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Abstract: We construct and study Sarkisov links obtained by blowing up smooth
space curves lying on smooth cubic surfaces. We restrict our attention to the case

where the blowup is not weak Fano. Together with the results of [5], which cover

the weak Fano case, we provide a classification of all such curves. This is achieved
by computing all curves which satisfy certain necessary criteria on their multisecant

curves and then constructing the Sarkisov link step by step.
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1. Introduction

The Sarkisov programme is a central tool in the study of birational
relations between Mori fibre spaces. It was first proved by Corti in [7]
for dimension 3 and by Hacon and McKernan in [13] in the general case.
In recent years there has been an increase in the number applications
of it, mostly to the study of birational automorphisms of certain Mori
fibre spaces. References [1], [2], [6], and [21] are but a few papers on the
subject. Thus, it is natural to study and try to classify links involving a
fixed Mori fibre space.

In this paper we will study links where one of the two Mori fibre
spaces is P3 // pt. Notice that since the Picard rank of P3 is 1, the first
step has to be a divisorial contraction f : X // P3. The main case of
interest for us is when f is the blowup of a smooth curve.

In [15], [16], and [9] the two sets of authors embark on a classifica-
tion of weak Fano 3-folds obtained by blowups of Fano 3-folds of Picard
rank 1 under different assumptions. In all three papers, the focus was
the classification, while the existence of links was more of a byproduct.
Moreover, the classification in the last mentioned paper was numerical
in nature, leaving the actual existence of some cases open.

Our approach is more closely related to that of [5]. There, the authors
give a complete list of pairs (g, d) such that the blowup of a general space
curve C of genus g and degree d produces a weak Fano 3-fold. This was
done via geometric methods, proving also the existence of all the listed
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cases. Moreover, focus was also given to the links produced by the second
KX -negative contraction. Thus, our focus here will be the case when the
blowup produces 3-folds which are not weak Fano but nonetheless still
fit into some Sarkisov link. In that case we will say that C induces a
Sarkisov link.

It is easy to show (and will also be evident in the course of this paper)
that not all curves induce a Sarkisov link. In a sense, we need a way to
control the KX -non-negative curves. One way to do so is to reduce to
the case when C is contained in a surface of degree less than or equal
to 4. In this case, all KX -non-negative curves will be contained in the
surface of low degree whose geometry we can exploit to better control
their behaviour. This was the main viewpoint in [5]. In this paper we
treat the case when the curve lies in a smooth cubic.

Smooth cubics in P3 are isomorphic to P2 blown up at six points.
Any curve on the blowup π : S // P2 of P2 along six points is linearly
equivalent to kL −

∑
miFi, where L is the pullback of a general line

under π and the Fi’s are the π-exceptional curves. In that case, we
will say that the curve is of type (k;m1, . . . ,m6). Identifying the cubic
with S, by classifying the curves that induce Sarkisov links we mean
classifying their type. We may also reduce to the case where mi ≥ mi+1

and k ≥ m1 + m2 + m3. With that in mind the main theorem of this
paper is the following:

Theorem 1.1. Let C ⊂ S ⊂ P3 be a curve lying on a smooth cubic
surface in P3. Suppose that the blowup of P3 along C is not weak Fano.
Then C induces a Sarkisov link if and only if its type (up to the assump-
tions mi ≥ mi+1 and k ≥ m1 +m2 +m3) belongs to one of the following
two sets:

T (II ) = {(3; 1, 1, 0, 0, 0, 0), (3; 2, 0, 0, 0, 0, 0),

(4; 2, 1, 1, 1, 0, 0), (5; 2, 1, 1, 1, 1, 1)};

T (I) = {(3; 2, 1, 0, 0, 0, 0), (5; 3, 1, 1, 1, 1, 1)}.

Moreover, the curves in T (II ) produce Sarkisov links of Type II to ter-
minal Fano 3-folds of Picard rank 1 while the curves in T (I) produce
Sarkisov links of Type I to terminal del Pezzo fibrations of degree 5 and 4
respectively.

This is proved by constructing the steps of the so-called 2-ray game
on X (see Subsection 3.2 for the definition of the 2-ray game).

The outline of the paper is as follows: In Section 3, we introduce some
key elements in the Sarkisov programme such as the notion of Sarkisov
links and that of the central model. We then define Mori dream spaces
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and explain their connection with the Sarkisov programme via the 2-ray
game. We also prove that any curve lying on a plane or quadric that
induces a Sarkisov link already appears in the literature.

In Section 4 we recall the basic theory of cubic surfaces. We then
establish some bounds that the type of a curve must satisfy in order
for it to induce a Sarkisov link and compute all possible curves that
satisfy these bounds. At this point we obtain the combined list of curves
appearing in Theorem 1.1.

In Section 5 we prove that all curves in the aforementioned list actually
produce Sarkisov links. This is achieved by constructing the first few
steps of the 2-ray game until we hit the weak Fano variety lying over the
central model, at which point the general theory assures the existence of
the links. Finally, in Section 6 we explore all steps of the links as well
as compute some invariants of the target variety.
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2. Notation and conventions

In this paper all varieties are assumed to be normal, projective, and
defined over C. A 3-fold is a 3-dimensional projective variety. For a va-
riety X we also define:

WDiv(X) := the group of Weil divisors modulo linear equivalence;
CDiv(X) := the group of Cartier divisors modulo linear equivalence;
N1(X/Z) := {Q-Cartier divisors

modulo numerical equivalence over Z} ⊗ R;
N1(X/Z) := {1-cycles modulo numerical equivalence over Z} ⊗ R.

For a Z-module M we define MQ := M ⊗ZQ. If z1, z2 are 1-cycles in X,
we write z1 ∼S z2 if there exists a surface S such that z1 and z2 are
linearly equivalent in S.

Finally, we denote by NE(X/Z) the cone in N1(X/Z) spanned by
effective 1-cycles and by Nef(X), Mov(X), Eff(X), and Eff(X) the cones
in N1(X) := N1(X/pt) spanned by nef, movable, effective, and pseudo-
effective divisors respectively.
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3. Preliminaries

3.1. The Sarkisov programme.

Definition 3.1. Let X be a normal variety with KX Q-Cartier and let
f : Y // X be a resolution of singularities. Write

KY ∼Q f
∗KX +

∑
aiEi.

We say that X is terminal if ai > 0 and canonical if ai ≥ 0.
Let ∆ =

∑
djDj be a Q-divisor on X such that KX + ∆ is Q-Cartier

and let g : Z // X be a log resolution, i.e. a resolution of X such that
Supp(g−1(D) + Exc(g)) has pure codimension 1 and is simple normal
crossings. Write

KY ∼Q f
∗(KX + ∆) +

∑
aiEi,

where f∗
(∑

aiEi
)

= −∆. We say that the pair (X,∆) is Kawamata log
terminal (KLT for short) if ai > −1 for every i.

Remark 3.2. Suppose that X is a smooth 3-fold and ∆ is a prime divisor.
If the support of ∆ is smooth, then for any q < 1 the pair (X, q∆) is KLT.

Indeed, in such cases we may choose the identity as a log resolution
of the pair and compare with the definition above.

First we recall the definition of a Sarkisov link.

Definition 3.3 (Sarkisov link). A Sarkisov diagram is a commutative
diagram of the form

X ′

p

��

χ // Y ′

q

��
X

φ

��

Y

ψ

��
S

s
  

T

t~~
R

which satisfies the following properties

(1) φ and ψ are Mori fibre spaces,
(2) p and q are divisorial contractions or isomorphisms,
(3) s and t are extremal contractions or isomorphisms,
(4) χ is a pseudo-isomorphism (i.e. an isomorphism when restricted to

a subset whose complement has codimension greater than 1),



Sarkisov Links Centered on Smooth Cubics 485

(5) all varieties of maximal dimension are Q-factorial and terminal,
(6) the relative Picard rank ρ(Z/R) of any variety Z in the diagram is

at most 2.

Property (6) implies that p is a divisorial contraction if and only if s is
an isomorphism. A similar statement holds for the right-hand side of the
diagram. Depending whether s or t is an isomorphism, we get four types
of Sarkisov diagrams

Type I Type II Type III Type IV

X ′ //

��

Y

ψ

��
X

φ

��

T

~~
S

X ′ //

��

Y ′

��
X

φ

��

Y

ψ

��
S

∼ // T

X //

φ

��

Y ′

��
S

  

Y

ψ

��
T

X //

φ

��

Y

ψ

��
S

  

T

��
R

The induced birational map X // Y is called a Sarkisov link. A diagram
of the form above that satisfies all but condition (5) will be called a
Sarkisov-like diagram.

Theorem 3.4 ([13, Theorem 1.1]). Let X
φ // S, Y

ψ // T be two Mori
fibre spaces where X, Y are Q-factorial and terminal. Then any bira-
tional map between X and Y can be decomposed as a sequence of Sarkisov
links and isomorphisms of Mori fibre spaces.

Notice that if the starting Mori fibre space is P3 φ // pt, then we
can only get links of Type I and II. More specifically, the birational
map P3 // Y can be factored as the inverse of a divisorial contrac-
tion followed by either a pseudo-isomorphism (Type I link) or a pseudo-
isomorphism and a divisorial contraction (Type II link). In the following
we study the case where the first divisorial contraction is the inverse of
blowing up a smooth curve. We say that such a curve C ⊂ P3 induces a
Sarkisov link if X := BlC P3 // P3 fits into a Sarkisov diagram.

As explained in [6, Remark 3.10], if Xm
// Yn is the pseudo-isomor-

phism part of a Sarkisov diagram, then its decomposition into anti-flips,
flops and flips takes the following form:

Xm

��

))

. . .oo

&&

X0

&&

oo oo // Y0

yy

// . . . //

xx

Yn

��

uu,,

Z

��
rrR
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where X0
oo // Y0 is either a flop over Z or X0

∼= Z ∼= Y0. In the first
case X0 and Y0 are Q-factorial and terminal weak Fanos over R, while in
the second case Z is Q-factorial and Fano over R. In both cases Z/R is
called the central model of the Sarkisov link/diagram.

3.2. Mori dream spaces and 2-ray games.

Definition 3.5. Let X and Y be normal, projective varieties.
A small Q-factorial modification (SQM for short) of X is a pseudo-

isomorphism f : X // X ′, where X ′ is again normal, projective and
Q-factorial.

A birational contraction f : X // Y is a birational map such that if
(p, q) : W // X×Y is a resolution of f , then every p-exceptional divisor
is also q-exceptional.

Definition 3.6 (Mori dream space). A normal projective variety X is
called a Mori dream space (MDS for short) if it satisfies the following:

(1) X is Q-factorial and Pic(X)Q = N1(X)Q,
(2) Nef(X) is generated by finitely many semi-ample divisors, and
(3) there are finitely many SQMs fi : X // Xi such that each Xi sat-

isfies (1) and (2) and Mov(X) is the union of f∗i Nef(Xi).

Proposition 3.7 ([14, Proposition 1.11]). Let X be an MDS. Then the
following hold.

(1) The Minimal Model Programme (MMP for short) can be carried
out for any divisor D on X. That is, for any D-negative extremal
ray of NE(X) the necessary contractions and flips exist, any se-
quence of flips terminates, and if at some point D becomes nef,
then at that point it becomes semi-ample.

(2) The fi’s in property (3) of Definition 3.6 are the only SQMs
of X. Moreover, there are finitely many birational contractions
gi : X // Yi such that

Eff(X) =
⋃
i

Ci,

where Eff(X) denotes the cone of effective divisors in N1(X) and

Ci = g∗i Nef(Yi) + R≥0{E1, . . . , Ek},
with E1, . . . , Ek being the prime divisors contracted by gi. The Ci’s
are called the Mori chambers of X.

(3) Adjacent Mori chambers are related by a D-flip for some D ∈
Div(X).
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Definition 3.8. A normal, projective, and Q-factorial varietyX is called

(1) weak Fano if the anti-canonical divisor −KX is nef and big;
(2) of Fano type if there is an effective Q-divisor ∆ such that the

pair (X,∆) is KLT and −(KX + ∆) is ample.

Lemma 3.9. If X is terminal and weak Fano, then X is of Fano type.

Proof: Since X is weak Fano, by definition −KX is big. Thus is can be
written as

−KX ∼ A+ E,

where A and E are ample and effective Q-divisors respectively (see [19,
Corollary 2.2.7]). For any k > 1 we write

k(−KX) = (k − 1)(−KX) + (−KX) ∼ (k − 1)(−KX) +A+ E.

Since −KX is nef, A′ := (k−1)(−KX)+A is ample and so −
(
KX + 1

kE
)

is ample. Moreover, we can choose k sufficiently large such that the
pair

(
X, 1

kE
)

is KLT.

Proposition 3.10 ([4, Corollary 1.3.2]). If X is of Fano type, then X
is a Mori dream space.

Property 3.7(1) is a fundamental property of MDSs and allows us to
play 2-ray games and possibly construct Sarkisov links.

Proposition 3.11. Let C⊂P3 be a smooth curve and X :=BlC P3 // P3

the blowup of P3 along C. Then C induces a Sarkisov link if and only
if X is an MDS and for every birational contraction f : X // Y (see
Definition 3.5) such that Y is Q-factorial, and Y is also terminal.

Proof: Suppose that C induces a Sarkisov link and let X0, Y0 be the
varieties over the central model Z/pt of the Sarkisov link

X0

$$

oo // Y0

zz
Z

��
pt

so that X0
// Y0 is a flop or an isomorphism. Then X0 is a terminal

weak Fano 3-fold, hence by Lemma 3.9 of Fano type and in turn an MDS.
By Proposition 3.7(2) as well as property (3) of Definition 3.6, X is also
an MDS.

Let g1, g2 denote the birational contractions with targets the Mori
fibre spaces P3/pt and Y/T . We claim that F1 := g∗1 Nef(P3) and F2 :=
g∗2 Nef(Y ) are extremal in the movable cone. Indeed, let D be a divisor
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in Fi and denote by Ei the exceptional divisor of gi. Then Ei is cov-
ered by infinitely many gi-exceptional curves which are Ei-negative. For
any κ > 0, κD+Ei is negative against all those curves and thus must con-
tain them all and by extension Ei. Thus κD+Ei is not movable, proving
the claim. Moreover, since F1 and F2 are 1-dimensional and ρ(X) = 2
they generate the movable cone of X. Thus, by (2) and (3) of Proposi-
tion 3.7, the Sarkisov link factors through all the SQMs fi : X // Xi

1

so all of them appear in the Sarkisov diagram, making all Xi terminal.
Moreover, the only birational contractions of X with Q-factorial targets
are X // P3 and X // Y , both of which are terminal.

Conversely, if X is an MDS, then we can run the so-called 2-ray
game. This is explained in detail in [6, Section 2F]; here we give a rough
idea. Choose an ample divisor A on X and run the (−A)-MMP. Any such
MMP must terminate with a Mori fibre space. Since ρ(X) = 2 on the
first step of the (−A)-MMP we have a choice between two (−A)-negative
rays to contract. One MMP outputs P3/pt, while the other outputs an-
other Mori fibre space Y/T . Now using the fact that the targets of all
SQMs are terminal, one can check that the diagram produced by this
process satisfies all the properties of Definition 3.3.

3.3. Notation and setup.

Notation 3.12. Throughout the rest of the paper and unless otherwise
stated, C will be a smooth space curve and π : X // P3 will be the
blowup of P3 along C. We will denote by f the numerical class of a fibre
of π over a point of C and by l the numerical class of the pullback of a
general line in P3.

Dually in N1(X), we will denote by E the class of the π-exceptional
divisor and by H the class of the pullback of a general hyperplane in P3.
These classes generate their respective vector spaces and the intersection
matrix is determined by the relations H · l = 1, H · f = E · l = 0, and
E · f = −1. Note that in this notation we have the relation KX ∼
−4H + E.

The Mori cone NE(X) of X is a 2-dimensional cone, with one extremal
ray generated by f which is KX -negative. Thus, whether or not X is a
weak Fano is determined by the sign of the second generating ray relative
to the canonical divisor.

By abuse of notation, we will also denote by H and l the classes of a
hyperplane and a line in N1(P3) and N1(P3) respectively.

1Uniquely, in fact, since N1(X) is 2-dimensional and so any path between F1 and F2

hits all other chambers in a unique order.
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Lemma 3.13. The Mori cone NE(X) is spanned by two extremal rays,
the first generated by f and the second by the class l − rf , with r ∈ R
maximal among the pseudo-effective classes.

Dually, Eff(X) is spanned by the two extremal rays, the first generated
by E and the second by the class H − rE, with r ∈ R maximal among
the pseudo-effective classes.

Proof: It is clear that f generates an extremal ray since it is the fibre
of a contraction. Let l− sf be a pseudo-effective class, with s ≤ r, then
clearly

l − sf = l − rf + (r − s)f.
The proof is similar for the dual statement.

Remark 3.14. The effective representatives of an effective class dH −
mE, with d,m ∈ N, are strict transforms of surfaces of degree d having
multiplicity m along C.

Similarly, the effective representatives of an effective class dl − mf
which do not lie on E are strict transforms of curves of degree d meet-
ing C at m points counted with multiplicities, that is, the scheme-
theoretic intersection of C with such a representative is a 0-dimensional
scheme of length m.

We will call such a curve an m-secant curve to C, and when d = 1,
an m-secant line, when d = 2 an m-secant conic, and so on.

We note that if C induces a Sarkisov link, then by Proposition 3.11
X must be an MDS and thus its cone of curves is closed and rationally
generated. In that case the second extremal ray is generated, over Q, by
a class of the form dl−mf with m

d maximal among all effective classes.

3.4. Curves in planes or quadrics. We now show that if C lies on
a plane or quadric, then it induces a Sarkisov link if and only if the
blowup BlC P3 is Fano. All such curves have been classified in [5] and
so any open cases cannot lie on surfaces of degree 1 or 2. But first we
prove a result which is essential for the rest of the paper.

Proposition 3.15. Let χ : Y // Y ′ be an anti-flip between Q-factorial
terminal 3-folds, z be a curve in Y which is not in the indeterminacy
locus of χ, and z′ be its strict transform under χ. Then

KY · z ≤ KY ′ · z′.

In particular, if X is the blowup of a Fano 3-fold of Picard rank 1 such
that it admits an infinite number of KX-non-negative curves, then X
does not fit into a Sarkisov link.
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Proof: Let

W
p

~~

q

  
Y

χ // Y ′

be a resolution of indeterminacies of χ. Writing the ramification formulas
for p and q and comparing them we get

q∗KY ′ = p∗KXY
+ (Ep − Eq),

where Ep and Eq are sums of p and q-exceptional divisors, respectively.
Since χ is a pseudo-isomorphism, SuppEp = SuppEq. Moreover, the
discrepancies decrease under an anti-flip (see [20, Lemma 9.1.3]) and so
Ep−Eq ≥ 0. Let zW ⊂W be the curve dominating both z and z′. Then

KY ′ ·z′ = q∗KY ′ ·zW = p∗KY ·zW +(Ep−Eq) ·zW ≥ p∗KY ·zW = KY ·z.
Suppose now that X is as described in the statement. Assuming X

fits into a Sarkisov diagram we will derive a contradiction. The Mori
cone NE(X) has two extremal rays, one of which, which we will denote
by R, is KX -non-negative and the other, corresponding to the blowup
morphism, is KX -negative. Since X fits into a Sarkisov diagram, R must
also be contractible. We distinguish two cases.

If −KX is nef, then all the KX -non-negative curves are actually
KX -trivial curves. In that case R has to contain all of the infinitely
many KX -trivial curves, thus the contraction f : X // Y of R is not
small. If it is not divisorial, then the induced diagram cannot be a Sark-
isov link. Finally, if f is divisorial, writing the ramification formula for f
and intersecting both sides with a contracted curve, we get that X has
canonical but not terminal singularities, giving us a contradiction to the
existence of the Sarkisov diagram.

On the other hand, if −KX is not nef, playing the 2-ray game on X
and after a finite number of KX -positive steps, i.e. anti-flips, we must
arrive at the variety X0 lying over the central model of the link, which is
either Fano or weak Fano. By the first part of the proposition, X0 must
still contain an infinite number of KX0 -non-negative curves. If X0 is
Fano, this is already a contradiction. If X0 is weak Fano, then the con-
traction of the KX0

-trivial ray of NE(X0) must be small, i.e. contain a
finite number of curves, again a contradiction.

The following statement follows implicitly from [5].

Proposition 3.16. Let C be a smooth curve contained in a plane or
quadric. If C induces a Sarkisov link, then X is weak Fano.
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Proof: If C is contained in a plane or quadric (in [5, Proposition 3.1] the
authors prove that if the blowup of X is not weak Fano), then C admits
an infinite number of m-secant lines, with m ≥ 5. By Remark 3.14, their
class in N1(X) is l−mf and thus correspond to KX -positive curves. By
Proposition 3.15, we conclude that C does not induce a Sarkisov link.

Remark 3.17. We note that, by Proposition 3.16, the lists of [5] are
exhaustive in the cases where the curve is contained in a plane or quadric.
That is, every curve that lies on a plane or quadric whose blowup induces
a Sarkisov link is studied and appears in their lists.

4. Curves on smooth cubic surfaces

The goal of this section is to give necessary conditions for curves lying
on smooth cubic surfaces to induce a Sarkisov link.

If S is the blowup of P2 along six points p1, . . . , p6 in general position
(i.e. no three on a line and no six on a conic), then −KS is ample and
the anti-canonical system gives an embedding in P3, where the image is
a smooth cubic surface. Conversely, any smooth cubic surface in P3 is
obtained in the same way (see [5, Section 4]). In the following we will
denote the image of S under the anti-canonical system again by S and
when there is no confusion we will not distinguish between the two.

We recall some basic facts about curves on S. Denote by L the nu-
merical class of the pullback of a general line under S // P2 and by Fi
the class of the fibre over pi. These classes generate N1(S). The in-
tersection form is given by the diagonal (1,−1, . . . ,−1). We will say
that a 1-cycle z ∈ N1(S) is of type (k; m1,m2,m3,m4,m5,m6) if its
class is numerically equivalent to kL −

∑
m1F1. The canonical class

on S is then of type (−3; 1, . . . , 1). Moreover, the cone of curves NE(S)
is closed and generated by the classes of the (−1)-curves. There are
27 such classes corresponding to the six exceptional curves, the strict
transforms of the 15 lines through two of the points or the six conics
through five of the points. Their classes are respectively Fi, L−Fi−Fj ,
and 2L− F1 − · · · − F6 + Fi. Their images are lines in P3 which we will
denote by ei, li,j , and ci respectively.

We stick to the notation introduced in Notation 3.12. For the follow-
ing statements we will also always assume that C lies on a smooth cubic
surface S.

Proposition 4.1. Let γ be a curve in X such that γ ∼ dl−mf with m
d >

3. Then C admits an n-secant line with n ≥ m
d . In particular, X is weak

Fano if and only if C admits no m-secant line with m ≥ 5.
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Proof: We write T for the strict transform of S. Then T and S are
isomorphic and

T · γ = (3H − E)(dl −mf) = 3d−m < 0,

thus γ is contained in T . The cone of curves of T is generated by the
strict transforms of the 27 lines li in S ⊂ P3 and so we can write

γ ∼T l1 + · · ·+ lk =⇒ γ ≡X l1 + · · ·+ lk.

Intersecting with the restriction of a general hyperplane of P3 we get
that k = d. Intersecting with E we get

E(l1 + · · ·+ ld) = m.

Therefore, at least one of the lines li intersects E at n points counted
with multiplicity, with n ≥ m

d .

By the previous lemma we see that the property of X not being weak
Fano is equivalent to the existence of at least one m-secant line with m >
4. On the other hand, in the following, we prove that C must not admit
“too many” such lines.

Lemma 4.2. Let l1, l2 be two distinct, intersecting lines on a smooth
cubic surface S. Then there exists a pencil of conics C on S such that
each element c ∈ C is linearly equivalent to l1 + l2.

Proof: Denote by P1 the unique plane containing both l1 and l2, and let
l3 be the residual line of the intersection of P1 with S. Then the pencil
of planes containing l3 gives us a residual pencil of conics on S which
are linearly equivalent to l1 + l2.

Lemma 4.3. Suppose that C admits two distinct, m1 and m2-secant
lines l1 and l2 which intersect each other. If m1 +m2 ≥ 8, then C does
not induce a Sarkisov link.

Proof: By Lemma 4.2 there is a pencil of conics such that each element
intersects C at m1 + m2 points counted with multiplicity. Their strict
transforms on X give us an infinite family of KX -non-negative curves.
We conclude by Proposition 3.15.

We now set up an algorithm to compute all the curves on smooth
cubics, candidates to induce a Sarkisov link. We note that the conditions
we will impose at this stage are necessary but not sufficient to guarantee
that the curve induces a Sarkisov link.
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Remark 4.4. Suppose that C is of type (k;m1,m2,m3,m4,m5,m6). Up
to reordering, we may assume

m1 ≥ m2 ≥ · · · ≥ m6.

Moreover, as explained in [5, Set-up 4.1], by performing a number of
quadratic transformations

S

����
P2 // P2

based on three of the six points and changing the left-hand side morphism
to the right-hand side one we may assume that

k ≥ m1 +m2 +m3.

In what follows, we will assume that the type of C satisfies these condi-
tions.

Lemma 4.5. Let C ⊂ S be a curve of type (k;m1,m2,m3,m4,m5,m6).
Then we have the following inequalities for the intersection of C with the
various lines on S:

C · c1 ≥ C · L, C · l5,6 ≥ C · li,j , C · lk,6 ≥ C · lk,j , C · e1 ≥ C · ei,

where L is any line on S.

Proof: We have

C · c1 = 2k− (m2 + · · ·+m6) ≥ 2k− (m1 + · · ·+ m̂i + · · ·+m6) = C · ci,

where the hat notation means that the corresponding term does not
appear in the expression. In a similar manner we get the rest of the
inequalities.

Using these inequalities as well as Lemma 4.3 we will bound the quan-
tities k,m1, . . . ,m6.

Proposition 4.6. Let C ⊂ S be a curve. Suppose that C is of type
(k;m1,m2,m3,m4,m5,m6), that C induces a Sarkisov link, and that
X := BlC P3 is not weak Fano. Then

k ≤ 9, m1 ≤ 8, and m2, . . . ,m6 ≤ 2.

Proof: Since we assume that X is not weak Fano and by Proposition 4.1,
C admits an m-secant line with m ≥ 5. Thus, by Lemma 4.5 we have
C · c1 ≥ 5.
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For C to induce a Sarkisov link, by Lemma 4.3 we need to make sure
that the sum of any two intersecting lines has intersection less than 8
with C. Applying this to the lines intersecting c1 we get

C · (c1 + l1,j) ≤ 7 and C · (c1 + en) ≤ 7

for n 6= 1. The second inequality above gives C · en ≤ 2, hence

m2, . . . ,m6 ≤ 2.

Now the inequality C · (c1 + l1,j) for j = 6 together with the bounds on
the m2, . . . ,m6 give

(?) 3k −m1 − · · · −m5 − 2m6 ≤ 7⇒ 3k ≤ 19 +m1.

For k = 1, the curve C cannot have any m-secants with m ≥ 5. Since
we assume that X is not weak Fano, we get k 6= 1 and so by Bézout’s
theorem on P2 we get k > m1. Combining with (?) we get the last
bounds k ≤ 9 and m1 ≤ 8.

Using the bounds and checks introduced above we can set up an al-
gorithm to compute all the candidate curves. They are presented in the
table below.

# Type (C · c1, . . . , C · c6) (C · l1,2, . . . , C · l5,6) deg(C) g(C)

1 (3; 1, 1, 0, 0, 0, 0) (5, 5, 4, 4, 4, 4) (1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3) 7 1
2 (3; 2, 0, 0, 0, 0, 0) (6, 4, 4, 4, 4, 4) (1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3) 7 0
3 (4; 2, 1, 1, 1, 0, 0) (5, 4, 4, 4, 3, 3) (1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 4) 7 2
4 (5; 2, 1, 1, 1, 1, 1) (5, 4, 4, 4, 4, 4) (2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3) 8 5
5 (3; 2, 1, 0, 0, 0, 0) (5, 4, 3, 3, 3, 3) (0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3) 6 0
6 (5; 3, 1, 1, 1, 1, 1) (5, 3, 3, 3, 3, 3) (1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3) 7 3

Table 1. List of candidate curves.

Remark 4.7. The curves above are exactly the ones of Theorem 1.1.

5. Existence of the links

In the previous section we produced a table of types of curves lying on
some smooth cubic, which satisfy the necessary criterion set by Propo-
sition 3.15 to induce a Sarkisov link. In this section we will prove that
they actually do induce Sarkisov links.

Again, unless otherwise stated, we stick to the notation introduced in
Notation 3.12.

5.1. Some properties of the surfaces Fn. For a proof of the facts
that follow see [3, Section IV].
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We will denote by Fn the P1-bundle p : P(OP1⊕OP1(n)) // P1. Then
Fn admits a unique section σ with self-intersection −n. We will call any
section of self-intersection n an n-section. If we denote by f a fibre of p,
then the Mori cone NE(Fn) is spanned by the classes of σ and f . The
intersection matrix is (

−n 1
1 0

)
with respect to the basis {σ, f}. The canonical class is KFn

= −2σ−(n+
2)f . Finally, Fn is smooth and rational, so hi(Fn,OFn

) = hi(P2,OP2) =
0 for i ≥ 1. Thus the Riemann–Roch theorem takes the form

χ(OFn
(D)) =

D(D −KFn
)

2
+ 1

for any D ∈ Div(Fn). In particular, if D ∼ aσ + bf , we have

χ(D) = (a+ 1)(b+ 1)− na(a+ 1)

2
.

We now prove a lemma on the cohomology of divisors on Fn.

Lemma 5.1. Let D be a divisor on Fn. Then the following hold:

(1) if D · f = −1, then hi(Fn, D) = 0 for every i ≥ 0;
(2) if D · f ≥ 0 and D · σ ≥ −1, then h1(Fn, D) = 0.

Proof: The proof can be found in [8]; we merely replicate it for the
convenience of the reader.

Assume first that D·f = −1. Then D is linearly equivalent to −σ+kf
for some k ∈ Z. Since NE(Fn) is spanned by the classes of σ and f we
get that h0(Fn,−σ + kf) = 0 and by Serre duality, h2(Fn,−σ + kf) =
h0(Fn,−σ − (n + 2 + k)f) = 0. Finally, using Riemann–Roch one can
compute χ(Fn, D) = 0 and so h1(Fn,−σ+kf) = 0. Hence, we obtain (1).

Now assume that D · f = k ≥ 0 and D · σ ≥ −1. Define N :=
D − (k + 1)σ. We will show by induction on i that h1(Fn, N + iσ) =
h1(Fn, D − (k + 1− i)σ) = 0 for every 0 ≤ i ≤ k + 1. For i = 0 we have
N · f = −1 and thus we are done by (1).

For the inductive step we assume that h1(Fn, N + (i − 1)σ) = 0 and
consider the short exact sequence

0 // OFn
(N + (i− 1)σ) // OFn

(N + iσ) // Oσ(N + iσ) // 0.

Then the long exact sequence in cohomology yields

H1(Fn,O(N+(i−1)σ)) // H1(Fn,O(N+ iσ)) // H1(σ,O(N+ iσ))

∼= H1(P1,OP1(κ)) = 0,

where the last equality follows from the fact that κ = D·σ+n(k+1−i) ≥
−1. Thus using the inductive hypothesis we get h1(Fn, N − iσ) = 0.
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For i = k + 1 we get h1(Fn, N + (k + 1)σ) = h1(Fn, D) = 0. This
is (2).

In the following, Fn will denote the surface obtained by contracting
the (−n)-section of Fn. To conclude the subsection, we prove a lemma
about the intersection theory on Fn.

Lemma 5.2. Let φ : Fn // Fn be the contraction of the (−n)-section
on Fn. Then WDiv(Fn) = 〈f̄〉 and CDiv(Fn) = 〈σ̄+〉 with σ̄+ = nf̄ ,
where σ̄ and f̄ denote the images of an n-section and a fibre respectively.
We also have σ̄2

+ = n, which implies that f̄2 = 1
n .

Proof: The morphism φ is given by the linear system |σ + nf | (i.e. the
linear system of n-sections). The rank of CDiv(Fn) is 1 and a general
hyperplane section is the image of an n-section, thus CDiv(Fn) = 〈σ̄〉.
Moreover, (σ + nf)f = 1, thus the image of a fibre is a line in PN and
so WDiv(Fn) = 〈f̄〉.

The hyperplane sections passing through the singular point φ(σ) are
images of members of |σ+nf | which have σ as an irreducible component.
Since σ is contracted, hyperplane sections through φ(σ) are equivalent
to nf̄ , which implies that σ̄+ = nf̄ .

Finally, since an n-section does not meet the exceptional divisor of φ
we have σ̄2

+ = (σ + nf)2 = n, from which we also conclude that f̄2 =(
1
n σ̄+

)(
1
n σ̄+

)
= 1

n .

5.2. X is a Mori dream space.

Proposition 5.3. Let C ⊂ P3 be a smooth curve lying on a smooth
cubic surface S ⊂ P3. Then X := BlC P3 is an MDS.

Proof: If X is weak Fano, then by Lemma 3.9 and Proposition 3.10 it is
an MDS.

Suppose X is not weak Fano. By Lemma 3.13, NE(X) is generated
by f and dl − mf with m

d > 4 and then, by Proposition 4.1, d = 1
and m ≥ 5. Moreover, KX ∼ −4H + E and S ∼ 3H − E, where by
abuse of notation S also denotes the strict transform of S in X. The
intersections among those classes are given by the table

f l −mf
S 1 3−m
KX −1 −4 +m

Then, by Remark 3.2, for any rational number 0 < q < 1 the pair (X, qS)
is KLT. If moreover 1− 1

m−3 < q < 1, then intersecting −(KX+qS) with
both f and l−mf we get strictly positive numbers. Kleiman’s criterion
for ampleness (see [20, Theorem 1-2-5] for a statement and [18] for a
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proof) implies that −(KX + qS) is ample and so (X, qS) is log Fano.
Thus, by definition, X is of Fano type and by Proposition 3.10, X is
an MDS.

5.3. Construction of the pseudo-isomorphisms.

Proposition 5.4. Let l be the strict transform of an m-secant line under
X // P3. If m ≥ 3, then

Nl/X ∼= OP1(−1)⊕OP1(3−m),

where Nl/X denotes the normal bundle of l in X.

Proof: Consider the short exact sequence

0 // Nl/S // Nl/X // (NS/X)|l // 0

obtained by dualizing the conormal exact sequence (see [12, p. 79]). We
have

deg(NS/X)|l = S|S · l = (3H − E)|S · l = (−3KS − C) · l = 3−m.
Moreover, deg(Nl/S) = −1 because l is a (−1)-curve in S. Since l is a
rational curve, all line bundles on it are of the form O(d), where d is the
degree of the bundle and so the exact sequence above becomes

(†) 0 // OP1(−1) // Nl/X // OP1(3−m) // 0.

Extensions of line bundles

0 // L // M // N // 0

are classified by H1(X,N−1 ⊗L) (see [11, p. 31]) and in the case of (†)
by H1(P1,OP1(m− 4)). However,

h1(P1,OP1(m− 4)) = h0(P1,OP1(2−m)) = 0

since m ≥ 3. Thus (†) is the unique extension and is thus trivial. We
conclude that Nl/X ∼= OP1(−1)⊕OP1(3−m).

Lemma 5.5. Let C be a smooth rational curve lying in the smooth locus
of a 3-fold X with normal bundle NC/X ∼= OC(α)⊕OC(β) for some
α ≥ β ∈ Z. Let E ⊂ X ′

p // C ⊂ X be the blowup of C with exceptional
divisor E = P(NC/X) ∼= Fα−β and let C ′ be the unique negative section
of E // C or a 0-section if E ∼= F0.

(1) We have E · C ′ = α; in particular, E|E ∼E −C ′ + βf .
(2) Suppose that S ⊂ X is a surface containing C which is smooth

along C and that (C2)S = κ. If S′ is the strict transform of S,
then D := S′|E ∼E C ′ + (α− κ)f .

(3) If NC′/X′ = OC(α′)⊕OC(β′) with α′ ≥ β′, then α′ + β′ = β. If
furthermore 2α− β < 2, then α′ = β − α and β′ = α.
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Proof: We first use the adjunction formula on C ′ ⊂ E and C ⊂ X to
obtain

KE ·C ′ = 2g−2−(C ′)2
E and KX ·C = 2g−2−degNC/X = 2g−2−(α+β)

respectively. We have

KE = (KX′ + E)|E = (p∗KX + 2E)|E =⇒ KE · C ′

= p∗KX · C ′ + 2E · C ′ = KX · C + 2E · C ′ =⇒ E · C ′

=
KE · C ′ −KX · C

2
=

2g − 2 + α− β − (2g − 2) + α+ β

2
= α.

We can then write E|E ∼E kC ′ + lf and use the facts that E · f = −1
and E · C ′ = α to deduce that k = −1 and l = β. This is (1).

Since S is smooth along C, D ⊂ S′
p // C ⊂ S is an isomorphism.

We write D ∼E kC ′ + lf . By S being smooth (hence of multiplicity 1)
along C we get k = 1. We also have

κ = (D)2
S′ = D ·E = (C ′+ lf)(−C ′+βf) = α−β+β− l =⇒ l = α−κ.

This is (2).
Finally, we have

degNC′/X′ = 2g − 2−KX′ · C ′ = 2g − 2− (p∗KX + E) · C ′

= (2g − 2−KX · C)− E · C ′ = degNC/X − α
=⇒ α′ + β′ = α+ β − α = β.

Moreover, since C ′ ⊂ E and E ⊂ X ′ are regular embeddings, the
normal bundle sequence (see [12, Proposition 3.4]) yields

0 // NC′/E
// NC′/X′ // NE/X′ |C′ // 0,

which is actually

0 // OC′(β − α) // OC′(α′)⊕OC′(β′) // OC′(α) // 0.

Such extensions are classified by

Ext(OC′(β−α),OC′(α)) ∼= H1(P1,O(β−2α)) ∼= H0(P1,O(−2+2α−β)).

If 2α − β < 2, then Ext(OC′(β − α),OC′(α)) = 0, thus the extension
above is trivial and we deduce (3).

Lemma 5.6. Let N be a nef divisor such that N⊥ = R≥0C, where C is
the numerical class of a curve, and let E be any divisor with E · C < 0.
Then there exists some r0 > 0 such that for each r ≥ r0 the divisor rN−
E is ample.
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Proof: First we fix a norm ‖·‖ on N1(X) such that ‖C‖ = 1. We consider
the linear functionals

n : N1(X) // R , e : N1(X) // R ,
C

� // N · C , C
� // E · C .

Since N1(X) is a finite-dimensional vector space, the functionals n, e are
continuous.

Let U be a neighbourhood of C such that for all x ∈ U , e(x) < 0.
Then for every x ∈ U ∩NE(X) and ε ≥ 0 we have (N − εE)x > 0.

On the other hand, the set S = (S1 \ U) ∩ NE(X) is a closed subset
of the compact set S1, and thus compact. This implies that n(S) is also
compact and is contained in (0,+∞), since R≥0C ∩S = ∅. Let m be the
minimum of n(S). Then for any x ∈ S and ε > 0 we have

(N − εE)x = N · y − εE · y ≥ m− ε‖E‖‖y‖ = m− ε‖E‖.
Then for every ε ≤ ε0 = m

‖E‖ , N − εE is strictly positive on NE(X)∩ S1

and thus on the whole NE(X). Finally we set r0 = 1
ε0

, r = 1
ε , and

multiply N−εE by r. Kleiman’s criterion for ampleness yields the desired
result.

Next we prove a base-point-free type lemma.

Lemma 5.7. Let C be a smooth rational curve lying on a smooth sur-
face E in the smooth locus of a 3-fold X. We assume that:

(1) C generates an extremal ray of NE(X);
(2) E ∼= Fn;
(3) E · C < 0;
(4) C ⊂ E is the unique (−n)-section of Fn;
(5) C is the unique irreducible curve on X whose numerical class lies

on R≥0[C] ⊂ NE(X).

Then C is contractible, i.e. there exists a birational morphism X // X ′

that contracts C and only C.

Proof: Since C generates an extremal ray of NE(X), there exists a nef
divisor N such that N⊥ = R≥0[C]. By Lemma 5.6, the divisor A :=
rN − E is ample for r � 0. Then there exists some k0 ∈ N such that
h1(X, kA) = 0 for every k ≥ k0. We fix such k and using induction on i
we will prove that h1(X, kA+ iE) = 0 for 0 ≤ i ≤ k − 1.

For the base case i = 0 we get h1(X, kA) = 0 by our choice of A
and k. For the inductive step we assume that h1(X, kA+ (i− 1)E) = 0
and consider the exact sequence

H1(X,O(kA+(i−1)E)) // H1(X,O(kA+iE)) // H1(E,O(kA+iE)).
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By possibly repicking r even larger, again using Lemma 5.6, we may
assume that kA + iE is positive against any fibre of E ∼= Fn // P1.
Moreover, it is also positive against C and thus using Lemma 5.1 we get
h1(E, kA+iE) = 0. Consequently, using the inductive hypothesis we get
that h1(X, kA + iE) = 0 for 0 ≤ i ≤ k − 1. Especially, for i = k − 1 we
get h1(X, krN − E) = 0.

Notice that rN = A + E, where A is ample and E is effective. This
implies that among the global sections of rN there are sections of the
form si = aiei ∈ H0(X,A)⊗H0(X,E) ⊆ H0(X, rN). Since A is ample,
this immediately implies that rN has no base points away from E.

As for any base points on E, we consider the exact sequence

H0(X,O(krN)) // H0(E,O(krN)) // H1(X,O(krN − E)) = 0.

Then krN |E is a nef divisor on a smooth surface, zero only against a ra-
tional curve of negative self-intersection. Consequently, it is semi-ample
(see for example the proof of [20, Theorem 1-1-6]). Finally, using the
exact sequence above we may lift sections of krN |E to sections of krN ,
proving that the stable base locus of N does not meet E. Thus N is
semi-ample.

Proposition 5.8 (The (−1,−m)-flip). Let C be smooth rational curve
lying in the smooth locus of a 3-fold X. Suppose that X // Z is a con-
traction morphism, contracting only C and that the normal bundle NC/X
of C in X is isomorphic to OP1(−1)⊕OP1(−m) with 1 ≤ m ≤ 3. Then
the anti-flip of C exists (i.e. there exists an SQM of X over Z centred
at C and the target variety has at worst terminal singularities).

Proof: The cases m = 1 and 2 are the classical cases of the Atiyah flop
and the Francia flip respectively. We refer to [10, 6.10, p. 162] for the
explicit construction of the resolution of the anti-flip.

Suppose that m = 3. Write Y // X for the blowup of C with excep-
tional divisor E ∼= Fm−1 = F2. Denote by σ the (−2)-section and by f a
fibre of E // C. Then the relative cone of curves NE(Y/Z) is generated
by the classes of σ and f , and by Lemma 5.7, σ is contractible.

By Lemma 5.5 the normal bundle of σ in Y is OP1(−1) ⊕ OP1(−2)
and so the anti-flip χ : Y // Y ′ of σ exists. More specifically, χ is the
inverse of a Francia flip. If Y // Ẑ is the contraction of σ, we have the
diagram

Y
χ //

$$

��

Y ′

zz
Ẑ

��
X

%%
Z
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where Ẑ // Z is the morphism induced by the inclusion NE(Y/Ẑ) ⊂
NE(Y/Z). Using the explicit resolution of the Francia flip in [10, 6.10,
p. 162] in conjunction with Lemma 5.5(2), one can check that the restric-
tion of χ on E is the contraction of the (−2)-curve. The relative cone of
curves NE(Y ′/Z) is generated, over Q, by the classes of the anti-flipped
curve as well as the class of any curve in the strict transform E′ of E.
This is because E′ ∼= F̄2 and so, by Lemma 5.2, ρ(E′) = 1, thus the
numerical class of any curve on it covers E′. Thus if σ+ is a section of E
disconnected from σ, σ′+ := χ(σ+) generates an extremal ray of NE(Y ′).
Furthermore, since we chose σ′+ to be disconnected from the centre of χ
we have

KY ′ · σ′+ = KY · σ+ = KY · (σ + 2f) = 1− 2 = −1.

Thus σ′+ is contractible by a divisorial contraction Y ′ // X ′ and since
it is KY ′ -negative and Y ′ has terminal singularities, then so does X ′.
The diagram above becomes

Y
χ //

$$

��

Y ′

zz

��
Ẑ

X
%%

ψ // X ′

yy
Z

where ψ is the birational map induced by the diagram and actually the
required pseudo-isomorphism.

Schematically the resolution described in the proof above looks as
follows:

C

σ

F2

F1

F2

F0

F1

F2

F2

P2

σ′•
F2

• C′
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where the dot represents the terminal point of X ′, which is actually a
quotient singularity of type 1

3 (1, 1, 2).

5.4. Conclusion.

Proposition 5.9. Let C ⊂ S be one of the curves in Table 1 so that
the strict transforms of the maximal secant lines have normal bundle
OP1(−1)⊕OP1(−m), with 1 ≤ m ≤ 3. Let χ : X // X ′ be the anti-flip
of those strict transforms as constructed in Proposition 5.8.

If C admits no 4-secant lines, then X ′ is Fano. Otherwise, X ′ is
weak Fano and the strict transforms of 4-secant lines generate (and are
the only irreducible curves whose class is contained in) an extremal ray
of NE(X ′).

Proof: Let f ′ : X ′ // Z be the anti-canonical model of X ′. Since χ is a
pseudo-isomorphism, we have

Z = Proj

(⊕
m∈N

H0(X ′,−mKX′)

)
= Proj

(⊕
m∈N

H0(X,−mKX)

)
.

Now any curve c′ in X ′ such that −KX′ · c′ ≤ 0 is either contracted by
or in the base locus of f ′. If f := f ′ ◦ χ and c is the strict transform
of c′ under χ−1, then, by the equality above, c is again either contracted
by or in the base locus of f . Thus −KX · c ≤ 0. Assume for a second
that those curves are exactly the 4, 5, or 6-secant lines. Then a look at
the table shows that when C admits a 6-secant line then it admits no
5-secant lines. Thus, after the anti-flip, X ′ is Fano if and only if C admits
no 4-secant lines. Moreover, if C admits 4-secant lines, then their strict
transforms are the only KX′ -zero curves.

To complete the proof we have to show that the only curves with
−KX · c ≤ 0 are the 4, 5, or 6-secant lines. Let c be such a curve, i.e.
c ∼ dl−mf with m

d ≥ 4, which is not a line. Then c is contained in the
cubic surface S and so we may write

c ∼S l1 + · · ·+ ld,

with li ∼ l −mif being lines in S. We first note that if, for some 1 ≤
i ≤ d, li does not meet any of the other lines in the decomposition,
then (c · li)S ≤ −1 and thus c is not irreducible. Thus we may assume
that every line intersects another one. If all li were 4-secants, then, by
Lemma 4.3, they would not intersect each other and so, for m

d to be
greater than or equal to 4, we may assume that some of the lines in
the decomposition of c are 5 or 6-secants. From Table 1, we see that
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in all cases there are at most two 5 or 6-secant lines. We rearrange the
decomposition of c in the following way:

c ∼S a1l1 + a2l2 +
e∑
i

l12
i +

r1∑
j

l1j +

r2∑
k

l2k +
D∑
n

l0n,

where D = d−a1−a2−e−r1−r2 and l1 and l2 are the two 5 or 6-secants;
the lines l12

i are the lines that meet both l1 and l2; the lines l1j meet l1
but not l2; the lines l2k meet l2 but not l1; the lines l0n meet neither l1
nor l2. If there is only one 5 or 6-secant, we simply choose a2 = 0 and
get empty sums for l12

i and l2k. Intersecting with l1 and l2 respectively
we get a1 ≤ e + r1 and a2 ≤ e + r2. By Lemma 4.3, for any j and k,
we have C · (l1 + l1j ), C · (l2 + l2k) ≤ 7. Similarly, checking Table 1 we see

that for any i we have C · (l1 + l2 + l12
i ) ≤ 11. Finally, we have

m=C · c = C ·

a1l1 + a2l2 +

e∑
i

l12
i +

r1∑
j

l1j +

r2∑
k

l2k +

D∑
n

l0n



≤ C ·

(e+r1)l1+(e+ r2)l2+

e∑
i

l12
i +

r1∑
j

l1j+

r2∑
k

l2k+

D∑
n

l0n



= C ·

 e∑
i

(l1 + l2 + l12
i )+

r1∑
j

(l1 + l1j )+

r2∑
k

(l2 + l2k)+

D∑
n

l0n


≤ 11e+ 7(r1 + r2) + 4D ≤ 4d− e− r1 − r2 < 4d,

which contradicts m
d ≥ 4.

Remark 5.10. In cases 5 and 6 of Table 1, a similar argument to the one
presented in the proof above gives us a more precise result. Namely, that
any curve with −KX · c < 1 is a 4, 5, or 6-secant line.

Indeed, we may repeat the calculation above but instead of singling
out only the 5-secant lines, we single out the 4-secants as well. We then
only need to observe that in those cases, for any two intersecting lines l1
and l2, we have C · (l1 + l2) ≤ 6, and for any line l3 joining a 4-secant l1
and a 5-secant l2 we have C · (l1 + l2 + l3) ≤ 9.

Theorem 5.11. Let C be a space curve lying on a smooth cubic sur-
face S such that X := BlC P3 is not weak Fano. Then C induces a
Sarkisov link if and only if its class on S appears in Table 1 (up to the
assumptions of Remark 4.4).
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Proof: The first implication is clear since the curves appearing in Table 1
are exactly those satisfying the necessary conditions of Proposition 4.6.

Conversely, assume that C is one of the curves in the table. We first
note that in all cases Proposition 5.3 implies that the blowup of C is
always an MDS. In turn, by Proposition 3.11, we are guaranteed the ex-
istence of a Sarkisov link as long as the varieties produced by the 2-ray
game are terminal, which we now check: by Propositions 5.4 and 5.8 the
anti-flip of the 5 or 6-secant lines produces a terminal 3-fold. Further-
more, by Proposition 5.9 the 3-fold is (weak) Fano. Thus any further
step in the 2-ray game is K-non-positive and so retains the terminal
singularities.

6. Study of the links

In this final section we aim to finish the construction of the links
produced in the previous section. We also calculate some invariants of
the targets of the links such as their singularities and the cube of the
anti-canonical divisor.

6.1. Some preliminary calculations.

Lemma 6.1 ([5, Lemma 2.4]). Let C ⊂ Y be a smooth curve of genus g
in a smooth 3-fold and let π : X // Y be the blowup of C. Then

(−KX)3 = (−KY )3 + 2(−KY )C − 2 + 2g.

In particular, if Y = P3 and C is a curve of degree d, we have (−KX)3 =
62− 8d+ 2g.

In the following lemma we use the notation introduced in Lemma 5.2.

Lemma 6.2. Let X
p // Y be a divisorial contraction to a point, between

Q-factorial terminal 3-folds with exceptional divisor E. If E lies on the
smooth locus of X and KX = p∗KY + αE is the ramification formula,
then

if E ∼= P1 × P1 with normal bundle NE/X = OP1×P1(−1,−1), α = 1;

if E ∼= P2 with normal bundle NE/X = OP2(−2), α = 1
2 .

Moreover, we have −K3
Y = −K3

X +2, −K3
Y = −K3

X + 1
2 in the two cases

respectively.
Similarly, without any extra assumptions on the singularities this

time, if E ∼= F2 with normal sheaf NE/X = OF2
(−3f̄) and KX · σ̄ = −1,

then α = 1
3 . Moreover, we have −K3

Y = −K3
X + 1

6 .

Proof: We first compute the discrepancy. Denote by l a line in E, if
E ∼= P2 or any ruling of E, if E ∼= P1 × P1. By the adjunction formula
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for E we have KE = (KY +E)|E . Intersecting both formulas with l and
solving for α we get

α =
KE · l − E · l

E · l
.

In the first case we have KE · l = −2 and E · l = −1, giving us α = 1. In
the second case we have KE · l = −3 and E · l = −2 and we get α = 1

2 .
In the third case, intersecting the ramification formula for p with σ̄

we get

α =
KX · σ̄ − p∗KY · σ̄

E · σ̄
=
−1− p∗KY · σ̄

(−3f̄)σ̄
,

which, since σ̄ is p-exceptional, equals 1
3 .

Finally we have

K3
X = (p∗KY + αE)3 = K3

Y + 3α(p∗KY )2E + 4α2(p∗KY )E2 + α3E3.

In all cases the middle terms vanish. In the first case we have α = 1
and E3 = 2, in the second case we have α = 1

2 and E3 = 4, and in the

last case we have α = 1
3 and E3 = 9

2 , and so a computation completes
the proof.

Corollary 6.3. Let X // X ′ be a (1, 2)-flip. Then −K3
X′ = −K3

X+k 1
2 ,

where k is the number of flipped curves.
Similarly, if X // X ′ is a (1, 3)-flip, then −K3

X′ = −K3
X +k 8

3 , where
k is the number of flipped curves.

Proof: For simplicity we will assume that the number of flipped curves
is 1. The general case is similar.

We first treat the (1, 2)-flip. Consider the resolution

Y0
r0

}}
s0

!!
Y1

r1 ��

Y ′1
s1��

X // X ′

as constructed in [10, 6.10, p. 162]. By [5, Lemma 2.4] we have

−K3
Y1

= −K3
X + 2KX · C − 2 + 2g,

where C is the flipped curve and g is its genus. Since KX · C = 1 and
g = 0 we get−K3

Y1
= −K3

X . We also have−KY1

3 = −r∗0KY1

3 = (−KY0+

E)3 = −s∗0KY ′
1

3 = −K3
Y ′
1
. Finally, by Lemma 6.2 we have −K3

X′ =

−K3
Y ′
1

+ 1
2 = −K3

X + 1
2 .
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For the (1, 3)-flip we again consider the resolution

Y
χ //

��

Y ′

��
X // X ′

constructed in Proposition 5.8, where now χ is a (1, 2)-flip. Using the
formula −K3

Y = −K3
X + 2KX · C − 2 + 2g and since KX · C = 2 we

get −K3
Y = −K3

X + 2. By the previous statement and by Lemma 6.2,
following the diagram counterclockwise we get −K3

X′ = −K3
Y ′ + 1

6 =

−K3
Y + 1

2 + 1
6 = −K3

X + 2 + 1
2 + 1

6 = −K3
X + 8

3 .

6.2. Some properties of the links.

6.2.1. Dimension of linear system of cubics. A careful examina-
tion of Table 1 reveals that the curves 1 through 4 all admit a pencil of
7-secant conics. Indeed, using Lemma 4.2 this amounts to finding two
distinct, intersecting, m1 and m2-secant lines such that m1 + m2 = 7.
For example, a pair of such lines that works in all cases is c1 and l1,5.
This immediately implies that in those cases C is contained in a unique
cubic.

However, this is not true for the last two cases of the table, as the
following lemma shows.

Lemma 6.4. Let C be one of the last two curves of Table 1. Then C is
contained in a pencil of cubics.

Proof: We consider the exact sequence

0 // H0(X,OX) // H0(X,OX(3H − E))

// H0(X,OS(3H − E|S)) // H1(X,OX).

Since X is projective, rational with rational singularities, we have
h0(X,OX) = 1 and h1(X,OX) = h1(P3,OP3) = 0. Thus

h0(X,OX(3H − E)) = h0(X,OS(3H − E|S)) + 1,

where the sections on the left-hand side of this equation correspond to
cubics containing C. Then one can check that the divisor 3H − E|S is
effective and fixed. We do this calculation for case 5 of the table.

We first note that 3H − E|S has negative intersection with and thus
contains all 4 and 5-secant lines in its base locus with multiplicity 1 and 2
respectively. We then have

3H − E|S − 2c1 − c2 = −3KS − C − 2c1 − c2 = 0

and so the movable part of 3H−E|S is zero, i.e. h0(X,OS(3H−E|S)) =
h0(X,OS) = 1, proving the claim.
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6.2.2. Mori chambers. Let

X

��

χ // Y

��
P3

$$

Z

{{
pt

be a Sarkisov diagram, where X // P3 is the blowup of one of the curves
of Table 1 and χ is a pseudo-isomorphism which is a composition of anti-
flips, flops, and flips (Y // Z can be either divisorial or of fibre type).

We have already proved that X is an MDS and so by Proposition 3.7
the pseudo-effective cone of X admits a decomposition into chambers of
the form

Ci = g∗i Nef(Yi) + R≥0{E1, . . . , Ek},
where gi are birational contractions and Ej are prime divisors contracted
by gi. Moreover, if Ci and Cj are neighbouring chambers, Yi and Yj are
connected by an SQM or an extremal contraction.

Since ρ(X) = 2, the pseudo-effective cone Eff(X) is 2-dimensional. In
the following lemma we will compute Eff(X).

Lemma 6.5. If C is one of the curves of Table 1, then Eff(X) is spanned
by the divisors E and 3H − E.

Proof: By Lemma 3.13, Eff(X) is spanned by E and a divisor dH −
mE with m

d maximal. We first note that in all six cases the pencil of
conics P associated to the lines c1 and l1,5 (see Lemma 4.2) is a pencil
of 6 or 7-secant conics (depending on the case), which spans a cubic
containing C. If now D ∼ dH −mE is an effective divisor with m

d > 1
3

whose support is irreducible, then using Bézout’s theorem, we deduce
that all conics in P are contained in D. Since P spans a cubic S, we
have S ⊆ D. Since D is irreducible we get S = D.

We then have the following dichotomy:

• As discussed at the beginning of this subsection, curves in cases 1
through 4 of Table 1 are contained in a unique cubic surface S, thus
the morphism associated to the linear system of cubics is X // pt.
This implies that the rightmost chamber C, which is the one asso-
ciated to Z, contains only big divisors (since they are all a positive
combination of an ample and an effective divisor). Thus Z is bira-
tional to X and so it is a Fano 3-fold of Picard rank 1. Moreover,
Y // Z is the contraction of the strict transform of S. This is a
link of Type II.
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• In cases 5 and 6, Lemma 6.4 yields that the rational map associated
to the system of cubics isX // P1. This implies that Z = P1 and in
turn that Y is a del Pezzo fibration with fibres the strict transforms
of the cubics containing C. This is a link of Type I.

6.2.3. The matrix of the transformation. The pseudo-isomorphism χ
induces an isomorphism χ∗ between the groups WDiv(X) and WDiv(Y ).
The isomorphism is given by restricting prime divisors in the regular
locus of χ and taking the closure of their image in Y0. We may ex-
tend this to an isomorphism between the Q-vector spaces WDivQ(X)
and WDivQ(Y ).

We fix a cubic S containing C and define T := χ∗S. We also fix
the bases WDivQ(X) = 〈H,E〉 and WDivQ(Y0) = 〈KY0

, T 〉. Note that
these divisors do not necessarily generate the Z-modules WDiv(X)
and WDiv(Y0). Since KX = −4H + E 7→ KY1

and S = 3H − E 7→ T ,
the matrix of the isomorphism is

(−1 −3
−1 −4

)
with inverse

(−4 3
1 −1

)
.

6.3. Some invariants of the targets of the links. Cases 1–4. As
proved earlier, in cases 1–4 the Sarkisov diagram takes the form

X

��

// X0
// Y0

p
��

P3

$$

Y

zz
pt

where Y is a Fano 3-fold of Picard rank 1.

6.3.1. The contraction Y0 → Y . The restriction of the pseudo-
isomorphism χ : X // Y0 to the cubic S is the contraction of the anti-
flipped/flopped curves. This can be verified using the explicit resolutions
of the (1,m)-flips of Proposition 5.8 as well as Lemma 5.5.

In cases 1, 2, and 4 the restriction χ|S : S // T is just the contraction
of six (−1)-curves and so T ∼= P2. More specifically, χ|S fits into the
diagram

S
p

��

χ|S

��
P2 T

where p is the blowup of six points followed by the contraction of the six
conics through five of the six points. We may compute that the pullback
of line l ⊂ T ∼= P2 on S is of type (5; 2, 2, 2, 2, 2, 2). We then have

T |T · l = S|S · (χ|S)∗l,
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which in all three cases can be computed to be −2. Thus T ∼= P2 with
NT/Y0

= OP2(−2).
In case 3, the restriction χ|S : S // T contracts five (−1)-curves, thus

T can be isomorphic to either F1 or P1×P1. However, in reference to the
morphism S // P2, χ|S contracts the strict transforms of: four conics
through five of the points; one line through two of the points. This implies
that T is isomorphic to P1 × P1. More specifically, χ|S : S // T factors
as

S

�� ##

// S′

{{ ��
P2 T ′ ∼= P2 T

where starting from left to right the morphisms are: the blowup of
six points, the contraction of the six conics through five of the six points,
the blowup of two points, and finally the contraction of the line through
the two points.

Pulling back classes of the two rulings of T under the morphism S //T,
we find that they are the strict transforms of lines in T ′ passing through
the two blown up points. Their classes on S are (5; 2, 2, 2, 2, 2, 2) − c5
and (5; 2, 2, 2, 2, 2, 2) − c6. As above, intersecting S|S with both those
classes we get −1 and so we find that the normal bundle of T in Y0 is
OP1×P1(−1,−1).

6.3.2. Singularities of Y . Following the Sarkisov diagram clockwise
we may compute the singularities of Y . We will do this case by case.

#1. We have the (1, 2)-flip of two curves X // X0, followed by the
(1, 1)-flop of four more curves X0

// Y0 and finally the contraction
of T ∼= P2 with NT/Y0

= OP2(−2). These modifications produce

two quotient singularities of type 1
2 (1, 1, 1), no singularities and

another quotient singularity of type 1
2 (1, 1, 1) respectively.

#2. We have the (1, 3)-flip of a curve, followed by the flop of five curves
and finally the contraction of T ∼= P2 withNT/Y0

= OP2(−2). These

modifications produce one quotient singularity of type 1
3 (1, 1, 2),

no singularities, and a quotient singularity of type 1
2 (1, 1, 1) re-

spectively.
#3. We have the (1, 2)-flip of a curve, followed by the flop of four curves

(notice that the line l5,6 is a 4-secant) and finally the contraction
of T ∼= P1×P1 with NT/Y0

= OP1×P1(−1,−1). These modifications

produce one quotient singularity of type 1
2 (1, 1, 1), no singularities,

and an ordinary double point respectively.
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#4. We have the (1, 2)-anti-flip of a curve, followed by flop of five curves
and finally the contraction of T ∼= P2 withNT/Y0

= OP2(−2). These

modifications produce one quotient singularity of type 1
2 (1, 1, 1),

no singularities, and a quotient singularity of type 1
2 (1, 1, 1) re-

spectively.

6.3.3. Cube of −KY . Again following the Sarkisov diagram clockwise
and using Lemmata 6.1 and 6.2 as well as Corollary 6.3 we may compute
that

#1. −K3
X = 8 =⇒ −K3

X0
= 9 =⇒ −K3

Y0
= 9 =⇒ −K3

Y =
19

2
;

#2. −K3
X = 6 =⇒ −K3

X0
=

26

3
=⇒ −K3

Y0
=

26

3
=⇒ −K3

Y =
55

6
;

#3. −K3
X = 10 =⇒ −K3

X0
=

21

2
=⇒ −K3

Y0
=

21

2
=⇒ −K3

Y =
25

2
;

#4. −K3
X = 8 =⇒ −K3

X0
=

17

2
=⇒ −K3

Y0
=

17

2
=⇒ −K3

Y = 9.

6.3.4. Fano index of Y . We distinguish cases.

Cases 1 and 4: In these cases, the least common multiple among the
indices of the singularities of Y is 2. This implies that 2 WDiv(Y ) ⊆
CDiv(Y ) (see [17, Corollary 5.2]). Denote by r the Fano–Weil index
of Y . That is precisely the number

r := max{q ∈ Z | −KY ∼ qA, A is a Weil divisor}.
Let A be a Weil divisor such that −KY = rA. Then, using Lemma 6.2,
we have

rp∗(2A) = p∗(2rA) = p∗(−2KY ) = −2KY0
+ T,

which is the vector (−2, 1) in the Z-submodule 〈KY0 , T 〉 ≤ WDiv(Y0).
By the calculations in Subsection 6.2.3 its strict transform is

rχ−1
∗ (p∗(2A)) =

(
−4 3

1 −1

)(
−2

1

)
=

(
11
−3

)
= (11H − 3E),

which is not divisible in WDiv(X). Thus r = 1.

Case 2: Similarly, we have 6 WDiv(Y ) ⊆ CDiv(Y ). We have

rp∗(6A) = p∗(6rA) = p∗(−6KY ) = −6KY0
+ 3T

and so

rχ−1
∗ (p∗(6A)) =

(
−4 3

1 −1

)(
−6

3

)
=

(
33
−9

)
= (33H − 9E),
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which is divisible by 3 in WDiv(X). Thus r = 1 or 3. However, the
divisor A = p∗(χ∗(11H − 3E)) has the property −KY = 3A, thus the
index is 3.

Case 3: In the final case we have 2 WDiv(Y ) ⊆ CDiv(Y ) and

rp∗(2A) = p∗(2rA) = p∗(−2KY ) = −2KY0 + 2T.

We thus get

rχ−1
∗ (p∗(2A)) =

(
−4 3

1 −1

)(
−2

2

)
=

(
14
−4

)
= (14H − 4E),

which is divisible by 2 in WDiv(X). As before, we may conclude that
the index is 2.

We summarize the data in the following table.

#
Type of the

contraction p

Singularities

of Y
−K3

Y

Fano–Weil

index

1 E5 3× 1
2 (1, 1, 1) 19

2 1

2 E5 1
2 (1, 1, 1), 1

3 (1, 1, 2) 55
6 3

3 E3 1
2 (1, 1, 1), odp 25

2 2

4 E5 2× 1
2 (1, 1, 1) 9 1

6.4. Some invariants of the targets of the links - Cases 5 and 6.
In cases 5 and 6 of the table, a similar argument to Proposition 5.9
together with Remark 5.10 shows that after anti-flipping the 5-secant
lines we have the flop of any 4-secant lines. Using again Remark 5.10
we see that there are no irreducible curves between (the rays spanned
by the classes of) the 4-secants and the 3-secants and so the next step
in the link is the contraction of the 3-secant lines. This is given by the
linear system of cubics containing C, thus the Sarkisov diagrams take
respectively the forms

X

��

anti-flip // X0
flop // Y0

p
��

P3

))

P1

uu
pt

X

��

anti-flip // Y0

p
��

P3

$$

P1

zz
pt

where p : Y0
// P1 is a del Pezzo fibration.

6.4.1. The fibration Y0 → P1. As in the previous section, the re-
striction of χ : X // Y0 to any cubic surface can be checked to be the
contraction of the anti-flipped/flopped curve. We conclude that:
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#5. In case 5, the restriction of χ on a cubic is the contraction of
two curves. The strict transform of any cubic is thus a del Pezzo
surface of degree 5.

#6. In case 6, the restriction of χ on a cubic is the contraction of
one curve. The strict transform of any cubic is thus a del Pezzo
surface of degree 4.

6.4.2. The singularities of Y0. As before, we will compute the sin-
gularities of Y0 following the Sarkisov diagram clockwise.

#5. In case 5, we have the (1, 2)-flip of one curve followed by the flop of
one curve. These pseudo-isomorphisms produce one quotient sin-
gularity of type 1

2 (1, 1, 1).
#6. In case 6, we have the (1, 2)-flip of one curve which again produces

one quotient singularity of type 1
2 (1, 1, 1).

6.4.3. Cube of −KY0 . Once more we will use Lemma 6.1 and Corol-
lary 6.3 and follow the diagram clockwise to compute (−KY0

)3. We have

#5. −K3
X = 14 =⇒ −K3

X0
=

29

2
=⇒ −K3

Y0
=

29

2
;

#6. −K3
X = 12 =⇒ −K3

X0
=

25

2
=⇒ −K3

Y0
=

25

2
.

#
Type of the

contraction p

Singularities

of Y
−K3

Y

5 del Pezzo fibration of degree 5 1
2 (1, 1, 1) 29

2

6 del Pezzo fibration of degree 4 1
2 (1, 1, 1) 25

2
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