Qc|
2|Qc|2+|∇Qc|2|c∂c⊥Qc|

26K(β)c−2β.

Furthermore, by equations (2.9) (for σ = 1/2) and (2.12), we have∫
R2

Re2
(
cx⊥ · ∇Qc(x)

Qc

)
|Qc|46K

∫
R2

(1+r̃)2Re2(∇QcQc)6K
∫
R2

1

(1 + r̃)3
6K.

We conclude that ‖c∂c⊥Qc‖C = oβc→0(c−β).
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2.2.3. Link with the energy and momentum and computations
of equivalents. In this subsection, we compute the value of the four
previous particular directions ∂x1

Qc, ∂x2
Qc, ∂cQc, ∂c⊥Qc on the qua-

dratic form. In particular, we shall show that one of them is negative.

Lemma 2.10. There exists c0 > 0 such that for 0 < c < c0, and
for Qc defined in Theorem 1.1, for A ∈ {∂x1

Qc, ∂x2
Qc, ∂cQc, ∂c⊥Qc},

Re(LQc(A)Ā) ∈ L1(R2), and

〈LQc(∂x1Qc), ∂x1Qc〉 = 〈LQc(∂x2Qc), ∂x2Qc〉 = 0,

〈LQc(∂cQc), ∂cQc〉 =
−2π + oc→0(1)

c2
,

〈LQc(∂c⊥Qc), ∂c⊥Qc〉 = 2π + oc→0(1).

Proof: For A ∈ {∂x1
Qc, ∂x2

Qc, ∂cQc, ∂c⊥Qc}, we recall from Lemma 2.8
that A ∈ HQc . To show that Re(LQc(A)Ā) ∈ L1(R2), we need to show
that

−Re(∆AĀ)−Re(ic∂x2AĀ)− (1− |Qc|2)|A|2 + 2Re2(QcA) ∈ L1(R2).

For that, we check that, for some σ > 1/2,

(2.15)
‖(1 + r)σA‖L∞(R2)+‖(1 + r)1+σ(|∇A|+|Re(A)|)‖L∞(R2)

+‖(1 + r)2+σIm(∆A)‖L∞(R2)+‖(1 + r)1+σRe(∆A)‖L∞(R2)<+∞.

For ∂x1Qc and ∂x2Qc, this follows from Theorem 2.5, and also, since
LQc(∂x1,2Qc) = 0, from

∆(∂x1,2Qc) = −ic∂2
x2x1,2Qc − (1− |Qc|2)∂x1,2Qc + 2Re(Qc∂x1,2Qc)Qc,

which allows us to estimate ∆(∂x1,2Qc) with Theorem 2.5, Lemma 2.1,
and equation (2.11) for any σ > 1/2.

Now, for ∂cQc, the estimates not on its Laplacian are a consequence of
Lemma 2.3, Theorem 2.5, and Lemma 2.6 of [4]. Then, from Lemma 2.8,
we have LQc(∂cQc) = i∂x2

Qc, thus

∆(∂cQc) = −i∂x2Qc − ic∂x2∂cQc − (1− |Qc|2)∂cQc + 2Re(Qc∂cQc)Qc.

By Theorem 2.5 and Lemma 2.3, we have, for any σ > 1/2,

|(1− |Qc|2)∂cQc|+ |2Re(Qc∂cQc)Qc| 6
K(c, σ)

(1 + r)2+σ
,

|∂x2Qc|+ |∂x2∂cQc| 6
K(c, σ)

(1 + r)1+σ
,

and

|Re(∂x2Qc)|+ |Re(∂x2∂cQc)| 6
K(c, σ)

(1 + r)2+σ
,

which is enough to show the estimates for ∂cQc.
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Finally, from Lemma 2.7 we recall that

∂c⊥Qc = −x⊥ · ∇Qc(x)

and

LQc(∂c⊥Qc) = −ic∂x1Qc.

Similarly, the estimates not on its Laplacian follow from Theorem 2.5,
Lemmas 2.1 and 2.2, and equation (2.11). We also have

∆(∂c⊥Qc) = ic∂x1Qc − ic∂x2∂c⊥Qc − (1− |Qc|2)∂c⊥Qc + 2Re(Qc∂c⊥Qc)Qc,

and with the same previous estimates, we conclude that ∂c⊥Qc satisfies
the required estimates. With the definition ‖ · ‖HQc , we check that the

last two terms are in L1(R2), and for the first two, the integrands are
in L1(R2,R) by estimates in Subsection 2.1.1 and (2.15).

Step 1. We have 〈LQc(∂x1
Qc), ∂x1

Qc〉 = 〈LQc(∂x2
Qc), ∂x2

Qc〉 = 0.
From Lemma 2.8, we have LQc(∂x1Qc) = LQc(∂x2Qc) = 0, hence

〈LQc(∂x1Qc), ∂x1Qc〉 = 〈LQc(∂x2Qc), ∂x2Qc〉 = 0.

Step 2. We have 〈LQc(∂cQc), ∂cQc〉 = −2π+oc→0(1)
c2 .

From Lemma 2.8, we have

LQc(∂cQc) = i∂x2Qc,

therefore

(2.16) 〈LQc(∂cQc), ∂cQc〉 = 〈i∂x2Qc, ∂cQc〉.

From Lemma 2.3, we can write ∂cQc = −
( 1+oc→0(1)

c2

)
∂dV|d=dc + h with∥∥ h

V

∥∥
σ,dc

= oc→0

(
1
c2

)
. Similarly, from Lemma 2.2, we write Qc = V + Γc

with
∥∥Γc
V

∥∥
σ,dc

= oc→0(1), and we compute

(2.17)

〈LQc(∂cQc), ∂cQc〉=
〈
i∂x2V,−

(
1+oc→0(1)

c2

)
∂dV|d=dc

〉
+〈i∂x2V, h〉

+

〈
i∂x2Γc,−

(
1+oc→0(1)

c2

)
∂dV|d=dc

〉
+〈i∂x2Γc, h〉.

By symmetry in x1 of V , we compute

〈i∂x2V, ∂dV|d=dc〉 = −2〈i∂x2V1V−1, ∂x1V1V−1〉+ 2〈i∂x2V1V−1, ∂x1V−1V1〉.

In equation (2.25) of [4], we computed

〈i∂x2V1V−1, ∂x1V1V−1〉 = −π + oc→0(1).
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Furthermore,

|〈i∂x2V1V−1, ∂x1V−1V1〉| =
∣∣∣∣∫

R2

Re(i∂x2V1V1∂x1V−1V−1)

∣∣∣∣
6

∣∣∣∣∫
R2

Re(∂x2V1V1)Im(∂x1V−1V−1)

∣∣∣∣+∣∣∣∣∫
R2

Im(∂x2V1V1)Re(∂x1V−1V−1)

∣∣∣∣.
From Lemma 2.1, we have the estimates

|Re(∂x2V−1V−1)| 6 K

(1 + r−1)3
and |Re(∂x1V1V1)| 6 K

(1 + r1)3
,

as well as

|Im(∂x2V−1V−1)| 6 K

1 + r−1

and |Im(∂x1V1V1)| 6 K

1 + r1

.

We deduce, in the right half-plane, where r−1>dc, that |Im(∇V−1V−1)|=
oc→0(1) and thus∣∣∣∣∣
∫
{x1>0}

Re(∂x2V1V1)Im(∂x1V−1V−1)

∣∣∣∣∣ 6 oc→0(1)

∫
{x1>0}

1

(1 + r1)3
= oc→0(1).

In the left half-plane, we have 1
1+r1

6 K
1+r−1

and 1
1+r1

= oc→0(1), there-

fore∣∣∣∣∣
∫
{x160}

Re(∂x2V1V1)Im(∂x1V−1V−1)

∣∣∣∣∣6 oc→0(1)

∫
{x160}

1

(1 + r−1)3
= oc→0(1).

We therefore have∣∣∣∣∫
R2

Re(∂x2V1V1)Im(∂x1V−1V−1)

∣∣∣∣ = oc→0(1),

and by similar estimates,∣∣∣∣∫
R2

Im(∂x2V1V1)Re(∂x1V−1V−1)

∣∣∣∣ = oc→0(1).

We can thus conclude that 〈i∂x2
V1V−1, ∂x1

V−1V1〉 = oc→0(1). Therefore,

(2.18)

(
1 + oc→0(1)

c2

)
〈i∂x2V,−∂dV|d=dc〉 =

−2π

c2
+ o

(
1

c2

)
.

Now, we estimate

|〈i∂x2V, h〉| =
∣∣∣∣∫

R2

Re(i∂x2V h̄)

∣∣∣∣ 6 oc→0(1) +

∣∣∣∣∣
∫
{r̃>1}

Re(i∂x2V h̄)

∣∣∣∣∣
6 oc→0(1) +

∣∣∣∣∣
∫
{r̃>1}

Re

(
i∂x2V V̄

(
h

V

))∣∣∣∣∣
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because ‖h‖L∞ = oc→0(1) and |∂x2
V | is bounded near d̃c by a universal

constant. Furthermore,∣∣∣∣∣
∫
{r̃>1}

Re

(
i∂x2V V̄

(
h

V

))∣∣∣∣∣ 6
∣∣∣∣∣
∫
{r̃>1}

Re(∂x2V V̄ )Im

(
h

V

)∣∣∣∣∣
+

∣∣∣∣∣
∫
{r̃>1}

Im(∂x2V V̄ )Re

(
h

V

)∣∣∣∣∣ .
From Lemmas 2.1 and 2.3 (taking σ = 1/2), we have∣∣∣∣∣
∫
{r̃>1}

Re(∂x2V V̄ )Im

(
h

V

)∣∣∣∣∣6K
∥∥∥∥ hV

∥∥∥∥
1/2,dc

∫
{r̃>1}

1

(1 + r̃)3+1/2
= oc→0

(
1

c2

)
and∣∣∣∣∣
∫
{r̃>1}

Im(∂x2V V̄ )Re

(
h

V

)∣∣∣∣∣6K
∥∥∥∥ hV

∥∥∥∥
1/2,dc

∫
{r̃>1}

1

(1 + r̃)2+1/2
= oc→0

(
1

c2

)
,

therefore

|〈i∂x2V, h〉| = oc→0

(
1

c2

)
.

Now, by Lemmas 2.1 and 2.2 (taking σ = 1/2), we have(
1+oc→0(1)

c2

)
|〈i∂x2Γc, ∂dV|d=dc〉|6

K

c2

∥∥∥∥Γc
V

∥∥∥∥
1/2,dc

∫
R2

1

(1+r̃)2+1/2
=oc→0

(
1

c2

)
.

Finally, by Lemmas 2.2 and 2.3, we check easily that

(2.19) |〈i∂x2Γc, h〉|6K
∥∥∥∥Γc
V

∥∥∥∥
3/4,dc

∥∥∥∥ hV
∥∥∥∥

1/2,dc

∫
R2

1

(1 + r̃)2+1/4
=oc→0

(
1

c2

)
.

Combining (2.18) to (2.19) with (2.17), we conclude that

〈LQc(∂cQc), ∂cQc〉 =
−2π + oc→0(1)

c2
.

Step 3. We have 〈LQc(∂c⊥Qc), ∂c⊥Qc〉 = 2π + oc→0(1).
From Lemma 2.8, we have LQc(∂c⊥Qc) = −ic∂x1Qc and from Lem-

ma 2.7, we have ∂c⊥Qc = −x⊥ · ∇Qc. Therefore,

〈LQc(∂c⊥Qc), ∂c⊥Qc〉 = c〈i∂x1Qc, x
⊥ · ∇Qc〉.

We have

〈i∂x1Qc,−x2∂x1Qc〉 = −
∫
R2

Re(ix2|∂x1Qc|
2) = 0,

hence

(2.20) 〈LQc(∂c⊥Qc), ∂c⊥Qc〉 = c〈i∂x1Qc, x1∂x2Qc〉.
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From Lemma 2.2, we write Qc = V + Γc with
∥∥Γc
V

∥∥
σ,dc

6 K(σ)c1−σ for

any 0 < σ < 1, and we compute

〈i∂x1Qc, x1∂x2Qc〉 = 〈i∂x1V, x1∂x2V 〉+ 〈i∂x1V, x1∂x2Γc〉

+ 〈i∂x1Γc, x1∂x2V 〉+ 〈i∂x1Γc, x1∂x2Γc〉.

We write x1 = dc + y1, therefore

〈i∂x1V, x1∂x2V 〉 = dc〈i∂x1V, ∂x2V 〉+ 〈i∂x1V, y1∂x2V 〉.

We have

〈i∂x1V, ∂x2V 〉 = 〈i∂x1V1V−1, ∂x2V1V−1〉+ 〈i∂x1V−1V1, ∂x2V−1V1〉

+ 〈i∂x1V1V−1, ∂x2V−1V1〉+ 〈i∂x1V−1V1, ∂x2V1V−1〉,

and, from the previous step and by symmetry, we have

〈i∂x1V1V−1, ∂x2V1V−1〉 = 〈i∂x1V−1V1, ∂x2V−1V1〉 = π + oc→0(1)

and

|〈i∂x1V1V−1, ∂x2V−1V1〉|+ |〈i∂x1V−1V1, ∂x2V1V−1〉| = oc→0(1),

thus

〈i∂x1V, ∂x2V 〉 = 2π + oc→0(1).

With V±1 centred around ±dc−→e1 , we write V = V1V−1 and we compute

〈i∂x1V, y1∂x2V 〉 =

∫
R2

Re(iy1∂x1V1∂x2V1|V−1|2 + iy1∂x1V−1∂x2V−1|V1|2)

+

∫
R2

Re(iy1∂x1V1V1V−1∂x2V−1 + iy1∂x1V−1V−1V1∂x2V1).

By decomposition in polar coordinates, with the notation of (2.13) and
Lemma 2.1, we compute∫
R2

Re(iy1∂x1V1∂x2V1|V−1|2) =

∫ +∞

0

∫ 2π

0

|V−1|2ρ1(r1)ρ′1(r1) cos(θ1)r1 dr1 dθ1.

By integration in polar coordinates, we check that∫ +∞

0

∫ 2π

0

ρ1(r1)ρ′1(r1) cos(θ1)r1 dr1 dθ1 = 0,

hence∫
R2

Re(iy1∂x1V1∂x2V1|V−1|2) =

∫
R2

(1− |V−1|2)Re(iy1∂x1V1∂x2V1).
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In particular, since, from Lemma 2.1, we have

(1− |V−1|2) 6
K

(1 + r−1)2

and

|ρ′1(r1)| 6 K

(1 + r1)3
,

we can deduce that∫
R2

Re(iy1∂x1V1∂x2V1|V−1|2) = oc→0(1)

and, similarly, ∫
R2

Re(iy1∂x1V−1∂x2V−1|V1|2) = oc→0(1).

Therefore, we conclude that

〈i∂x1V, x1∂x2V 〉 = (2π + oc→0(1))d̃c =
2π + oc→0(1)

c
.

Now, we want to show that

|〈i∂x1V, x1∂x2Γc〉|+ |〈i∂x1Γc, x1∂x2V 〉|+ |〈i∂x1Γc, x1∂x2Γc〉| = oc→0

(
1

c

)
,

which is enough to end the proof of this step.

By triangular inequality, we have |x1| 6 K(1+r̃)
c , and with Lemmas 2.1

and 2.2 (for σ = 1/2), we estimate

|〈i∂x1V, x1∂x2Γc〉| =
∣∣∣∣∫

R2

x1Re(∂x1V V̄ )Im(∂x2ΓcV̄ )

∣∣∣∣
+

∣∣∣∣∫
R2

x1Im(∂x1V V̄ )Re(∂x2ΓcV̄ )

∣∣∣∣
6
K

c

(∫
R2

(1 + r̃)

(1 + r̃)3
× c1/2

(1 + r̃)3/2
+

(1 + r̃)

(1 + r̃)
× c1/2

(1 + r̃)5/2

)

= oc→0

(
1

c

)
.

Similarly, we check with the same computations that |〈i∂x1Γc, x1∂x2V 〉|=
oc→0

(
1
c

)
.

Finally, using Lemma 2.2 (for σ = 1/4), we estimate

|〈i∂x1Γc, x1∂x2Γc〉| 6 Kc3/2‖x1‖L∞({r̃61})+K

∣∣∣∣∣
∫
{r̃>1}

Re

(
ix1

∂x1Γc
V

∂x2Γc
V

)∣∣∣∣∣ .
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We have ‖x1‖L∞({r̃61}) 6
K
c . Moreover, we infer∣∣∣∣∣

∫
{r̃>1}

Re

(
ix1

∂x1Γc
V

∂x2Γc
V

)∣∣∣∣∣ 6
∫
{r̃>1}

|x1|
∣∣∣∣Re

(
∂x1Γc
V

)
Im

(
∂x2Γc
V

)∣∣∣∣
+

∫
{r̃>1}

|x1|
∣∣∣∣Im(∂x1Γc

V

)
Re

(
∂x2Γc
V

)∣∣∣∣ ,
and, with Lemma 2.2 (for σ = 1/4), we have∣∣∣∣∣

∫
{r̃>1}

Re

(
ix1

∂x1Γc
V

∂x2Γc
V

)∣∣∣∣∣ 6 K

∫
{r̃>1}

|x1|
c3/2

(1 + r̃)3+1/2
= oc→0(1),

since |x1|c
(1+r̃) 6 K by triangular inequality. We conclude that

〈i∂x1Γc, x1∂x2Γc〉 = oc→0(1),

which, together with the previous estimates, shows that

〈LQc(∂c⊥Qc), ∂c⊥Qc〉 = 2π + oc→0(1).

These quantities are connected to the energy and momentum. This is
shown in the next lemma.

Lemma 2.11. There exists c0 > 0 such that for 0 < c < c0, Qc defined
in Theorem 1.1, we have

P1(Qc) = ∂cP1(Qc) = 0,

P2(Qc) =
1

c
BQc(∂c⊥Qc) =

2π + oc→0(1)

c
,

and

∂cP2(Qc) = BQc(∂cQc) =
−2π + oc→0(1)

c2
.

Furthermore,
∂cE(Qc) = c∂cP2(Qc),

and
E(Qc) = (2π + oc→0(1)) ln

(
1

c

)
.

Proof: We have

P1(Qc) =
1

2
〈i∂x1Qc, Qc − 1〉,

by the symmetries (2.3), ∂x1
Qc is odd in x1 and Qc−1 is even. Therefore,

P1(Qc) = ∂cP1(Qc) = 0.

We have

P2(Qc) =
1

2
〈i∂x2Qc, Qc − 1〉,

and from Lemma 2.10 and (2.20), we have

2π + oc→0(1) = BQc(∂c⊥Qc) = c〈i∂x1Qc, x1∂x2Qc〉.
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By integration by parts (which can be done thanks to Theorem 2.5,
Lemma 2.1, and equation (2.11)), we compute

〈i∂x1Qc, x1∂x2Qc〉 = −〈i(Qc − 1), ∂x2Qc〉 − 〈i(Qc − 1), x1∂x1x2Qc〉,

and

〈i(Qc − 1), x1∂x1x2Qc〉 = −〈i∂x2Qc, x1∂x1Qc〉 = 〈i∂x1Qc, x1∂x2Qc〉.

Therefore,

P2(Qc) =
1

2
〈i∂x1Qc, x1∂x2Qc〉 =

1

c
BQc(∂c⊥Qc) =

2π + oc→0(1)

c
.

We have P2(Qc) = 1
2

∫
R2 Re(i∂x2

Qc(Qc − 1)), and we check, with Lem-
mas 2.2 and 2.3, that

|∂c∂x2Qc(Qc − 1)|+ |∂x2Qc∂cQc| 6
K

(1 + r̃)5/2
,

and is therefore dominated by an integrable function independent of c ∈
]c1, c2[ given that c1, c2 > 0 are small enough. We deduce that c 7→
P2(Qc) ∈ C1(]0, c0[,R) for some small c0 > 0 and that, by integration
by parts,

2∂cP2(Qc) = 〈i∂x2∂cQc, Qc − 1〉+ 〈i∂x2Qc, ∂cQc〉 = 2〈i∂x2Qc, ∂cQc〉,

and, from Lemma 2.10 and equation (2.16), we have

〈i∂x2Qc, ∂cQc〉 = BQc(∂cQc) =
−2π + oc→0(1)

c2
,

therefore

∂cP2(Qc) =
−2π + oc→0(1)

c2
.

We recall that

E(Qc) =
1

2

∫
R2

|∇Qc|2 +
1

4

∫
R2

(1− |Qc|2)2.

We check, with Lemmas 2.2 and 2.3, that

|∂c∇Qc · ∇Qc|+ |∂c(|Qc|2)(1− |Qc|2)| 6 K

(1 + r̃)5/2

and is therefore dominated by an integrable function independent of c ∈
]c1, c2[ given that c1, c2 > 0 are small enough. We deduce that c 7→
E(Qc) ∈ C1(]0, c0[,R) for some small c0 > 0 and that

∂c

(
1

2

∫
R2

|∇Qc|2
)

=
1

2

∫
R2

Re(∇Qc∇∂cQc) + Re(∇∂cQc∇Qc).
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We check, with Theorem 2.5 and (TWc)(Qc) = 0, that we can do the
integration by parts, which yields

∂c

(
1

2

∫
R2

|∇Qc|2
)

= 〈−∆Qc, ∂cQc〉.

We check similarly that

∂c

(
1

4

∫
R2

(1− |Qc|2)2

)
= −

∫
R2

(1− |Qc|2)Re(∂cQcQc),

hence

∂c

(
1

4

∫
R2

(1− |Qc|2)2

)
= 〈−(1− |Qc|2)Qc, ∂cQc〉.

Now, since −ic∂x2
Qc −∆Qc − (1− |Qc|2)Qc = 0, we have

∂cE(Qc) = 〈−∆Qc − (1− |Qc|2)Qc, ∂cQc〉 = c〈−i∂x2Qc, ∂cQc〉.

Now, since P2(Qc) = 1
2 〈i∂x2

Qc, Qc − 1〉, we have

∂cP2(Qc) =
1

2
(〈i∂x2∂cQc, Qc − 1〉+ 〈i∂x2Qc, ∂cQc〉).

By integrations by parts, we compute

∂cP2(Qc) = 〈−i∂x2Qc, ∂cQc〉.

We deduce that ∂cE(Qc) = c∂cP2(Qc), and in particular, we deduce that

∂cE(Qc) =
−2π + oc→0(1)

c
.

By integration (from some fixed c0 > c > 0), we check that E(Qc) =
(2π + oc→0(1)) ln

(
1
c

)
.

We conclude this subsection with an estimate on Qc connected to the
energy that will be useful later on.

Lemma 2.12. There exists K > 0, a universal constant independent
of c, such that, if c is small enough, for Qc defined in Theorem 1.1,∫

R2

|Im(∇QcQc)|2

|Qc|2
6 K ln

(
1

c

)
.

Proof: We recall that r±1 = |x∓ dc−→e1 |. Since ∇Qc is bounded near the

zeros of Qc (by Lemmas 2.1 and 2.2), and |Qc| > K on R2\B(±d̃c−→e1 , 1)
by (2.12), we have∫

R2

|Im(∇QcQc)|2

|Qc|2
6 K

(
1 +

∫
{r̃>1}

|Im(∇QcQc)|2
)
.
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Now, by (2.12), Lemma 2.11, and the definition of the energy,∫
{r̃>1}

|Im(∇QcQc)|26
∫
{r̃>1}

|∇Qc|2|Qc|26K
∫
R2

|∇Qc|26KE(Qc)6K ln

(
1

c

)
.

We could check that this estimate is optimal with respect to its growth
in c when c→ 0.

2.3. Zeros of Qc. In this subsection, we show that Qc has only two ze-
ros and we compute estimates on Qc around them. In a bounded domain,
a general result about the zeros of solutions to the Ginzburg–Landau
problem is already known; see [18].

Lemma 2.13. For c > 0 small enough, the function Qc defined in

Theorem 1.1 has exactly two zeros. Their positions are ±d̃c−→e1 , and, for
any 0 < σ < 1,

|dc − d̃c| = oσc→0(c1−σ),

where dc is defined in Theorem 1.1.

The notation oσc→0(1) denotes a quantity going to 0 when c → 0 at
fixed σ. Combining Lemmas 2.10, 2.11, and 2.13, we end the proof of
Proposition 1.2.

Proof: From (2.3), we know that Qc enjoys the symmetry Qc(x1, x2) =
Qc(−x1, x2) for (x1, x2) ∈ R2, hence we look at zeros only in the right
half-plane. From Theorem 1.1, we have Qc = V1(·−dc−→e1)V−1(·+dc−→e1)+
Γc with ‖Γc‖L∞(R2) + ‖∇Γc‖L∞(R2) = oc→0(1). In the right half-plane

and outside of B(dc
−→e1 ,Λ) for any Λ > 0, by Lemma 2.1, we estimate

|Qc| > |V1(· − dc−→e1)V−1(·+ dc
−→e1)| − oc→0(1) > K(Λ) > 0

if c is small enough (depending on Λ). Now, we consider the smooth
function F : R× R2 → C defined by

F (µ, z) := (V1(· − dc−→e1)V−1(·+ dc
−→e1) + µΓc(·))(z + dc~e1).

We have F (0, 0) = V1(0)V−1(2dc
−→e1) = 0 by Lemma 2.1 and F (1, z) =

Qc(z + dc~e1). For |µ| 6 1 and |z| 6 1, since ‖∇Γc‖L∞(R2) = oσc→0(c1−σ)
by equation (2.5), with Lemma 2.1 and equation (2.1), we check that

(2.21) |dzF(µ,z)(ξ)−∇V1(z) · ξ| = oc→0(1)|ξ|

uniformly in µ ∈ [0, 1].
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Now, from Lemma 2.1, we estimate (for x = reiθ 6= 0 ∈ R2)

∂x1V1(x) =

(
cos(θ)ρ′(r)− i

r
sin(θ)ρ(r)

)
eiθ

= κ(cos(θ)− i sin(θ))eiθ + or→0(1)

= κ+ or→0(1),

and thus, by continuity, ∂x1
V1(0) = κ > 0. Similarly, we check that

∂x2
V1(0) = −iκ, and therefore,

∇V1(z) = κ

(
1
−i

)
+ o|z|→0(1).

Identifying C with R2 canonically, we deduce that the Jacobian deter-
minant of F in z, J(F ), satisfies

J(F)(µ, z) = J(V1)(z) + oc→0(1) = −κ2 + oc→0(1) + o|z|→0(1) 6= 0,

given that c and |z| are small enough. By the implicit function theorem,
there exists µ0>0 such that, for |µ| 6 µ0, there exists a unique value z(µ)
in a neighbourhood of 0 such that F (µ, z(µ)) = 0, and since ∂µF (µ, z) =
Γc(dc~e1 +z) = oσc→0(c1−σ) uniformly in z (by (2.4)), it satisfies addition-
ally z(µ) = oσc→0(c1−σ).

Now, let us show that we can take µ0 = 1. Indeed, if we define
µ0 = sup{ν > 0, µ → z(µ) ∈ C1([0, ν],R2)} > 0 and we have µ0 < 1,
since µ → z(µ) ∈ C1([0, µ0],R2) with |dµz|(µ) = oσc→0(c1−σ) uniformly
in [0, µ0], it can be continuously extended to µ0 with F (µ0, z(µ0)) =
0 and z(µ0) = oσc→0(c1−σ). Then, by the implicit function theorem
at (µ0, z(µ0)) (since µ0 < 1 with equation (2.21)), it can be extended
above µ0, which is in contradiction with the definition of µ0.

Since F (1, ·) = Qc(·+ dc~e1), we have shown that there exists z ∈ R2

with |z| = oσc→0(c1−σ) such that Qc(z + dc~e1) = 0. Now, for c small
enough and |ξ| 6 1, we have

∇(Qc(ξ + z + dc~e1)) = ∇V1(z) + oc→0(1) + o|ξ|→0(1)

= κ

(
1
−i

)
+ oc→0(1) + o|ξ|→0(1).

We deduce, with Qc(ζ + z + dc~e1) =
∫ |ζ|

0
∇Qc

(
ξ ζ
|ζ| + z + dc~e1

)
· ζ|ζ| dξ,

that ∣∣∣∣Qc(ζ + z + dc~e1)− ζ ·
(

1
−i

)
κ

∣∣∣∣ = o|ζ|→0(|ζ|) + oc→0(1)|ζ|.

Therefore, Qc has no other zeros in B(z + dc~e1,Λ) for some Λ > 0
independent of c. Therefore, since for c small enough, |Qc| > K(Λ) > 0
outside of B(z+ dc~e1,Λ) in the right half-plane, Qc has only one zero in
the right half-plane.
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By the symmetry Qc(x1, x2) = Qc(x1,−x2) (see (2.3)), z must be

colinear to −→e1 , therefore we define d̃c ∈ R by d̃c
−→e1 := z + dc~e1, and we

conclude that, since |z| = oσc→0(c1−σ),

|dc − d̃c| = oσc→0(c1−σ).

We define the vortices around the zeros of Qc by

Ṽ±1(x) := V±1(x∓ d̃c−→e1),

and we will use the already defined polar coordinates around ±d̃c−→e1

of x ∈ R2, namely

r̃±1 = |x∓ d̃c−→e1 |, θ̃±1 = arg(x∓ d̃c−→e1).

One of the idea of the proof is to understand how Qc is close, multi-
plicatively, to vortices Ṽ±1 centred at its zeros, since by construction it

is close to a vortex centred around ±dc−→e1 , which is itself close to ±d̃c−→e1 .
In particular, Lemma 2.15 below will show that the ratio

∣∣Qc
Ṽ1

∣∣ is bounded

and close to 1 near d̃c
−→e1 .

In Lemma 2.14 to follow, we compute the additive perturbation be-
tween derivatives of Qc and a vortex Ṽ±1 centred around one of its zeros.
In Lemma 2.15, we compute the multiplicative perturbation. All along,

we work in B(d̃c
−→e1 , d̃

1/2
c ), the size of the ball d̃

1/2
c being arbitrary (any

quantity that both goes to infinity when c→ 0 and is a oc→0(d̃c) should

work). We recall that r̃±1 = |x∓ d̃c−→e1 |.

Lemma 2.14. Uniformly in B(d̃c
−→e1 , d̃

1/2
c ), for Qc defined in Theo-

rem 1.1, one has
|Qc − Ṽ1| = oc→0(1),

|∇Qc −∇Ṽ1| 6
oc→0(1)

1 + r̃1
,

and

|∇2Qc −∇2Ṽ1| 6
oc→0(1)

1 + r̃1
.

See Appendix A.2 for the proof of this result.

Lemma 2.15. In B(d̃c
−→e1 , d̃

1/2
c ), for Qc defined in Theorem 1.1, we have∣∣∣∣Qc

Ṽ1

− 1

∣∣∣∣ = oc→0(c1/10).

In particular, ∣∣∣∣Qc
Ṽ1

∣∣∣∣ = 1 + oc→0(c1/10).

The power 1/10 is arbitrary, but enough here for the upcoming esti-
mates.
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Proof: We recall that both Qc and Ṽ1 are C∞ since they are solutions

of elliptic equations. We have that Qc(d̃c
−→e1) = 0 by Lemma 2.13, thus,

for x ∈ R2, by Taylor expansion, for |x| 6 1,

Qc(x+ d̃c
−→e1) = x · ∇Qc(d̃c−→e1) +O|x|→0(|x|2).

From Theorem 1.1, we haveQc = V1(·−dc−→e1)V−1(·+dc−→e1)+Γc, therefore,
with V±1 being centred around ±dc−→e1 for the rest of the proof,

∇Qc(d̃c−→e1) = ∇V1(d̃c
−→e1)V−1(d̃c

−→e1) + V1(d̃c
−→e1)∇V−1(d̃c

−→e1) +∇Γc(d̃c
−→e1).

We have V1(d̃c
−→e1)∇V−1(d̃c

−→e1)+∇Γc(d̃c
−→e1) = oc→0(c1/2) by Theorem 1.1,

Lemma 2.1, and (2.2). Furthermore, by (2.1) and Lemmas 2.1 and 2.13,

∇V1(d̃c
−→e1)V−1(d̃c

−→e1) = ∇V1(d̃c
−→e1) + oc→0(c1/4).

We deduce that

Qc(x+ d̃c
−→e1) = x · (∇V1(dc

−→e1) + oc→0(c1/4)) +Ox→0(|x|2).

We also have Ṽ1(x+d̃c
−→e1) = x·∇Ṽ1(d̃c

−→e1)+Ox→0(|x|2) (since Ṽ1(d̃c
−→e1) =

0) and ∇V1(dc
−→e1) = ∇Ṽ1(d̃c

−→e1), hence

Qc(x+ d̃c
−→e1) = Ṽ1(x+ d̃c

−→e1) + x · oc→0(c1/4) +O|x|→0(|x|2).

Now, by Lemma 2.1, there exists K > 0 such that, in B(d̃c
−→e1 , c

1/4) for

c small enough, |Ṽ1(x+ d̃c
−→e1)| > K|x|. We deduce that∣∣∣∣Qc

Ṽ1

− 1

∣∣∣∣ 6 |x|oc→0(c1/4)

|Ṽ1(x+ d̃c
−→e1)|

+
O|x|→0(|x|2)

|Ṽ1(x+ d̃c
−→e1)|

6 oc→0(c1/4) +O|x|→0(|x|)

6 oc→0(c1/5).

Outside of B(d̃c
−→e1 , c

1/4) and in B(d̃c
−→e1 , d̃c

1/2
), we have |Ṽ1| > Kc1/4 by

Lemma 2.1, and
Qc = V1 +Oc→0(c1/2)

by Theorem 1.1 and equations (2.7) and (2.1). We deduce∣∣∣∣Qc
Ṽ1

− 1

∣∣∣∣ (x) =

∣∣∣∣V1 +Oc→0(c1/2)

Ṽ1

− 1

∣∣∣∣ (x) =

∣∣∣∣∣V1(x)

Ṽ1(x)
− 1

∣∣∣∣∣+ oc→0(c1/10).

Furthermore, by Lemma 2.13 (for σ = 1/2), we have∣∣∣∣∣V1(x)

Ṽ1(x)
− 1

∣∣∣∣∣ =

∣∣∣∣∣ Ṽ1(x) +O|dc−d̃c|→0(|dc − d̃c|)

Ṽ1(x)
− 1

∣∣∣∣∣
=
O|dc−d̃c|→0(|dc − d̃c|)

c1/4
= oc→0(c1/10).

We conclude that
∣∣Qc
Ṽ1
− 1
∣∣ = oc→0(c1/10) in B(d̃c

−→e1 , d̃c
1/2

).
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By the symmetries of Qc (see (2.3)), the result of Lemma 2.15 holds

if we replace −→e1 by −−→e1 and Ṽ1 by Ṽ−1.

We conclude this section with the proof that in B(±d̃c−→e1 , d̃
1/2
c ), we

have, for ψ ∈ C∞c (R2\{±d̃c−→e1},C),

(2.22)
∫ 2π

0

|ψ 6=0|2 dθ̃±1 6 r̃2
±1

∫ 2π

0

|∇ψ|2 dθ̃±1.

We recall that the function ψ 6=0 is defined by

ψ 6=0(x) = ψ(x) − ψ0,1(r̃1)

in the right half-plane, and

ψ 6=0(x) = ψ(x) − ψ0,−1(r̃−1)

in the left half-plane.
To prove (2.22), it is enough to show that, for ψ ∈ C∞c (R2\{0},C),

we have, with x = reiθ,∫ 2π

0

∣∣∣∣ψ − ∫ 2π

0

ψ dγ

∣∣∣∣2 dθ 6 r2

∫ 2π

0

|∇ψ|2 dθ.

This is a Poincaré inequality. By decomposition into harmonics and Par-
seval’s equality, we have

∫ 2π

0

∣∣∣∣ψ − ∫ 2π

0

ψ(γ) dγ

∣∣∣∣2 dθ =

∫ 2π

0

∣∣∣∣∣∑
n∈Z∗

ψn(r)einθ

∣∣∣∣∣
2

dθ

=

∫ 2π

0

∑
n∈Z∗

|ψn(r)|2 dθ,

and ∫ 2π

0

|∇ψ|2 dθ >
∫ 2π

0

1

r2
|∂θψ|2 dθ

>
∫ 2π

0

∣∣∣∣∣∑
n∈Z∗

i
nψn(r)

r
einθ

∣∣∣∣∣
2

dθ

>
1

r2

∫ 2π

0

∑
n∈Z∗

n2|ψn(r)|2 dθ

>
1

r2

∫ 2π

0

∑
n∈Z∗

|ψn(r)|2 dθ.
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This concludes the proof of (2.22). With |Qc(x±d̃c−→e1)|=Or̃±1→0(r̃±1)
and (2.22), we have, for r̃±1 6 R,

(2.23)

∫ 2π

0

|Qc|2|ψ 6=0|2 dθ̃±1 6 K

∫ 2π

0

r̃2
±1|ψ 6=0|2 dθ̃±1

6 K

∫ 2π

0

r̃4
±1|∇ψ|2 dθ̃±1

6 K(R)

∫ 2π

0

|Qc|4|∇ψ|2 dθ̃±1.

This result will be useful to estimate the quantities in the orthogonality
conditions.

3. Estimates in HQc

We give several estimates for functions in HQc . They will in partic-
ular allow us to use a density argument to show Proposition 1.4 once
it is shown for test functions in Section 4. We will also explain why a
coercivity result with the energy norm ‖ · ‖HQc is impossible with any
number of local orthogonality conditions, and show that the quadratic
form and the coercivity norm are well defined for functions in HQc .

3.1. Comparison of the energy and coercivity norms. In the in-
troduction, we have defined the quadratic form by

BQc(ϕ) =

∫
R2

|∇ϕ|2 − (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ)

−c
∫
R2

(1− η)Re(i∂x2ϕϕ̄)− c
∫
R2

ηRe(i∂x2QcQc)|ψ|
2

+2c

∫
R2

ηReψIm∂x2ψ|Qc|
2 + c

∫
R2

∂x2ηReψImψ|Qc|2

+c

∫
R2

ηReψImψ∂x2(|Qc|2)

(see (1.3)). We will show in Lemma 3.3 below that this quantity is well
defined for ϕ ∈ HQc . As we have seen, the natural energy space HQc is
given by the norm

‖ϕ‖2HQc =

∫
R2

|∇ϕ|2 + |1− |Qc|2||ϕ|2 + Re2(Qcϕ).

We could expect to replace Theorem 1.5 by a result of the form: up to
some local orthogonality conditions, for ϕ ∈ HQc we have

BQc(ϕ) > K(c)‖ϕ‖2HQc .
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However such a result cannot hold. This is because of a formal zero
of LQc which is not in the space HQc : iQc (which comes from the phase
invariance of the equation). We have LQc(iQc) = 0 and iQc 6∈ HQc

because

(1− |Qc|2)|iQc|2

is not integrable at infinity (see [10], where it is shown that this quantity
decays like 1/r2). We can then create functions in HQc getting close
to iQc, for instance

fR = ηRiQc,

where ηR is a C∞ real function with value 1 if R0 < |x| < R and value 0 if
|x| < R0− 1 or |x| > 2R. In that case, when R→ +∞, ‖fR‖HQc → +∞
and BQc(fR) → C a constant independent of R, making the inequal-
ity BQc(ϕ) > K‖ϕ‖2HQc impossible (and the local orthogonality condi-

tions are verified for R0 large enough since fR = 0 on B(0, R0−1)). That
is why we get the result in a weaker norm in Proposition 1.12: we will
only get for ϕ ∈ HQc , up to some local orthogonality conditions,

BQc(ϕ) > K(c)‖ϕ‖2Hexp
Qc
,

where ‖ · ‖Hexp
Qc

is defined in Subsection 1.3.1. In particular, ‖ · ‖Hexp
Qc

is

not equivalent to ‖ · ‖HQc .

3.2. The coercivity norm and other quantities are well defined
in HQc . We have defined the energy space HQc by the norm

‖ϕ‖2HQc =

∫
R2

|∇ϕ|2 + |1− |Qc|2||ϕ|2 + Re2(Qcϕ).

By Lemma 2.6, we have that, for ϕ ∈ HQc ,

(3.1)
∫
R2

|ϕ|2

(1 + |x|)2
dx 6 C(c)‖ϕ‖2HQc .

The goal of this subsection is to show that, for ϕ ∈ HQc , ‖ϕ‖C , and
BQc(ϕ), as well as the quantities in the orthogonality conditions of
Proposition 1.4 and Theorem 1.5, are well defined. This is done in Lem-
mas 3.1 to 3.3.

Lemma 3.1. There exists c0 > 0 such that for 0 < c 6 c0, there
exists C(c) > 0 such that, for Qc defined in Theorem 1.1 and for any
ϕ = Qcψ ∈ HQc ,

‖ϕ‖2C =

∫
R2

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4 6 C(c)‖ϕ‖2HQc .
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Proof: We estimate for ϕ = Qcψ∈HQc , using equations (2.12) and (3.1)

and |∇Qc| 6 C(c)
(1+r)2 from Theorem 2.5, that∫
R2

|∇ψ|2|Qc|4 =

∫
R2

|∇ϕ−∇Qcψ|2|Qc|2

6 K

∫
R2

|∇ϕ|2|Qc|2 + |∇Qc|2|Qcψ|2

6 K(c)

∫
R2

|∇ϕ|2 +
|ϕ|2

(1 + r)4

6 K(c)‖ϕ‖2HQc .

Similarly, for ϕ = Qcψ,∫
R2

Re2(ψ)|Qc|4 =

∫
R2

Re2(Qcϕ) 6 ‖ϕ‖2HQc .

We conclude that

(3.2)
∫
R2

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4 6 C(c)‖ϕ‖2HQc .

We conclude this subsection with the proof that the quantities in the
orthogonality conditions are well defined for ϕ ∈ HQc .

Lemma 3.2. There exists K > 0 and, for c small enough, there exists
K(c) > 0 such that, for Qc defined in Theorem 1.1 and ϕ = Qcψ ∈ HQc ,

0 < R < d̃
1/2
c , we have∫

B(±d̃c−→e1,R)

|Re(∂x1 Ṽ±1 Ṽ±1ψ)|+
∫
B(±d̃c−→e1,R)

|Re(∂x2 Ṽ±1 Ṽ±1ψ)|6K(c)‖ϕ‖HQc ,∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

|Re(∂x1,2QcQcψ
6=0)| 6 K(c)‖ϕ‖HQc ,∫

B(d̃c
−→e1,R)∪B(−d̃c−→e1,R)

|Re(∂cQcQcψ 6=0)| 6 K(c)‖ϕ‖HQc ,

and ∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

|Re(−x⊥ · ∇QcQcψ 6=0)| 6 K(c)‖ϕ‖HQc .

We recall that ψ 6=0(x) = ψ(x) − ψ0,1(r̃1) in the right half-plane and

ψ 6=0(x) = ψ(x) −ψ0,−1(r̃−1) in the left half-plane, with r̃±1 = |x∓ d̃c−→e1 |
and ψ0,±1(r̃±1) the 0-harmonic of ψ around ±d̃c−→e1 .
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Proof: From Lemma 2.15, we have, for ϕ = Qcψ ∈ HQc ,

|Ṽ±1ψ| = |ϕ| ×
∣∣∣∣ Ṽ±1

Qc

∣∣∣∣ 6 2|ϕ|

given that c is small enough. We deduce by Cauchy–Schwarz and Lem-
mas 2.1 and 2.6 that∫

B(±d̃c−→e1,R)

|Re(∂x1 Ṽ±1 Ṽ±1ψ)| 6 2

∫
B(±d̃c−→e1,R)

|∂x1 Ṽ±1| × |ϕ|

6 K(c)‖ϕ‖H1(B(±d̃c−→e1,R))

6 K(c)‖ϕ‖HQc ,

and similarly
∫
B(±d̃c−→e1,R)

|Re(∂x2
Ṽ±1 Ṽ±1ψ)| 6 K(c)‖ϕ‖HQc .

By Cauchy–Schwarz, equation (3.2), and Theorem 1.1 (for p = +∞),
we conclude that∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

|Re(∂cQcQcψ 6=0)|6K(c)

√∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

|∇ψ|2|Qc|4

6K(c)‖ϕ‖HQc .

We can estimate the other terms similarly.

3.3. On the definition of BQc . We start by explaining how to get
BQc(ϕ) from the “natural” quadratic form∫

R2

|∇ϕ|2 − (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ)−Re(ic∂x2ϕϕ̄).

For the first three terms of this quantity, it is obvious that they are well
defined for ϕ∈HQc , but the term −Re(ic∂x2ϕϕ̄) is not clearly integrable.

Take a smooth cutoff function η such that η(x) = 0 on B(±d̃c−→e1 , 1),

η(x) = 1 on R2\B(±d̃c−→e1 , 2). Then, taking for now ϕ = Qcψ ∈ C∞c (R2),

Re(i∂x2ϕϕ̄) = ηRe(i∂x2ϕϕ̄) + (1− η)Re(i∂x2ϕϕ̄),

and writing ϕ = Qcψ,

ηRe(i∂x2ϕϕ̄) = ηRe(i∂x2QcQc)|ψ|
2 + ηRe(i∂x2ψψ̄)|Qc|2

= ηRe(i∂x2QcQc)|ψ|
2−ηReψIm∂x2ψ|Qc|

2+ηRe∂x2ψImψ|Qc|
2.
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Furthermore,

ηRe∂x2ψImψ|Qc|
2 = ∂x2(ηReψImψ|Qc|2)− ∂x2ηReψImψ|Qc|2

−ηReψIm∂x2ψ|Qc|
2 − ηReψImψ∂x2(|Qc|2),

thus we can write∫
R2

Re(i∂x2ϕϕ̄) =

∫
R2

∂x2(ηReψImψ|Qc|2)

+

∫
R2

(1− η)Re(i∂x2ϕϕ̄) +

∫
R2

ηRe(i∂x2QcQc)|ψ|
2

−2

∫
R2

ηReψIm∂x2ψ|Qc|
2 −

∫
R2

∂x2ηReψImψ|Qc|2

−
∫
R2

ηReψImψ∂x2(|Qc|2).

The only difficulty here is that the first integral is not well defined for ϕ ∈
HQc , but it is the integral of a derivative. This is why we defined instead
the quadratic form

BQc(ϕ) =

∫
R2

|∇ϕ|2 − (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ)

−c
∫
R2

(1− η)Re(i∂x2ϕϕ̄)− c
∫
R2

ηRe(i∂x2QcQc)|ψ|
2

+2c

∫
R2

ηReψIm∂x2ψ|Qc|
2 + c

∫
R2

∂x2ηReψImψ|Qc|2

+c

∫
R2

ηReψImψ∂x2(|Qc|2).

It is easy to check that this quantity is independent of the choice of η. We
will show in Lemma 3.3 that this quantity is well defined for ϕ ∈ HQc .
By adding some conditions on ϕ, for instance if ϕ ∈ H1(R2), we can show
that

∫
R2 ∂x2

(ηReψImψ|Qc|2) is well defined and is 0. In these cases, we
therefore have

BQc(ϕ) =

∫
R2

|∇ϕ|2 − (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ)−Re(ic∂x2ϕϕ̄).

This is a classical situation for Schrödinger equations with nonzero limit
at infinity (see [3] or [16]): the quadratic form is defined up to a term
which is a derivative of some function in some Lp space.
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Lemma 3.3. There exists c0 > 0 such that, for 0 < c 6 c0, Qc defined in
Theorem 1.1, there exists a constant C(c) > 0 such that, for ϕ = Qcψ ∈
HQc and η a smooth cutoff function such that η(x) = 0 on B(±d̃c−→e1 , 1),

η(x) = 1 on R2\B(±d̃c−→e1 , 2), we have∫
R2

|(1− η)Re(i∂x2ϕϕ̄)| +
∫
R2

|ηRe(i∂x2QcQc)|ψ|
2|

+

∫
R2

|ηReψIm(∂x2ψ)|Qc|2|+
∫
R2

|∂x2ηReψImψ|Qc|2|

+

∫
R2

|ηReψImψ∂x2(|Qc|2)|

6 C(c)‖ϕ‖2HQc .

Proof: Since |1− |Qc|2| > K > 0 on B(±d̃c−→e1 , 2) for c small enough by
Lemma 2.1 and Theorem 1.1, we estimate∫

R2

|(1− η)Re(ic∂x2ϕϕ̄)| 6 C(c)

∫
B(d̃c

−→e1,2)∪B(−d̃c−→e1,2)

|1− |Qc|2||ϕ||∂x2ϕ|

6 C(c)‖ϕ‖2HQc .

Furthermore, by (2.12) and Lemma 2.6,∫
R2

|ηRe(ic∂x2QcQc)|ψ|
2| 6 C(c)

∫
R2

η|∇Qc||ψ|2

6 C(c)

∫
R2

η|∇Qc||ϕ|2 6 C(c)‖ϕ‖2HQc

since |∇Qc| 6 C(c)
(1+r)2 from Theorem 2.5. By Cauchy–Schwarz, equa-

tion (2.12), and Lemma 3.1,∫
R2

|ηReψIm∂x2ψ|Qc|
2| 6 K

√∫
R2

ηRe2(ψ)

∫
R2

η|∇ψ|2 6 C(c)‖ϕ‖2HQc .

Now, still by equation (2.12) and Lemma 3.1, since ∂x2
η is supported in

B(±d̃c−→e1 , 2)\B(±d̃c−→e1 , 1),∫
R2

|∂x2ηReψImψ|Qc|2| 6 K‖ϕ‖2HQc .

Finally, since |∇Qc| 6 C(c)
(1+r)2 by Theorem 2.5, by Cauchy–Schwarz and

Lemma 2.6,∫
R2

|ηReψImψ∂x2(|Qc|2)|6C(c)

√∫
R2

ηRe2(ψ)

∫
R2

η
Im2ψ

(1 + r)4
6C(c)‖ϕ‖2HQc .
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3.4. Density of test functions in HQc . We shall prove coercivity
with test functions that are 0 in a neighbourhood of the zeros of Qc. This
will allow us to divide by Qc in several computations. Here we give a
density result to show that it is not a problem to remove a neighbourhood
of the zeros of Qc for test functions.

Lemma 3.4. C∞c (R2\{d̃c−→e1 ,−d̃c−→e1},C) is dense in HQc for the norm
‖ · ‖HQc .

This result uses similar arguments to those used in [5] for the density
in HV1

. See Appendix B.1 for a proof of it.

4. Coercivity results in HQc

This section is devoted to the proofs of Propositions 1.3 and 1.4.
Here, we will do most of the computations with test functions, that is,
functions in C∞c (R2\{d̃c~e1,−d̃c~e1},C). This will allow us to do many
computations, including dividing by Qc in some quantities.

4.1. Expression of the quadratic forms. We recall that η is a

smooth cutoff function such that η(x) = 0 on B(±d̃c−→e1 , 1), η(x) = 1

on R2\(B(d̃c
−→e1 , 2)∪B(−d̃c−→e1 , 2)), where ±d̃c−→e1 are the zeros of Qc. Fur-

thermore, from [5], we recall the quadratic form around a vortex V1:

BV1(ϕ) =

∫
R2

|∇ϕ|2 − (1− |V1|2)|ϕ|2 + 2Re2(V1ϕ).

We want to write the quadratic form around V1 and Qc in a special form.
For the one around Qc, it will be of the form Bexp

Qc
, defined in (1.4).

Lemma 4.1. For ϕ = Qcψ ∈ C∞c (R2\{d̃c−→e1 ,−d̃c−→e1},C), we have

〈LQc(ϕ), ϕ〉 = Bexp
Qc

(ϕ),

where Bexp
Qc

(ϕ) is defined in (1.4). Furthermore, for ϕ = V1ψ ∈ C∞c (R2\
{0},C), where V1 is centred at 0, and η̃ a smooth radial cutoff function
with value 0 in B(0, 1), and value 1 outside of B(0, 2),

BV1(ϕ) =

∫
R2

(1− η̃)(|∇ϕ|2 − (1− |V1|2)|ϕ|2 + 2Re2(V1ϕ))

−
∫
R2

∇η̃ · (Re(∇V1V1)|ψ|2 − 2Im(∇V1V1)Re(ψ)Im(ψ))

+

∫
R2

η̃(|∇ψ|2|V1|2 + 2Re2(ψ)|V1|4 + 4Im(∇V1V1)Im(∇ψ)Re(ψ)).

See Appendix B.2 for the proof of this result.
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4.2. A coercivity result for the quadratic form around one vor-
tex. This subsection is devoted to the proof of Proposition 1.3, and a
localized version of it (see Lemma 4.2).

4.2.1. Coercivity for test functions.

Proof of Proposition 1.3: We recall the result from [5]; see Lemma 3.1
and equation (2.42) there. If ϕ = V1ψ ∈ C∞c (R2\{0},C) with the two
orthogonality conditions∫

B(0,R)

Re(∂x1V1ϕ̄) =

∫
B(0,R)

Re(∂x1V1ϕ̄) = 0,

then, writing ψ0(x) = 1
2π

∫ 2π

0
ψ(|x| cos(θ), |x| sin(θ)) dθ, the 0-harmonic

around 0 of ψ, and ψ 6=0 = ψ − ψ0, then

BV1(ϕ) > K

∫
R2

|∇(V1ψ
6=0)|2 + |∇ψ0|2|V1|2 +

|V1ψ
6=0|2

(1 + r)2
+ Re2(ψ)|V1|4.

We recall from Lemma 2.1 that there exists K1 > 0 such that, for all r >

0, K1 6 |V1|
r 6 1

K1
, and that |V1| is a radial function around 0. Therefore,

by Hardy inequality in dimension 4,∫
B(0,1)

|ψ0|2 6 K

(∫
B(0,2)

|∇ψ0|2|V1|2 +

∫
B(0,2)\B(0,1)

|ψ0|2
)
.

By Poincaré inéquality, using
∫
B(0,R)\B(0,R/2)

Im(ψ) = 0 and |V1|2 > K

outside of B(0, 1), we have∫
B(0,10)\B(0,1)

|ψ0|2 6 K

(∫
B(0,R)

|∇ψ0|2|V1|2 + Re2(ψ0)|V1|4
)
.

Here, the constant K > 0 depends on R > 0, but we consider R as a
universal constant. We deduce that∫
B(0,10)

|ϕ|2 6
∫
B(0,10)

|V1ψ|2

6 K

(∫
B(0,10)

|V1ψ
0|2 +

∫
B(0,10)

|V1ψ
6=0|2

)

6 K

(∫
R2

|∇(V1ψ
6=0)|2+|∇ψ0|2|V1|2+

|V1ψ
6=0|2

(1 + r)2
+Re2(ψ)|V1|4

)
.
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Similarly,∫
B(0,10)

|∇ϕ|26
∫
B(0,10)

|∇(V1(ψ0 + ψ 6=0))|2

6K

(∫
B(0,10)

|∇(V1ψ
0)|2 +

∫
B(0,10)

|∇(V1ψ
6=0)|2

)

6K

(∫
B(0,10)

|∇ψ0|2|V1|2+|ψ0|2|∇V1|2+

∫
B(0,10)

|∇(V1ψ
6=0)|2

)

6K

(∫
R2

|∇(V1ψ
6=0)|2+|∇ψ0|2|V1|2+

|V1ψ
6=0|2

(1 + r)2
+Re2(ψ)|V1|4

)
.

Finally, outside of B(0, 5), we have, by Lemma 2.1, that∫
R2\B(0,5)

|∇ψ|2 6 K

∫
R2\B(0,5)

|∇ψ|2|V1|2.

Let us show that∫
R2\B(0,5)

|ψ|2

r2 ln2(r)
6 K

(∫
R2\B(0,5)

|∇ψ|2 +

∫
B(0,10)\B(0,5)

|ψ|2
)
.

This is a Hardy-type inequality, and it would conclude the proof of this
proposition. Note that for the harmonics other than zeros, this is a direct
consequence of ∫

R2\B(0,5)

|ψ 6=0|2

r2
6
∫
R2\B(0,5)

|∇ψ|2.

We therefore suppose that ψ is a radial compactly supported function.
We define χ a smooth radial cutoff function with χ(r) = 0 if r 6 4 and
χ(r) = 1 if r > 5. Then, by Cauchy–Schwarz,∣∣∣∣∫

R2

χ(r)|ψ|2

r2 ln2(r)

∣∣∣∣= ∣∣∣∣−∫ +∞

0

χ(r)|ψ|2(r)∂r

(
1

ln(r)

)
dr

∣∣∣∣
=

∣∣∣∣∫ +∞

0

∂r(χ|ψ|2)(r)
dr

ln(r)

∣∣∣∣
6K

(∫
B(0,10)\B(0,5)

|ψ|2+

∫ +∞

5

|ψ|(r)∂r|ψ|(r)
dr

ln(r)

)

6K

(∫
B(0,10)\B(0,5)

|ψ|2+

√∫
R2\B(0,5)

|ψ|2
r2 ln2(r)

∫
R2\B(0,5)

|∇ψ|2
)
.

The proof is complete.
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4.2.2. Localization of the coercivity for one vortex. Now, we
want to localize the coercivity result. We define, for D > 10, ϕ = V1ψ ∈
HV1

,

BlocD
V1

(ϕ) :=

∫
B(0,D)

(1− η̃)(|∇ϕ|2 − (1− |V1|2)|ϕ|2 + 2Re2(V1ϕ))

−
∫
B(0,D)

∇η̃ · (Re(∇V1V1)|ψ|2 − 2Im(∇V1V1)Re(ψ)Im(ψ))

+

∫
B(0,D)

η̃(|∇ψ|2|V1|2+2Re2(ψ)|V1|4+4Im(∇V1V1)Im(∇ψ)Re(ψ)),

where η̃ is a smooth radial cutoff function such that η̃(x) = 0 on B(0, 1),
η̃(x) = 1 on R2\B(0, 2).

Lemma 4.2. There exist K,R,D0 > 0 with D0 > R, such that, for D >
D0 and ϕ = V1ψ ∈ C∞c (R2\{0},C), if the following three orthogonality
conditions∫

B(0,R)

Re(∂x1V1ϕ̄) =

∫
B(0,R)

Re(∂x2V1ϕ̄) =

∫
B(0,R)\B(0,R/2)

Im(ψ) = 0

are satisfied, then

BlocD
V1

(ϕ) > K

(∫
B(0,10)

|∇ϕ|2 + |ϕ|2

+

∫
B(0,D)\B(0,5)

|∇ψ|2|V1|2 + Re2(ψ)|V1|4 +
|ψ|2

r2 ln2(r)

)
.

Proof: We decompose ψ into harmonics j ∈ N, l ∈ {1, 2}, with the same
decomposition as in (2.5) of [5]. This decomposition is adapted to the

quadratic form BlocD
V1

(see equation (2.4) of [5]), which also holds if the
integral is only on B(0, D).

For j = 0, the proof is identical. For j > 2, l ∈ {1, 2}, from equa-
tion (2.38) of [5] (which holds on B(0, D) as the inequality is pointwise),
the proof holds if it does for j = 1, l ∈ {1, 2}.

We therefore focus on the case j = l = 1. We write ψ = ψ1(r) cos(θ)+
iψ2(r) sin(θ), with ψ1, ψ2 ∈ C∞c (R+∗,R). The other possibility (l = 2) is
ψ = ψ1(r)i cos(θ) +ψ2(r) sin(θ), which is done similarly. We will show a
more general result, that is, for any ϕ = V1ψ ∈ C∞c (R2\{0},C) satisfying
the orthogonality conditions,

BlocD
V1

(V1ψ
6=0)>K

(∫
B(0,10)

|∇(V1ψ
6=0)|2 + |V1ψ

6=0|2

+

∫
B(0,D)\B(0,5)

|∇ψ 6=0|2|V1|2+Re2(ψ 6=0)|V1|4+
|ψ 6=0|2

r2

)
.
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With the previous remark, it is enough to conclude the proof of this
lemma. In the rest of the proof, to simplify the notation, we write ψ
instead of ψ 6=0, but it still has no 0-harmonic.

We note that, for D > R0 > 2,

(4.1)

∫
B(0,D)\B(0,R0)

|∇ψ|2|V1|2 + 2Re2(ψ)|V1|4+4Im(∇V1V1) · Im(∇ψ)Re(ψ)

>
∫
B(0,D)\B(0,R0)

|∇ψ|2|V1|2+2Re2(ψ)|V1|4−
K|V1|2

R0
|Im(∇ψ)Re(ψ)|

>
1

2

∫
B(0,D)\B(0,R0)

|∇ψ|2|V1|2 + 2Re2(ψ)|V1|4

if R0 is large enough. We therefore take R0 > R large enough such that
(4.1) holds. For D

2 > λ > R0, we define χλ a smooth cutoff function such

that χλ(r) = 1 if r 6 λ, χλ = 0 if r > 2λ, and |χ′λ| 6 K
λ . In particular,

since R0 > 2, we have Supp(χ′λ) ⊂ Supp(η̃) and Supp(1−η̃) ⊂ Supp(χλ).
This implies that∫

B(0,D)

(1− η̃)(|∇ϕ|2 − (1− |V1|2)|ϕ|2 + 2Re2(V1ϕ))

=

∫
B(0,D)

(1− η̃)(|∇(χλϕ)|2 − (1− |V1|2)|χλϕ|2 + 2Re2(V1χλϕ))

and∫
B(0,D)

∇η̃ · (Re(∇V1V1)|ψ|2 − 2Im(∇V1V1)Re(ψ)Im(ψ))

=

∫
B(0,D)

∇η̃ · (Re(∇V1V1)|χλψ|2−2Im(∇V1V1)Re(χλψ)Im(χλψ)).

Now, we decompose∫
B(0,D)

η̃(|∇ψ|2|V1|2 + 2Re2(ψ)|V1|4 + 4Im(∇V1V1)Im(∇ψ)Re(ψ))

=

∫
B(0,D)

(1−χ2
λ)η̃(|∇ψ|2|V1|2+2Re2(ψ)|V1|4+4Im(∇V1V1)Im(∇ψ)Re(ψ))

+

∫
B(0,D)

χ2
λη̃(|∇ψ|2|V1|2 + 2Re2(ψ)|V1|4 + 4Im(∇V1V1)Im(∇ψ)Re(ψ)),

and by equation (4.1),∫
B(0,D)

(1− χ2
λ)η̃(|∇ψ|2|V1|2 + 2Re2(ψ)|V1|4 + 4Im(∇V1V1)Im(∇ψ)Re(ψ))

> K

∫
B(0,D)

(1− χ2
λ)|∇ψ|2|V1|2 + 2Re2(ψ)|V1|4.
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Furthermore,∫
B(0,D)

χ2
λη̃(|∇ψ|2|V1|2 + 2Re2(ψ)|V1|4 + 4Im(∇V1V1)Im(∇ψ)Re(ψ))

=

∫
B(0,D)

η̃(|∇(χλψ)|2|V1|2 + 2Re2(χλψ)|V1|4

+ 4Im(∇V1V1)Im(∇(χλψ))Re(χλψ))

−
∫
B(0,D)

η̃((|∇(χλψ)−∇χλψ|2 − |∇(χλψ)|2)|V1|2

− 4Im(∇V1V1) · ∇χλIm(ψ)Re(χλψ)),

and thus

BlocD
V1

(V1ψ) > BlocD
V1

(V1χλψ) +K

∫
B(0,D)

(1− χ2
λ)|∇ψ|2|V1|2 + 2Re2(ψ)|V1|4

−
∫
B(0,D)

η̃((|∇(χλψ)−∇χλψ|2 − |∇(χλψ)|2)|V1|2

− 4Im(∇V1V1) · ∇χλIm(ψ)Re(χλψ)).

Since V1χλψ ∈ C∞c (B(0, D)), we have BlocD
V1

(V1χλψ) = BV1(V1χλψ),
and since χλ = 1 in B(0, R) and V1ψ satisfied the orthogonality condi-
tions, so does V1χλψ. By Proposition 1.3, we deduce that

BlocD
V1

(V1χλψ) > K

∫
B(0,10)

|∇(V1χλψ)|2 + |V1χλψ|2

+K

∫
B(0,D)\B(0,5)

|∇(χλψ)|2|V1|2+Re2(χλψ)|V1|4+
|χλψ|2

r2 ln2(r)
.

Now, noting that

|∇(χλψ)|2|V1|2 > K1|∇ψ|2χ2
λ|V1|2 −K2|∇χλ|2|ψ|2|V1|2,

and since χλ = 1 in B(0, 10), we deduce that

(4.2)

BlocD
V1

(V1ψ)>K

(∫
B(0,10)

|∇ϕ|2+|ϕ|2+
∫
B(0,D)\B(0,5)

|∇ψ|2|V1|2+Re2(ψ)|V1|4
)

−K
∫
B(0,D)

η̃(|(|∇(χλψ)−∇χλψ|2 − |∇(χλψ)|2)||V1|2

+ |Im(∇V1V1) · ∇χλIm(ψ)Re(χλψ)|)

−K
∫
B(0,D)\B(0,5)

|∇χλ|2|ψ|2|V1|2.
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Since ∇χλ is supported in B(0, 2λ)\B(0, λ) with |∇χλ| 6 K
λ , we have∫

B(0,D)\B(0,5)

|∇χλ|2|ψ|2|V1|2 6 K

∫
B(0,2λ)\B(0,λ)

|ψ|2

(1 + r)2
,

and by Cauchy–Schwarz we have that∫
B(0,D)

η̃|Im(∇V1V1) · ∇χλIm(ψ)Re(χλψ)|

6 K

√∫
B(0,2λ)\B(0,λ)

|ψ|2
(1 + r)2

∫
B(0,D)\B(0,5)

Re2(ψ)

and∫
B(0,D)

η̃(|(|∇(χλψ)−∇χλψ|2 − |∇(χλψ)|2)||V1|2)

6K

(√∫
B(0,2λ)\B(0,λ)

|ψ|2
(1+r)2

∫
B(0,D)\B(0,5)

|∇ψ|2|V1|2+

∫
B(0,2λ)\B(0,λ)

|ψ|2

(1+r)2

)
.

Since ψ has no 0-harmonics we have that∫
B(0,D)\B(0,5)

|ψ|2

(1 + r)2
6 K

∫
B(0,D)\B(0,5)

|∇ψ|2|V1|2.

We infer that there exists D0 > R0 a large constant such that, for D >
D0, for all ϕ = V1ψ ∈ C∞c (R2\{0},C), there exists λ ∈

[
R0,

D0

2

]
such

that

(4.3)
∫
B(0,2λ)\B(0,λ)

|ψ|2

(1 + r)2
6 ε

∫
B(0,D)\B(0,5)

|∇ψ|2|V1|2

for some small fixed constant ε > 0. Indeed, if this does not hold, then∫
B(0,D)\B(0,5)

|∇ψ|2|V1|2 6= 0 and∫
B(0,D)\B(0,5)

|ψ|2

(1 + r)2
>
∫ D0

R0

|ψ|2

(1 + r)2
r dr

>

⌊
log2

(
D0
2R0

)⌋
−2∑

n=0

∫ 2n+1R0

2nR0

|ψ|2

(1 + r)2
r dr

>

⌊
log2

(
D0
2R0

)⌋
−2∑

n=0

ε

∫
B(0,D)\B(0,5)

|∇ψ|2|V1|2

> ε

(⌊
log2

(
D0

2R0

)⌋
− 1

)∫
B(0,D)\B(0,5)

|∇ψ|2|V1|2

>
1

K

∫
B(0,D)\B(0,5)

|∇ψ|2|V1|2
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for D0 large enough. Taking ε > 0 small enough, with equations (4.2)
to (4.3), we conclude the proof of this lemma.

A consequence of Lemma 4.2 is that, for a function ϕ = V1ψ ∈
C∞c (R2\{0},C) satisfying the three orthogonality conditions in Lem-
ma 4.2 and D > D0, then

(4.4) BlocD
V1

(ϕ) > K(D)‖ϕ‖2H1(B(0,D)).

4.3. Coercivity for a travelling wave near its zeros. We recall
from Lemma 4.1 that, for ϕ ∈ C∞c (R2\{d̃c~e1,−d̃c~e1},C), we have

〈LQc(ϕ), ϕ〉 =

∫
R2

(1− η)(|∇ϕ|2−Re(ic∂x2ϕϕ̄)−(1− |Qc|2)|ϕ|2+2Re2(Qcϕ))

−
∫
R2

∇η · (Re(∇QcQc)|ψ|2 − 2Im(∇QcQc)Re(ψ)Im(ψ))

+

∫
R2

c∂x2ηRe(ψ)Im(ψ)|Qc|2

+

∫
R2

η(|∇ψ|2|Qc|2 + 2Re2(ψ)|Qc|4)

+

∫
R2

η(4Im(∇QcQc)Im(∇ψ)Re(ψ)+2c|Qc|2Im(∂x2ψ)Re(ψ)).

For D > D0 (D0 > 0 being defined in Lemma 4.2), we define, with ϕ =
Qcψ,

B
loc±1,D

Qc
(ϕ) :=

∫
B(±d̃c−→e1,D)

(1− η)(|∇ϕ|2 −Re(ic∂x2ϕϕ̄)

− (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ))

−
∫
B(±d̃c−→e1,D)

∇η ·(Re(∇QcQc)|ψ|2−2Im(∇QcQc)Re(ψ)Im(ψ))

+

∫
B(±d̃c−→e1,D)

c∂x2ηRe(ψ)Im(ψ)|Qc|2

+

∫
B(±d̃c−→e1,D)

η(|∇ψ|2|Qc|2 + 2Re2(ψ)|Qc|4)

+

∫
B(±d̃c−→e1,D)

η(4Im(∇QcQc)Im(∇ψ)Re(ψ)

+ 2c|Qc|2Im(∂x2ψ)Re(ψ)).
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We infer that this quantity is close enough to BlocD
Ṽ±1

(ϕ) for coercivity

to hold, with Ṽ±1 being centred at ±d̃c−→e1 , the zero of Qc in the right
half-plane.

Lemma 4.3. There exist R,D0 > 0 with D0 > R, such that, for D >
D0, 0 < c < c0(D), and ϕ = Qcψ ∈ C∞c (R2\{d̃c−→e1},C), if the following
three orthogonality conditions

∫
B(d̃c

−→e1,R)

Re(∂x1 Ṽ1ϕ̄)=

∫
B(d̃c

−→e1,R)

Re(∂x2 Ṽ1ϕ̄)=

∫
B(d̃c

−→e1,R)\B(d̃c
−→e1,R/2)

Im(ψ)=0

are satisfied, then

B
loc1,D
Qc

(ϕ) > K(D)‖ϕ‖2H1(B(d̃c
−→e1,D)).

Proof: First, note that we write ϕ = Qcψ and not ϕ = Ṽ1ψ, as we did
in the proof of Proposition 1.3. Hence, to apply Lemma 4.2, the third
orthogonality condition becomes

∫
B(d̃c

−→e1,R)\B(d̃c
−→e1,R/2)

Im

(
ψ
Qc

Ṽ1

)
= 0.

With Lemma 2.15, we check that

∣∣∣∣∣
∫
B(d̃c

−→e1,R)\B(d̃c
−→e1,R/2)

Im

(
ψ
Qc

Ṽ1

)∣∣∣∣∣ 6
∣∣∣∣∣
∫
B(d̃c

−→e1,R)\B(d̃c
−→e1,R/2)

Im(ψ)

∣∣∣∣∣
+ oc→0(1)‖ψ‖L2(B(d̃c

−→e1,R)\B(d̃c
−→e1,R/2))

6

∣∣∣∣∣
∫
B(d̃c

−→e1,R)\B(d̃c
−→e1,R/2)

Im(ψ)

∣∣∣∣∣
+ oDc→0(1)‖ϕ‖H1(B(d̃c

−→e1,D)),

therefore, by a standard coercivity argument, we can change this orthog-
onality condition, given that c is small enough (depending on D). With
equation (4.4), it is therefore enough to show that

|BlocD
Qc

(ϕ)−BlocD
Ṽ1

(ϕ)| 6 oDc→0(1)‖ϕ‖2H1(B(d̃c
−→e1,D))
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to complete the proof. Thus, for ϕ = Qcψ ∈ C∞c (R2\{d̃c−→e1},C), writing

ϕ = V1

(
Qc
V1
ψ
)

in BlocD
Ṽ1

(ϕ), we have

B
loc1,D
Qc

(ϕ)−BlocD
Ṽ1

(ϕ)

=

∫
B(d̃c

−→e1,D)

−Re(ic∂x2ϕϕ̄)+(|Qc|2−|Ṽ1|2)|ϕ|2+2(Re2(Qcϕ)−Re2(Ṽ1ϕ))

−
∫
B(d̃c

−→e1,D)

∇η · (Re(∇QcQc)|ψ|2 − 2Im(∇QcQc)Re(ψ)Im(ψ))

+

∫
B(d̃c

−→e1,D)

∇η ·

(
Re(∇Ṽ1Ṽ1)

∣∣∣∣QcṼ1

ψ

∣∣∣∣2−2Im(∇Ṽ1Ṽ1)Re

(
Qc

Ṽ1

ψ

)
Im

(
Qc

Ṽ1

ψ

))
+

∫
B(d̃c

−→e1,D)

c∂x2ηRe(ψ)Im(ψ)|Qc|2

+

∫
B(d̃c

−→e1,D)

η(|∇ψ|2|Qc|2 + 2Re2(ψ)|Qc|4)

−
∫
B(d̃c

−→e1,D)

η

(∣∣∣∣∇(QcṼ1

ψ

)∣∣∣∣2 |Qc|2 + 2Re2
(
Qc

Ṽ1

ψ

)
|Qc|4

)
+

∫
B(d̃c

−→e1,D)

η(4Im(∇QcQc)Im(∇ψ)Re(ψ) + 2c|Qc|2Im(∂x2ψ)Re(ψ))

−
∫
B(d̃c

−→e1,D)

η

(
4Im(∇QcQc)Im

(
∇
(
Qc

Ṽ1

ψ

))
Re

(
Qc

Ṽ1

ψ

))
.

With Theorem 1.1 (for p = +∞) and Cauchy–Schwarz we check easily
that∫

B(d̃c
−→e1,D)

|Re(ic∂x2ϕϕ̄)|+ ||Qc|2 − |Ṽ1|2||ϕ|2 + 2|Re2(Qcϕ)−Re2(Ṽ1ϕ)|

6 oDc→0(1)‖ϕ‖2H1(B(d̃c
−→e1,D)).

Since ∇η is supported in B(d̃c
−→e1 , 2)\B(d̃c

−→e1 , 1), still with Theorem 1.1
(for p = +∞), we check that∫
B(d̃c

−→e1,D)

∣∣∣∣∣∇η ·Re(∇QcQc)|ψ|2 −∇ηRe(∇Ṽ1Ṽ1)

∣∣∣∣QcṼ1

ψ

∣∣∣∣2
∣∣∣∣∣

6 K

∫
B(d̃c

−→e1,D)

∣∣∣∣∣∇η ·Re(∇QcQc)|ϕ|2 −∇ηRe(∇Ṽ1Ṽ1)

∣∣∣∣QcṼ1

ϕ

∣∣∣∣2
∣∣∣∣∣

6

∥∥∥∥∥∇η ·Re(∇QcQc)−∇ηRe(∇Ṽ1Ṽ1)

∣∣∣∣QcṼ1

∣∣∣∣2
∥∥∥∥∥
L∞((d̃c

−→e1,D))

‖ϕ‖2H1(B(d̃c
−→e1,D))

6 oDc→0(1)‖ϕ‖2H1(B(d̃c
−→e1,D)).

We check similarly that the same estimate holds for all the remaining
error terms, using the fact that η is supported in R2\B(d̃c

−→e1 , 1).
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Note that, by a density argument (see the proof of Lemma 3.4),
Lemma 4.3 holds for any ϕ ∈ H1(B(0, D)). Now, we want to remove
the orthogonality condition on the phase. For that, we have to change
the coercivity norm.

Lemma 4.4. There exist R,D0 > 0 with D0 > R, such that, for D >
D0, 0 < c < c0(D), and ϕ = Qcψ ∈ C∞c (R2\{d̃c−→e1},C), if the following
two orthogonality conditions∫

B(d̃c
−→e1,R)

Re(∂x1 Ṽ1Ṽ1ψ) =

∫
B(d̃c

−→e1,R)

Re(∂x2 Ṽ1Ṽ1ψ) = 0

are satisfied, then

B
loc1,D
Qc

(ϕ) > K(D)

∫
B(d̃c

−→e1,D)

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4.

Proof: Take a function ϕ ∈ H1(B(0, D)) that satisfies the orthogonality
conditions∫

B(d̃c
−→e1,R)

Re(∂x1 Ṽ1Ṽ1ψ) =

∫
B(d̃c

−→e1,R)

Re(∂x2 Ṽ1Ṽ1ψ)

=

∫
B(d̃c

−→e1,R)\B(d̃c
−→e1,R/2)

Im(ψ) = 0,

and let us show that B
loc1,D
Qc

(ϕ) > K‖ϕ‖2
H1(B(d̃c

−→e1,D))
. Take ε1, ε2, ε3 ∈ R

and we define

ϕ̃ = ϕ− ε1∂x1Qc − ε2∂x2Qc − ε3iQc.

We have, for ϕ = Qcψ, by Theorem 1.1 (for p = +∞) and Lemma 2.15,∣∣∣∣∣
∫
B(d̃c

−→e1,R)

Re(∂x1 Ṽ1Ṽ1ψ)−
∫
B(d̃c

−→e1,R)

Re(∂x1QcQcψ)

∣∣∣∣∣
6

∣∣∣∣∣
∫
B(d̃c

−→e1,R)

Re

(
∂x1 Ṽ1

Ṽ1

Qc
ϕ̄− ∂x1Qcϕ̄

)∣∣∣∣∣
6 K

∥∥∥∥∂x1 Ṽ1
Ṽ1

Qc
− ∂x1Qc

∥∥∥∥
L∞(B(d̃c

−→e1,R))

‖ϕ‖H1(B(d̃c
−→e1,D))

6 oDc→0(1)‖ϕ‖H1(B(d̃c
−→e1,D)).

Similar estimates hold for
∫
B(d̃c

−→e1,R)
Re(∂x2 Ṽ1Ṽ1ψ). By the implicit func-

tion theorem, we check that there exist ε1, ε2, ε3 ∈ R with |ε1| + |ε2| +
|ε3| 6 oc→0(1)‖ϕ‖H1(B(d̃c

−→e1,D)) such that ϕ̃ satisfies the three orthogo-
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nality conditions of Lemma 4.3. We deduce that, since (by Theorem 1.1
for p = +∞)

‖∂x1Qc‖H1(B(d̃c
−→e1,D)) + ‖∂x2Qc‖H1(B(d̃c

−→e1,D)) + ‖iQc‖H1(B(d̃c
−→e1,D)) 6 K(D),

B
loc1,D
Qc

(ϕ) > B
loc1,D
Qc

(ϕ̃)− oDc→0(1)‖ϕ‖2H1(B(d̃c
−→e1,D))

> K(D)‖ϕ̃‖2H1(B(d̃c
−→e1,D)) − o

D
c→0(1)‖ϕ‖2H1(B(d̃c

−→e1,D))

> K(D)‖ϕ‖2H1(B(d̃c
−→e1,D)) − o

D
c→0(1)‖ϕ‖2H1(B(d̃c

−→e1,D))

> K(D)‖ϕ‖2H1(B(d̃c
−→e1,D)),

given that c is small enough (depending on D). For ϕ = Qcψ, we infer
that ∫

B(d̃c
−→e1,D)

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4 6 K(D)‖ϕ‖2H1(B(d̃c
−→e1,D)).

Indeed, we have∫
B(d̃c

−→e1,D)

Re2(ψ)|Qc|4 6 K

∫
B(d̃c

−→e1,D)

Re2(ϕ) 6 K‖ϕ‖2H1(B(d̃c
−→e1,D)),

and∫
B(d̃c

−→e1,D)

|∇ψ|2|Qc|4 =

∫
B(d̃c

−→e1,D)

|∇ϕ−∇Qcψ|2|Qc|2

6 K

(∫
B(d̃c

−→e1,D)

|∇ϕ|2 +

∫
B(d̃c

−→e1,D)

|∇Qcψ|2|Qc|2
)

6 K

(∫
B(d̃c

−→e1,D)

|∇ϕ|2 +

∫
B(d̃c

−→e1,D)

|ϕ|2
)
.

We deduce that, under the three orthogonality conditions, for ϕ = Qcψ,∫
B(d̃c

−→e1,R)

Re(∂x1 Ṽ1Ṽ1ψ) =

∫
B(d̃c

−→e1,R)

Re(∂x2 Ṽ1Ṽ1ψ)

=

∫
B(d̃c

−→e1,R)\B(d̃c
−→e1,R/2)

Im(ψ) = 0,

then

B
loc1,D
Qc

(ϕ) > K(D)

∫
B(d̃c

−→e1,D)

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4.

Now, let us show that for any λ ∈ R, ϕ ∈ H1(B(d̃c
−→e1 , D)),

B
loc1,D
Qc

(ϕ− iλQc) = B
loc1,D
Qc

(ϕ).
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For ϕ ∈ C∞c (R2,C), we have LQc(ϕ − iλQc) = LQc(ϕ) ∈ C∞c (R2,C),
thus 〈LQc(ϕ− iλQc), ϕ− iλQc〉 is well defined, and

〈LQc(ϕ− iλQc), ϕ− iλQc〉 = 〈LQc(ϕ), ϕ− iλQc〉
= 〈ϕ,LQc(ϕ− iλQc)〉 = 〈LQc(ϕ), ϕ〉.

With computations similar to that of the proof of Lemma 4.1 and by
density, using ∇(ψ− iλ) = ∇ψ and Re(ψ− iλ) = Re(ψ), we deduce that

B
loc1,D
Qc

(ϕ− iλQc) = B
loc1,D
Qc

(ϕ).

Now, for λ ∈ R, ϕ̃ = ϕ − iλQc, ψ̃ = ψ − iλ, ϕ̃ = Qcψ̃, we have

B
loc1,D
Qc

(ϕ) = B
loc1,D
Qc

(ϕ̃),∫
B(d̃c

−→e1,D)

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4 =

∫
B(d̃c

−→e1,D)

|∇ψ̃|2|Qc|4 + Re2(ψ̃)|Qc|4

and ∫
B(d̃c

−→e1,R)

Re(∇Ṽ1Ṽ1ψ) =

∫
B(d̃c

−→e1,R)

Re(∇Ṽ1Ṽ1ψ̃).

For this last equality, it comes from the fact that
∫
B(d̃c

−→e1,R)
Re(i∇Ṽ1Ṽ1)=

0, since Re(i∇Ṽ1Ṽ1) has no 0-harmonic (see Lemma 2.1). We also check
that ∫

B(d̃c
−→e1,R)\B(d̃c

−→e1,R/2)

Im(ψ) =

∫
B(d̃c

−→e1,R)\B(d̃c
−→e1,R/2)

Im(ψ̃) +Kλ

for a universal constant K > 0. Therefore, choosing λ ∈ R such that∫
B(d̃c

−→e1,R)\B(d̃c
−→e1,R/2)

Im(ψ̃) = 0, we have, for a function ϕ = Qcψ that

satisfies ∫
B(d̃c

−→e1,R)

Re(∂x1 Ṽ1Ṽ1ψ) =

∫
B(d̃c

−→e1,R)

Re(∂x2 Ṽ1Ṽ1ψ) = 0,

that

B
loc1,D
Qc

(ϕ) = B
loc1,D
Qc

(ϕ̃)

>
∫
B(d̃c

−→e1,D)

|∇ψ̃|2|Qc|4 + Re2(ψ̃)|Qc|4

=

∫
B(d̃c

−→e1,D)

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4.

This concludes the proof of this lemma.
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4.4. Proof of Proposition 1.4. From Lemma 4.1, we have, for ϕ=
Qcψ∈C∞c (R2\ {d̃c−→e1 ,−d̃c−→e1},C) that

BQc(ϕ) =

∫
R2

(1− η)(|∇ϕ|2 −Re(ic∂x2ϕϕ̄)− (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ))

−
∫
R2

∇η · (Re(∇QcQc)|ψ|2 − 2Im(∇QcQc)Re(ψ)Im(ψ))

+

∫
R2

c∂x2ηRe(ψ)Im(ψ)|Qc|2

+

∫
R2

η(|∇ψ|2|Qc|2 + 2Re2(ψ)|Qc|4)

+

∫
R2

η(4Im(∇QcQc)Im(∇ψ)Re(ψ) + 2c|Qc|2Im(∂x2ψ)Re(ψ)).

We decompose the integral in three domains, B(±d̃c−→e1 , D) (which yield

B
loc±1,D

Qc
(ϕ)) and R2\(B(d̃c

−→e1 , D)∪B(−d̃c−→e1 , D)) for some D > D0 > 0,
where D0 is defined in Lemma 4.3.

Then, with the four orthogonality conditions and Lemma 4.3, we check
that

B
loc1,D
Qc

(ϕ) > K(D)

∫
B(d̃c

−→e1,D)

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4,

and, by symmetry of the problem around B(±d̃c−→e1 , D), since Qc =

−V−1(·+ d̃c~e1) + oc→0(1) in L∞(B(−d̃c−→e1 , D)), and checking that mul-
tiplying the vortex by −1 does not change the result, that

B
loc−1,D

Qc
(ϕ) > K(D)

∫
B(−d̃c−→e1,D)

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4.

Furthermore, there exist K1,K2 > 0, universal constants, such that,

outside of B(d̃c
−→e1 , 1) ∪B(−d̃c−→e1 , 1) for c small enough, we have

K1 > |Qc|2 > K2

by (2.12). We also have

|Im(∇QcQc)| 6 K

(
1

(1 + r̃1)
+

1

(1 + r̃−1)

)
by (2.10). With these estimates and by Cauchy–Schwarz, for D > D0,∫

R2\(B(d̃c
−→e1,D)∪B(−d̃c−→e1,D))

2c|Qc|2Im(∂x2ψ)Re(ψ)

> −Kc
∫
R2\(B(d̃c

−→e1,D)∪B(−d̃c−→e1,D))

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4,

and∫
R2\(B(d̃c

−→e1,D)∪B(−d̃c−→e1,D))

4Im(∇QcQc) · Im(∇ψ)Re(ψ)

>
−K

(1 +D)

∫
R2\(B(d̃c

−→e1,D)∪B(−d̃c−→e1,D))

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4.



338 D. Chiron, E. Pacherie

Therefore, taking D > D0 large enough (independently of c or c0, D >
10K + 1) and c small enough (c 6 10

K ), we have∫
R2\(B(d̃c

−→e1,D)∪B(−d̃c−→e1,D))

|∇ψ|2|Qc|2 + 2Re2(ψ)|Qc|4

+

∫
R2\(B(d̃c

−→e1,D)∪B(−d̃c−→e1,D))

4Im(∇QcQc) · Im(∇ψ)Re(ψ)

+2c|Qc|2Im(∂x2ψ)Re(ψ)

> K

∫
R2\(B(d̃c

−→e1,D)∪B(−d̃c−→e1,D))

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4.

We deduce that, for ϕ = Qcψ ∈ C∞c (R2\{d̃c−→e1 ,−d̃c−→e1},C),

BQc(ϕ) > K‖ϕ‖2C

if ∫
B(d̃c

−→e1,R)

Re(∂x1 Ṽ1 Ṽ1ψ) =

∫
B(d̃c

−→e1,R)

Re(∂x2 Ṽ1Ṽ1ψ) = 0,∫
B(−d̃c−→e1,R)

Re(∂x1 Ṽ−1Ṽ−1ψ) =

∫
B(−d̃c−→e1,R)

Re(∂x2 Ṽ−1Ṽ−1ψ) = 0.

We argue by density to show this result in HQc . From Lemma 3.1, we
know that ‖ · ‖C is continuous with respect to ‖ · ‖HQc . Furthermore, we
recall from Lemma 3.2 that∫

B(d̃c
−→e1,R)

|Re(∂x1 Ṽ1Ṽ1ψ)| 6 K(c)‖ϕ‖HQc ,

and similar estimates hold for∫
B(d̃c

−→e1,R)

Re(∂x2 Ṽ1Ṽ1ψ),

∫
B(−d̃c−→e1,R)

Re(∂x1 Ṽ−1Ṽ−1ψ)

and ∫
B(−d̃c−→e1,R)

Re(∂x2 Ṽ−1Ṽ−1ψ).

In particular, we check that these quantities are continuous for the
norm ‖ · ‖HQc , and that we can pass to the limit by density in these
quantities by Lemma 3.4.
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We are left with the passage to the limit for the quadratic form.
For ϕ ∈ HQc , we recall from (1.3) that

BQc(ϕ) =

∫
R2

|∇ϕ|2 − (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ)

+c

∫
R2

(1− η)Re(i∂x2ϕϕ̄) + c

∫
R2

ηRe(i∂x2QcQc)|ψ|
2

−2c

∫
R2

ηReψIm∂x2ψ|Qc|
2 − c

∫
R2

∂x2ηReψImψ|Qc|2

−c
∫
R2

ηReψImψ∂x2(|Qc|2).

Following the proof of Lemma 3.3, we check easily that, for ϕ1 = Qcψ1,
ϕ2 = Qcψ2 ∈ HQc , we have∫

R2

|∇ϕ1∇ϕ2| + |(1− |Qc|2)ϕ1ϕ2|+ |Re(Qcϕ1)Re(Qcϕ2)|

+

∫
R2

(1− η)|Re(i∂x2ϕ1ϕ2)|+
∫
R2

η|Re(i∂x2QcQc)||ψ1ψ2|

+

∫
R2

η|Reψ1Im∂x2ψ2||Qc|2 +

∫
R2

|∂x2ηReψ1Imψ2||Qc|2

+

∫
R2

η|Reψ1Imψ2∂x2(|Qc|2)|

6 K(c)‖ϕ1‖HQc ‖ϕ2‖HQc ,

and thus we can pass to the limit in BQc by Lemma 3.4. This concludes
the proof of Proposition 1.4.

5. Proof of Theorem 1.5 and its corollaries

5.1. Link between the sets of orthogonality conditions. The first
goal of this subsection is to show that the four particular directions
(∂x1

Qc, ∂x2
Qc, c

2∂cQc, c∂c⊥Qc) are almost orthogonal to each other near
the zeros of Qc, and that they can replace the four orthogonality condi-
tions of Proposition 1.4. This is computed in the following lemma.

Lemma 5.1. For R > 0 given by Proposition 1.4, there exist K1,K2 >
0, two constants independent of c, such that, for Qc defined in Theo-
rem 1.1,

K1 6
∫
B(±d̃c−→e1,R)

|∂x1Qc|
2 +

∫
B(±d̃c−→e1,R)

|∂x2Qc|
2

+

∫
B(±d̃c−→e1,R)

|c2∂cQc|2 +

∫
B(±d̃c−→e1,R)

|c∂c⊥Qc|
2 6 K2.
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Furthermore, for A,B ∈ {∂x1
Qc, ∂x2

Qc, c
2∂cQc, c∂c⊥Qc}, A 6= B, we

have that, for 1 > β0 > 0 a small constant,∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

Re(AB̄) = oc→0(cβ0).

Proof: From Lemma 2.2, we have, in B(±d̃c−→e1 , R), that (for 0 < σ =
1− β0 < 1)

Qc(x) = V1(x− dc−→e1)V−1(x+ dc
−→e1) + oc→0(cβ0)

and
∇Qc(x) = ∇(V1(x− dc−→e1)V−1(x+ dc

−→e1)) + oc→0(cβ0).

In this proof a oc→0(cβ0) may depend on R, but we consider R as a
universal constant. From Lemmas 2.1 and 2.13 and equation (2.7), we

show that, by the mean value theorem, in B(±d̃c−→e1 , R),

Qc = V1V−1 + oc→0(cβ0) = V±1 + oc→0(cβ0) = Ṽ±1 + oc→0(cβ0)

and, similarly,
∇Qc = ∇Ṽ±1 + oc→0(cβ0).

Thus, in B(±d̃c−→e1 , R), we have

(5.1) ∂x1Qc = ∂x1 Ṽ±1 + oc→0(cβ0)

and

(5.2) ∂x2Qc = ∂x2 Ṽ±1 + oc→0(cβ0).

Furthermore, by Lemma 2.3, we have in particular that in B(±d̃c−→e1 , R),

c2∂cQc = (1 + oc→0(cβ0))∂d(V1(x− d−→e1)V−1(x+ d−→e1))|d=dc + oc→0(cβ0).

Thus, in B(±d̃c−→e1 , R), with Lemmas 2.1 and 2.13, we estimate

(5.3) c2∂cQc = ∓∂x1 Ṽ±1 + oc→0(cβ0).

Finally, from Lemma 2.7, we have

c∂c⊥Qc = −cx⊥ · ∇Qc

with x⊥ = (−x2, x1). In B(±d̃c−→e1 , R), we have, since cd̃c = 1+oc→0(cβ0)
and using Lemma 2.13,

cx⊥ = ∓−→e2 + oc→0(cβ0).

Therefore, in B(±d̃c−→e1 , R), we have

(5.4) c∂c⊥Qc = ±∂x2 Ṽ±1 + oc→0(cβ0).

Now, from Lemma 2.1, we have

(5.5) K1 6
∫
B(±d̃c−→e1,R)

|∂x1 Ṽ±1|2 +

∫
B(±d̃c−→e1,R)

|∂x2 Ṽ±1|2 6 K2
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for universal constant K1,K2 > 0 (depending only on R). By a change

of variable, we have, writing Ṽ±1 = ρ(r̃±1)eiθ̃±1 (with the notations of
Lemma 2.1),

(5.6) ∂x1 Ṽ±1 =

(
cos(θ̃±1)

ρ′(r̃±1)

ρ(r̃±1)
− ±i
r̃±1

sin(θ̃±1)

)
Ṽ±1

and

∂x2 Ṽ±1 =

(
sin(θ̃±1)

ρ′(r̃±1)

ρ(r̃±1)
+
±i
r̃±1

cos(θ̃±1)

)
Ṽ±1.

Since

Re(∂x1 Ṽ±1∂x2 Ṽ±1) = 2 cos(θ̃±1) sin(θ̃±1)
ρ′(r̃±1)

r̃±1ρ(r̃±1)
|Ṽ±1|2,

by integration in polar coordinates, we have

(5.7)
∫
B(±d̃c−→e1,R)

Re(∂x1 Ṽ±1∂x2 Ṽ±1) = 0.

Combining (5.1) to (5.4) with (5.5) and (5.7), we can do every estimate
stated in the lemma.

With (5.1) to (5.4), we check that these four directions are close to the
ones in the orthogonality conditions of Proposition 1.4. This will appear
in the proof of Lemma 5.5. Now, we give a way to develop the quadratic
form for some particular functions.

Lemma 5.2. For ϕ ∈ C∞c (R2\{d̃c−→e1 ,−d̃c−→e1},C) and A ∈ Span{∂x1Qc,
∂x2Qc, ∂cQc, ∂c⊥Qc}, we have

〈LQc(ϕ+A), ϕ+A〉 = 〈LQc(ϕ), ϕ〉+ 〈2LQc(A), ϕ〉+ 〈LQc(A), A〉.

Furthermore, 〈LQc(ϕ + A), ϕ + A〉 = BQc(ϕ + A) and 〈LQc(A), A〉 =
BQc(A).

Proof: Since ϕ ∈ C∞c (R2\{d̃c−→e1 ,−d̃c−→e1},C), it is enough to check that
Re(LQc(A)Ā) ∈ L1(R2,R) for A ∈ Span{∂x1

Qc, ∂x2
Qc, ∂cQc, ∂c⊥Qc} to

show that

〈LQc(ϕ+A), ϕ+A〉 = 〈LQc(ϕ), ϕ〉+ 〈2LQc(A), ϕ〉+ 〈LQc(A), A〉.

From Lemma 2.8, we have, for A = µ1∂x1
Qc + µ2∂x2

Qc + µ3∂cQc +
µ4∂c⊥Qc, that

LQc(A) = µ3i∂x2Qc − µ4i∂x1Qc.

Now, with (2.15) (that holds also for A by linearity) and (2.9), (2.10),
we check easily that Re(LQc(A)Ā) ∈ L1(R2,R).
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Now, from Subsection 3.3, to show that for Φ=QcΨ∈HQc∩C2(R2,C),
we have 〈LQc(Φ),Φ〉 = BQc(Φ), it is enough to show that the inte-
gral

∫
R2 ∂x2

(ηReΨImΨ|Qc|2) is well defined and is 0. For Φ = A or
Φ = ϕ + A, this is a consequence of (2.15), Lemma 2.15, and ϕ ∈
C∞c (R2\{d̃c−→e1 ,−d̃c−→e1},C).

5.2. Some useful elliptic estimates. We want to improve slightly
the coercivity norm near the zeros of Qc. This is done in the following
lemma. The improvement is in the exponent of the weight in front of f2.

Lemma 5.3. There exists a universal constant K > 0 such that, for
any D > 2, for V1 centred at 0, and any function f ∈ C∞c (R2\{0},R),
we have ∫

B(0,D)

f2|V1|3 dx 6 K

∫
B(0,D)

|∇f |2|V1|4 + f2|V1|4 dx.

In particular, this implies that, for ψ ∈ C∞c (R2\{0},C),∫
B(0,D)

Re2(ψ)|V1|3 dx 6 K

∫
B(0,D)

|∇ψ|2|V1|4 + Re2(ψ)|V1|4 dx.

This lemma, with Lemmas 2.15 and 3.4, implies that, for ϕ = Qcψ ∈
HQc , ∫

R2

Re2(ψ)|Qc|3 6 K‖ϕ‖2C .

Proof: Since |V1| > K > 0 outside of B(0, 1), we take χ a smooth radial
non-negative cutoff with value 0 in B(0, 1) and value 1 outside B(0, 3/2).
We have∫

B(0,D)

χf2|V1|3 dx 6 K

∫
B(0,D)

χf2|V1|4 dx 6 K

∫
B(0,D)

f2|V1|4 dx.

In B(0, 2), from Lemma 2.1, there exist K1,K2 > 0 such that K1 >
|V1|
r > K2, and thus∫

B(0,D)

(1− χ)f2|V1|3 dx 6 K

(∫ 2π

0

∫ 2

0

(1− χ(r))f2(x)r4 dr

)
dθ.

For g ∈ C∞c (R\{0},R), we have∫ 2

0

(1−χ(r))g2(r)r4 dr=
−1

5

∫ 2

0

∂r((1− χ)g2)r5 dr

=
−2

5

∫ 2

0

(1−χ(r))∂rg(r)g(r)r5 dr+
1

4

∫ 2

0

χ′(r)g2(r)r5 dr,

and since χ′(r) 6= 0 only for r ∈ [1, 2], we have∫ 2

0

|χ′(r)|g2(r)r5 dr 6 K

∫ 2

0

g2(r)r4 dr,
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and, by Cauchy–Schwarz,∫ 2

0

(1− χ(r))|∂rg(r)g(r)|r5 dr 6

√∫ 2

0

(∂rg)2r5 dr

∫ 2

0

g2(r)r5 dr.

We deduce that∫ 2

0

(1− χ(r))g2(r)r4 dr 6 K

(∫ 2

0

(∂rg)2r5 dr +

∫ 2

0

g2(r)r5 dr

)
,

and taking, for any θ ∈ [0, 2π], g(r) = f(r cos(θ), r sin(θ)), and since
r 6 K|V1| in B(0, 2) (by Lemma 2.1), by integration with respect to θ,
we conclude that∫

B(0,D)

(1− χ)f2|V1|3 dx 6 K

∫
B(0,D)

|∇f |2|V1|4 + f2|V1|4 dx,

which ends the proof of this lemma.

We estimate here some quantities with the coercivity norm. These
computations will be useful later on.

Lemma 5.4. There exists K > 0, a universal constant independent
of c, such that, if c is small enough, for Qc defined in Theorem 1.1, for

ϕ = Qcψ ∈ C∞c (R2\{d̃c−→e1 ,−d̃c−→e1},C), we have∣∣∣∣∫
R2

Re(ψ)Im(∇QcQc)
∣∣∣∣ 6 K ln

(
1

c

)
‖ϕ‖C

and ∣∣∣∣∫
R2

Im(ψ)Re(∇QcQc)
∣∣∣∣ 6 K‖ϕ‖C.

Proof: By Cauchy–Schwarz and Lemmas 2.12 (with a slight modification
near the zeros of Qc that does not change the result) and 5.3,∣∣∣∣∫

R2

Re(ψ)Im(∇QcQc)
∣∣∣∣ 6

√∫
R2

Re2(ψ)|Qc|3
∫
R2

|Im(∇QcQc)|2
|Qc|3

6 K ln

(
1

c

)√∫
R2

Re2(ψ)|Qc|3

6 K ln

(
1

c

)
‖ϕ‖C .

We now focus on the second estimate. We take χ a smooth function with
value 1 outside of {r̃ > 2} and 0 inside {r̃ 6 1}, and that is radial around

±d̃c−→e1 in B(±d̃c−→e1 , 2). We note that

Re(∇QcQc) =
1

2
∇(|Qc|2) =

1

2
∇(χ(|Qc|2 − 1) + (1− χ)|Qc|2) +

1

2
∇χ,
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thus, by integration by parts, we have∫
R2

Im(ψ)Re(∇QcQc)=
1

2

∫
R2

Im(ψ)∇(χ(|Qc|2 − 1) + (1− χ)|Qc|2)

+
1

2

∫
R2

∇χIm(ψ)

=
−1

2

∫
R2

Im(∇ψ)χ(|Qc|2− 1)− 1

2

∫
R2

Im(∇ψ)(1−χ)|Qc|2

+
1

2

∫
R2

∇χIm(ψ),

and, since χ is radial around ±d̃c−→e1 in B(±d̃c−→e1 , 2),∫
R2

Im(ψ)∇χ =

∫
B(d̃c

−→e1,2)∪B(−d̃c−→e1,2)

Im(ψ 6=0)∇χ.

Since ∇χ is supported in

(B(d̃c
−→e1 , 2) ∪B(−d̃c−→e1 , 2))\(B(d̃c

−→e1 , 1) ∪B(−d̃c−→e1 , 1)),

by equations (2.12) and (2.22) and Cauchy–Schwarz,∣∣∣∣∣
∫
B(d̃c

−→e1,2)∪B(−d̃c−→e1,2)

Im(ψ 6=0)∇χ

∣∣∣∣∣ 6 K

√∫
R2

|∇ψ|2|Qc|4.

Now, by Cauchy–Schwarz, we check that∣∣∣∣∫
R2

Im(∇ψ)(1− χ)|Qc|2
∣∣∣∣6K

√∫
R2

|∇ψ|2|Qc|4
∫
R2

(1− χ)26K

√∫
R2

|∇ψ|2|Qc|4.

Furthermore, we check that (χ being supported in {r̃ > 1})∣∣∣∣∫
R2

Im(∇ψ)χ(|Qc|2 − 1)

∣∣∣∣ 6
√∫

R2

|∇ψ|2χ2

∫
R2

(|Qc|2 − 1)2

6 K

√∫
R2

|∇ψ|2|Qc|4.

Indeed, we have, from equation (2.6) (for σ = 1/2), that

||Qc|2 − 1| 6 K

(1 + r̃)3/2
,

which is enough to show that∫
R2

(|Qc|2 − 1)2 6 K.

Combining these estimates, we conclude the proof of∣∣∣∣∫
R2

Im(ψ)Re(∇QcQc)
∣∣∣∣ 6 K

√∫
R2

|∇ψ|2|Qc|4 6 K‖ϕ‖C .
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5.3. Coercivity result under four orthogonality conditions. The
next result is the first part of Theorem 1.5, and the second part (for coer-
civity under three orthogonality conditions) is done in Lemma 5.6 below.

We recall that, in B(±d̃c−→e1 , R), we have ψ 6=0(x) = ψ(x) − ψ0,±1(r̃±1)

with ψ0,±1(r̃±1) the 0-harmonic centred around ±d̃c−→e1 of ψ.

Lemma 5.5. There exist R,K, c0 > 0 such that, for 0 < c 6 c0 and
ϕ = Qcψ ∈ HQc , Qc defined in Theorem 1.1, if

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂x1QcQcψ
6=0 =Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂x2QcQcψ
6=0 =0,

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂cQcQcψ 6=0 =Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂c⊥QcQcψ
6=0 =0,

then

BQc(ϕ) > K‖ϕ‖2C .

Proof: For ϕ = Qcψ ∈ C∞c (R2\{d̃c−→e1 ,−d̃c−→e1},C), we take ε1, ε2, ε3, ε4

four real parameters and we define

ψ∗ := ψ + ε1
∂x1Qc
Qc

+ ε2
c2∂cQc
Qc

+ ε3
∂x2Qc
Qc

+ ε4
c∂c⊥Qc
Qc

.

Since, by Lemma 2.8, ∂x1Qc, ∂x2Qc, ∂cQc, ∂c⊥Qc ∈ HQc , we deduce that
Qcψ

∗ ∈ HQc . Furthermore, we have∫
B(d̃c

−→e1,R)

Re(∂x1 Ṽ1Ṽ1ψ∗) =

∫
B(d̃c

−→e1,R)

Re(∂x1 Ṽ1Ṽ1ψ)

+ε1

∫
B(d̃c

−→e1,R)

Re

(
∂x1 Ṽ1∂x1Qc

Ṽ1

Qc

)

+ε2

∫
B(d̃c

−→e1,R)

Re

(
∂x1 Ṽ1c

2∂cQc
Ṽ1

Qc

)

+ε3

∫
B(d̃c

−→e1,R)

Re

(
∂x1 Ṽ1∂x2Qc

Ṽ1

Qc

)

+ε4

∫
B(d̃c

−→e1,R)

Re

(
∂x1 Ṽ1c∂c⊥Qc

Ṽ1

Qc

)
.
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From (5.6), we compute

∂x1 Ṽ1Ṽ1 =

(
cos(θ̃1)

ρ′(r̃1)

ρ(r̃1)
− i

r̃1
sin(θ̃1)

)
|Ṽ1|2,

and in particular, it has no 0-harmonic (since |Ṽ1|2 is radial). Therefore,∫
B(d̃c

−→e1,R)

Re(∂x1 Ṽ1Ṽ1ψ) =

∫
B(d̃c

−→e1,R)

Re(∂x1 Ṽ1Ṽ1ψ 6=0)

=

∫
B(d̃c

−→e1,R)

Re(∂x1QcQcψ
6=0)

+

∫
B(d̃c

−→e1,R)

Re((∂x1 Ṽ1Ṽ1 − ∂x1QcQc)ψ
6=0).

By Cauchy–Schwarz and equation (2.23),

(5.8)

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

|Qcψ 6=0|2 6 K

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

|Qc|4|∇ψ|2

6 K‖ϕ‖2C.

Here, K depends on R, but we consider R as a universal constant. We
note, by equations (5.1), (5.3), and (5.8), that

1

2
Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

(∂x1Qc − c
2∂cQc)Qcψ 6=0

=

∫
B(d̃c

−→e1,R)

Re(∂x1QcQcψ
6=0) + oc→0(cβ0)K‖ϕ‖2C ,

where β0 > 0 is a small constant. We suppose that

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂x1QcQcψ
6=0

= Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂cQcQcψ 6=0 = 0,

therefore ∫
B(d̃c

−→e1,R)

Re(∂x1QcQcψ
6=0) = oc→0(cβ0)K‖ϕ‖2C .

Furthermore, by equations (2.7), (2.23), and (5.1), Lemma 2.15, and
Cauchy–Schwarz,∣∣∣∣∣
∫
B(d̃c

−→e1,R)

Re((∂x1 Ṽ1Ṽ1−∂x1QcQc)ψ
6=0)

∣∣∣∣∣6oc→0(cβ0)

√∫
B(d̃c

−→e1,R)

|ψ 6=0|2|Qc|2

6oc→0(cβ0)K‖ϕ‖C .
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Now, from Lemma 2.15 and equation (5.1), we estimate∫
B(d̃c

−→e1,R)

Re

(
∂x1 Ṽ1∂x1Qc

Ṽ1

Qc

)
=

∫
B(d̃c

−→e1,R)

|∂x1 Ṽ1|2 + oc→0(1).

With (5.2), we check∫
B(d̃c

−→e1,R)

Re

(
∂x1 Ṽ1∂x2Qc

Ṽ1

Qc

)
= oc→0(1).

Similarly, by (5.3) and Lemma 2.15, we have∫
B(d̃c

−→e1,R)

Re

(
∂x1 Ṽ1c2∂cQc

Ṽ1

Qc

)
= −

∫
B(d̃c

−→e1,R)

|∂x1 Ṽ1|2 + oc→0(1)

and by (5.4), we have∫
B(d̃c

−→e1,R)

Re

(
∂x1 Ṽ1c∂c⊥Qc

Ṽ1

Qc

)
= oc→0(1).

Thus, with (5.5) we deduce that, writing

K(R) =

∫
B(0,R)

|∂x1V1(x)|2 dx,

since

K(R) =

∫
B(d̃c

−→e1,R)

|∂x1 Ṽ1|2 =

∫
B(−d̃c−→e1,R)

|∂x1 Ṽ−1|2

=

∫
B(d̃c

−→e1,R)

|∂x2 Ṽ1|2 =

∫
B(−d̃c−→e1,R)

|∂x2 Ṽ−1|2,

we have∫
B(d̃c

−→e1,R)

Re(∂x1 Ṽ1Ṽ1ψ∗) = (ε1 − ε2)K(R)

+oc→0(1)(ε1 + ε2 + ε3 + ε4)+oc→0(cβ0)K‖ϕ‖C .

Similarly, we can do the same computation for all the orthogonality
conditions, and we have the system

∫
B(d̃c

−→e1,R)
Re(∂x1 Ṽ1Ṽ1ψ∗)∫

B(−d̃c−→e1,R)
Re(∂x1 Ṽ−1Ṽ−1ψ∗)∫

B(d̃c
−→e1,R)

Re(∂x2 Ṽ1Ṽ1ψ∗)∫
B(−d̃c−→e1,R)

Re(∂x2 Ṽ−1Ṽ−1ψ∗)

=

K(R)


1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

+oc→0(1)



ε1

ε2

ε3

ε4


+ oc→0(cβ0)K‖ϕ‖C .
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Therefore, since the matrix is invertible and K(R) > 0, for c small
enough, we can find ε1, ε2, ε3, ε4 ∈ R such that

(5.9) |ε1|+ |ε2|+ |ε3|+ |ε4| 6 oc→0(cβ0)K‖ϕ‖C

and ∫
B(d̃c

−→e1,R)

Re(∂x1 Ṽ1Ṽ1ψ∗) =

∫
B(d̃c

−→e1,R)

Re(∂x2 Ṽ1Ṽ1ψ∗) = 0,

∫
B(−d̃c−→e1,R)

Re(∂x1 Ṽ−1Ṽ−1ψ∗) =

∫
B(−d̃c−→e1,R)

Re(∂x2 Ṽ−1Ṽ−1ψ∗) = 0.

Therefore, by Proposition 1.4, since Qcψ
∗ ∈ HQc , we have

BQc(Qcψ
∗) > K‖Qcψ∗‖2C .

From Lemma 2.9, we have

‖∂x1Qc‖C + ‖∂x2Qc‖C + ‖c2∂cQc‖C + cβ0/2‖c∂c⊥Qc‖C 6 K(β0),

hence, since Qc(ψ
∗ − ψ) = ε1∂x1

Qc + ε2c
2∂cQc + ε3∂x2

Qc + ε4c∂c⊥Qc,

‖Qcψ‖2C 6 ‖Qcψ∗‖2C + ‖Qc(ψ − ψ∗)‖2C

6 ‖Qcψ∗‖2C +K(β0)(|ε1|+ |ε2|+ |ε3|+ c−β0/2|ε4|)2,

therefore, for c small enough, by (5.9), we have

‖Qcψ∗‖2C > K‖Qcψ‖2C

and

BQc(Qcψ
∗) > K‖Qcψ‖2C .

Finally, we compute, since Qc(ψ−ψ∗) = ε1∂x1
Qc+ε2c

2∂cQc+ε3∂x2
Qc+

ε4c∂c⊥Qc, by Lemma 5.2, that

BQc(ϕ) = BQc(Qcψ
∗) +BQc(Qc(ψ − ψ

∗)) + 2〈Qcψ∗, LQc(Qc(ψ − ψ
∗))〉.

Furthermore, we compute, still by Lemma 5.2,

〈Qcψ∗, LQc(Qc(ψ − ψ
∗))〉 = −BQc(Qc(ψ − ψ

∗)) + 〈Qcψ,LQc(Qc(ψ − ψ
∗))〉,

therefore

BQc(ϕ) = BQc(Qcψ
∗)−BQc(Qc(ψ − ψ

∗)) + 2〈Qcψ,LQc(Qc(ψ − ψ
∗))〉

> K‖Qcψ‖2C −BQc(Qc(ψ − ψ
∗)) + 2〈Qcψ,LQc(Qc(ψ − ψ

∗))〉.
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We have

Qc(ψ − ψ∗) = −(ε1∂x1Qc + ε2c
2∂cQc + ε3∂x2Qc + ε4c∂c⊥Qc),

and from Lemma 2.8, we have

LQc(Qc(ψ − ψ
∗)) = −c2ε2i∂x2Qc + c2ε4i∂x1Qc.

We compute

BQc(Qc(ψ − ψ
∗)) = 〈−(ε1∂x1Qc + ε2c

2∂cQc + ε3∂x2Qc + ε4c∂c⊥Qc),

− c2ε2i∂x2Qc + c2ε4i∂x1Qc〉,

and with (2.3), we check that

BQc(Qc(ψ − ψ
∗)) = ε2

2c
4〈LQc(∂cQc), ∂cQc〉 − ε

2
4c

2〈LQc(∂c⊥Qc), ∂c⊥Qc〉.

With Lemma 2.10 and equation (5.9), we estimate

|BQc(Qc(ψ − ψ
∗))| 6 Kc2(ε2

2 + ε2
4) 6 oc→0(1)‖Qcψ‖2C .

Finally, we have

〈Qcψ,LQc(Qc(ψ − ψ
∗))〉 = 〈Qcψ,−c2ε2i∂x2Qc + c2ε4i∂x1Qc〉.

We compute

c2〈Qcψ, i∇Qc〉 = c2
∫
R2

Im(ψ)Re(∇QcQc)− c2
∫
R2

Re(ψ)Im(∇QcQc),

and to finish the proof, we use

|c〈Qcψ, i∇Qc〉| 6 Kc ln

(
1

c

)
‖Qcψ‖C

for a constant K > 0 independent of c by Lemma 5.4, which is enough
to show that

|〈Qcψ,LQc(Qc(ψ − ψ
∗))〉| 6 oc→0(1)(|ε2|+ |ε4|)‖Qcψ‖C 6 oc→0(1)‖Qcψ‖2C ,

since c ln
(

1
c

)
= oc→0(1). We have shown that, for ϕ ∈ C∞c (R2\{d̃c−→e1 ,

−d̃c−→e1},C)

BQc(ϕ) > K‖Qcψ‖2C −BQc(Qc(ψ − ψ
∗)) + 2〈Qcψ,LQc(Qc(ψ − ψ

∗))〉

> (K − oc→0(1))‖Qcψ‖2C

>
K

2
‖Qcψ‖2C

for c small enough. Now, by Lemma 3.4, we conclude by density as in
the proof of Proposition 1.4.
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5.4. Coercivity under three orthogonality conditions.

Lemma 5.6. There exist R,K > 0 such that, for 0 < β < β0, β0 a small
constant, there exist c0(β),K(β) > 0 with, for 0 < c < c0(β), Qc defined
in Theorem 1.1, ϕ = Qcψ ∈ HQc , if

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂x1QcQcψ
6=0 =Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂x2QcQcψ
6=0 =0,

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂cQcQcψ 6=0 = 0,

then

BQc(ϕ) > K(β)c2+β‖ϕ‖2C .

Proof: As for the proof of Lemma 5.5, we show the result for ϕ = Qcψ ∈
C∞c (R2\{d̃c−→e1 ,−d̃c−→e1},C), and we conclude by density for ϕ ∈ HQc .

For ϕ = Qcψ ∈ C∞c (R2\{d̃c−→e1 ,−d̃c−→e1},C), we take ε1, ε2, ε3, ε4 four
real parameters and we define

ψ∗ := ψ + ε1
∂x1Qc
Qc

+ ε2
c2∂cQc
Qc

+ ε3
∂x2Qc
Qc

+ ε4
c∂c⊥Qc
Qc

.

With the same computation as in the proof of Lemma 5.5, we check that
Qcψ

∗ ∈ HQc , and using similarly the estimates of Lemma 5.1, we can
take ε1, ε2, ε3, ε4 ∈ R such that

|ε1|+ |ε2|+ |ε3| = oc→0(cβ0)‖ϕ‖C ,

|ε4| 6 K‖ϕ‖C and such that ψ∗ satisfies the four orthogonality conditions
of Lemma 5.5. The estimates on ε4 are with a constant independent of c
because c∂c⊥Qc is of size independent of c in B(d̃c

−→e1 , R)∪B(−d̃c−→e1 , R).
Therefore,

(5.10) BQc(Qcψ
∗) > K‖Qcψ∗‖2C .

We write

T = ε1∂x1Qc + ε2c
2∂cQc + ε3∂x2Qc,

and we develop, by Lemma 5.2,

BQc(Qcψ) = BQc(Qcψ
∗) + c2ε2

4BQc(∂c⊥Qc) +BQc(T )

−2〈Qcψ∗, cε4LQc(∂c⊥Qc)〉

−2〈Qcψ∗, LQc(T )〉+ 2cε4〈LQc(∂c⊥Qc), T 〉.

Using Lemmas 2.8 and 2.10, we compute

|BQc(T )| = |〈LQc(T ), T 〉| = |〈LQc(ε2c
2∂cQc), ε2c

2∂cQc〉|

= ε2
2c

4|〈LQc(∂cQc), ∂cQc〉| 6 Kε2
2c

2 = oc→0(c2+2β0)‖ϕ‖2C .
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Now, we compute, by Lemma 2.8, that

〈Qcψ∗, cε4LQc(∂c⊥Qc)〉 = ε4c
2〈Qcψ∗, i∂x1Qc〉.

From Lemma 5.4, we have

|c〈Qcψ∗, i∂x1Qc〉| 6 oc→0(c1−β0/2)‖ϕ∗‖C ,

therefore

|〈Qcψ∗, cε4LQc(∂c⊥Qc)〉| 6 oc→0(c1+β0/2)‖ϕ∗‖C‖ϕ‖C .

Similarly, we compute

〈Qcψ∗, LQc(T )〉 = 〈Qcψ∗, ε2c
2LQc(∂cQc)〉 = ε2c

2〈Qcψ∗, i∂x2Qc〉.

Still from Lemma 5.4, we have

|c〈Qcψ∗, i∂x2Qc〉| 6 Kc ln

(
1

c

)
‖ϕ∗‖C,

therefore

|〈Qcψ∗, LQc(T )〉| 6 K|ε2|c2 ln

(
1

c

)
‖ϕ∗‖C 6 oc→0(c1+β0)‖ϕ∗‖C‖ϕ‖C .

Finally, we compute similarly that

c|ε4〈LQc(∂c⊥Qc), T 〉|=c|ε4〈ic∂x1Qc, T 〉|=c2|ε4〈i∂x1Qc, ε2c
2∂cQc+ε3∂x2Qc〉|.

Using Lemma 5.4 for ϕ = c2∂cQc (with Lemma 3.4), we infer

|〈i∂x1Qc, c
2∂cQc〉| 6 K‖c2∂cQc‖C ,

and ‖c2∂cQc‖C 6 K by Lemma 2.9. Furthermore, since Qc(−x1, x2) =
Qc(x1, x2), we have

〈i∂x1Qc, ∂x2Qc〉 = 0.

We conclude that

(5.11) |cε4〈LQc(∂c⊥Qc), T 〉| 6 Kc2|ε4|(|ε2|+ |ε3|) = oc→0(c2+β0/2)‖ϕ‖2C .

Now, combining (5.10) to (5.11), and with BQc(∂c⊥Qc) = 2π + oc→0(1)
from Lemma 2.10, we have

BQc(ϕ) > K‖ϕ∗‖2C +Kε2
4c

2 − oc→0(c2+β0/2)‖ϕ‖2C − oc→0(c1+β0/2)‖ϕ∗‖C‖ϕ‖C .
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Similarly as in the proof of Lemma 5.5, we have from Lemma 2.9 that,
for any β0/2 > β > 0,

‖ϕ‖2C 6 K‖ϕ∗‖2C +K(β)ε2
4c
−β ,

hence

ε2
4c

2 > K(β)c2+β(‖ϕ‖2C − ‖ϕ∗‖2C),
therefore

BQc(ϕ) > K1(β)(‖ϕ∗‖2C + c2+β‖ϕ‖2C)−K2(β)c2+β‖ϕ∗‖2C

− oc→0(c2+β0/2)‖ϕ‖2C − oc→0(c1+β0)‖ϕ∗‖C‖ϕ‖C

> K(β)c2+β‖ϕ‖2C

for c small enough (depending on β).

Lemmas 2.13, 5.5, and 5.6 together end the proof of Theorem 1.5.
Note that in both Lemmas 5.5 and 5.6, we could replace the orthogonality

condition Re
∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)
∂cQcQcψ 6=0 = 0 by

(5.12) Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂d(V1(x−d~e1)V−1(x+d~e1))|d=dcQcψ
6=0(x) dx=0,

since, by Theorem 1.1 (for p = +∞),

‖c2∂cQc−∂d(V1(x−d~e1)V−1(x+d~e1))|d=dc‖C1(B(d̃c
−→e1,R)∪B(−d̃c−→e1,R)) =oc→0(1),

and thus this replacement creates an error term that can be estimated
like the other ones in the proof of Lemma 5.5.

5.5. Proof of the corollaries of Theorem 1.5.

5.5.1. Proof of Corollary 1.6. We start with the proof that (i) im-
plies (ii). We start by showing that, for ϕ0 ∈ C∞c (R2,C),

BQc(ϕ+ ϕ0) = BQc(ϕ0).

We take ϕ0 = Qcψ0 ∈ C∞c (R2,C) and, by integration by parts, from (i),
we check that

〈LQc(ϕ0), ϕ〉 = 0.

Furthermore, we check (for ϕ ∈ C∞c (R2\{d̃c−→e1 ,−d̃c−→e1},C) and then by
density for ϕ ∈ HQc) that for ϕ0 ∈ C∞c (R2,C),

BQc(ϕ+ ϕ0) = BQc(ϕ) +BQc(ϕ0) + 2〈ϕ,LQc(ϕ0)〉,

hence

(5.13) BQc(ϕ+ ϕ0) = BQc(ϕ) +BQc(ϕ0).
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Similarly as in the proof of Proposition 1.4, we argue by density that this
result holds for ϕ0 ∈ HQc . Now, taking ϕ0 = −ϕ, we infer from (5.13)
that BQc(ϕ) = 0, thus, for ϕ ∈ HQc ,

(5.14) BQc(ϕ+ ϕ0) = BQc(ϕ0).

Now, similarly as in the proof of Lemma 5.5, we decompose ϕ = Qcψ ∈
HQc into

ϕ = ϕ∗ + ε1∂x1Qc + ε2∂x2Qc + ε3c
2∂cQc

with

|ε1|+ |ε2|+ |ε3| 6 K‖ϕ‖C ,

such that ϕ∗ verifies the three orthogonality conditions of Lemma 5.6
(all the functions of Qc considered in the orthogonality conditions are of

size independent of c in B(d̃c
−→e1 , R) ∪B(−d̃c−→e1 , R)). We write

A = ε1∂x1Qc + ε2∂x2Qc + ε3c
2∂cQc ∈ HQc

by Lemma 2.8, and using (5.14), we have

BQc(ϕ
∗) = BQc(ϕ−A) = BQc(A).

From Lemma 5.6, we have BQc(ϕ
∗) > Kc2+β0/2‖ϕ∗‖2C . Furthermore,

from Lemmas 2.8 and 2.10,

BQc(A) = ε2
3c

2BQc(∂cQc) = (−2π + oc→0(1))ε2
3 6 0.

We deduce that ε3 = 0 and ‖ϕ∗‖C = 0, hence ϕ∗ = iµQc for some µ ∈ R.
Since ϕ∗ = ϕ − R ∈ HQc , we deduce that µ = 0 (or else ‖ϕ∗‖2HQc >∫
R2

|ϕ∗|2
(1+r̃)2 = +∞). Therefore,

ϕ = ε1∂x1Qc + ε2∂x2Qc ∈ SpanR(∂x1Qc, ∂x2Qc).

Finally, the fact that (ii) implies (i) is a consequence of Lemma 2.8.
This concludes the proof of this lemma.

5.5.2. Spectral stability. We have H1(R2) ⊂ HQc , therefore BQc(ϕ)
is well defined for ϕ ∈ H1(R2). Furthermore, i∂x2Qc ∈ L2(R2) is a con-
sequence of Theorem 2.5, and in particular this justifies that 〈ϕ, i∂x2Qc〉
is well defined for ϕ ∈ H1(R2). For ϕ ∈ H1(R2), there is no issue in the
definition of the quadratic form, as shown in the following lemma.

Lemma 5.7. There exists c0 > 0 such that, for 0 < c < c0, Qc defined
in Theorem 1.1, if ϕ ∈ H1(R2), then

BQc(ϕ) =

∫
R2

|∇ϕ|2 −Re(ic∂x2ϕϕ̄)− (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ).
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Proof: We recall that H1(R2) ⊂ HQc and, for ϕ = Qcψ ∈ H1(R2),

BQc(ϕ) =

∫
R2

|∇ϕ|2 − (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ)

−c
∫
R2

(1− η)Re(i∂x2ϕϕ̄)− c
∫
R2

ηRei∂x2QcQc|ψ|
2

+2c

∫
R2

ηReψIm∂x2ψ|Qc|
2 + c

∫
R2

∂x2ηReψImψ|Qc|2

+c

∫
R2

ηReψImψ∂x2(|Qc|2).

Since ϕ ∈ H1(R2), the integral
∫
R2 Re(ic∂x2

ϕϕ̄) is well defined as the

scalar product of two L2(R2) functions. Now, still because ϕ = Qcψ ∈
H1(R2), we can integrate by parts, and we check that∫
R2

ηReψIm∂x2ψ|Qc|
2 = −

∫
R2

ηRe∂x2ψImψ|Qc|
2

−
∫
R2

∂x2ηReψImψ|Qc|2−
∫
R2

ηReψImψ∂x2(|Qc|2).

We conclude by expanding∫
R2

ηRe(i∂x2ϕϕ̄) =

∫
R2

ηRe(i∂x2QcQc)|ψ|
2 +

∫
R2

ηRe(i∂x2ψψ̄)|Qc|2

=

∫
R2

ηRe(i∂x2QcQc)|ψ|
2 +

∫
R2

ηRe(∂x2ψ)Imψ|Qc|2

+

∫
R2

ηRe(ψ)Im∂x2ψ|Qc|
2.

The rest of this subsection is devoted to the proofs of Corollary 1.7,
Proposition 1.8, and Corollary 1.10.

Proof of Corollary 1.7: For ϕ ∈ H1(R2) such that 〈ϕ, i∂x2
Qc〉 = 0, we

decompose it into

ϕ = ϕ∗ + ε1∂x1Qc + ε2∂x2Qc + c2ε3∂cQc.

Similarly as in the proof of Lemma 5.5, we can find ε1, ε2, ε3 ∈ R such
that ϕ∗ satisfies the three orthogonality conditions of Lemma 5.6, and
thus (since ϕ ∈ H1(R2) ⊂ HQc , for β = β0/2)

BQc(ϕ
∗) > Kc2+β0/2‖ϕ∗‖2C .

Now, we compute, by Lemma 5.2 and with a density argument, that

BQc(ϕ)=BQc(ϕ
∗)+2〈ϕ∗, LQc(ε1∂x1Qc+ε2∂x2Qc+c

2ε3∂cQc)〉+ε2
3c

4BQc(∂cQc).

We have from Lemma 2.8 that LQc(ε1∂x1Qc + ε2∂x2Qc + c2ε3∂cQc) =
c2ε3i∂x2

Qc, therefore

BQc(ϕ) > Kc2+β0/2‖ϕ∗‖2C + 2c2ε3〈ϕ∗, i∂x2Qc〉+ ε2
3c

4BQc(∂cQc).
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Since 〈ϕ, i∂x2
Qc〉=0 and ϕ=ϕ∗+ε1∂x1

Qc+ε2∂x2
Qc+ c2ε3∂cQc, we have

〈ϕ∗, i∂x2Qc〉 = −〈ε1∂x1Qc + ε2∂x2Qc + c2ε3∂cQc, i∂x2Qc〉.

We have 〈ε1∂x1Qc, i∂x2Qc〉 = 0 since ∂x1Qc is odd in x1 and i∂x2Qc is
even in x1. Furthermore,

〈ε2∂x2Qc, i∂x2Qc〉 = ε2

∫
R2

Re(i|∂x2Qc|
2) = 0,

and, from Lemma 2.10, we have

BQc(∂cQc) = 〈∂cQc, i∂x2Qc〉 =
−2π + oc→0(1)

c2
,

thus

〈ϕ∗, LQc(ε1∂x1Qc + ε2∂x2Qc + c2ε3∂cQc)〉 = (2π + oc→0(1))ε3BQc(∂cQc),

and
BQc(ϕ) > Kc2+β0/2‖ϕ∗‖2C − ε2

3c
4BQc(∂cQc)

> Kc2+β0/2‖ϕ∗‖2C + 2πε2
3c

2(1 + oc→0(1)) > 0

for c small enough. This also shows that if ϕ ∈ H1(R2), BQc(ϕ) = 0,
and 〈ϕ, i∂x2

Qc〉 = 0, then ϕ ∈ SpanR{∂x1
Qc, ∂x2

Qc}.

We can now finish the proof of Proposition 1.8.

Proof of Proposition 1.8: First, we have from Theorem 2.5 that i∂x2
Qc ∈

L2(R2). Now, with Corollary 1.7, it is easy to check that n−(LQc) 6 1.
Indeed, if it is false, we can find u, v ∈ H1(R2) such that for all λ, µ ∈ R
with (λ, µ) 6= (0, 0), λu+ µv 6= 0, and BQc(λu+ µv) < 0. Then, we can
take (λ, µ) 6= (0, 0) such that

〈λu+ µv, i∂x2Qc〉 = 0,

which implies BQc(λu+ µv) > 0 and is therefore a contradiction.
Let us show that LQc has at least one negative eigenvalue (with eigen-

vector in H1(R2)), which implies that n−(LQc) = 1 and that it is the
only negative eigenvalue. We consider

αc := inf
ϕ∈H1(R2), ‖ϕ‖

L2(R2)
=1
BQc(ϕ).

We recall, from Lemma 5.7, that (since ϕ ∈ H1(R2))

BQc(ϕ) =

∫
R2

|∇ϕ|2 −Re(ic∂x2ϕϕ̄)− (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ),

and if ϕ ∈ H1(R2) with ‖ϕ‖L2(R2) = 1, we have, by Cauchy–Schwarz,

BQc(ϕ) >
∫
R2

|∇ϕ|2 −Kc‖∂x2ϕ‖L2(R2) −K > −K(c).

In particular, this implies that αc 6= −∞.



356 D. Chiron, E. Pacherie

Now, assume that there exists no ϕ ∈ C∞c (R2,C) such that BQc(ϕ) <
0. Then, for any ϕ ∈ C∞c (R2,C), we have BQc(ϕ) > 0. Following the
density argument at the end of the proof of Proposition 1.4, we have
BQc(ϕ) > 0 for all ϕ ∈ HQc , and in particular BQc(∂cQc) > 0 (we
recall that ∂cQc ∈ HQc but is not a priori in H1(R2)), which is in con-
tradiction with Lemma 2.10. Therefore, there exists ϕ ∈ C∞c (R2,C) ⊂
H1(R2) such that BQc(ϕ) < 0, and in particular BQc

(
ϕ

‖ϕ‖L2(R2)

)
< 0 and∥∥ ϕ

‖ϕ‖L2(R2)

∥∥
L2(R2)

= 1, hence αc < 0.

Note that we do not show that ∂cQc ∈ L2(R2), and we believe this to
be false. This estimate on αc is the only time we need to work specifically
with Qc from Theorem 1.1. From now on, we can suppose that Qc is a
travelling wave with finite energy such that αc < 0.

To show that there exists at least one negative eigenvalue, it is enough
to show that αc is achieved for a function ϕ ∈ H1(R2). Let us take a mini-
mizing sequence ϕn ∈H1(R2) such that ‖ϕn‖L2(R2) = 1 and BQc(ϕn)→
αc. We have∫
R2

|∇ϕn|2 =BQc(ϕn)+

∫
R2

Re(ic∂x2ϕnϕn) + (1− |Qc|2)|ϕn|2 − 2Re2(Qcϕn),

therefore, by Cauchy–Schwarz,∫
R2

|∇ϕn|2 6 |αc|+Kc‖∇ϕn‖L2(R2) +K.

We deduce that, for c small enough,

‖∇ϕn‖2L2(R2) −Kc‖∇ϕn‖L2(R2) 6 K(c),

hence ‖∇ϕn‖2L2(R2) is bounded uniformly in n given that c < c0 for some

constant c0 small enough. We deduce that ϕn is bounded in H1(R2),
therefore, up to a subsequence, ϕn → ϕ weakly in H1(R2).

Now, we note that for any ϕ ∈ H1(R2), by integration by parts (see
Lemma 5.7),∫

R2

−Re(ic∂x2ϕϕ̄) = −c
∫
R2

Re(∂x2ϕ)Im(ϕ) + c

∫
R2

Re(ϕ)Im(∂x2ϕ)

= 2c

∫
R2

Re(ϕ)Im(∂x2ϕ).

For R > 0, since ϕn → ϕ weakly in H1(R2), this implies that ϕn → ϕ
strongly in L2(B(0, R)) by the Rellich–Kondrachov theorem. In partic-
ular, we have∫

B(0,R)

Re(ϕn)Im(∂x2ϕn)→
∫
B(0,R)

Re(ϕ)Im(∂x2ϕ),
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since ϕn → ϕ strongly in L2(B(0, R)) and ∂x2
ϕn → ∂x2

ϕ weakly in
L2(B(0, R)). We deduce that, up to a subsequence,∫

B(0,R)

|∇ϕ|2 + 2cRe(ϕ)Im(∂x2ϕ)− (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ)

6 lim inf
n→∞

∫
B(0,R)

|∇ϕn|2 + 2cRe(ϕn)Im(∂x2ϕn)− (1− |Qc|2)|ϕn|2

+2Re2(Qcϕn) + oRn→∞(1).

Furthermore, we have, by weak convergence,

‖ϕ‖H1(R2) 6 lim inf
n→∞

‖ϕn‖H1(R2) 6 K(c),

therefore, we estimate∫
R2\B(0,R)

|∇ϕ|2 + 2cRe(ϕ)Im(∂x2ϕ)− (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ)

6 K‖ϕ‖2H1(R2\B(0,R)) = oR→∞(1).

We deduce that

BQc(ϕ) 6 lim inf
n→∞

∫
B(0,R)

|∇ϕn|2 + 2cRe(ϕn)Im(∂x2ϕn)− (1− |Qc|2)|ϕn|2

+ 2Re2(Qcϕn) + oRn→∞(1) + oR→∞(1).

Now, we have

lim inf
n→∞

∫
B(0,R)

|∇ϕn|2+2cRe(ϕn)Im(∂x2ϕn)−(1− |Qc|2)|ϕn|2 + 2Re2(Qcϕn)

= lim inf
n→∞

BQc(ϕn)− lim inf
n→∞

∫
R2\B(0,R)

|∇ϕn|2 + 2cRe(ϕn)Im(∂x2ϕn)

− (1− |Qc|2)|ϕn|2 + 2Re2(Qcϕn)

and BQc(ϕn)→ αc, therefore

BQc(ϕ) 6 αc + oRn→∞(1) + oR→∞(1)

− lim inf
n→∞

∫
R2\B(0,R)

|∇ϕn|2 + 2cRe(ϕn)Im(∂x2ϕn)

− (1− |Qc|2)|ϕn|2+2Re2(Qcϕn).

From Theorem 2.5, we have (1−|Qc|2)(x)→ 0 when |x| → ∞, therefore,
since ‖ϕn‖L2(R2) = 1, we have by dominated convergence that∫

R2\B(0,R)

(1− |Qc|2)|ϕn|2 6 oR→∞(1).
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Furthermore, we check easily that (since (A+B)2 > 1
2A

2 −B2)∫
R2\B(0,R)

Re2(Qcϕn) >
1

2

∫
R2\B(0,R)

Re2(Qc)Re2(ϕn)

−
∫
R2\B(0,R)

Im2(Qc)Im
2(ϕn),

and from Theorem 2.5, Im(Qc)(x)→ 0 and Re(Qc)(x)→ 1 when |x| →
∞, therefore, since ‖ϕn‖L2(R2) = 1, by dominated convergence,∫

R2\B(0,R)

2Re2(Qcϕn) >
∫
R2\B(0,R)

Re2(ϕn)− oR→∞(1).

We deduce that, since c <
√

2,

BQc(ϕ) 6 αc + oRn→∞(1) + oR→∞(1)

− lim inf
n→∞

(∫
R2\B(0,R)

|∇ϕn|2 + 2cRe(ϕn)Im(∂x2ϕn) + Re2(ϕn)

)
6 αc + oRn→∞(1) + oR→∞(1)

− lim inf
n→∞

(∫
R2\B(0,R)

(|∇ϕn|+ cRe(ϕn))2 + (2− c2)Re2(ϕn)

)
6 αc + oRn→∞(1) + oR→∞(1).

Thus, by letting n→∞ and then R→∞,

BQc(ϕ) 6 αc.

In particular, this implies that ‖ϕ‖L2(R2) 6= 0, or else BQc(ϕ) = 0 6 αc,
and we know that αc < 0. Furthermore, by weak convergence, we have
‖ϕ‖L2(R2) 6 1, and if it is not 1, then, since αc < 0,

BQc

(
ϕ

‖ϕ‖L2(R2)

)
6

αc
‖ϕ‖2

L2(R2)

< αc,

which is in contradiction with the definition of αc. Therefore ‖ϕ‖L2(R2) =
1 and BQc(ϕ) = αc. This concludes the proof of Proposition 1.8.

Proof of Corollary 1.10: The hypotheses to have the spectral stability
from Theorem 11.8 of [15] are:

(1) The curve of travelling waves is C1 from ]0, c0[ to C1(R2,C) with
respect to the speed. This is a consequence of Theorem 1.1. This
is enough to legitimate the computations done in the proof of The-
orem 11.8 of [15].
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(2) Re(Qc) − 1 ∈ H1(R2), ∇Qc ∈ L2(R2), |Qc| → 1 at infinity, and
‖Qc‖C1(R2) 6 K. These are consequences of Theorem 7 of [11].

(3) n−(LQc) 6 1. This is a consequence of Proposition 1.8.

(4) ∂cP2(Qc) < 0. This is a consequence of Proposition 1.2.

6. Coercivity results with an orthogonality condition on
the phase

This section is devoted to the proofs of Propositions 1.11 and 1.12
and Theorem 1.13.

6.1. Properties of the space Hexp
Qc

. In this subsection, we look at

the space Hexp
Qc

. We recall the norm

‖ϕ‖2Hexp
Qc

= ‖ϕ‖2H1({ř610}) +

∫
{r̃>5}

|∇ψ|2 + Re2(ψ) +
|ψ|2

r̃2 ln(r̃)2
.

The quadratic form we look at is

Bexp
Qc

(ϕ)=

∫
R2

η(|∇ϕ|2 −Re(ic∂x2ϕϕ̄)− (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ))

−
∫
R2

∇η · (Re(∇QcQc)|ψ|2 − 2Im(∇QcQc)Re(ψ)Im(ψ))

+

∫
R2

c∂x2η|Qc|
2Re(ψ)Im(ψ)

+

∫
R2

(1−η)(|∇ψ|2|Qc|2 + 2Re2(ψ)|Qc|4)

+

∫
R2

(1−η)(4Im(∇QcQc)Im(∇ψ)Re(ψ)+2c|Qc|2Im(∂x2ψ)Re(ψ)).

We will show in Lemma 6.1 that Bexp
Qc

(ϕ) is well defined for ϕ ∈ Hexp
Qc

.

The main difference between BQc and Bexp
Qc

is the space on which they
are defined. In particular, we can check easily for instance that, for ϕ ∈
C∞c (R2) with support far from the zeros of Qc, we have Bexp

Qc
(ϕ) =

BQc(ϕ), as the terms with the gradient of the cutoff are exactly the ones
coming from the integrations by parts. We start with a lemma about the
space Hexp

Qc
.

Lemma 6.1. The following properties of Hexp
Qc

hold:

HQc ⊂ H
exp
Qc

,

iQc ∈ Hexp
Qc

.
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Furthermore, there exists K(c) > 0 such that, for ϕ ∈ Hexp
Qc

,

‖ϕ‖C6 K‖ϕ‖Hexp
Qc
,

‖ϕ‖Hexp
Qc

6 K(c)‖ϕ‖HQc ,(6.1)

and the integrands of Bexp
Qc

(ϕ), defined in (1.4), are in L1(R2) for ϕ ∈
Hexp
Qc

, and Bexp
Qc

does not depend on the choice of η. Finally, if ϕ ∈
HQc ⊂ H

exp
Qc

,

BQc(ϕ) = Bexp
Qc

(ϕ).

See Appendix B.3 for the proof of this result.
Now, we state some lemmas that were shown previously in HQc , which

we have to extend to Hexp
Qc

to replace some arguments that were used in
the proof of Proposition 1.4 by the proofs of Propositions 1.11 and 1.12
and Theorem 1.13. We start with the density argument.

Lemma 6.2. C∞c (R2\{d̃c~e1,−d̃c~e1},C) is dense in Hexp
Qc

for ‖ · ‖Hexp
Qc

.

Proof: The proof is identical to that of Lemma 3.4, as we check easily
that, for λ > 10

c large enough,

‖ϕ‖2H1({ř610})+

∫
{̃r>5}∩B(0,λ)

|∇ψ|2+Re2(ψ)+
|ψ|2

r̃2 ln(r̃)2
6K1(λ, c)‖ϕ‖2H1(B(0,λ))

and

‖ϕ‖2H1({ř610})+

∫
{r̃>5}∩B(0,λ)

|∇ψ|2+Re2(ψ)+
|ψ|2

r̃2 ln(r̃)2
>K2(λ, c)‖ϕ‖2H1(B(0,λ)).

We also want to decompose the quadratic form, but with a fifth pos-
sible direction: iQc.

Lemma 6.3. For A ∈ Span{∂x1
Qc, ∂x2

Qc, ∂cQc, ∂c⊥Qc, iQc} and ϕ ∈
C∞c (R2\{d̃c−→e1 ,−d̃c−→e1},C), we have

〈LQc(ϕ+A), ϕ+A〉 = 〈LQc(ϕ), ϕ〉+ 〈2LQc(A), ϕ〉+ 〈LQc(A), A〉.

Furthermore, 〈LQc(ϕ+A), ϕ+A〉 = Bexp
Qc

(ϕ+A), LQc(iQc) = 0 and

‖∂x1Qc‖Hexp
Qc

+ ‖∂x2Qc‖Hexp
Qc

+ ‖c2∂cQc‖Hexp
Qc

+ cβ0/2‖c∂c⊥Qc‖Hexp
Qc

+ ‖iQc‖Hexp
Qc

6 K(β0).

Proof: As for the proof of Lemma 5.2, we only have to show that
Re(LQc(A)Ā) ∈ L1(R2) to show the first equality.
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By simple computation (or by invariance of the phase), we check that
LQc(iQc) = 0. Writing A = T +εiQc for ε ∈ R, T ∈ Span{∂x1

Qc, ∂x2
Qc,

∂cQc, ∂c⊥Qc}, we compute from Lemma 2.8 that

LQc(A) = LQc(T ) ∈ SpanR(i∂x1Qc, i∂x2Qc),

thus

Re(LQc(A)Ā) = Re(LQc(T )T + εiQc) = Re(LQc(T )T̄ ) + εRe(LQc(T )iQc).

From the proof of Lemma 5.2, we have Re(LQc(T )T̄ ) ∈ L1(R2), and
since LQc(T ) ∈ SpanR(i∂x1

Qc, i∂x2
Qc), with Theorem 2.5, we have

|Re(LQc(T )iQc)| 6
K(c)

(1 + r)3
∈ L1(R2).

Let us check that, for ϕ ∈ Hexp
Qc

, Bexp
Qc

(ϕ+ εiQc) = Bexp
Qc

(ϕ) for ε ∈ R.

We check, from (1.4), that, for ϕ ∈ C∞c (R2\{d̃c−→e1 ,−d̃c−→e1},C), this
equality holds by integration by parts and because Re(ψ + i) = Re(ψ),
Im(∇(ψ + i)) = Im(∇ψ). We then argue by density, as in the proof of
Proposition 1.4.

We deduce, from Lemmas 2.8 and 5.2, that for ϕ ∈ C∞c (R2\{d̃c−→e1 ,

−d̃c−→e1},C),

Bexp
Qc

(ϕ+A) = Bexp
Qc

(ϕ+ T ) = BQc(ϕ+ T )

= 〈LQc(ϕ+ T ), ϕ+ T 〉 = 〈LQc(ϕ+A), ϕ+ T 〉

= 〈LQc(ϕ+A), ϕ+A〉 − 〈LQc(ϕ+A), εiQc〉,

and we check, with Lemma 2.8, that for some v ∈ R2 depending on A,

〈LQc(ϕ+A), εiQc〉 = 〈LQc(ϕ), εiQc〉+ 〈LQc(P ), εiQc〉

= ε〈ϕ,LQc(iQc)〉+ εv ·
∫
R2

Re(∇QcQc)

= 0.

From Lemma 2.9, we have

‖∂x1Qc‖C + ‖∂x2Qc‖C + ‖c2∂cQc‖C + cβ0/2‖c∂c⊥Qc‖C 6 K(β0),

and with Lemmas 2.1 and 2.3 and equations (2.9), (2.10), and (2.11), we
check with the definition of ‖·‖Hexp

Qc
and ‖·‖C that, for A ∈ {∂x1

Qc, ∂x2
Qc,

c2∂cQc, c
1+β0/2∂c⊥Qc},

‖A‖2Hexp
Qc

6 K‖A‖2H1({ř610}) + ‖A‖2C 6 K(β0).

Finally, we check that

‖iQc‖2Hexp
Qc

= ‖iQc‖2H1({ř610}) +

∫
{r̃>5}

|∇i|2 + Re2(i) +
|i|2

r̃2 ln(r̃)2
6 K.
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We can now end the proof of Proposition 1.11.

Proof of Proposition 1.11: From Theorem 1.5, for ϕ ∈ C∞c (R2\{d̃c−→e1 ,

−d̃c−→e1},C), under the four orthogonality conditions of Proposition 1.11,
we have, by Lemma 6.1,

Bexp
Qc

(ϕ) = BQc(ϕ) = 〈LQc(ϕ), ϕ〉 > K‖ϕ‖2C .

We then conclude by density, as in the proof of Proposition 1.4, using
Lemma 6.2. The proof for the density in Bexp

Qc
is similar to the one for BQc

in the proof of Proposition 1.4. Coercivity under three orthogonality
conditions can be shown similarly.

Then, for the computation of the kernel, the proof is identical to that
of Corollary 1.6. With Lemma 6.1, we check easily that we can do the
same computation simply by replacing BQc(ϕ) by Bexp

Qc
(ϕ). The only

difference is at the end, when we have ‖ϕ∗‖C = 0; this implies that
ϕ∗ = λiQc for some λ ∈ R, and we cannot conclude that λ = 0, since we
only have ϕ∗ ∈ Hexp

Qc
instead of ϕ∗ ∈ HQc . This implies that

ϕ ∈ SpanR(∂x1Qc, ∂x2Qc, iQc).

Using Lemmas 2.8 and 6.3, we check easily the implication from (ii)
to (i).

6.2. Change of the coercivity norm with an orthogonality con-
dition on the phase. We now focus on the proofs of Proposition 1.12
and Theorem 1.13. In these results, we add an orthogonality condition
on the phase. We start with a lemma giving the coercivity result but
with the original orthogonality conditions on the vortices, adding the
one on the phase.

Lemma 6.4. For ϕ = Qcψ ∈ Hexp
Qc

, if the following four orthogonality
conditions are satisfied:∫

B(d̃c
−→e1,R)

Re(∂x1 Ṽ1 Ṽ1ψ) =

∫
B(d̃c

−→e1,R)

Re(∂x2 Ṽ1Ṽ1ψ) = 0,∫
B(−d̃c−→e1,R)

Re(∂x1 Ṽ−1Ṽ−1ψ) =

∫
B(−d̃c−→e1,R)

Re(∂x2 Ṽ−1Ṽ−1ψ) = 0,

then, if Re
∫
B(0,R)

iψ = 0, we have (with K(c) 6 1)

Bexp
Qc

(ϕ) > K(c)‖ϕ‖2Hexp
Qc

+K‖ϕ‖2C ,
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or if ∀x∈R, ϕ(x1, x2) = ϕ(−x1, x2) and Re
∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)
iQcϕ̄ =

0, then

Bexp
Qc

(ϕ) > K‖ϕ‖2Hexp
Qc
.

Proof: Let us show these results for ϕ=Qcψ∈C∞c (R2\{d̃c~e1,−d̃c~e1},C).
We then conclude by density. We start with the nonsymmetric case.

By Lemma 4.4, for ϕ = Qcψ ∈ C∞c (R2\{d̃c~e1,−d̃c~e1},C) such that∫
B(d̃c

−→e1,R)

Re(∂x1 Ṽ1 Ṽ1ψ) =

∫
B(d̃c

−→e1,R)

Re(∂x2 Ṽ1Ṽ1ψ) = 0,

we have

B
loc1,D
Qc

(ϕ) > K(D)

∫
B(d̃c

−→e1,D)

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4.

By Lemma 4.3, we infer, by a standard proof by contradiction (with the
first two orthogonality conditions),

B
loc1,D
Qc

(ϕ)>K1(D)‖ϕ‖2H1(B(d̃c
−→e1,D))−K2(D)

(∫
B(d̃c

−→e1,R)\B(d̃c
−→e1,R/2)

Im(ψ)

)2

.

We deduce, with Lemma 4.3, that for any small ε > 0,

B
loc1,D
Qc

(ϕ)>K(D)(1− ε)
∫
B(d̃c

−→e1,D)

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4

+K1(D)ε‖ϕ‖2H1(B(d̃c
−→e1,D))−K2(D)ε

(∫
B(d̃c

−→e1,R)\B(d̃c
−→e1,R/2)

Im(ψ)

)2

.

By Poincaré inequality, if Re
∫
B(0,R)

iψ = 0, then

∫
B(d̃c

−→e1,R)\B(d̃c
−→e1,R/2)

Im(ψ) 6 K(c)

√∫
R2\(B(d̃c

−→e1,R/2)∪B(−d̃c−→e1,R/2))

|∇ψ|2

6 K(c)

√∫
R2

|∇ψ|2|Qc|4.

Therefore, for any small µ > 0, taking ε > 0 small enough (depending
on c, D, and µ),

B
loc1,D
Qc

(ϕ) > K(D)

∫
B(d̃c

−→e1,D)

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4

+K1(D, c, µ)‖ϕ‖2H1(B(d̃c
−→e1,D)) − µ

∫
R2

|∇ψ|2|Qc|4.
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With similar arguments, we have a similar result for B
loc−1,D

Qc
(ϕ). Now,

as in the proof of Proposition 1.4, we have, taking µ > 0 small enough
and D > 0 large enough,

BQc(ϕ) > B
loc1,D
Qc

(ϕ) +B
loc−1,D

Qc
(ϕ)

+K

(∫
R2\(B(d̃c

−→e1,D)∪B(−d̃c−→e1,D))

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4
)

> K

∫
R2

|∇ψ|2|Qc|4 + Re2(ψ)|Qc|4 +K1(c, µ)‖ϕ‖2H1(B(d̃c
−→e1,10))

−µ
∫
R2

|∇ψ|2|Qc|4

> K‖ϕ‖2C +K(c)‖ϕ‖2H1(B(d̃c
−→e1,10)).

Then, by the same Hardy-type inequality as in the proof of Proposi-
tion 1.4, we show that∫

R2

|ϕ|2

(1 + r̃)2 ln2(2 + r̃)
6 K

(
‖ϕ‖2H1(B(d̃c

−→e1,10)) +

∫
R2

|∇ψ|2|Qc|4
)
,

therefore

BQc(ϕ) > K‖ϕ‖2C +K(c)‖ϕ‖2Hexp
Qc
.

In the symmetric case, the proof is identical, except that, by symme-
try,

Re

∫
B(d̃c

−→e1,R)

iQcϕ̄ = 0,

and we check by Poincaré inequality that for a function ϕ satisfying this
orthogonality condition, ϕ = Qcψ,∣∣∣∣∣

∫
B(d̃c

−→e1,R)\B(d̃c
−→e1,R/2)

Im(ψ)

∣∣∣∣∣ 6 K‖ϕ‖H1(B(d̃c
−→e1,R)),

for a universal constant K > 0. By a similar computation as previously,
we conclude the proof of this lemma.

We now have all the elements necessary to conclude the proof of
Proposition 1.12.

Proof of Proposition 1.12: This proof follows the proof of Lemma 5.5.
For ϕ ∈ C∞c (R2\{d̃c~e1,−d̃c~e1},C) and five real-valued parameters ε1,
ε2, ε3, ε4, ε5 we define ϕ∗ = Qcψ

∗ by

ψ∗ = ψ + ε1
∂x1Qc
Qc

+ ε2
c2∂cQc
Qc

+ ε3
∂x2Qc
Qc

+ ε4
c∂c⊥Qc
Qc

+ ε5i.
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With Lemma 6.3, we check that ϕ∗ ∈ Hexp
Qc

. Now, similarly as in the
proof of Lemma 5.5, we check that∫

B(d̃c
−→e1,R)

Re(∂x1 Ṽ1Ṽ1ψ∗) =

∫
B(d̃c

−→e1,R)

Re(∂x1 Ṽ1Ṽ1ψ)

+ε1

∫
B(d̃c

−→e1,R)

Re

(
∂x1 Ṽ1∂x1Qc

Ṽ1

Qc

)

+ε2

∫
B(d̃c

−→e1,R)

Re

(
∂x1 Ṽ1c

2∂cQc
Ṽ1

Qc

)

+ε3

∫
B(d̃c

−→e1,R)

Re

(
∂x1 Ṽ1∂x2Qc

Ṽ1

Qc

)

+ε4

∫
B(d̃c

−→e1,R)

Re

(
∂x1 Ṽ1c∂c⊥Qc

Ṽ1

Qc

)

+ε5

∫
B(d̃c

−→e1,R)

Re(∂x1 Ṽ1iṼ1).

Furthermore, with Lemma 2.1, we check that∫
B(d̃c

−→e1,R)

Re(∂x1V1iṼ1) = 0,

and the other terms are estimated as in the proof of Lemma 5.5. Simi-
larly, ∫

B(d̃c
−→e1,R)

Re(∂x2V1iṼ1) =

∫
B(−d̃c−→e1,R)

Re(∂x1V−1iṼ−1)

=

∫
B(−d̃c−→e1,R)

Re(∂x2V−1iṼ−1) = 0.

We also check that, from (2.9) and (2.10) and Lemmas 2.3 and 2.7 that∣∣∣∣∣
∫
B(0,R)

Re

(
i
∂x1Qc
Qc

)∣∣∣∣∣ +

∣∣∣∣∣
∫
B(0,R)

Re

(
i
∂x2Qc
Qc

)∣∣∣∣∣
+

∣∣∣∣∣
∫
B(0,R)

Re

(
ic2

∂cQc
Qc

)∣∣∣∣∣+

∣∣∣∣∣
∫
B(0,R)

Re

(
ci
∂c⊥Qc
Qc

)∣∣∣∣∣
= oc→0(1),

and ∫
B(0,R)

Re(i× i) = −πR2 < 0.
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We deduce, as in the proof of Lemma 5.5, that

∫
B(d̃c

−→e1,R)
Re(∂x1 Ṽ1Ṽ1ψ∗)∫

B(−d̃c−→e1,R)
Re(∂x1 Ṽ−1Ṽ−1ψ∗)∫

B(d̃c
−→e1,R)

Re(∂x2 Ṽ1Ṽ1ψ∗)∫
B(−d̃c−→e1,R)

Re(∂x2 Ṽ−1Ṽ−1ψ∗)

Re
∫
B(0,R)

iψ = 0



=



K(R) −K(R) 0 0 0
K(R) K(R) 0 0 0

0 0 K(R) −K(R) 0
0 0 K(R) K(R) 0
0 0 0 0 −πR2

+ oc→0(1)



cε1

ε2

ε3

ε4

ε5


+ oc→0(cβ0)K‖ϕ‖C .

Therefore, we can find ε1, ε2, ε3, ε4, ε5 ∈ R such that

|ε1|+ |ε2|+ |ε3|+ |ε4|+ |ε5| 6 oc→0(cβ0)‖ϕ‖C

and ϕ∗ satisfies the five orthogonality conditions of Lemma 6.4. There-
fore,

Bexp
Qc

(ϕ∗) > K(c)‖ϕ∗‖2Hexp
Qc

+K‖ϕ∗‖2C .

We continue as in the proof of Lemma 5.5, and with the same arguments,
we have

Bexp
Qc

(ϕ) > K(c)‖ϕ∗‖2Hexp
Qc

+K‖ϕ‖2C .

Now, by Lemma 6.3, we have

‖ϕ∗‖Hexp
Qc

> ‖ϕ‖Hexp
Qc
−‖ε1∂x1Qc+ε2c

2∂cQc+ε3∂x2Qc+ε4c∂c⊥Qc + ε5i‖Hexp
Qc

> ‖ϕ‖Hexp
Qc
−oc→0(cβ0/2)‖ϕ‖C ,

thus, since we can take K(c) 6 1, we have

Bexp
Qc

(ϕ) > K(c)‖ϕ‖2Hexp
Qc
.

We conclude by density as in the proof of Proposition 1.4, thanks to
Lemma 6.2. We are left with the proof of Bexp

Qc
(ϕ) 6 K‖ϕ‖2

Hexp
Qc

. With

regard to (1.4), the local terms can be estimated by K‖ϕ‖2H1({r̃610}) 6

K‖ϕ‖2
Hexp
Qc

and the terms at infinity, by Cauchy–Schwarz, can be esti-

mated by K
∫
{r̃>5} |∇ψ|

2 + Re2(ψ) + |ψ|2
r̃2 ln2(r̃)

6 K‖ϕ‖2
Hexp
Qc

.
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As it was done in equation (5.12), we can replace the orthogonality

condition Re
∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)
∂cQcQcψ 6=0 = 0 by

(6.2) Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂d(V1(x−d~e1)V−1(x+d~e1))|d=dcQcψ
6=0(x) dx=0

in Propositions 1.11 and 1.12.

Proof of Theorem 1.13: This proof follows closely the proof of Proposi-
tion 1.12.

First, with Lemma 2.3 and the definition of ∂c⊥Qc in Lemma 2.7,
we check that ∂x1Qc and ∂c⊥Qc are odd in x1, and for ϕ = Qcψ ∈
C∞c (R2\{d̃c~e1,−d̃c~e1},C) with ∀(x1, x2) ∈ R2, ϕ(x1, x2) = ϕ(−x1, x2),

we check that in B(d̃c
−→e1 , R)∪B(−d̃c−→e1 , R), Qcψ

6=0 is even in x1. There-
fore, these two orthogonality conditions are freely given.

We decompose as previously, for ε1, ε2, ε3 three real-valued parame-
ters,

ϕ = ϕ∗ + ε1iQc + ε2∂x2Qc + ε3c
2∂cQc.

We suppose that

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂cQcϕ̄ = Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

∂x2Qcϕ̄ = 0,

Re

∫
B(d̃c

−→e1,R)∪B(−d̃c−→e1,R)

iQcϕ̄ = 0,

and we show, as in the proof of Lemma 5.5, that we can find ε1, ε2, ε3 ∈ R
such that

|ε1|+ |ε2|+ |ε3| 6 oc→0(cβ0)‖ϕ‖Hexp
Qc
,

and ϕ∗ satisfies the five orthogonality conditions of Lemma 6.4 (we recall
that two of them are given by symmetry). Here, since we did not remove
the 0-harmonics, the error is only controlled by ‖ϕ‖Hexp

Qc
instead of ‖ϕ‖C .

For instance, we have∫
B(d̃c

−→e1,R)

|Re((∂x2 Ṽ1Ṽ1 − ∂x2QcQc)ψ)| 6 oc→0(1)‖Qcψ‖L2(B(d̃c
−→e1,R))

= oc→0(1)‖ϕ‖Hexp
Qc
.

Now, from Lemma 6.4, since ϕ∗ ∈ Hexp
Qc

, we have

Bexp
Qc

(ϕ∗) > K‖ϕ∗‖2Hexp
Qc
.

We continue, as in the proof of Lemma 5.5, with |ε1| + |ε2| + |ε3| =
oc→0(1)‖ϕ‖Hexp

Qc
and Lemma 6.3. We show that

Bexp
Qc

(ϕ) > K‖ϕ‖2Hexp
Qc
.

We conclude the proof of Theorem 1.13 by density.
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7. Local uniqueness result

This section is devoted to the proof of Theorem 1.14. This proof will
follow classical schemes for local uniqueness using coercivity. Here, we
will use Propositions 1.11 and 1.12, with equation (6.2).

7.1. Construction of a perturbation. For a given ~c′ ∈ R2, 0 < |~c′| 6
c0 (c0 defined in Theorem 1.1), X ∈ R2, and γ ∈ R, we define, thanks
to (1.1), the travelling wave

(7.1) Q := Q~c′(· −X)eiγ .

We define a smooth cutoff function η, with value 0 in B(±d̃c−→e1 , R + 1)

(R > 10 is defined in Theorem 1.5), and 1 outside of B(d̃c
−→e1 , R + 2) ∪

B(−d̃c−→e1 , R+ 2). The first step is to define a function ψ such that

(7.2) (1− η)Qψ + ηQ(eψ − 1) = Z −Q,

with Qψ satisfying the orthogonality conditions of Propositions 1.11
and 1.12. We start by showing that there exists a function ψ solution

of (7.2). We denote δ|·|(c−→e2 , ~c′) :=
∣∣(c−→e2 − ~c′) · ~c′

|~c′|

∣∣ and δ⊥(c−→e2 , ~c′) :=∣∣c−→e2 ·
~c′
⊥

|~c′|

∣∣. At fixed c, these two quantities characterize ~c′, since they are

the coordinates of the vector c−→e2 − ~c′ in the basis
( ~c′

|~c′|
,
~c′
⊥

|~c′|

)
. We will use

them as variables instead of ~c′, this decomposition being well adapted
to the problem.

Since both Z and |Q| go to 1 at infinity, we have that such a function ψ
is bounded at infinity. The perturbation here is chosen additively close
to the zeros of the travelling wave, and multiplicatively at infinity. This
seems to be a fit form for the perturbation, and we have already used it
in the construction of Qc.

Lemma 7.1. There exists c0 > 0 such that, for 0 < c < c0 and any Λ >
10
c , with Z a function satisfying the hypothesis of Theorem 1.14 and

Q defined by (7.1) with c
2 6 |~c′| 6 2c, there exist K,K(Λ) > 0 such that

‖Z−Q‖C1(B(0,Λ))6K(Λ)‖Z−Qc‖Hexp
Qc

+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+|γ|

)
.

We will mainly use this result for Λ = λ + 1, λ > 0, defined in
Theorem 1.14.

Proof: We recall that such a function Z is in C∞(R2,C) by elliptic reg-
ularity.



Coercivity for Travelling Waves in GP 369

We start with the estimate of w := Qc − Z in B(0,Λ). Since both Z
and Qc solve (TWc), we have

−∆w = (1− |Qc|2)Qc − (1− |Z|2)Z + ic∂x2w.

From Theorem 8.8 of [7], Ω := B(0,Λ), 2Ω = B(0, 2Λ),

‖w‖H2(Ω)6K(Λ)(‖w‖H1(2Ω)+‖ic∂x2w + (1− |Qc|2)Qc − (1− |Z|2)Z‖L2(2Ω)).

We compute that

(1− |Qc|2)Qc − (1− |Z|2)Z=(Qc − Z)(1− |Qc|2)+Z(|Qc| − |Z|)(|Qc|+ |Z|).

From [6], we have that any travelling wave of finite energy is bounded
in L∞(R2) by a universal constant, i.e.

|Qc|+ |Z| 6 K,

therefore

|1− |Qc|2|+ |Z|(|Qc|+ |Z|) 6 K

for a universal constant K. Thus,

‖(1− |Qc|2)Qc − (1− |Z|2)Z‖L2(2Ω) 6 K‖w‖L2(2Ω),

and we deduce, from Lemma 2.6, that

‖w‖H2(Ω)6K(Λ)(‖w‖H1(2Ω) + ‖ic∂x2w‖L2(2Ω) + ‖w‖L2(2Ω)) 6 K(Λ)‖w‖Hexp
Qc
.

By standard elliptic arguments, we have that for every k > 2,

‖w‖Wk,2(Ω) 6 K(Λ, k)‖w‖Hexp
Qc
.

By Sobolev embeddings, we estimate

(7.3) ‖w‖C1(Ω) 6 K(Λ)‖w‖W4,2(Ω) 6 K(Λ)‖w‖Hexp
Qc
.

From (7.3), we have

‖Z−Q‖L∞(Ω)6‖Q−Qc‖L∞(Ω)+‖w‖L∞(Ω)6‖Q−Qc‖L∞(R2)+K(Λ)‖w‖Hexp
Qc
.

We estimate

‖Q−Qc‖L∞(R2) =‖Q~c′(·−X)eiγ −Qc‖L∞(R2)

6‖Q~c′(·−X)eiγ−Q~c′(·−X)‖L∞(R2)+‖Q~c′(·−X)−Q~c′‖L∞(R2)

+‖Q~c′ −Q|~c′|~e2‖L∞(R2) + ‖Q|~c′|~e2 −Qc‖L∞(R2).

We check, with Theorem 1.1 and Lemma 2.7, that

‖∇Q‖L∞(R2) + c2‖∂cQ‖L∞(R2) + c‖∂c⊥Q‖L∞(R2) + ‖iQ‖L∞(R2) 6 K,

and that it also holds for any travelling wave of the form Q~ς(· −Y )eiβ if
2c > |~ς| > c/2, Y ∈ R2, and β ∈ R.
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We check that ‖Q~c′(· −X)eiγ −Q~c′(· −X)‖L∞(R2) 6 |eiγ − 1|‖Q~c′(· −
X)‖L∞(R2) 6 K|γ|, and we estimate (by the mean value theorem)

‖Q~c′(· −X)−Q~c′‖L∞(R2) 6 K|X|‖∇Q~c′‖L∞(R2) 6 K|X|.

Similarly, we have

‖Q~c′ −Q|~c′|~e2‖L∞(R2) 6 K
δ⊥(c−→e2 , ~c′) + δ|·|(c−→e2 , ~c′)

c

and ‖Q|~c′|~e2 −Qc‖L∞(R2) 6 K δ|·|(c−→e2,~c′)
c2 . We deduce that (since c 6 1)

‖Q−Qc‖L∞(R2) 6 K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+ |γ|

)
,

and thus

‖Z −Q‖L∞(B(0,Λ)) 6 K(Λ)‖Z −Qc‖Hexp
Qc

+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+ |γ|

)
.

Finally, from Lemmas 2.1, 2.2, and 2.3, ∂c⊥Qc = −x⊥ · ∇Qc and equa-
tion (2.11), we have

‖∇∂x2Q‖L∞(R2)+c2‖∇∂cQ‖L∞(R2) + c‖∇∂c⊥Q‖L∞(R2)+‖i∇Qc‖L∞(R2) 6 K.

We deduce that

‖∇(Q−Qc)‖L∞(R2) 6 K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+ |γ|

)
,

and, by (7.3),

‖∇(Z −Q)‖L∞(B(0,Λ)) 6 K(Λ)‖Z −Qc‖Hexp
Qc

+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+ |γ|

)
.

Lemma 7.2. There exists ε0(c) > 0 small such that, for Z a function
satisfying the hypothesis of Theorem 1.14 with

|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+ |γ| 6 ε0(c),

there exists a function Qψ ∈ C1(R2,C) such that (7.2) holds. Further-
more, for any Λ > 10

c , there exist K,K(Λ) > 0 such that

‖Qψ‖C1(B(0,Λ))6K(Λ)‖Z−Qc‖Hexp
Qc

+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+|γ|

)
.



Coercivity for Travelling Waves in GP 371

Proof: First, taking ε0(c) small enough (depending on c), we check that
c
2 6 |~c′| 6 2c.

We recall equation (7.2):

(1− η)Qψ + ηQ(eψ − 1) = Z −Q.

We write it in the form

ψ + η(eψ − 1− ψ) =
Z −Q
Q

,

and in {η = 0}, we therefore define

(7.4) ψ =
Z −Q
Q

.

Now, we define the set Ω := B(0, λ+1)\(B(dc~e1, R−1)∪B(−dc~e1, R−1)).
In this set, we have that∥∥∥∥Z −QQ

∥∥∥∥
C1(Ω)

6 Kε0(c) +K(λ)‖Z −Qc‖Hexp
Qc

by Lemma 7.1 and (2.12). Therefore, since eψ−1−ψ is at least quadratic

in ψ ∈ C1(Ω,C), by a fixed point argument (on H(ψ) := Z−Q
Q − η(eψ −

1 − ψ), which is a contraction on ‖ψ‖L∞({η 6=0}) < µ for µ > 0 small
enough), we deduce that on Ω, given that ε0 and ‖Z − Qc‖Hexp

Qc
are

small enough (depending on λ for ‖Z −Qc‖Hexp
Qc

), there exists a unique

function ψ ∈ C1(Ω,C) such that ψ + η(eψ − 1 − ψ) = Z−Q
Q in Ω. By

uniqueness, since we have a solution of the same problem on {η = 0}
which intersects Ω, we can construct Qψ ∈ C1(B(0, λ+ 1),C) such that
ηQψ + (1− η)Q(eψ − 1) = Z −Q in B(0, λ+ 1).

Furthermore, here we use the hypothesis that, outside of B(0, λ),
|Z −Qc| 6 µ0. We deduce that (taking µ0 <

1
4 ) there exists δ > 0 such

that |Z| > δ outside of B(0, λ). In particular, since λ can be taken large,
we have that outside of B(0, λ), η = 1. The equation on ψ then becomes

eψ =
Z

Q
,

and by equation (2.12) and |Z| > δ, we deduce that there exists a unique
solution to this problem in C1(R2\B(0, λ),C) that is equal on B(0, λ+
1)\B(0, λ) to the previously constructed function ψ.
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Therefore, there exists Qψ ∈ C1(R2,C) such that (1−η)Qψ+ηQ(eψ−
1) = Z − Q in R2. Furthermore, we check that (by the fixed point
argument), since {η 6= 1} ⊂ B(0, λ),

‖ψ‖C1({η 6=1}) 6 K

∥∥∥∥Z −QQ

∥∥∥∥
C1({η 6=1})

6 K(λ)‖Z−Qc‖Hexp
Qc

+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+|γ|

)
.

From equation (2.12) and Lemma 7.1, we have

‖Qψ‖C1(B(0,Λ))6‖Z−Q‖C1(B(0,Λ))+K‖ψ‖C1({η 6=1}) +K(Λ)‖Z −Qc‖Hexp
Qc

6K(Λ)‖Z−Qc‖Hexp
Qc

+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+|γ|

)
.

This concludes the proof of the lemma.

Lemma 7.3. The functions Q and ψ, defined respectively in (7.1) and
Lemma 7.2, satisfy

ϕ := Qψ ∈ Hexp
Q .

Furthermore, ϕ∈C2(R2,C) and there exists K(λ, c, ‖Z−Qc‖Hexp
Qc
, ε0,Z)>

0 such that, in {η = 1} (i.e. far from the vortices),

|∇ψ|+ |Re(ψ)|+ |∆ψ| 6
K(λ, c, ‖Z −Qc‖Hexp

Qc
, ε0, Z)

(1 + r)2
,

|∇Re(ψ)| 6
K(λ, c, ‖Z −Qc‖Hexp

Qc
, ε0, Z)

(1 + r)3
,

and

|Im(ψ + iγ)| 6
K(λ, c, ‖Z −Qc‖Hexp

Qc
, ε0, Z)

(1 + r)
.

We note that here, since ψ 9 0 at infinity (if γ 6= 0), we do not have
Qψ ∈ HQ. This is one of the main reasons to introduce the space Hexp

Q .
See Appendix C.1 for the proof of this result.

Lemma 7.4. The functions Q and ψ, defined respectively in (7.1) and
Lemma 7.2, satisfy, with ϕ = Qψ,

〈Lexp
Q (ϕ), (ϕ+ iγQ)〉 = Bexp

Q (ϕ),

where Lexp
Q (ϕ) = (1− η)LQ(ϕ) + ηQL′Q(ψ), with

L′Q(ψ) = −∆ψ − 2
∇Q
Q
· ∇ψ + i~c · ∇ψ + 2Re(ψ)|Q|2.

Furthermore,
LQ(ϕ) = QL′Q(ψ).

See Appendix C.2 for the proof of this result.
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The equality 〈Lexp
Q (ϕ), (ϕ+ iγQ)〉 = Bexp

Q (ϕ) is not obvious for func-

tions ϕ ∈ C2(R2,C) ∩ Hexp
Qc

(because of some integration by parts to

justify) and we need to check that, for the particular function ϕ we have
constructed, this result holds. We will use mainly the decay estimates of
Lemma 7.3.

Morally, we are showing that, since LQ(iγQ) = 0, we can do the fol-
lowing computation: 〈LQ(ϕ), ϕ+iγQ〉=〈ϕ,LQ(ϕ+iγQ)〉=〈ϕ,LQ(ϕ)〉 =
BQ(ϕ). The goal of this lemma is simply to check that, with the esti-
mates of Lemma 7.3, the integrands are integrable and the integration
by parts can be done to have 〈Lexp

Q (ϕ), (ϕ+ iγQ)〉 = Bexp
Q (ϕ).

7.2. Properties of the perturbation. We look for the equation sat-
isfied by ϕ = Qψ in the next lemma.

Lemma 7.5. The functions Q and ψ, defined respectively in (7.1) and
Lemma 7.2, with ϕ = Qψ, satisfy the equation

LQ(Qψ)− i(c−→e2 − ~c′) ·H(ψ) + NLloc(ψ) + F (ψ) = 0,

with LQ the linearized operator around Q: LQ(ϕ) := −∆ϕ − i~c · ∇ϕ −
(1− |Q|2)ϕ+ 2Re(Q̄ϕ)Q,

S(ψ) := e2Re(ψ) − 1− 2Re(ψ),

F (ψ) := Qη(−∇ψ · ∇ψ + |Q|2S(ψ)),

H(ψ) := ∇Q+
∇(Qψ)(1− η) +Q∇ψηeψ

(1− η) + ηeψ
,

and NLloc(ψ) is a sum of terms at least quadratic in ψ, localized in the
area where η 6= 1. Furthermore,

|〈NLloc(ψ), Q(ψ + iγ)〉| 6 K(‖Qψ‖C1({η 6=1}) + |γ|)‖Qψ‖2H1({η 6=1}).

Note that here, the equation satisfied by ϕ has a “source” term, i(c−→e2−
~c′) ·H(ψ), coming from the fact that Z and Qc might not have the same
speed at this point. We will estimate it later on.

Proof: The function Z solves (TWc), hence,

i(c−→e2 − ~c′) · ∇Z = −i~c′ · ∇Z −∆Z − (1− |Z|2)Z.
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From (7.2), we have

Z = Q+ (1− η)Qψ + ηQ(eψ − 1).

We define

ζ := 1 + ψ − eψ.

We replace Z = Q+(1−η)Qψ+ηQ(eψ−1) in −i~c′ ·∇Z−∆Z−(1−|Z|2)Z
exactly as in the proof of Lemma 2.7 of [4], by simply changing V , Ψ,

c~e2, η respectively to Q, ψ, ~c′, 1−η. In particular, E−ic∂x2V becomes 0
(since TW~c′(Q) = 0). This computation yields

i(c−→e2 − ~c′) · ∇Z = ((1− η) + ηeψ)(LQ(Qψ) + ÑLloc(ψ) + F (ψ)).

Furthermore, we have that ((1 − η) + ηeψ) 6= 0 by Lemma 7.2 and
equation (C.2) (for the same reason as in the proof of Lemma 2.7 of [4]),
and we compute (as in Lemma 2.7 of [4]) that

(7.5)
ηeψ

(1− η) + ηeψ
= η + η(1− η)

(
eψ − 1

(1− η) + ηeψ

)
.

Furthermore, we have

∇Z = ∇Q−Q∇ηζ +∇Q((1− η)ψ + η(eψ − 1)) +Q∇ψ((1− η) + ηeψ)

= ∇Q(1− η + ηeψ)−Q∇ηζ +∇(Qψ)(1− η) +Q∇ψηeψ,

hence

∇Z
(1− η) + ηeψ

= ∇Q− Q∇ηζ
(1− η) + ηeψ

+
∇(Qψ)(1− η) +Q∇ψηeψ

(1− η) + ηeψ
,

therefore, with NLloc(ψ) = ÑLloc(ψ) + i(c−→e2 − ~c′) · −Q∇ηζ
(1−η)+ηeψ

, we have

LQ(Qψ)− i(c−→e2 − ~c′) ·H(ψ) + NLloc(ψ) + F (ψ) = 0.

Finally, we check, similarly as in the proof of Lemma 2.7 of [4], that

|〈NLloc(ψ), Q(ψ + iγ)〉| 6 K(‖Qψ‖C1({η 6=1}) + |γ|)
∫
R2

|NLloc(ψ)|,

hence

|〈NLloc(ψ), Q(ψ + iγ)〉| 6 K(‖Qψ‖C1({η 6=1}) + |γ|)‖Qψ‖2H1({η 6=1}).
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Now, we want to choose the right parameters γ, ~c′, X so that ϕ sat-
isfies the orthogonality conditions of Propositions 1.11 and 1.12 (with
equation (6.2)).

Lemma 7.6. For the functions Q and ψ, defined respectively in (7.1)

and Lemma 7.2, there exist X, ~c′ ∈ R2, γ ∈ R such that

|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+ |γ| 6 oλ,c‖Z−Qc‖Hexp

Qc

→0(1),

and

Re

∫
B(d~c′,1

,R)∪B(d~c′,2
,R)

∂x1QQψ
6=0 = Re

∫
B(d~c′,1

,R)∪B(d~c′,2
,R)

∂x2QQψ
6=0 =0,

Re

∫
B(d~c′,1

,R)∪B(d~c′,2
,R)

∂c⊥QQψ
6=0 = 0,

Re

∫
B(d~c′,1

,R)∪B(d~c′,2
,R)

∂dV Qψ 6=0 = 0,

Re

∫
B((d~c′,1

+d~c′,2
)/2,R)

iψ = 0,

where d~c′,1 and d~c′,2 are the zeros of Q, d~c′,1 being the closest one

to d̃c
−→e1 , and ∂dV is the first order of Q by Theorem 1.1 and (1.1).

See Appendix C.3 for the proof of this result.
Here, the notations for the harmonics are done forQ, and are therefore

centred around d~c′,1 or d~c′,2. This means that ψ 6=0(x) = ψ(x)−ψ0,1(r1)

with r1 := |x−d~c′,1|, x−d~c′,1 = r1e
iθ1 ∈ R2, and ψ0,2 being the 0-har-

monic of ψ around d~c′,1 in B(d~c′,1, R), and ψ 6=0(x) = ψ(x) − ψ0,2(r2)

with r2 := |x− d~c′,2| in B(d~c′,2, R) and ψ0,1 being the 0-harmonic of ψ

around d~c′,2. We will denote ψ0(x) the quantity equal to ψ0,1(r1) in

the right half-plane and to ψ0,2(r2) in the left half-plane. Note that

d~c′,1 ∈ R2, whereas d̃c ∈ R. We recall that, taking ‖Z − Qc‖Hexp
Qc

small

enough, we have δ|·|(c−→e2,~c′)
c2 6 1, and in particular, for c small enough,

this implies that c
2 6 |~c′| 6 2c. We recall that oλ,c‖Z−Qc‖Hexp

Qc
→0(1) is a

quantity going to 0 when ‖Z −Qc‖Hexp
Qc
→ 0 at fixed λ and c.
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7.3. End of the proof of Theorem 1.14. From Lemmas 7.3 and 7.6,
we can find ϕ = Qψ ∈ Hexp

Q such that

(7.6) |X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+ |γ| 6 oλ,c‖Z−Qc‖Hexp

Qc

→0(1),

and

Re

∫
B(d~c′,1

,R)∪B(d~c′,2
,R)

∂x1QQψ
6=0 = Re

∫
B(d~c′,1

,R)∪B(d~c′,2
,R)

∂x2QQψ
6=0 =0,

Re

∫
B(d~c′,1

,R)∪B(d~c′,2
,R)

∂dV Qψ 6=0 = Re

∫
B(d~c′,1

,R)∪B(d~c′,2
,R)

∂c⊥QQψ
6=0 =0,

Re

∫
B((d~c′,1

+d~c′,2
)/2,R)

iψ = 0.

Now, from Lemma 7.5, ψ satisfies the equation

(7.7) LQ(Qψ)− i(~c′ − c−→e2) ·H(ψ) + NLloc(ψ) + F (ψ) = 0.

We note that

LQ(Qψ) = (1− η)LQ(Qψ) + ηQL′Q(ψ),

and by Lemmas 7.3 and 7.4,

〈(1− η)LQ(Qψ) + ηQL′Q(ψ), Q(ψ + iγ)〉 = Bexp
Q (ϕ).

We deduce that

(7.8)
Bexp
Q (ϕ)− 〈i(~c′ − c−→e2) ·H(ψ), Q(ψ + iγ)〉

+〈NLloc(ψ), Q(ψ + iγ)〉+ 〈F (ψ), Q(ψ + iγ)〉 = 0.

Since Qψ ∈ Hexp
Q by Lemma 7.3, with the orthogonality conditions sat-

isfied (see Lemma 7.6), we can apply Propositions 1.11 and 1.12 with
equation (6.2). We have

(7.9) Bexp
Q (ϕ) > K‖ϕ‖2C +K(c)‖ϕ‖2Hexp

Q
.

7.3.1. Better estimates on ~c′ − c−→e2 . The term i(~c′ − c−→e2) · H(ψ)
contains a “source” term, because Z and Q do not satisfy the same
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equation (since the travelling waves Z and Q may not have the same
speed at this point). We want to show the following estimates:

(7.10)
δ|·|(c−→e2 , ~c′) 6

(
Kc2 ln

(
1

c

)
+ oλ,c‖Z−Qc‖Hexp

Qc

→0(1)

)
‖ϕ‖C

+ oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖Hexp
Qc

and

(7.11)
δ⊥(c−→e2 , ~c′) 6

(
Kc2 ln

(
1

c

)
+ oλ,c‖Z−Qc‖Hexp

Qc

→0(1)

)
‖ϕ‖C

+ oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖Hexp
Qc
.

This subsection is devoted to the proof of (7.10) and (7.11).

Step 1. We have the estimate (7.10).
We take the scalar product of (7.7) with c2∂cQ, which yields

〈i(~c′ − c−→e2) ·H(ψ), c2∂cQ〉 = 〈Qψ, c2LQ(∂cQ)〉+ 〈NLloc(ψ) + F (ψ), c2∂cQ〉.

We check here, with the L∞ estimates on ψ and its derivatives, as well as
on ∂cQ (see Lemmas 2.3 and 7.3), that 〈LQ(Qψ), c2∂cQ〉 is well defined
and that all the integrations by parts can be done.

We recall that H(ψ) = ∇Q+ ∇(Qψ)(1−η)+Q∇ψηeψ
(1−η)+ηeψ

, and we check with

equation (7.5) that, since 1 − η is compactly supported (in a domain

with size independent of c, ~c′), we have∣∣∣∣〈i(~c′−c−→e2)· ∇(Qψ)(1−η)+Q∇ψηeψ

(1− η) + ηeψ
, c2∂cQ

〉∣∣∣∣6K|(~c′−c−→e2)·〈ηiQ∇ψ, c2∂cQ〉|

+K|~c′ − c−→e2 |‖ϕ‖Hexp
Qc
.

We compute with Lemma 2.3 that

|〈ηiQ∇ψ, c2∂cQ〉| =
∣∣∣∣∫

R2

ηRe(∇ψiQc2∂cQ)

∣∣∣∣
6

∣∣∣∣∫
R2

ηRe(∇ψ)Im(Qc2∂cQ)

∣∣∣∣+∣∣∣∣∫
R2

ηIm(∇ψ)Re(Qc2∂cQ)

∣∣∣∣
6

∣∣∣∣∫
R2

ηRe(ψ)∇(Im(Qc2∂cQ))

∣∣∣∣+K‖ϕ‖Hexp
Qc

+‖ϕ‖C

√∫
R2

ηRe2(Qc2∂cQ).
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With Lemmas 2.2 and 2.3, we check that
∫
R2 ηRe2(Qc2∂cQ) 6 K, and

furthermore,

|∇(Im(Qc2∂cQ))| 6 c2|∂cQ||∇Q|+Kc2|∇∂cQ|

and with Lemma 2.3 (with σ = 1/2), we check that

|∇(Im(Qc2∂cQ))| 6 K

(1 + r̃)3/2
,

thus, by Cauchy–Schwarz,∣∣∣∣∫
R2

ηRe(ψ)∇(Im(Qc2∂cQ))

∣∣∣∣ 6 K‖ϕ‖C.

Using |~c′ − c−→e2 | 6 K(c)(δ|·|(c−→e2 , ~c′) + δ⊥(c−→e2 , ~c′)) 6 oλ,c‖Z−Qc‖Hexp
Qc
→0(1)

and ‖ϕ‖C 6 K‖ϕ‖Hexp
Qc

, we deduce that∣∣∣∣〈i(~c′ − c−→e2) · (1− η)∇(Qψ) + ηeψQ∇ψ
(1− η) + ηeψ

, c2∂cQ

〉∣∣∣∣ 6 oλ,c‖Z−Qc‖Hexp
Qc

→0(1).

Furthermore, we check that, by symmetry (see (2.3)),

〈i(~c′ − c−→e2) · ∇xQ, c2∂cQ〉 = δ|·|(c−→e2 , ~c′)

〈
i
~c′

|~c′|
· ∇Q, c2∂cQ

〉
.

Furthermore, from Lemma 2.8, we have LQ(∂cQ) = i∇~c′Q, therefore,
from Proposition 1.2,〈

i
~c′

|~c′|
· ∇Q, c2∂cQ

〉
= c2BQ(∂cQ) = −2π + oc→0(1).

We deduce that

δ|·|(c−→e2 , ~c′) 6 K|〈Qψ, c2LQ(∂cQ)〉+ 〈NLloc(ψ) + F (ψ), c2∂cQ〉|

+ oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖Hexp
Q
.

Now, since LQ(∂cQ) = i
~c′

|~c′|
· ∇Q, we check that

〈Qψ, c2LQ(∂cQ)〉 = c2
〈
Qψ, i

~c′

|~c′|
· ∇Q

〉
,

and∣∣∣∣∣
〈
Qψ, i

~c′

|~c′|
·∇Q

〉∣∣∣∣∣6
∣∣∣∣∣
∫
R2

Re(ψ)Im

(
~c′

|~c′|
·∇QQ̄

)∣∣∣∣∣+
∣∣∣∣∣
∫
R2

Im(ψ)Re

(
~c′

|~c′|
·∇QQ̄

)∣∣∣∣∣ .
From Lemma 5.4, we deduce that

|〈Qψ, c2LQ(∂cQ)〉| 6 Kc2 ln

(
1

c

)
‖ϕ‖C .
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Now, we check easily that, with Lemmas 7.1 and 7.5,

|〈NLloc(ψ), c2∂cQ〉| 6 K(c)‖ϕ‖Hexp
Q
‖ϕ‖C1(B(0,λ))6o

λ,c
‖Z−Qc‖Hexp

Qc

→0(1)‖ϕ‖Hexp
Q
.

To conclude the proof of estimate (7.10), we shall estimate

|〈F (ψ), c2∂cQ〉|6oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖Hexp
Q

+(Kλ0+oλ,c‖Z−Qc‖Hexp
Qc

→0(1))‖ϕ‖C ,

with F (ψ) = Qη(−∇ψ ·∇ψ+ |Q|2S(ψ)). First, we estimate, for Λ > λ >
10
c , with Lemma 7.2,

|〈−Qη∇ψ · ∇ψ, c2∂cQ〉| =
∣∣∣∣∫

R2

ηRe(∇ψ · ∇ψc2Q̄∂cQ)

∣∣∣∣
6
∫
R2

η|∇ψ|2|c2Q̄∂cQ|

6 K‖∇ψ‖L∞(B(0,λ)∩{η 6=0})

√∫
B(0,λ)

η|∇ψ|2
√∫

B(0,λ)

η|c2Q̄∂cQ|2

+‖c2Q̄∂cQ‖L∞(R2\B(0,Λ))

∫
R2\B(0,λ)

η|∇ψ|2

6 oΛ,c
‖Z−Qc‖Hexp

Qc

→0(1)‖ϕ‖C + oΛ→∞(1)‖ϕ‖C,

since, by Lemma 2.3, |c2Q̄∂cQ| 6 K
(1+r̃)1/2

. We deduce that

|〈−Qη∇ψ · ∇ψ, c2∂cQ〉| 6 oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖C .

Now, in {η = 1}, since eψ = Z
Q and 1−Kλ0 6 |Z|

|Q| 6 1+Kµ0 (by our as-

sumptions on Z), we have |Re(ψ)| 6 Kµ0. We deduce, with Lemma 7.1,
that in {η 6= 0},

|Re(ψ)| 6 Kµ0 + oλ,c‖Z−Qc‖Hexp
Qc

→0(1).

With S(ψ) = e2Re(ψ) − 1 − 2Re(ψ), we check that, in η 6= 0, |S(ψ)| 6
K|Re(ψ)|2 (given that µ0 and ‖Z−Qc‖Hexp

Qc
are small enough), and with

similar computations as for |〈−Qη∇ψ · ∇ψ, c2∂cQ〉|, we conclude that

|〈F (ψ), c2∂cQ〉| 6 oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖C.

This concludes the proof of

δ|·|(c−→e2 , ~c′) 6 oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖Hexp
Q

+

(
Kc2 ln

(
1

c

)
+ oλ,c‖Z−Qc‖Hexp

Qc

→0(1)

)
‖ϕ‖C.
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Step 2. We have the estimate (7.11).
Now, we take the scalar product of (7.7) with c∂c⊥Q:

〈i(~c′ − c−→e2) ·H(ψ), c∂c⊥Q〉=〈Qψ, cLQ(∂c⊥Q)〉+ 〈NLloc(ψ) + F (ψ), c∂c⊥Q〉.

We check that〈
i(~c′ − c−→e2) · ∇(Qψ)(1− η) +Q∇ψηeψ

(1− η) + ηeψ
, c∂c⊥Q

〉
6 K|(~c′ − c−→e2) · 〈(1− η)iQ∇ψ, c∂c⊥Q〉|+K|~c′ − c−→e2 |‖ϕ‖Hexp

Qc

and

|〈ηiQ∇ψ, c∂c⊥Q〉|=
∣∣∣∣∫

R2

ηRe(∇ψiQc∂c⊥Q)

∣∣∣∣
6

∣∣∣∣∫
R2

ηRe(∇ψ)Im(Qc∂c⊥Q)

∣∣∣∣+∣∣∣∣∫
R2

ηIm(∇ψ)Re(Qc∂c⊥Q)

∣∣∣∣
6

∣∣∣∣∫
R2

ηRe(ψ)∇(Im(Qc∂c⊥Q))

∣∣∣∣+K‖ϕ‖Hexp
Qc

+‖ϕ‖C
∫
R2

ηRe2(Qc∂c⊥Q).

We check, with Lemmas 2.2 and 2.3, that∫
R2

ηRe2(Qc∂c⊥Q) 6 K

and

|∇(Im(Q∂c⊥Q))| 6 |∇Q||∂c⊥Q|+ |∇∂c⊥Q| 6
K(c)

(1 + r)2
,

therefore, as for the previous estimate,∣∣∣∣〈i(~c′−c−→e2)· (1− η)∇(Qψ)+ηeψQ∇ψ
(1− η) + ηeψ

, c∂c⊥Q

〉∣∣∣∣6oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖Hexp
Q
.

We check that, by symmetry (see equation (2.3)),

〈i(~c′ − c−→e2) · ∇Q, c∂c⊥Q〉 = δ⊥(c−→e2 , ~c′)

〈
i
~c′

|~c′|
· ∇Q, c∂c⊥Q

〉
.

Furthermore, from Lemma 2.8, we have LQ(∂c⊥Q) = −ic ~c′
⊥

|~c′|
·∇Q, there-

fore, from Proposition 1.2,

c

〈
i
~c′
⊥

|~c′|
· ∇Q, ∂c⊥Q

〉
= −BQ(∂c⊥Q) = −2π + oc→0(1).
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We deduce that

δ⊥(c−→e2 , ~c′) 6 K|〈Qψ, cLQ(∂c⊥Q)〉+ 〈NLloc(ψ) + F (ψ), c∂c⊥Q〉|

+ oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖Hexp
Q
.

As previously, we check that

|〈NLloc(ψ) + F (ψ), c∂c⊥Q〉| 6 oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖Hexp
Q

+ oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖C

and from Lemma 2.8, we have

|〈Qψ,LQ(∂c⊥Q)〉|=

∣∣∣∣∣
〈
Qψ, i

~c′
⊥

|~c′|
· ∇Q

〉∣∣∣∣∣
6

∣∣∣∣∣
∫
R2

Re(ψ)Im

(
~c′
⊥

|~c′|
·∇QQ̄

)∣∣∣∣∣+
∣∣∣∣∣
∫
R2

Im(ψ)Re

(
~c′
⊥

|~c′|
·∇QQ̄

)∣∣∣∣∣,
and with Lemma 5.4, we deduce that

c|〈Qψ,LQ(∂c⊥Q)〉| 6 Kc ln

(
1

c

)
‖ϕ‖C.

We conclude that

δ⊥(c−→e2 , ~c′) 6

(
Kc2 ln

(
1

c

)
+ oλ,c‖Z−Qc‖Hexp

Qc

→0(1)

)
‖ϕ‖C

+ oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖Hexp
Qc
.

7.3.2. Estimates on the remaining terms. Let us show in this sub-
section that

|〈i(~c′ − c−→e2) ·H(ψ), Q(ψ+iγ)〉|+|〈NLloc(ψ), Q(ψ + iγ)〉|+|〈F (ψ), Q(ψ+iγ)〉|

6 (oc→0(1) + oλ,c‖Z−Qc‖Hexp
Qc

→0(1) +Kλ0)‖ϕ‖2C + oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖2Hexp
Q
.

Step 1. Proof of |〈NLloc(ψ), Q(ψ + iγ)〉| 6 oλ,c‖Z−Qc‖Hexp
Qc
→0(1)‖ϕ‖2

Hexp
Q

.

From Lemma 7.5, we have

|〈NLloc(ψ), Q(ψ + iγ)〉| 6 K(‖Qψ‖C1({η 6=1}) + |γ|)‖ϕ‖2H1({η 6=1}),

therefore, from Lemmas 7.2 and 7.6 and equation (7.6), we deduce

|〈NLloc(ψ), Qψ〉| 6 oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖2Hexp
Q
.
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Step 2. Proof of

|〈i(~c′ − c−→e2) ·H(ψ), Q(ψ + iγ)〉| 6 (oc→0(1) + oλ,c‖Z−Qc‖Hexp
Qc

→0(1))‖ϕ‖2C

+ oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖2Hexp
Q
.

We separate the estimate into two parts. First, we look at 〈i(~c′−c−→e2) ·
H(ψ), Qψ〉. We recall that H(ψ) = ∇Q+ (1−η)∇(Qψ)+ηeψQ∇ψ

(1−η)+ηeψ
, and, since

|~c′−c−→e2 | 6 oλ,c‖Z−Qc‖Hexp
Qc
→0(1) and 1−η is compactly supported, we check

easily that∣∣∣∣〈i(~c′ − c−→e2) · (1− η)∇(Qψ) + ηeψQ∇ψ
(1− η) + ηeψ

, Qψ

〉∣∣∣∣
6 oλ,c‖Z−Qc‖Hexp

Qc

→0(1)(|〈ηiQ∇ψ,Qψ〉|+K(c)‖ϕ‖2Hexp
Q

).

Furthermore, we check that

|〈ηiQ∇ψ,Qψ〉| 6
∣∣∣∣∫

R2

Re(ψ)Im(∇ψ)|Q|2η
∣∣∣∣+

∣∣∣∣∫
R2

Im(ψ)Re(∇ψ)|Q|2η
∣∣∣∣ ,

and by Cauchy–Scwharz
∣∣∫

R2 Re(ψ)Im(∇ψ)|Q|2η
∣∣ 6 K‖ϕ‖2C . Now, by

integration by parts (using Lemma 7.3), we have∣∣∣∣∫
R2

Im(ψ)Re(∇ψ)|Q|2η
∣∣∣∣ 6 ∣∣∣∣∫

R2

Re(ψ)Im(∇ψ)|Q|2η
∣∣∣∣

+

∣∣∣∣∫
R2

Im(ψ)Re(ψ)∇(|Q|2)η

∣∣∣∣
+

∣∣∣∣∫
R2

Im(ψ)Re(ψ)|Q|2∇η
∣∣∣∣ ,

and by Cauchy–Schwarz we check that∣∣∣∣∫
R2

Im(ψ)Re(∇ψ)|Q|2η
∣∣∣∣ 6 K‖ϕ‖2Hexp

Q
.

We deduce that∣∣∣∣〈i(~c′ − c−→e2) · (1− η)∇(Qψ) + ηeψQ∇ψ
(1− η) + ηeψ

, Qψ

〉∣∣∣∣ 6 oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖2Hexp
Q
.
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Finally, we write

|〈i(~c′ − c−→e2) · ∇Q,Qψ〉| 6 δ|·|(c−→e2 , ~c′)

∣∣∣∣∣
〈
i
~c′

|~c′|
· ∇Q,Qψ

〉∣∣∣∣∣
+ δ⊥(c−→e2 , ~c′)

∣∣∣∣∣
〈
i
~c′
⊥

|~c′|
· ∇Q,Qψ

〉∣∣∣∣∣ .
With Lemma 5.4, we check that∣∣∣∣∣

〈
i
~c′

|~c′|
· ∇Q,Qψ

〉∣∣∣∣∣+

∣∣∣∣∣
〈
i
~c′
⊥

|~c′|
· ∇Q,Qψ

〉∣∣∣∣∣ 6 K ln

(
1

c

)
‖ϕ‖C .

With (7.10) and (7.11), we deduce that

|〈i(~c′ − c−→e2) · ∇Q,Qψ〉| 6
(
Kc ln2

(
1

c

)
+ oλ,c‖Z−Qc‖Hexp

Qc

→0(1)

)
‖ϕ‖2C

+ oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖2Hexp
Q

6

(
oc→0(1) + oλ,c‖Z−Qc‖Hexp

Qc

→0(1)

)
‖ϕ‖2C

+ oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖2Hexp
Q
.

Now, we look at 〈i(~c′ − c−→e2) ·H(ψ), Qiγ〉. We check that

〈i∇Q,Qiγ〉 = γ

∫
R2

Re(∇QQ̄) =
γ

2

∫
R2

∇(|Q|2 − 1) = 0,

thus

〈i(~c′ − c−→e2) ·H(ψ), Qiγ〉 =

〈
i(~c′ − c−→e2) · (1− η)∇(Qψ) + ηeψQ∇ψ

(1− η) + ηeψ
, Qiγ

〉
.

In the area {η 6= 0}, since |γ| = oλ,c‖Z−Qc‖Hexp
Qc
→0(1) by Lemma 7.6, since

|~c′−c−→e2 |6K
(
c ln

(
1

c

)
+oλ,c‖Z−Qc‖Hexp

Qc

→0(1)

)
‖ϕ‖C+oλ,c‖Z−Qc‖Hexp

Qc

→0(1)‖ϕ‖Hexp
Q

by estimates (7.10) and (7.11), we check that∫
{η 6=0}

Re

(
i(~c′ − c−→e2) · (1− η)∇(Qψ) + ηeψQ∇ψ

(1− η) + ηeψ
Qiγ

)
6 oλ,c‖Z−Qc‖Hexp

Qc

→0(1)‖ϕ‖2Hexp
Q
,
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and therefore (with Lemma 7.3, which justifies the integrability)

|〈i(~c′ − c−→e2) ·H(ψ), Qiγ〉| 6
∣∣∣∣γ(~c′ − c−→e2) ·

∫
R2

η|Q|2Re(∇ψ)

∣∣∣∣
+ oλ,c‖Z−Qc‖Hexp

Qc

→0(1)‖ϕ‖2Hexp
Q
.

By integration by parts (since |Re(ψ)| 6
K(λ,c,‖Z−Qc‖Hexp

Qc
,ε0,Z)

(1+r)2 and

|Re(∇ψ)| 6
K(λ,c,‖Z−Qc‖Hexp

Qc
,ε0,Z)

(1+r)3 by Lemma 7.3) and Cauchy–Schwarz∣∣∣∣∫
R2

η|Q|2Re(∇ψ)

∣∣∣∣ 6 ∣∣∣∣∫
R2

∇η|Q|2Re(ψ)

∣∣∣∣+

∣∣∣∣∫
R2

η∇(|Q|2)Re(ψ)

∣∣∣∣
6 K(c)‖ϕ‖Hexp

Q
.

Since |γ| = oλ,c‖Z−Qc‖Hexp
Qc
→0(1) by Lemma 7.6 and |~c′ − c−→e2 | 6 (K(c) +

oλ,c‖Z−Qc‖Hexp
Qc
→0(1))‖ϕ‖Hexp

Q
by (7.10), (7.11), and Lemma 6.1, we con-

clude that

|〈i(~c′ − c−→e2) ·H(ψ), Qiγ〉| 6 oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖2Hexp
Q
.

Step 3. Proof of |〈F (ψ), Q(ψ + iγ)〉| 6 (oλ,c‖Z−Qc‖Hexp
Qc
→0(1) +Kλ0)‖ϕ‖2C .

We recall
F (ψ) = Qη(−∇ψ · ∇ψ + |Q|2S(ψ)),

S(ψ) = e2Re(ψ) − 1− 2Re(ψ).

First, we look at 〈F (ψ), Qψ〉. We have

|〈F (ψ), Qψ〉| 6 |〈Q(1− η)∇ψ · ∇ψ,Qψ〉|+ |〈Q(1− η)|Q|2S(ψ), Qψ〉|.

We check that ‖ϕ‖L∞(R2) 6 K‖ψ‖L∞(R2\B(0,λ)) + K‖ϕ‖L∞(B(0,λ)) 6

Kλ0 + oλ,c‖Z−Qc‖Hexp
Qc
→0(1)

|〈Qη∇ψ · ∇ψ,Qψ〉|6‖ϕ‖L∞(R2)

∫
R2

η|∇ψ|26(Kλ0 + oλ,c‖Z−Qc‖Hexp
Qc

→0(1))‖ϕ‖2C .

Finally, since ‖ϕ‖L∞(R2) 6 K a uniform constant for c and ‖Z−Qc‖Hexp
Qc

small enough,

|〈Qη|Q|2S(ψ), Qψ〉|6‖ϕ‖L∞(R2)

∫
R2

ηRe2(ψ)6(Kλ0+oλ,c‖Z−Qc‖Hexp
Qc

→0(1))‖ϕ‖2C .

Now, we compute

|〈F (ψ), Qiγ〉| 6 |γ|
∣∣∣∣∫

R2

−Re(ηi∇ψ · ∇ψ)|Q|2 + η|Q|4Re(S(ψ)i)

∣∣∣∣ ,
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and since S(ψ) is real-valued, we check that, since |γ|=oλ,c‖Z−Qc‖Hexp
Qc
→0(1)

by Lemma 7.6,

|〈F (ψ), Qiγ〉| 6 |γ|
∫
R2

η|∇ψ|2|Q|2 6 oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖2C .

7.3.3. Conclusion. Combining the steps 1 to 3 and (7.9) in (7.8), we
deduce that, taking c small enough, and then ‖Z−Qc‖Hexp

Qc
small enough

(depending on c and λ), we have

0>K‖ϕ‖2C +K(c)‖ϕ‖2Hexp
Q

− (oc→0(1)+Kµ0 + oλ,c‖Z−Qc‖Hexp
Qc

→0(1))‖ϕ‖2C−oλ,c‖Z−Qc‖Hexp
Qc

→0(1)‖ϕ‖2Hexp
Q
,

hence, if µ0 is taken small enough (independently of any other parame-
ters), then c small enough and ‖Z − Qc‖Hexp

Qc
small enough (depending

on λ and c),
K(c)‖ϕ‖2Hexp

Qc
+K‖ϕ‖2C 6 0.

We deduce that ϕ = 0, thus Z = Q. Furthermore, from (7.10) and (7.11)

we deduce that ~c′ = c−→e2 , and since Z → 1 at infinity, we also have γ = 0
(or else ‖Z−Qc‖Hexp

Qc
= +∞). This concludes the proof of Theorem 1.14.

Appendix A. Estimates on the travelling wave

A.1. Proof of Lemma 2.6. From Propositions 5 and 7 of [10] (where
η = 1 − |Qc|2), we have in our case, for x = rσ ∈ R2 with r ∈ R+,
|σ| = 1, σ = (σ1, σ2) ∈ R2, that

r2(1− |Qc|2)(rσ)→ cα(c)

 1

1− c2

2
+

c2σ2
2

2

− 2σ2
2(

1− c2

2
+

c2σ2
2

2

)2


uniformly in σ ∈ S1 when r → +∞, where α(c) > 0 depends on c
and Qc. Note that our travelling wave is axisymmetric around axis x2

(and not x1, for which the results of [10] are given), hence the swap
between σ1 and σ2 between the two papers. We have

1

1− c2

2
+

c2σ2
2

2

− 2σ2
2(

1− c2

2
+

c2σ2
2

2

)2 =
1− c2

2
−
(
2− c2

2

)
σ2

2(
1− c2

2
+

c2σ2
2

2

)2 ,

which shows in particular that |Qc| = 1 when r � 1
c is possible only in

cones around sin(θ) = σ2 = ±
√

1−c2/2
2−c2/2 . Therefore, for c small enough,

for some γ > 0 small and R > 0 large (that may depend on c), we have∫
R2

|1− |Qc|2||ϕ|2 > K(c, β,R)

∫
R2\(B(0,R)∪D(γ))

|ϕ|2

(1 + r)2
,
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where D(γ) =
{
reiθ ∈ R2,

∣∣sin(θ) ±
√

1−c2/2
2−c2/2

∣∣ 6 γ
}

. We want to show

that, for ϕ ∈ HQc ,∫
D(γ)∪(R2\B(0,R))

|ϕ|2

(1 + r)2
6C(c, γ, R)

(∫
R2

|∇ϕ|2+

∫
R2\(B(0,R)∪D(γ))

|ϕ|2

(1 + r)2

)
.

For θ0 any of the four angles such that sin(θ) ±
√

1−c2/2
2−c2/2 = 0, we fix

r > 0 and regard ϕ(θ) as a function of the angle only. We compute, for
θ ∈ [θ0−2β, θ0 + 2β] (β > 0 being a small constant depending on γ such
that {x = reiθ ∈ R2, θ ∈ [θ0 + 3β, θ0 + β]} ∩ D(γ) = ∅, and such that
D(γ) is included in the union of the [θ0− β, θ0 + β] for the four possible
values of θ0),

ϕ(θ) = ϕ(2β + θ)−
∫ 2β+θ

θ

∂θϕ(Θ) dΘ,

hence,

|ϕ(θ)| 6 |ϕ(2β + θ)|+
∫ θ0+3β

θ0−β
|∂θϕ(Θ)| dΘ.

This implies that

|ϕ(θ)|2 6 2|ϕ(2β + θ)|2 +K

∫ 2π

0

|∂θϕ(Θ)|2 dΘ

by Cauchy–Schwarz and integrating between θ0 − β and θ0 + β yields∫ θ0+β

θ0−β
|ϕ(θ)|2 dθ 6 2

∫ θ0+3β

θ0+β

|ϕ(θ)|2 dθ +K

∫ 2π

0

|∂θϕ(θ)|2 dθ.

Now multiplying by r
(1+r)2 and integrating in r on [R,+∞[, we infer∫

θ−θ0∈[−β,β]

∫
r∈[R,+∞[

|ϕ|2

(1 + r)2
r dr dθ

6 2

∫
θ−θ0∈[β,3β]

∫
r∈[R,+∞[

|ϕ|2

(1 + r)2
r dr dθ

+K(c, β,R)

∫
R2

|∇ϕ|2 dx

6 2

∫
R2\(B(0,R)∪D(γ))

|ϕ|2 dx
(1 + |x|)2

+K(c, β,R)

∫
R2

|∇ϕ|2 dx,

using

|∂θϕ|2

(1 + r)2
6
|∂θϕ|2

r2
6 |∇ϕ|2.
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Therefore,∫
D(γ)∪(R2\B(0,R))

|ϕ|2

(1 + r)2
6 K

∫
R2\(B(0,R)∪D(γ))

|ϕ|2

(1 + r)2
dx

+K(c, β, γ,R)

∫
R2

|∇ϕ|2 dx,

and thus∫
R2\B(0,R)

|ϕ|2

(1 + r)2
6 K(c, β, γ,R)

∫
R2

|∇ϕ|2 + |1− |Qc|2||ϕ|2.

We are left with the proof of∫
B(0,R)

|ϕ|2

(1 + r)2
6 K(c, β,R)

(∫
R2

|∇ϕ|2 +

∫
R2\B(0,R)

|ϕ|2

(1 + r)2

)
.

We argue by contradiction. We suppose that there exists a sequence ϕn ∈
HQc such that

∫
B(0,R)

|ϕn|2
(1+r)2 = 1 and

∫
R2 |∇ϕn|2 +

∫
R2\B(0,R)

|ϕn|2
(1+r)2 →

0. Since ϕn is bounded in H1(B(0, R + 1)), by Rellich’s theorem, up
to a subsequence, we have the convergences ϕn → ϕ strongly in L2

and weakly in H1 to some function ϕ in B(0, R + 1). In particular,∫
B(0,R+1)

|∇ϕ|2 = 0, hence ϕ is constant on B(0, R + 1), and with∫
B(0,R+1)\B(0,R)

|ϕ|2
(1+r)2 = 0 we have ϕ = 0, which is in contradiction

with 1 =
∫
B(0,R)

|ϕn|2
(1+r)2 →

∫
B(0,R)

|ϕ|2
(1+r)2 by L2(B(0, R + 1)) strong

convergence. This concludes the proof of this lemma.

A.2. Proof of Lemma 2.14. From equations (2.7) and (2.1), Lem-

ma 2.6 of [4], Lemma 2.13, and the mean value theorem, in B(d̃c
−→e1 , d̃

1/2
c ),

(A.1)

|Qc − Ṽ1| 6 |Qc − V |+ |V − Ṽ1|

6 oc→0(1) + |V1(· − d̃c−→e1)− Ṽ1|

6 oc→0(1) + |dc − d̃c|‖∂x1V ‖L∞(R2)

6 oc→0(1),

which is the first statement.
For the second statement, we write Qc = V1(·−dc−→e1)V−1(·−dc−→e1)+Γc,

and from equation (2.5) (with some margin), we have

|∇Γc| 6
oc→0(1)

1 + r̃1
.
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Furthermore, since Ṽ1 = V1(· − d̃c−→e1),

∇(V1(· − dc−→e1)V−1(·+ dc
−→e1))−∇Ṽ1

= ∇V1(· − dc−→e1)V−1(·+ dc
−→e1)−∇Ṽ1 + V1(· − dc−→e1)∇V−1(·+ dc

−→e1),

and from (2.2), in B(d̃c
−→e1 , d̃

1/2
c ), we have

|∇V−1(·+ dc
−→e1)| 6 oc→0(1)

1 + r̃1
.

We compute

∇V1(· − dc−→e1)V−1(·+ dc
−→e1)−∇Ṽ1

= ∇V1(· − dc−→e1)(V−1(·+ dc
−→e1)− 1)−∇Ṽ1 +∇V1(· − dc−→e1)

and, from (2.1), in B(d̃c
−→e1 , d̃

1/2
c ), we have |V−1(·+ dc

−→e1)− 1| = oc→0(1).
Finally, from Lemmas 2.1 and 2.13, we estimate (with the mean value
theorem)

|∇V1(· − dc−→e1)−∇Ṽ1| 6 |dc − d̃c| sup
d∈[dc,d̃c]∪[d̃c,dc]

|∇2V1(x− d)|

6 K
|dc − d̃c|
(1 + r̃1)2

=
oc→0(1)

(1 + r̃1)2
,

hence

(A.2) |∇Qc −∇Ṽ1| 6
oc→0(1)

1 + r̃1
.

Now, writing w=Qc−Ṽ1, inB(d̃c
−→e1,2d̃

1/2
c ), we estimate (since TWc(Qc)=

0 and ∆Ṽ1 − (|Ṽ1|2 − 1)Ṽ1 = 0)

|∆w| = | − ic∂x2Qc − (1− |Qc|2)Qc + (1− |Ṽ1|2)Ṽ1| 6
oc→0(1)

1 + r̃1

by equations (2.6) to (2.10) and (2.1). Furthermore, by equations (2.6)
to (2.2), we have

|∇(∆w)| 6 oc→0(1)

(1 + r̃1)
.

We check, as the proof of (A.1), that, in B(d̃c
−→e1 , 2d̃

1/2
c ),

|w| = oc→0(1),

and, similarly, with equations (2.2) and (A.2), that

|∇w| = oc→0(1)
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in B(d̃c
−→e1 , 2d̃

1/2
c ). By Theorem 6.2 of [7] (taking a domain Ω = B

(
x −

d̃c
−→e1 ,
|x−d̃c−→e1|

2

)
, and α = 1/2, but it also holds for any 0 < α < 1), we

have, for x ∈ B(d̃c
−→e1 , 2d̃

1/2
c ),

(1 + r̃1)2|∇2w(x− d̃c−→e1)| 6 K(‖w‖C1(Ω) + (1 + r̃1)2‖∆w‖C1(Ω)),

and from the previous estimates, we have ‖w‖C1(Ω) = oc→0(1) and

‖∆w‖C1(Ω) 6
oc→0(1)
(1+r̃1) , therefore

|∇2(Qc − Ṽ1)| = |∇2w| 6 oc→0(1)

(1 + r̃1)
.

Appendix B. Proofs related to the energy space

B.1. Proof of Lemma 3.4. We recall that

‖ϕ‖2HQc =

∫
R2

|∇ϕ|2 + |1− |Qc|2||ϕ|2 + Re2(Qcϕ),

and since, for all λ > 0,

K1(λ)

∫
B(0,λ)

|∇ϕ|2 + |ϕ|2 6
∫
B(0,λ)

|∇ϕ|2 + |1− |Qc|2||ϕ|2 + Re2(Qcϕ)

6 K2(λ)

∫
B(0,λ)

|∇ϕ|2 + |ϕ|2,

by a standard density argument, we have that C∞c (R2,C) is dense in HQc

for the norm ‖ · ‖HQc .

We are therefore left with the proof that C∞c (R2\{d̃c−→e1 ,−d̃c−→e1},C)
is dense in C∞c (R2,C) for the norm ‖ · ‖HQc . For that, it is enough
to check that C∞c (B(0, 2)\{0},C) is dense in C∞c (B(0, 2),C) for the
norm ‖ · ‖H1(B(0,2)). This result is a consequence of the fact that the
capacity of a point in a ball in dimension 2 is 0. For the sake of com-
pleteness, we give here a proof of this result.

We define ηε ∈ C0(B(0, 2),R) the radial function with ηε(x) = 0 if

|x| 6 ε, ηε(x) = − ln(|x|)
ln(ε) + 1 if |x| ∈ [ε, 1], and ηε(x) = 1 if 2 > |x| > 1.

Then, we define ηε,λ ∈ C∞(B(0, 2),R) a radial regularization of ηε with
ηε,λ(x) = 0 if |x| 6 ε/2 such that ηε,λ → ηε in H1(B(0, 2)) when λ→ 0.
Finally, we define ηε,λ,δ = ηε,λ

(
x
δ

)
for a small δ > 0.

Now, given ϕ ∈ C∞c (B(0, 2),C), ηε,λ,δϕ ∈ C∞c (B(0, 2)\{0},C) for
all ε > 0, λ > 0, δ > 0, by dominated convergence, we check that∫

B(0,2)

|ηε,λ,δϕ|2 →
∫
B(0,2)

|ϕ|2
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when δ → 0. Furthermore, we compute by integration by parts∫
B(0,2)

|∇(ηε,λ,δϕ)|2 =

∫
B(0,2)

η2
ε,λ,δ|∇ϕ|2 + 2

∫
B(0,2)

∇ηε,λ,δηε,λ,δRe(∇ϕϕ̄)

+

∫
B(0,2)

|∇ηε,λ,δ|2|ϕ|2

=

∫
B(0,2)

η2
ε,λ,δ|∇ϕ|2 −

∫
B(0,2)

|ϕ|2∆ηε,λ,δηε,λ,δ.

Now, extending ϕ to R2 by ϕ = 0 outside of B(0, 2), we have by change
of variables∫

B(0,2)

|ϕ|2∆ηε,λ,δηε,λ,δ =

∫
R2

|ϕ|2∆ηε,λ,δηε,λ,δ =

∫
R2

|ϕ|2(xδ)∆ηε,ληε,λ.

When δ→0, we have by dominated convergence that
∫
B(0,2)

η2
ε,λ,δ|∇ϕ|2→∫

B(0,2)
|∇ϕ|2 and∫

R2

|ϕ|2(xδ)∆ηε,ληε,λ → |ϕ|2(0)

∫
R2

∆ηε,ληε,λ = −|ϕ|2(0)

∫
R2

|∇ηε,λ|2.

Now, taking λ→ 0, we deduce that

lim
λ→0

lim
δ→0

∫
B(0,2)

|∇(ηε,λ,δϕ)|2 =

∫
B(0,2)

|∇ϕ|2 − |ϕ|2(0)

∫
R2

|∇ηε|2.

From the definition of ηε, we compute∫
R2

|∇ηε|2 =

∫ 1

ε

1

ln(ε)2r2
r dr

=
1

ln(ε)2

∫ 1

ε

1

r
dr

=
−1

ln(ε)
→ 0

when ε→ 0. We deduce that

lim
ε→0

lim
λ→0

lim
δ→0

∫
B(0,2)

|∇(ηε,λ,δϕ)|2 =

∫
B(0,2)

|∇ϕ|2.

This concludes the proof of this lemma.

B.2. Proof of Lemma 4.1. We recall that LQc(ϕ)=−ic∂x2
ϕ−∆ϕ−

(1−|Qc|2)ϕ+2Re(Qcϕ)Qc.Writing ϕ=Qcψ∈C∞c (R2\{d̃c−→e1 ,−d̃c−→e1},C),
we decompose

LQc(ϕ) = −ic∂x2ψQc −∆ψQc − 2∇Qc · ∇ψ + 2Re(ψ)|Qc|2Qc + TWc(Qc)ψ.
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Since TWc(Qc) = 0,

〈LQc(ϕ),ϕ〉=〈(1− η)LQc(ϕ), ϕ〉+ 〈ηLQc(ϕ), Qcψ〉

=

∫
R2

(1− η)Re((−ic∂x2ϕ−∆ϕ− (1− |Qc|2)ϕ+ 2Re(Qcϕ)Qc)ϕ̄)

+

∫
R2

ηRe((−ic∂x2ψQc−∆ψQc−2∇Qc ·∇ψ+2Re(ψ)|Qc|2Qc)Qcψ).

By integration by parts,∫
R2

(1− η)Re((−ic∂x2ϕ−∆ϕ− (1− |Qc|2)ϕ+ 2Re(Qcϕ)Qc)ϕ̄)

=

∫
R2

(1− η)(|∇ϕ|2 −Re(ic∂x2ϕϕ̄)− (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ))

−
∫
R2

∇η ·Re(∇ϕϕ̄).

Similarly, we compute∫
R2

ηRe((−ic∂x2ψQc −∆ψQc − 2∇Qc · ∇ψ + 2Re(ψ)|Qc|2Qc)Qcψ)

=

∫
R2

η(Re(−ic∂x2ψψ̄|Qc|
2)−Re(∆ψψ̄)|Qc|2 + 2Re2(ψ)|Qc|4

− 2Re(∇Qc · ∇ψQcψ))

=

∫
R2

η(c|Qc|2(Im(∂x2ψ)Re(ψ)−Re(∂x2ψ)Im(ψ)) + 2Re2(ψ)|Qc|4

− 2Re(∇Qc · ∇ψQcψ))

+

∫
R2

η|∇ψ|2|Qc|2+2

∫
R2

ηRe(∇QcQc)·Re(∇ψψ̄)+

∫
R2

∇η ·Re(∇ψψ̄)|Qc|2.

Continuing, we have

−
∫
R2

η|Qc|2Re(∂x2ψ)Im(ψ) =

∫
R2

η|Qc|2Re(ψ)Im(∂x2ψ)

+

∫
R2

∂x2η|Qc|
2Re(ψ)Im(ψ) + 2

∫
R2

ηRe(∂x2QcQc)Re(ψ)Im(ψ),

as well as∫
R2

ηRe(∇Qc · ∇ψQcψ) =

∫
R2

ηRe(∇QcQc) ·Re(∇ψψ̄)

+

∫
R2

ηIm(∇QcQc)Im(∇ψψ̄),



392 D. Chiron, E. Pacherie

therefore∫
R2

ηRe((−ic∂x2ψQc −∆ψQc − 2∇Qc · ∇ψ + 2Re(ψ)|Qc|2Qc)Qcψ)

=

∫
R2

η(|∇ψ|2|Qc|2 + 2Re2(ψ)|Qc|4 + 2cIm(∂x2ψ)Re(ψ))

+

∫
R2

η(2cRe(∂x2QcQc)Re(ψ)Im(ψ)− 2Im(∇QcQc)Im(∇ψψ̄))

+c

∫
R2

∂x2ηRe(ψ)Im(ψ)|Qc|2 +

∫
R2

∇η ·Re(∇ψψ̄)|Qc|2.

As ic∂x2Qc=∆Qc+(1−|Qc|2)Qc, we have cRe(∂x2QcQc)=Re(i∆QcQc).
By integration by parts,

2

∫
R2

ηRe(i∆QcQc)Re(ψ)Im(ψ) = 2

∫
R2

∇η · Im(∇QcQc)Re(ψ)Im(ψ)

−2

∫
R2

ηIm(∇QcQc) ·Re(∇ψ)Im(ψ)− 2

∫
R2

ηIm(∇QcQc) ·Re(ψ)Im(∇ψ),

and

−2

∫
R2

ηIm(∇QcQc)Im(∇ψψ̄) = −2

∫
R2

ηIm(∇QcQc)(Im(∇ψ)Re(ψ)

− Im(ψ)Re(∇ψ)).

Combining these estimates with∫
R2

∇η ·Re(∇ϕϕ̄) =

∫
R2

∇η · (Re(∇QcQc)|ψ|2 + Re(∇ψψ̄)|Qc|2),

we conclude the proof of

〈LQc(ϕ), ϕ〉 = Bexp
Qc

(ϕ).

Now, for the proof for BV1
(ϕ), the computations are identical, simply

replacing c by 0, η by η̃, and Qc by V1.

B.3. Proof of Lemma 6.1. First, let us show (6.1). We have

‖ϕ‖H1({r̃610}) 6 K‖ϕ‖HQc ,

and, by equation (2.12) and Lemma 2.6, we check that∫
{r̃>5}

Re2(ψ) 6 K‖ϕ‖2HQc ,

and also that∫
{r̃>5}

|ψ|2

r̃2 ln(r̃)2
6 K

∫
{r̃>5}

|ϕ|2

(1 + r̃)2
6 K(c)‖ϕ‖2HQc .
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Furthermore, we compute, by equations (2.12) and (3.1) and Theo-
rem 2.5,∫

{r̃>5}
|∇ψ|2 6 K

∫
{r̃>5}

|∇ψ|2|Qc|4

6 K

(∫
{r̃>5}

|∇ϕ|2 +

∫
{r̃>5}

|∇Qc|2|ϕ|2
)

6 K(c)‖ϕ‖2HQc .

We deduce that (6.1) holds, and therefore HQc ⊂ Hexp
Qc

. Now, we check
that

‖iQc‖2Hexp
Qc

6 ‖iQc‖2H1({r̃610}) +K

∫
{r̃>5}

|i|2

r̃2 ln(r̃)2
+

∫
{r̃>5}

|∇i|2 < +∞.

With regard to the definition of ‖ · ‖C , we check easily that

‖ϕ‖C 6 ‖ϕ‖Hexp
Qc
.

Finally, we recall the definition of Bexp
Qc

(ϕ) from equation (1.4),

Bexp
Qc

(ϕ) =

∫
R2

(1− η)(|∇ϕ|2 −Re(ic∂x2ϕϕ̄)− (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ))

−
∫
R2

∇η · (Re(∇QcQc)|ψ|2 − 2Im(∇QcQc)Re(ψ)Im(ψ))

+

∫
R2

c∂x2η|Qc|
2Re(ψ)Im(ψ)

+

∫
R2

η(|∇ψ|2|Qc|2 + 2Re2(ψ)|Qc|4)

+

∫
R2

η(4Im(∇QcQc)Im(∇ψ)Re(ψ) + 2c|Qc|2Im(∂x2ψ)Re(ψ)).

For λ > 0, we have ‖ϕ‖H1(B(0,λ)) 6 K(c, λ)‖ϕ‖Hexp
Qc

, therefore (since

1− η is compactly supported) we only have to check that the integrands
in the last two lines are in L1(R2), and this is a consequence of Cauchy–
Schwarz since∫

R2

η(|∇ψ|2|Qc|2 + 2Re2(ψ)|Qc|4 + 4|Im(∇QcQc)Im(∇ψ)Re(ψ)|

+2c|Qc|2|Im(∂x2ψ)Re(ψ)|) 6 K

∫
R2

η(|∇ψ|2 + Re2(ψ)) 6 K‖ϕ‖2Hexp
Qc
.
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Furthermore, for two cutoffs η, η′ such that they are both 0 near the
zeros of Qc and 1 at infinity, we have

Bexp
Qc,η

(ϕ)−Bexp
Qc,η′

(ϕ)

=

∫
R2

(η′ − η)(|∇ϕ|2 −Re(ic∂x2ϕϕ̄)− (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ))

+

∫
R2

∇(η − η′) · (Re(∇QcQc)|ψ|2 − 2Im(∇QcQc)Re(ψ)Im(ψ))

−c∂x2(η − η′)|Qc|2Re(ψ)Im(ψ)

+

∫
R2

(η′ − η)(|∇ψ|2|Qc|2 + 2Re2(ψ)|Qc|4)

+

∫
R2

(η′ − η)(4Im(∇QcQc)Im(∇ψ)Re(ψ) + 2c|Qc|2Im(∂x2ψ)Re(ψ))

and, developing ϕ = Qcψ (see the proof of Lemma 4.1) and by integra-
tion by parts using that η − η′ 6= 0 only in a compact domain far from
the zeros of Qc, we check that it is 0.

Finally, for ϕ ∈ HQc , BQc(ϕ), and Bexp
Qc

(ϕ) are both well defined. We
recall

BQc(ϕ) =

∫
R2

|∇ϕ|2 − (1− |Qc|2)|ϕ|2 + 2Re2(Qcϕ)

−c
∫
R2

(1− η)Re(i∂x2ϕϕ̄)− c
∫
R2

ηRei∂x2QcQc|ψ|
2

+2c

∫
R2

ηReψIm∂x2ψ|Qc|
2 + c

∫
R2

∂x2ηReψImψ|Qc|2

+c

∫
R2

ηReψImψ∂x2(|Qc|2).

With the same computation as in the proof of Lemma 4.1, we check that
for ϕ ∈ C∞c (R2\{d̃c~e1,−d̃c~e1},C), we have

BQc(ϕ) = Bexp
Qc

(ϕ).

With the same arguments as in the density proof at the end of the proof
of Proposition 1.4, we check that this equality holds for ϕ ∈ HQc .

Appendix C. Proofs related to the local uniqueness

C.1. Proof of Lemma 7.3. From Lemma 7.2, for any Λ > 10
c ,

(C.1)

‖Qψ‖C1(B(0,Λ)) 6 K(Λ)‖Z −Qc‖Hexp
Qc

+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+ |γ|

)
,
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therefore, we only have to check the integrability at infinity of Qψ to
show that ϕ = Qψ ∈ Hexp

Q . In {η = 1}, we have

eψ =
Z

Q
.

We have shown in the proof of Lemma 7.2 that K >
∣∣Z
Q

∣∣ > δ/2 outside

of B(0, λ) for some δ > 0, and together with (C.1), we check that

(C.2) ‖ψ‖C0({η=1}) 6 K(λ, ‖Z −Qc‖Hexp
Qc
, ε0).

This implies that ∫
{η=1}

|Qψ|2

r̃2 ln(r̃)2
< +∞.

Similarly, we check that, in {η = 1}, since eψ = Z
Q ,

∇ψ =
e−ψ

Q
∇(Z −Q)− ∇Q

Q
(1− e−ψ),

therefore

(C.3) |∇ψ| 6 K(λ, ‖Z −Qc‖Hexp
Qc
, ε0)(|∇(Z −Q)|+ |∇Q|).

From Theorem 2.5, we have

|∇Z|+ |∇Q| 6 K(c, Z)

(1 + r)2
,

therefore, ∫
{η=1}

|∇Q|2|ψ|2 < +∞

and ∫
{η=1}

|∇(Z −Q)|2 6
∫
{η=1}

K(c, Z)

(1 + r)4
< +∞.

We deduce that
∫
{η=1} |∇ψ|

2 < +∞, and, furthermore, equation (C.3)

shows that

|∇ψ| 6
K(λ, c, ‖Z −Qc‖Hexp

Qc
, ε0, Z)

(1 + r)2

in {η = 1}.
Now, still in {η = 1}, we have

Qeψ = Z,

and we deduce that Qe−iγ(eψ+iγ − 1) = Z − Qe−iγ . Now, we recall
that ‖ψ‖C0({η=1}) 6 K(λ, ‖Z −Qc‖Hexp

Qc
, ε0), thus |Re(eψ+iγ − 1− (ψ +

iγ))| 6 K(λ, ‖Z − Qc‖Hexp
Qc
, ε0)|Re(eψ+iγ − 1)|. With (C.1), we deduce
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from this that, in {η = 1}, with 1
4‖ψ + iγ‖L∞(R2) 6 |Re(eψ+iγ − 1)| 6

K‖ψ + iγ‖L∞(R2),

|Re(ψ)| = |Re(ψ + iγ)|

6 |Re(eψ+iγ − 1)|+ |Re(eψ+iγ − 1− (ψ + iγ))|

6 K(λ, ‖Z −Qc‖Hexp
Qc
, ε0)|Re(eψ+iγ − 1)|

6 K(λ, ‖Z −Qc‖Hexp
Qc
, ε0)

∣∣∣∣∣Re

(
(Z −Qe−iγ)Qeiγ

|Q|2

)∣∣∣∣∣
6 K(λ, ‖Z −Qc‖Hexp

Qc
, ε0)(|Re(Z −Qe−iγ)|

+|Im(Z −Qe−iγ)Im(Qeiγ − 1)|).

From Theorem 2.5,

|Re(Z −Qe−iγ)| 6 |Re(Z − 1)|+ |Re(1−Qe−iγ)| 6 K(c, Z)

(1 + r)2

and

|Im(Z −Qe−iγ)Im(Qeiγ − 1)| 6 K(c, Z)

(1 + r)2
.

We conclude that, in {η = 1}, we have |Re(ψ)| 6
K(λ,c,‖Z−Qc‖Hexp

Qc
,ε0,Z)

(1+r)2

hence ∫
{η=1}

Re2(ψ) < +∞.

This concludes the proof of ϕ = Qψ ∈ Hexp
Qc

. We are left with the proof

of the following estimates: |∆ψ| 6
K(λ,c,‖Z−Qc‖Hexp

Qc
,ε0,Z)

(1+r)2 , |Im(ψ+iγ)| 6
K(λ,c,‖Z−Qc‖Hexp

Qc
,ε0,Z)

(1+r) , and |Re(∇ψ)| 6
K(λ,c,‖Z−Qc‖Hexp

Qc
,ε0,Z)

(1+r)3 in {η =

1}.
We recall that, in {η = 1}, ∇ψ = e−ψ

Q ∇(Z −Q)− ∇QQ (1− e−ψ), from

which we compute, by differentiating a second time,

∆ψ = −∇ψ · ∇(Z −Q)

Q
e−ψ − ∇Q

Q
e−ψ · ∇(Z −Q) +

e−ψ

Q
∆(Z −Q)

−∆Q

Q
(1− e−ψ) +

∇Q · ∇Q
Q2

(1− e−ψ)− ∇Q
Q
· ∇ψe−ψ.
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Using Theorem 2.5, ∆Q = −i~c′ ·∇Q− (1− |Q|2)Q, Z = −ic∂x2
Z − (1−

|Z|2)Z and previous estimates on ψ, we check that, in {η = 1},

|∆ψ| 6
K(λ, c, ‖Z −Qc‖Hexp

Qc
, ε0, Z)

(1 + r)2
.

We have Qe−iγ(eψ+iγ − 1) = Z −Qe−iγ in {η = 1}, therefore

eψ+iγ − 1 =
Z

Qe−iγ
− 1.

We check, since ‖ψ‖C0({η=1}) 6 K(λ, ‖Z − Qc‖Hexp
Qc
, ε0), that we have

by Theorem 2.5

|Im(ψ + iγ)| 6 K(λ, ‖Z −Qc‖Hexp
Qc
, ε0)|Im(eψ+iγ − 1)|

6 K(λ, ‖Z −Qc‖Hexp
Qc
, ε0)

∣∣∣∣ Z

Qe−iγ
− 1

∣∣∣∣
6
K(λ, c, ‖Z −Qc‖Hexp

Qc
, ε0, Z)

(1 + r)
.

Finally, since ∇ψ = e−ψ

Q ∇(Z −Q) − ∇QQ (1 − e−ψ) = ∇Z
Q e−ψ − ∇QQ , we

check with Theorem 2.5 that, in {η = 1},

|∇Re(ψ)| 6
∣∣∣∣Re

(
∇Z
Q

e−ψ
)∣∣∣∣+

∣∣∣∣Re

(
∇Q
Q

)∣∣∣∣
6

∣∣∣∣Re

(
∇ZZ̄ e

−ψ

QZ̄

)∣∣∣∣+
|Re(∇QQ̄)|
|Q|2

6

∣∣∣∣Im(∇ZZ̄)Im

(
e−ψ

QZ̄

)∣∣∣∣+ |Re(∇ZZ̄)|
∣∣∣∣Re

(
e−ψ

QZ̄

)∣∣∣∣+
|∇(|Q|2)|

2|Q|2

6
K(λ, c, ‖Z −Qc‖Hexp

Qc
, ε0, Z)

(1 + r)2

∣∣∣∣Im(e−ψQZ̄

)∣∣∣∣
+
K(λ, c, ‖Z −Qc‖Hexp

Qc
, ε0, Z)

(1 + r)3
.
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We compute in {η = 1}, still using Theorem 2.5,∣∣∣∣Im(e−ψQZ̄

)∣∣∣∣ =
1

|QZ|2 |Im(e−ψ−iγQ̄Zeiγ)|

6 K(|Im(e−ψ−iγ − 1)Re(Q̄Zeiγ)|+ |Re(e−ψ−iγ)Im(Q̄Zeiγ)|)

6
K(λ, c, ‖Z −Qc‖Hexp

Qc
, ε0, Z)

1 + r

+K(λ, c, ‖Z −Qc‖Hexp
Qc
, ε0, Z)|Im(Q̄Zeiγ)|

6
K(λ, c, ‖Z −Qc‖Hexp

Qc
, ε0, Z)

(1 + r)

+K(λ, c, ‖Z −Qc‖Hexp
Qc
, ε0, Z)(|Qe−iγ − 1|+ |Z − 1|)

6
K(λ, c, ‖Z −Qc‖Hexp

Qc
, ε0, Z)

(1 + r)
.

This concludes the proof of this lemma.

C.2. Proof of Lemma 7.4. First, let us show that LQc(Φ)=QcL
′
Qc

(Ψ)

if Φ = QcΨ ∈ C2(R2,C). With equation (7.1), this implies that LQ(ϕ) =
QL′Q(ψ). We recall that

LQc(Φ) = −∆Φ− ic∂x2Φ− (1− |Qc|2)Φ + 2Re(QcΦ)Qc,

and we develop with Φ = QcΨ,

LQc(Φ) = TWc(Qc)Ψ−Qc∆Ψ− 2∇Qc · ∇Ψ− icQc∂x2Ψ + 2Re(Ψ)|Qc|2Qc,

thus, since (TWc)(Qc) = 0, we have LQc(Φ) = QcL
′
Qc

(Ψ).
Now, for ϕ = Qψ, we have

〈(1− η)LQ(ϕ) + ηQL′Q(ψ), (ϕ+ iγQ)〉 =

∫
R2

Re((1− η)LQ(ϕ)(ϕ+ iγQ))

+

∫
R2

η|Q|2Re

((
−∆ψ − 2

∇Q
Q
· ∇ψ + i−→c · ∇ψ

)
(ψ + iγ)

)
+η|Q|4Re2(ψ).

With Lemma 7.3, we check that all the terms are integrable indepen-
dently (in particular since ϕ + iγQ = Q(ψ + iγ) and ‖(ψ + iγ)(1 +
r)‖L∞({η=1}) < +∞ by Lemma 7.3). We recall that LQ(ϕ) = −∆ϕ+ i~c ·
∇ϕ− (1− |Q|2)ϕ+ 2Re(Q̄ϕ)Q, and thus∫

R2

Re((1− η)LQ(ϕ)(ϕ+ iγQ))

=

∫
R2

(1− η)(Re(i~c · ∇ϕϕ̄)− (1− |Q|2)|ϕ|2 + 2Re2(Q̄ϕ))

+

∫
R2

(1− η)Re(−∆ϕϕ̄) + γ

∫
R2

(1− η)Re(LQ(ϕ)iQ).
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We recall that 1−η is compactly supported and that ϕ ∈ C2(R2,C). By
integration by parts,∫

R2

(1− η)Re(−∆ϕϕ̄) =

∫
R2

(1− η)|∇ϕ|2 −
∫
R2

∇η ·Re(∇ϕϕ̄),

and we decompose∫
R2

(1− η)Re(ηLQ(ϕ)iQ) =

∫
R2

(1− η)Re(−∆ϕiQ+ ~c · ∇ϕQ)

−
∫
R2

(1− η)Re((1− |Q|2)ϕiQ).

By integration by parts, we have∫
R2

(1− η)Re(~c · ∇ϕQ) = −~c ·
∫
R2

−∇ηRe(ϕQ̄) + (1− η)Re(ϕ∇Q̄)

and∫
R2

(1−η)Re(−∆ϕiQ)=

∫
R2

−∇η · (Re(iϕ∇Q̄)−Re(i∇ϕQ̄))+

∫
R2

(1−η)Re(iϕQ̄).

Combining these computations, we infer∫
R2

Re((1− η)LQ(ϕ)(ϕ+ iγQ))

=

∫
R2

(1− η)(|∇ϕ|2 + Re(i~c · ∇ϕϕ̄)− (1− |Q|2)|ϕ|2 + 2Re2(Q̄ϕ))

−
∫
R2

∇η ·Re(∇ϕϕ̄)γ~c ·
∫
R2

∇ηRe(ϕQ̄)

−γ
(∫

R2

∇η · (Re(iϕ∇Q̄)−Re(i∇ϕQ̄))

)
+γ

∫
R2

(1− η)Re(ϕ(−~c · ∇Q̄+ i(1− |Q|2)Q̄+ i∆Q̄)).

Since −∆Q+ i~c ·∇Q−(1−|Q|2)Q = 0, we have −~c ·∇Q̄+ i(1−|Q|2)Q̄+
i∆Q̄ = 0, therefore∫

R2

Re((1− η)LQ(ϕ)(ϕ+ iγQ))

=

∫
R2

(1− η)(|∇ϕ|2 + Re(i~c · ∇ϕϕ̄)− (1− |Q|2)|ϕ|2 + 2Re2(Q̄ϕ))

−
∫
R2

∇η ·Re(∇ϕϕ̄)

−γ
(
−~c ·

∫
R2

∇ηRe(ϕQ̄) +

∫
R2

∇η · (Re(iϕ∇Q̄)−Re(i∇ϕQ̄))

)
.
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Until now, all the integrals were on a bounded domain (since 1 − η is
compactly supported).

Now, by integration by parts (which can be done thanks to Lemma 7.3
and Theorem 2.5),∫

R2

η|Q|2Re(−∆ψ(ψ + iγ)) =

∫
R2

∇η · |Q|2Re(∇ψ(ψ + iγ))

+

∫
R2

η∇(|Q|2) ·Re(∇ψ(ψ + iγ))

+

∫
R2

η|Q|2|∇ψ|2.

Now, we decompose (and we check that each term is well defined at each
step with Lemma 7.3 and Theorem 2.5)∫

R2

η|Q|2Re

((
−2
∇Q
Q
· ∇ψ

)
(ψ + iγ)

)
= −2

∫
R2

ηRe(∇QQ̄ · ∇ψψ̄)

−2

∫
R2

ηRe(∇QQ̄ · ∇ψ(iγ)),

with

−2

∫
R2

ηRe(∇QQ̄ · ∇ψψ̄) = −2

∫
R2

ηRe(∇QQ̄) ·Re(∇ψψ̄)

+2

∫
R2

ηIm(∇QQ̄) · Im(∇ψψ̄),

and since ∇(|Q|2) = 2Re(∇QQ̄), we have∫
R2

η|Q|2Re

((
−∆ψ − 2

∇Q
Q
· ∇ψ

)
(ψ + iγ)

)
=

∫
R2

η|Q|2|∇ψ|2 + 2

∫
R2

(1− η)Im(∇QQ̄) · Im(∇ψψ̄)

+

∫
R2

∇η · |Q|2Re(∇ψ(ψ + iγ)) + 2

∫
R2

ηIm(∇QQ̄) · Im(∇ψ(iγ))).

We continue. We have

2

∫
R2

ηIm(∇QQ̄) · Im(∇ψψ̄) = 2

∫
R2

ηIm(∇QQ̄) ·Re(ψ)Im(∇ψ)

−2

∫
R2

ηIm(∇QQ̄) ·Re(∇ψ)Im(ψ),
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and by integration by parts (still using Lemma 7.3 and Theorem 2.5),

−2

∫
R2

ηIm(∇QQ̄) ·Re(∇ψ)Im(ψ) = 2

∫
R2

ηIm(∇QQ̄) ·Re(ψ)Im(∇ψ)

+2

∫
R2

ηIm(∆QQ̄)Re(ψ)Im(ψ) + 2

∫
R2

∇η · Im(∇QQ̄)Re(ψ)Im(ψ).

We have Im(∆QQ̄) = Im(i~c · ∇Q − (1 − |Q|2Q)Q̄) = Re(~c · ∇QQ̄),
therefore

∫
R2

η|Q|2Re

((
−∆ψ − 2

∇Q
Q
· ∇ψ

)
(ψ + iγ)

)
=

∫
R2

η|Q|2|∇ψ|2 + 4

∫
R2

ηIm(∇QQ̄) ·Re(ψ)Im(∇ψ)

+2

∫
R2

ηIm(∇QQ̄) · Im(∇ψ(iγ)))

+2

∫
R2

ηRe(~c · ∇QQ̄)Re(ψ)Im(ψ)

+

∫
R2

∇η(|Q|2Re(∇ψ(ψ + iγ)) + 2Im(∇QQ̄)Re(ψ)Im(ψ)).

Now, we compute

~c ·
∫
R2

η|Q|2Re(i∇ψ(ψ + iγ)) = ~c ·
∫
R2

η|Q|2Re(∇ψ)Im(ψ + iγ)

−~c ·
∫
R2

η|Q|2Im(∇ψ)Re(ψ),

and by integration by parts (still using Lemma 7.3 and Theorem 2.5),

~c ·
∫
R2

η|Q|2Re(∇ψ)Im(ψ + iγ) = −~c ·
∫
R2

∇η|Q|2Re(ψ)Im(ψ + iγ)

−~c ·
∫
R2

η∇(|Q|2)Re(ψ)Im(ψ + iγ)

−~c ·
∫
R2

η|Q|2Re(ψ)Im(∇ψ).
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Since ∇(|Q|2) = 2Re(∇QQ̄), we infer∫
R2

η|Q|2Re

((
−∆ψ − 2

∇Q
Q
· ∇ψ − i~c · ∇ψ

)
(ψ + iγ)

)
=

∫
R2

η(|Q|2|∇ψ|2 + 4Im(∇QQ̄) ·Re(ψ)Im(∇ψ)− 2~c · Im(∇ψ)Re(ψ))

+2

∫
R2

ηIm(∇QQ̄) · Im(∇ψ(iγ)))

−2γ

∫
R2

ηRe(~c · ∇QQ̄)Re(ψ)

+

∫
R2

∇η · (|Q|2Re(∇ψ(ψ + iγ)) + 2Im(∇QQ̄)Re(ψ)Im(ψ))

+~c ·
∫
R2

∇η|Q|2Re(ψ)Im(ψ + iγ).

Combining these computations yields∫
R2

Re(Lexp
Q (ϕ)(ϕ+ iγQ)) = Bexp

Q (ϕ)

−γ
(
−~c ·

∫
R2

∇ηRe(ϕQ̄) +

∫
R2

∇η · (Re(iϕ∇Q̄)−Re(i∇ϕQ̄))

)
+2

∫
R2

ηIm(∇QQ̄) · Im(∇ψ(iγ)))

−2γ

∫
R2

ηRe(~c · ∇QQ̄)Re(ψ)

+

∫
R2

∇η · |Q|2Re(∇ψ(iγ))

−~c · γ
∫
R2

∇η|Q|2Re(ψ).

We compute, by integration by parts (still using Lemma 7.3 and Theo-
rem 2.5), that

2

∫
R2

ηIm(∇QQ̄) · Im(∇ψ(iγ))) = −2γ

∫
R2

ηIm(∇QQ̄) ·Re(∇ψ)

= 2γ

∫
R2

∇η · Im(∇QQ̄)Re(ψ)

+2γ

∫
R2

ηIm(∆QQ̄)Re(ψ),
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and since Im(∆QQ̄) = Re(~c · ∇QQ̄) and Re(∇ψ(iγ)) = γIm(∇ψ), we
have∫

R2

Re(Lexp
Q (ϕ)(ϕ+ iγQ)) = Bexp

Q (ϕ)

−γ
(
−~c ·

∫
R2

∇ηRe(ϕQ̄) +

∫
R2

∇η · (Re(iϕ∇Q̄)−Re(i∇ϕQ̄))

)
+2γ

∫
R2

∇η · Im(∇QQ̄)Re(ψ)

+γ

∫
R2

∇η · |Q|2Im(∇ψ)

−~c · γ
∫
R2

∇η|Q|2Re(ψ).

We check that Re(ϕQ̄) = |Q|2Re(ψ), Re(iϕ∇Q̄) = −Re(∇QQ̄)Im(ψ) +
Im(∇QQ̄)Re(ψ) and that

−Re(i∇ϕQ̄) = −Re(i∇QcQ̄ψ)−Re(i∇ψ)|Q|2

= Im(∇QQ̄)Re(ψ) + Re(∇QQ̄)Im(ψ) + Im(∇ψ)|Q|2,

thus concluding the proof of∫
R2

Re(Lexp
Q (ϕ)(ϕ+ iγQ)) = Bexp

Q (ϕ).

C.3. Proof of Lemma 7.6. For X = (X1, X2), ~c′ ∈ R2, we define, as
previously, the function

Q = Q~c′(· −X)eiγ .

We define, to simplify the notations,

Ω := B(d~c′,1, R) ∪B(d~c′,2, R)

and

Ω′ := B

(
(d~c′,1 + d~c′,2)

2
, R

)
,

which is between the two vortices. We define

G


X1

X2

δ1
δ2
γ

 :=


Re
∫

Ω
∂x1QQψ

6=0

Re
∫

Ω
∂x2QQψ

6=0

c2Re
∫

Ω
∂dV Qψ 6=0

cRe
∫

Ω
∂c⊥QQψ

6=0

Re
∫

Ω′ iψ

 ,

where ~c′ (used to defined Q = Q~c′(·−X)eiγ) is given by δ1 = δ|·|(c−→e2 , ~c′)

and δ2 = δ⊥(c−→e2 , ~c′).
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Here, we use the notation ∂cQ for ∂cQc|c=c′ . We note from (7.4) and
the definition of η that in Ω we have

Qψ = Z −Q.

First, we have

(C.4)

‖Qψ‖C1(Ω) 6 oλ,c‖Z−Qc‖Hexp
Qc

→0(1)

+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+ |γ|

)
,

which is a consequence of Lemma 7.1. By Lemma 5.1, we compute that∣∣∣∣∣∣∣∣∣∣
G


0
0
0
0
0


∣∣∣∣∣∣∣∣∣∣
6 oλ,c‖Z−Qc‖Hexp

Qc

→0(1).

We are going to apply the implicit function theorem on H = G−G(0),
and find a point A such that H(A) = G(0) since G(0) is small, which
implies G(A) = 0.

Let us compute ∂X2
G. We recall that Qψ ∈ C1(R2,C). Since Ω de-

pends on X, we have

∂X2Re

∫
Ω

∂x2QQψ
6=0 =

∫
∂Ω

Re(∂x2QQψ
6=0)

−
∫

Ω

Re(∂2
x2x2QQψ

6=0)

+

∫
Ω

Re(∂x2Q∂X2(Qψ 6=0)).

By estimate (C.4), we have∣∣∣∣∫
∂Ω

Re(∂x2QQψ
6=0)

∣∣∣∣+

∣∣∣∣∫
Ω

Re(∂2
x2x2QQψ

6=0)

∣∣∣∣
6 oλ,c‖Z−Qc‖Hexp

Qc

→0(1) +K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c

)
,

and since Qψ = Z −Q and ψ 6=0 = ψ − ψ0 in Ω, we check that,∫
Ω

Re(∂x2Q∂X2(Qψ 6=0)) = −
∫

Ω

|∂x2Q|
2 +

∫
Ω

Re(∂x2Q∂X(Qψ0)).
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Now, using Qψ = Z−Q, we check that, in B(d~c′,1, R), where x = r1e
iθ1 ,

2π∂X2(Qψ0) = ∂X2

(
Q

∫ 2π

0

Z −Q
Q

dθ1

)
= ∂x2Q

∫ 2π

0

Z −Q
Q

dθ1

+Q

∫ 2π

0

−∂x2Q
Q

dθ1 +Q

∫ 2π

0

−(Z −Q)∂x2Q

Q2
dθ1

+Q

∫ 2π

0

∂x2

(
Z −Q
Q

)
dθ1.

Therefore, we estimate (since R is a universal constant)∣∣∣∣∣∣
∫
B(d~c′,1

,R)

Re(∂x2Q∂X(Qψ0))

∣∣∣∣∣∣
6

∣∣∣∣∣∣
∫
B(d~c′,1

,R)

Re

(
∂x2QQ

∫ 2π

0

−∂x2Q
Q

dθ1

)∣∣∣∣∣∣+K‖Z −Q‖C1(Ω).

Let us show that, in B(d~c′,1, R),

Q

∫ 2π

0

−∂x2Q
Q

dθ1 = oc→0(1).

We have in this domain that Q
V 1

= 1 + oc→0(1) and |∇Qc − ∇Ṽ1| =

oc→0(1) by Lemmas 2.14 and 2.15, where V1 is the vortex centred
at d~c′,1. We deduce that, in B(d~c′,1, R),

Q

∫ 2π

0

−∂x2Q
Q

dθ1 = V1

∫ 2π

0

−∂x2V1

V1
dθ1 + oc→0(1).

Finally, by Lemma 2.1, we check that
∂x2V1

V1
has no 0-harmonic around

d~c′,1, therefore

(C.5) V1

∫ 2π

0

−∂x2V1

V1
dθ1 = 0.

By symmetry, the same proof holds in B(d~c′,2, R).

Adding up these estimates, we get∣∣∣∣∂X2Re

∫
Ω

∂x2QQψ
6=0 +

∫
Ω

|∂x2Q|
2

∣∣∣∣
6oλ,c‖Z−Qc‖Hexp

Qc

→0(1)+oc→0(1)+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+|γ|

)
.
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By a similar computation, we have∣∣∣∣∂X2Re

∫
Ω

∂dV Qψ 6=0 −
∫

Ω

Re(∂dV ∂x2Q)

∣∣∣∣
6oλ,c‖Z−Qc‖Hexp

Qc

→0(1)+oc→0(1)+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+|γ|

)
.

By Lemma 5.1 and Theorem 1.1 (for p = +∞), we have∣∣∣∣∫
Ω

Re(∂dV ∂x2Q)

∣∣∣∣ 6 ∣∣∣∣∫
Ω

Re(c2∂cQ∂x2Q)

∣∣∣∣
+

∣∣∣∣∫
Ω

Re((∂dV − c2∂cQ)∂x2Q)

∣∣∣∣ = oc→0(1).

Similarly, we check∣∣∣∣∂X2

∫
Ω

∂x1QQψ
6=0

∣∣∣∣− ∣∣∣∣∫
Ω

Re(∂x1Q∂x2Q)

∣∣∣∣
6oλ,c‖Z−Qc‖Hexp

Qc

→0(1)+oc→0(1)+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+|γ|

)
.

Still by Lemma 5.1, we have∣∣∣∣∫
Ω

Re(∂x1Q∂x2Q)

∣∣∣∣ = oc→0(1).

With the same arguments, we check that∣∣∣∣∂X2

∫
Ω

c∂c⊥QQψ
6=0

∣∣∣∣
6oλ,c‖Z−Qc‖Hexp

Qc

→0(1)+oc→0(1)+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+|γ|

)
.

Finally, with equations (2.6) to (2.10) and (C.4), we check easily that

∂X2

(
Re

∫
Ω′
iψ

)
6 oλ,c‖Z−Qc‖Hexp

Qc

→0(1)

+ oc→0(1) +K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+ |γ|

)
.
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We deduce that∣∣∣∣∣∣∣∣∣∣
∂X2G


X1

X2

δ1
δ2
γ

+


0∫

Ω
|∂x2Q|2

0
0
0


∣∣∣∣∣∣∣∣∣∣
6 oλ,c‖Z−Qc‖Hexp

Qc

→0(1) + oc→0(1)

+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+|γ|

)
.

We can also check, with similar computations, that∣∣∣∣∣∣∣∣∣∣
∂X1G


X1

X2

δ1
δ2
γ

+


∫

Ω
|∂x1Q|2

0
0
0
0


∣∣∣∣∣∣∣∣∣∣
6 oλ,c‖Z−Qc‖Hexp

Qc

→0(1) + oc→0(1)

+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+|γ|

)
.

We infer that this also holds with a similar proof for the last two
directions, namely∣∣∣∣∣∣∣∣∣∣
c2∂δ1G


X1

X2

δ1
δ2
γ

+


0
0∫

Ω
|c2∂cQ|2

0
0


∣∣∣∣∣∣∣∣∣∣
6 oλ,c‖Z−Qc‖Hexp

Qc

→0(1) + oc→0(1)

+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+|γ|

)
(using the fact that ∂dV is differentiable with respect to δ1, which is not
obvious for c2∂cQ and is the reason why we have to use this orthogonal-
ity) and∣∣∣∣∣∣∣∣∣∣
c∂δ2G


X1

X2

δ1
δ2
γ

+


0
0
0∫

Ω
|c∂c⊥Q|2

0


∣∣∣∣∣∣∣∣∣∣
6 oλ,c‖Z−Qc‖Hexp

Qc

→0(1) + oc→0(1)

+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+|γ|

)
.

We will only show for these directions that, in B(d~c′,1, R),∣∣∣∣Q∫ 2π

0

c2∂cQ

Q
dθ1

∣∣∣∣+

∣∣∣∣Q∫ 2π

0

c∂c⊥Q

Q
dθ1

∣∣∣∣ = oc→0(1),

and the other computations are similar to the ones done for ∂X2
F (using

Lemma 5.1).
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We recall from Lemma 2.3 that, in B(d~c′,1, R),

‖c2∂cQ− ∂dV ‖C1(B(d~c′,1
,R)) = oc→0(1),

where ‖∂dV + ∂x1
V1‖C1(B(d~c′,1,R)) = oc→0(1), V1 being centred around

a point d~c′ ∈ R2 such that

|d~c′ − d~c′,1| = oc→0(1).

Therefore, we check that∣∣∣∣Q∫ 2π

0

c2∂cQ

Q
dθ1

∣∣∣∣ 6 ∣∣∣∣V1

∫ 2π

0

∂x1V1

V1
dθ1

∣∣∣∣+ oc→0(1)

= oc→0(1)

from (C.5). Finally, we have from Lemma 2.7 that ∂c⊥Q=−x⊥,δ⊥(c−→e2,~c′) ·
∇Q, where x⊥,δ

⊥(c−→e2,~c′) is x⊥ rotated by an angle δ⊥(c−→e2 , ~c′). We note
that, in B(d~c′,1, R),∣∣∣∣Q∫ 2π

0

cd~c′,1 · ∇Q
Q

dθ1

∣∣∣∣ 6 ∣∣∣∣V1

∫ 2π

0

cd~c′,1 · ∇V1

V1
dθ1

∣∣∣∣+ oc→0(1)

and ∣∣∣∣V1

∫ 2π

0

cd~c′,1 · ∇V1

V1
dθ1

∣∣∣∣ = 0

by (C.5) and the same result for ∂x1 instead of ∂x2 . Therefore, since

|x⊥,δ⊥(c−→e2,~c′) − d~c′,1| 6 K in B(d~c′,1, R),∣∣∣∣Q∫ 2π

0

c∂c⊥Q

Q
dθ1

∣∣∣∣ 6
∣∣∣∣∣∣Q
∫ 2π

0

c(x⊥,δ
⊥(c−→e2,~c′) − d~c′,1) · ∇Q

Q
dθ1

∣∣∣∣∣∣+ oc→0(1)

6 Kc+ oc→0(1)

= oc→0(1).

Finally, we infer that∣∣∣∣∣∣∣∣∣∣
∂γG


X1

X2

δ1
δ2
γ

+


0
0
0
0

Re
∫

Ω′ Q


∣∣∣∣∣∣∣∣∣∣
6 oλ,c‖Z−Qc‖Hexp

Qc

→0(1) + oc→0(1)

+K

(
|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+ |γ|

)
.

The proof is similar to those of the previous computations, and we will
only show that, in Ω,

|∂γ(Qψ 6=0)| 6 oλ,c‖Z−Qc‖Hexp
Qc

→0(1).
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We have

|∂γ(Qψ 6=0)| = |∂γ(Qψ)− ∂γ(Qψ0)|

6

∣∣∣∣−iQ− Q

2π

∫ 2π

0

−iQ
Q

dθ

∣∣∣∣+ oλ,c‖Z−Qc‖Hexp
Qc

→0(1)

6 oλ,c‖Z−Qc‖Hexp
Qc

→0(1).

From Theorem 1.1, Re
∫

Ω′
Q = Re

∫
Ω′
−1 + oc→0(1) 6 −K < 0. We

conclude, by Lemma 5.1, that, for c and ‖Z − Qc‖Hexp
Qc

small enough,

dG is invertible in a neighbourhood of (0, 0, 0, 0, 0) of size independent
of ‖Z −Qc‖Hexp

Qc
. Therefore, by the implicit function theorem, taking c

small enough and ε(c, λ) small enough, we can find X, ~c′ ∈ R2, γ ∈ R
such that

|X|+ δ|·|(c−→e2 , ~c′)

c2
+
δ⊥(c−→e2 , ~c′)

c
+ |γ| 6 oλ,c‖Z−Qc‖Hexp

Qc

→0(1),

and satisfying

Re

∫
B(d~c′,1

,R)∪B(d~c′,2
,R)

∂x1QQψ
6=0 =Re

∫
B(d~c′,1

,R)∪B(d~c′,2
,R)

∂x2QQψ
6=0 =0,

Re

∫
B(d~c′,1

,R)∪B(d~c′,2
,R)

∂dV Qψ 6=0 =Re

∫
B(d~c′,1

,R)∪B(d~c′,2
,R)

∂c⊥QQψ
6=0 =0,

Re

∫
B((d~c′,1

+d~c′,2
)/2,R)

iψ = 0.
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[2] X. Chen, C. M. Elliott, and T. Qi, Shooting method for vortex solutions of a
complex-valued Ginzburg–Landau equation, Proc. Roy. Soc. Edinburgh Sect. A

124(6) (1994), 1075–1088. DOI: 10.1017/S0308210500030122.
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[9] P. Gravejat, Decay for travelling waves in the Gross–Pitaevskii equation, Ann.
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