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Abstract: We prove an explicit formula for the second moment of symmetric square

L-functions associated to Maass forms for the full modular group. In particular, we

show how to express the considered second moment in terms of dual second moments
of symmetric square L-functions associated to Maass cusp forms of levels 4, 16, and 64.
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1. Introduction

Let us denote by {uj(z)}∞j=1 an orthonormal basis of the space of
Maass cusp forms for the full modular group. This basis can be cho-
sen such that uj(z) for j = 1, 2, . . . are eigenfunctions not only of the
hyperbolic Laplacian, but also of all Hecke operators. Let λj(n) be the
eigenvalue of the n-th Hecke operator corresponding to the eigenfunc-
tion uj(z) and let κj = 1/4+t2j be the eigenvalue of the Laplace operator
corresponding to uj(z). The following Fourier expansion takes place:

uj(x+ iy) =
√
y
∑
n6=0

ρj(n)Kitj (2π|n|y)e(nx),

where Kα(x) is the K-Bessel function and ρj(n) = ρj(1)λj(n). The
symmetric square L-function associated to uj(z) can be defined by the
Dirichlet series

(1.1) L(sym2 uj , s) := ζ(2s)

∞∑
n=1

λj(n
2)

ns
, <s > 1.
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This L-function admits an analytic continuation to the whole complex
plane and satisfies a functional equation.

In order to study moments of L-functions we introduce the normaliz-
ing coefficient

αj :=
|ρj(1)|2

coshπtj
.

Now we can describe our main result, which is an explicit formula for
the second moment of symmetric square L-functions. Let

(1.2) M2(h;u, v) :=
∑
j

h(tj)αjL(sym2 uj , s−)L(sym2 uj , s+),

where

(1.3) s+ = 1/2 + u+ v, s− = 1/2 + u− v,

and h(t) is a function satisfying the conditions:

(C1) h(t) is even;

(C2) h(t) is holomorphic in the strip |=(t)| < ∆ for some ∆ > 1/2;

(C3) h(t) is of rapid decay, that is, h(t)�(1+|t|)−2−ε in the strip |=(t)|<
∆;

(C4) h(±(m + 1/2)i) = 0 for m = 0, 1, . . . ,M − 1, where 0 < M <
∆− 1/2.

We denote by M(c)
4 (h;u, v) the fourth moment of the Riemann zeta

function

(1.4) M(c)
4 (h;u, v) =

ζ(s+)ζ(s−)

π

×
∫ ∞
−∞

h(r)ζ(s+ + 2ir)ζ(s+ − 2ir)ζ(s− + 2ir)ζ(s− − 2ir)

|ζ(1 + 2ir)|2 dr.

Let H∗k(M,χ−4) be an orthonormal basis of holomorphic Hecke new-
forms of an odd weight k > 0, level M , and nebentypus χ−4. Let
B∗1(M,χ−4) be an orthonormal basis of Hecke–Maass newforms of
weight 1, level M ≡ 0 (mod 4), and nebentypus χ−4. Let 1/4 + t2f be a

Laplace eigenvalue for the function f ∈ B∗1(M,χ−4).
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For cusps b =∞ or b = 0 of Γ0(N) with N ≡ 0 (mod 4), let

(1.5) M∞,b(N,u, v) = Mhol
∞,b(N,u, v) + Mdisc

∞,b(N,u, v)

with holomorphic and discrete parts given by

Mhol
∞,∞(N,u, v) :=

∑
k>1
k odd

ψH(k)Γ(k)
∑

LM=N
M≡0 (mod 4)

∑
f∈H∗

k
(M,χ−4)

|ρf∞(1)|2

×L(sym2 f, s−)L(sym2 f, s+)P∞,∞,

Mhol
∞,0(N,u, v) :=

∑
k>1
k odd

ψH(k)Γ(k)
∑

LM=N
M≡0 (mod 4)

∑
f∈H∗

k
(M,χ−4)

ε0ρf∞(1)
2

×L(sym2 f, s−)L(sym2 f, s+)P∞,0,

Mdisc
∞,∞(N,u, v) :=

∑
LM=N

M≡0 (mod 4)

∑
f∈B∗1 (M,χ−4)

|ρf∞(1)|2 ψD(tf )

cosh(πtf )

×L(sym2 f, s−)L(sym2 f, s+)P∞,∞,

Mdisc
∞,0(N,u, v) :=

∑
LM=N

M≡0 (mod 4)

∑
f∈B∗1 (M,χ−4)

ε0ρf∞(1)
2 ψD(tf )

cosh(πtf )

×L(sym2 f, s−)L(sym2 f, s+)P∞,0.

Here the symmetric square L-functions are defined by (2.35), the coef-
ficient ε0 relates Fourier coefficients at cusps ∞ and 0 (see (2.44)), and
P∞,∞, P∞,0 are some complicated expressions given by (2.57) and (2.58).

The functions ψD(t) and ψH(k) are the integral transforms of h(r)
defined by (4.4) and (4.9) subject to (2.23), (2.19).

Finally, we define the continuous part:

(1.6) Mcon(F ;u, v) =
1

4πi

∫ ∞
−∞

ψD(t) sinh(πt)

t cosh (πt)

×ζ(s+ + 2it)ζ(s+−2it)ζ(s−+2it)ζ(s− − 2it)

L(χ−4, 1 + 2it)L(χ−4, 1− 2it)
F (t) dt.
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Theorem 1.1. For 0 ≤ <(u) < 1/2, <(v) = 0, the following identity
holds:

M2(h;u, v) +M(c)
4 (h;u, v) = FMT (u, v)

+
L(χ−4, s+)L(χ−4, s−)

(2π)1−2uπ2u(1− 2−2s−)(1− 2−2s+)
Mcon(F, u, v)

+
(1− 2−2s+)−1(1− 2−2s−)−1

(2π)1−2uπ2u

×
(
−4iM∞,∞(4, u, v) + 21−2uM∞,0(4, u, v)

+(8− 23−s− − 23−s+)M∞,0(16, u, v) + 16M∞,0(64, u, v)
)
,

(1.7)

where FMT (u, v) is defined by (6.1), s− and s+ are given by (1.3), and
F = F (t) can be found in (5.46).

Theorem 1.1 is an analogue of the explicit formula for the fourth mo-
ment of Maass form L-functions obtained by Kuznetsov [29] and Moto-
hashi [34], [38]. Furthermore, a class of spectral identities of this kind
was proved by Biró [8].

Formula (1.7) can also be viewed as a new addition to the collection of
various reciprocity formulas expressing one moment of some L-functions
in terms of other moments. One of the most famous formulas of this
type, proved by Motohashi [36] (see also [37, Theorem 4.2]), represents
the fourth moment of the Riemann zeta function in terms of cubic mo-
ments of GL(2)-automorphic L-functions. It is quite natural that these
cubic moments can also be expressed in terms of the fourth moment of
the Riemann zeta function; see [18]. These results have recently been
generalized in various directions by Petrow [43], Blomer, Humphries,
Khan, and Milinovich [9], Nelson [40], Wu [49], Balkanova, Frolenkov,
and Wu [6], and Kaneko [24] (see also the references therein).

We remark that reciprocity formulas are also known for other families
of L-functions. In particular, during recent years enormous numbers of
such results have been discovered.

For example, the papers of Bettin [7], Conrey [15], and Young [50]
provide reciprocity formulas for the second moment of Dirichlet L-func-
tions.

For the family of automorphic L-functions, reciprocity formulas can
be classified into two types. The first type, called spectral reciprocity, is
concerned with L-functions associated to Maass forms of large spectral
parameter. The second type, called level reciprocity, is concerned with
twisted moments of L-functions associated to forms of large level.
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A recent example of the first type of reciprocity formulas was dis-
covered by Blomer, Li, and Miller [12] for the case of GL(4) × GL(2)
Rankin–Selberg L-functions. Another example, given by Humphries and
Khan [21], is concerned with a spectral reciprocity formula for some
mixed moments, which has applications in the study of arithmetic quan-
tum chaos for dihedral Maass forms. Furthermore, Kwan ([32]) obtained
a spectral reciprocity formula for GL(3)×GL(2) Rankin–Selberg L-func-
tions.

Now let us list some recent examples of reciprocity formulas of the
second type. Andersen and Kıral ([1]) proved level reciprocity for the
twisted second moment of GL(2)×GL(2) Rankin–Selberg L-functions.
Their result was generalized by Zacharias [51] to an arbitrary num-
ber field. Blomer and Khan (see [10] and [11]) proved level reciprocity
formulas for different twisted fourth moments of GL(2) automorphic
L-functions (in fact, in [10] a mixed moment of GL(3) × GL(2) and
GL(2) L-functions was considered). The results of [10] were generalized
by Nunes [41] to the case of a number field with the use of a quite
different adelic approach. Recently the result of [10] was also general-
ized to the higher rank case of the product of GL(n + 1) × GL(n) and
GL(n) × GL(n − 1) Rankin–Selberg L-functions independently in the
works of Miao [33] and Jana and Nunes [23].

Standard applications of reciprocity formulas include non-vanishing
results (see [12], [23]) and subconvexity estimates (see [10], [9], [11]).
Furthermore, in some cases reciprocity formulas allow one to deduce es-
timates on moments in short intervals. Unfortunately, Theorem 1.1 does
not produce any direct corollaries, as explained in Section 6. With a dif-
ferent method, Khan and Young ([25]) proved the best known estimate
on the second moment of Maass form symmetric square L-functions in
short intervals as well as a new subconvexity result for the given family
of L-functions in some range of the critical line.

The structure of the proof of Theorem 1.1 can be described as fol-
lows. We start by considering the left-hand side of (1.7) assuming that
<(u) > 1, <(v) = 0 (see Section 3). As long as these conditions are
satisfied, we can write the L-functions in (1.2) in terms of the Dirichlet
series (1.1). After that we can apply the Kuznetsov trace formula to
the sums of Fourier coefficients of Maass forms. As a result, we have to
work with sums of Kloosterman sums weighted by some special function.
However, similarly to [34] and [38], this function turns out not to have
sufficiently good behavior for our purposes. For this reason, it is required
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to modify the Kuznetsov trace formula via the process of regularization
described in Subsection 2.3. Consequently, we have to deal with

1

2πi

∫
(α)

Φ̂N (s)

∞∑
q=1

∞∑
m,n=1

(m/n)v

(mn)1/2+u+s

S(m2, n2; q)

q1−s
ds

(4π)s
.

Splitting the sums over m and n into arithmetic progressions mod-
ulo q, we obtain a product of two Lerch zeta functions (required infor-
mation about these functions is given in Subsection 2.1). For each of the
Lerch zeta functions we apply the functional equation. Subsequently, af-
ter some transformations, we reduce our problem to the study of the
sums

K(n, l; q) :=
∑

c,d (mod q)

S(c2, d2, q)e

(
nc+ ld

q

)
.

It turns out that this double sum can be written in terms of Gauss
sums, and consequently can be evaluated explicitly (see [2, Section 3]). As
a result, we have an expression for K(n, l; q) in terms of generalized
Kloosterman sums; see Subsection 2.2. Therefore, for <(u) > 1, <(v) =
0, the left-hand side of (1.7) can be written as a sum of generalized
Kloosterman sums (see Section 3). As the next step, for each of these
sums we apply a suitable version of the Kuznetsov trace formula formu-
lated in Subsection 2.5. To this end, it is required to verify that the result-
ing weight functions satisfy conditions of applicability of the Kuznetsov
trace formula. This is done in the first lemma of Section 4. Furthermore,
we need to make sure that the summands obtained after applying the
Kuznetsov trace formula on the right-hand side of (1.7) are absolutely
convergent. To this end, we prove some estimates on ψD(t) and ψH(k)
in Section 4. The final step is to prove an analytic continuation of (1.7)
from the region <(u) > 1, <(v) = 0 to the region 0 ≤ <(u) < 1/2,
<(v) = 0, which is done in Section 5. Combining all these results, we
complete the proof of Theorem 1.1 in Section 6.

2. Preliminaries

Let f̂(s) denote the Mellin transform of f(x):

f̂(s) =

∫ ∞
0

f(x)xs−1 dx.

For a complex number α, we define the divisor function

τα(n) :=
∑

n1n2=n

(
n1

n2

)α
= n−vσ2α(n),

where
σα(n) :=

∑
d|n

dα.
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The following identity holds:

(2.1)
∞∑
n=1

τir(n
2)

ns
=
ζ(s)ζ(s+ 2ir)ζ(s− 2ir)

ζ(2s)
.

Let us also define the divisor function twisted by a character:

σs(χ;n) :=
∑
d|n

χ(d)ds.

For even n the following formula holds:

(2.2) σs

(
χ−4;

(n
2

)2
)

= σs(χ−4;n2).

According to [2, Lemma 2.2], the Dirichlet series

Z(z, s) :=

∞∑
n=1

σs(χ−4;n2)

nz

satisfies

(2.3) Z(z, s) =
1− 22s−z

1− 22s−2z

L(χ−4, z − s)ζ(z)ζ(z − 2s)

ζ(2z − 2s)
.

2.1. Lerch zeta function and Zagier L-series. The Lerch zeta func-
tion

(2.4) ζ(α, β; s) =
∑

n+α>0

e(nβ)

(n+ α)s
, e(x) = exp(2πix)

satisfies the functional equation (see [42, (25.13.3)]):

(2.5) ζ(α, 0; s) =
Γ(1− s)
(2π)1−s (−ie(s/4)ζ(0, α; 1− s)+ie(−s/4)ζ(0,−α; 1− s)).

Similarly to the Riemann zeta function, the function ζ(α, 0; s) (this par-
ticular case is called the Hurwitz zeta function) has a simple pole at s = 1
with residue equal to 1.

The Zagier L-series can be defined for <s > 1 as

Ln(s) =
ζ(2s)

ζ(s)

∞∑
q=1

bq(n)

qs
,

where

bq(n) := #{x (mod 2q) : x2 ≡ n (mod 4q)}.

This L-series is closely related to moments of symmetric square L-func-
tions (see [4], [52]), as well as to the prime geodesic theorem (see [48],
[14]).
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If n = Dl2, where D is a fundamental discriminant, then (see [48,
Lemma 2.1]) the following decomposition takes place:

(2.6) Ln(s) = L(χD, s)
∑
fr=l

f1−2s
∑
k|r

µ(k)χD(k)

ks
,

where L(χD, s) is the Dirichlet L-function for a primitive Dirichlet char-
acter χD.

Values of Zagier L-series of index (n2 − 4l2) can be expressed (see [4,
(4-9)]) in terms of sums of Kloosterman sums as follows:

(2.7) Ln2−4l2(s) = ζ(2s)

∞∑
q=1

1

q1+s

∑
c (mod q)

S(l2, c2; q)e

(
nc

q

)
.

Lemma 2.1. For u, v 6= 0 and <(u− v) > 0 the following identity holds:

(2.8)
∞∑
q=1

1

q5/2+u+v

∑
c,d (mod q)

S(c2, d2; q)ζ

(
d

q
, 0; 1 + 2v

)

=
ζ(1 + 2u)ζ(1 + 2v)

ζ(1 + 2u− 2v)

L(χ−4, 1/2 + u− v)

L(χ−4, 3/2 + u+ v)
.

Proof: Let <v > 0 and <(u− v) > 1. These conditions guarantee ab-
solute convergence of all series that arise in the proof. Applying (2.4)
and (2.7), we have

∞∑
q=1

1

q5/2+u+v

∑
c,d (mod q)

S(c2, d2; q)ζ

(
d

q
, 0; 1 + 2v

)

=
∞∑
q=1

1

q3/2+u−v

∞∑
l=1

1

l1+2v

∑
c (mod q)

S(l2, c2; q)

=
1

ζ(1 + 2u− 2v)

∞∑
l=1

L−4l2(1/2 + u− v)

l1+2v
.

(2.9)

Computing the sum over l by applying (2.6) with D = −4, we find that
∞∑
l=1

L−4l2(1/2 + u− v)

l1+2v

= L(χ−4, 1/2 + u− v)

∞∑
l=1

1

l1+2v

∑
f |l

f−2u+2v
∑
k|(l/f)

µ(k)χ−4(k)

k1/2+u−v

= L(χ−4, 1/2 + u− v)ζ(1 + 2u)

∞∑
l=1

1

l1+2v

∑
k|l

µ(k)χ−4(k)

k1/2+u−v

= ζ(1 + 2u)ζ(1 + 2v)
L(χ−4, 1/2 + u− v)

L(χ−4, 3/2 + u+ v)
.

(2.10)
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Substituting (2.10) into (2.9), we prove (2.8) for <v > 0 and <(u− v) >
1. Now since the right-hand side of (2.8) is analytic in the region u, v 6= 0
and <(u− v) > 0, the identity holds in this region due to the process of
analytic continuation.

2.2. Kloosterman sums. The classical Kloosterman sum

S(n,m; c) :=
∑

a (mod c)
(a,c)=1

e

(
an+ acm

c

)
, aac ≡ 1 (mod c)

satisfies the Weil bound

(2.11) |S(m,n; c)| ≤ τ0(c)
√

(m,n, c)
√
c.

Let us also define the generalized Kloosterman sums. To this end,
we need to introduce some more notation. We denote by Γ = Γ0(N) the
Hecke congruence subgroup of level N . The stabilizer of a cusp a is given
by

Γa := {γ ∈ Γ : γa = a}.

In addition, for each cusp a, we define a scaling matrix σa ∈ SL2(R),
which is determined by the following conditions:

σa∞ = a, σ−1
a Γaσa =

{
±
(

1 n
0 1

)
: n ∈ Z

}
:= Γ∞.

Furthermore, we define one more matrix λa as follows: σ−1
a λaσa = ( 1 1

0 1 ).
Any Dirichlet character χ modulo N can be considered as a character

on Γ:

χ(γ) = χ(d), γ =

(
a b
cN d

)
∈ Γ.

A cusp a is called singular with respect to χ if χ(λa) = 1.
We denote by κ the sign of χ so that χ(−1) = (−1)κ. If cusps a and b

are singular with respect to χ, then the generalized Kloosterman sum is
defined by (see [26, Equation 2.3])

Sab(m,n; c;χ) :=
∑

γ=( a bc d )∈Γ∞\σ−1
a Γσb/Γ∞

χ(sgn(c))χ(σaγσ
−1
b )e

(
am+ dn

c

)
.

Note that the sum is non-empty only if |c| belongs to the following set:

(2.12) C a,b(N) = {γ > 0 such that ( ∗ ∗γ ∗ ) ∈ σ−1
a Γσb}.

Our computations involve the generalized Kloosterman sums only for
two cusps: ∞ and 0. It turns out that in these two cases the generalized
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Kloosterman sums can be expressed in terms of the classical Kloosterman
sums (see [26, (2.20), (2.23)]) as follows:

(2.13) S∞,0(m,n; c
√
N ;χ) = χ(c)S(Nm,n; c), (c,N) = 1,

(2.14) S∞,∞(m,n; c;χ) =
∑

ab≡1 (mod c)

e

(
am+ bn

c

)
χ(b), c ≡ 0 (mod N).

According to (2.12) and [26, (2.15)] we have

C∞,∞(4) = {γ = 4q > 0},(2.15)

C∞,0(4) = {γ = 2q > 0, (q, 4) = 1},
C∞,0(16) = {γ = 4q > 0, (q, 2) = 1},(2.16)

C∞,0(64) = {γ = 8q > 0, (q, 2) = 1}.

Let us define the double sum

(2.17) K(n, l; q) :=
∑

c,d (mod q)

S(c2, d2, q)e

(
nc+ ld

q

)
.

This sum appears naturally in the evaluation of the second moment
of symmetric square L-functions and can be expressed in terms of the
Gauss sums. Consequently, K(n, l; q) can be computed explicitly, as has
been shown in [2, Section 3].

Lemma 2.2 ([2, Lemma 3.2]). For odd q the following equality holds:

K(n, l; q) = qχ−4(q)
∑

a,b (mod q)
ab≡1 (mod q)

e

(
−4qbn

2 + 4qal
2

q

)
.

Lemma 2.3 ([2, Lemma 3.3]). Assume that q is even and n+ l is odd.
Then

K(n, l; q) = 0.

Lemma 2.4 ([2, Lemma 3.4]). Assume that q, n, and l are even. Then
K(n, l; q) = 0 if q ≡ 2 (mod 4), and

K(n, l; q) = 2iq
∑

a,b (mod q)
ab≡1 (mod q)

χ−4(a)e

(
−a(l/2)2 + b(n/2)2

q

)
,

if q ≡ 0 (mod 4).

Lemma 2.5 ([2, Lemma 3.5]). Assume that q is even and n and l
are odd. Then K(n, l; q) = 0 if q ≡ 0 (mod 4). If q ≡ 2 (mod 4), then
r := q/2 is odd and

K(n, l; q) = 2qχ−4(r)S((8)rn
2, (8)rl

2; r).
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2.3. Kuznetsov trace formula and regularization. At the end of
the 1970s Kuznetsov ([28]) discovered a formula that relates sums of
Fourier coefficients of Maass forms and sums of Kloosterman sums. As-
sume that m,n > 0. Then for any function h(t) satisfying the condi-
tions (C1)–(C3) we have

(2.18)
∑
j

h(tj)αjλj(m)λj(n) +
1

π

∫ ∞
−∞

σ2ir(m)σ2ir(n)

(mn)ir
h(r)

|ζ(1 + 2ir)|2 dr

=
δm,n
π2

∫ ∞
−∞

rh(r) tanh(πr) dr +

∞∑
q=1

S(m,n; q)

q
φ

(
4π
√
mn

q

)
,

where δm,n = 1 if m = n and δm,n = 0 if m 6= n, and φ(x) is defined as
an integral transform of h(r):

(2.19) φ(x) =
2i

π

∫ ∞
−∞

J2ir(x)
rh(r) dr

cosh(πr)
.

Around the same time, a similar result was proved independently by
Bruggeman [13]. The difference is that Bruggeman obtained a trace for-
mula only of type (2.18), while Kuznetsov proved also the inversion of
formula (2.18), showing how to evaluate sums of Kloosterman sums with
a given weight function.

It can be shown (see the proof of [37, Theorem 2.2]) that the Mellin
transform of the function φ(x) is equal to

φ̂(s) =
2si

π

∫ ∞
−∞

rh(r)

cosh(πr)

Γ(s/2 + ir)

Γ(1− s/2 + ir)
dr.

If the function h(t) satisfies not only the conditions (C1)–(C3), but also
the condition (C4), then for −1−2M < <s < 3/2 the following estimate
holds (see [3, Lemma 4]):

(2.20) φ̂(s)� (1 + |=s|)<s−1.

An application of the Kuznetsov trace formula (2.18) is the first step
towards explicit formulas for moments of L-functions attached to Maass
forms. After that it is required to sum the right-hand side of (2.18)
over m and n. To this end, it is helpful to separate the arithmetic part,

namely S(m,n; q), from the analytic part given by φ
( 4π
√
mn
q

)
. This is

achieved by means of the inverse Mellin transform of φ(x). As a result,
we have to work with multiple sums and integrals, containing the Mellin

inversion of φ̂(s). It turns out that the estimate (2.20) is not sufficiently
good to secure the absolute convergence of the resulting expression. This
fact was first observed by Motohashi in the paper [34] (see also [38])
based on the work of Kuznetsov [29], where the absolute convergence
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issue was omitted. In order to avoid this problem, it is possible to reg-
ularize the Kuznetsov formula by subtracting from it several Petersson
trace formulas∑

f∈H2l(1)

αfλf (m)λf (n) = δm,n + 2πi2l
∞∑
c=1

S(m,n; c)

c
J2l−1

(
4π
√
mn

c

)
,(2.21)

αf :=
12ζ(2)

(2l − 1)L(sym2 f, 1)

for the spaces of holomorphic cusp forms of level 1 and weight 2l, where l
belongs to a set L, multiplied by suitably chosen constants c(l). The role
of these constants is to make the Mellin transform of the weight func-
tion (which appears in the sums of Kloosterman sums after subtracting
Petersson trace formulas)

ΦN (x) = φ(x)−
∑
l∈L

c(l)J2l−1(x)

decay faster than (2.20). This process is called regularization of the
Kuznetsov trace formula. The underlying idea of regularization was first
formulated by Murty [39] (see the concluding remark on p. 18 of [38]
about the Kuznetsov and Motohashi variants of regularization). Here
we describe the most general form of the regularized Kuznetsov trace
formula, proved by Kuznetsov in [31, Lemma 3.14].

Lemma 2.6. Let L = {l1, . . . , lN } be a finite set of numbers such that
1 ≤ l1 < l2 < · · · < lN . Assume that h(·) is a function satisfying the
conditions (C1)–(C4). We define N coefficients c(l) as solutions of the
following system of linear equations:

(2.22)
∑
l∈L

(l − 1/2)2m(−1)lc(l) =
2(−1)m

π

∫ ∞
−∞

r2m+1h(r) tanh(πr) dr,

where 0 ≤ m ≤ N − 1. Let

(2.23) ΦN (x) := φ(x)−
∑
l∈L

c(l)J2l−1(x).

Then for any m,n ≥ 1 the following identity holds:

(2.24)
∑
j

h(tj)αjλj(m)λj(n) +
1

π

∫ ∞
−∞

σ2ir(m)σ2ir(n)

(mn)ir
h(r)

|ζ(1 + 2ir)|2 dr

=

∞∑
q=1

S(m,n; q)

q
ΦN

(
4π
√
mn

q

)
+

1

2π

∑
l∈L

(−1)lc(l)
∑

f∈H2l(1)

αfλf (m)λf (n).
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Furthermore, for max(−1− 2M, 1− 2l1) < <s < 3/2 we have

(2.25) Φ̂N (s)� (1 + |=s|)<s−1−N .

If 0 < <s < 3/2, then

Φ̂N (s) = φ̂(s)− 2s−1
∑
l∈L

c(l)
Γ((s− 1)/2 + l)

Γ(l + (1− s)/2)

= φ̂(s)− 2s cos(πs/2)

2π

∑
l∈L

(−1)lc(l)Γ

(
s− 1

2
+ l

)
Γ

(
s+ 1

2
− l
)
,

(2.26)

where

(2.27) φ̂(s) =
2s cos(πs/2)

π2

∫ ∞
−∞

r tanh(πr)h(r)Γ(s/2− ir)Γ(s/2 + ir) dr.

The set of weights L can be chosen as a subset of {2, 3, 4, 5, 7}. It is
known that for such values of l the space of holomorphic cusp forms is
empty, and consequently on the right-hand side of (2.24) there will be
no sum over holomorphic cusp forms.

Note that the right-hand side of (2.24) does not contain any diagonal
term with δm,n. This is because after combining (2.18) and sums of
Petersson trace formulas (2.21), the summands with δm,n canceled each
other out due to our choice of c(l), as in (2.22).

In addition, Kuznetsov ([31, (3.130), (3.131)]) proved an explicit for-
mula for coefficients c(l) defined by the system (2.22). More precisely,
he showed that

(2.28) (−1)lc(l) =
2

π

∫ ∞
−∞

ml(r)rh(r) tanh(πr) dr,

where

(2.29) ml(r) =
∏
k∈L
k 6=l

r2 + (k − 1/2)2

(k − 1/2)2 − (l − 1/2)2
=
∏
k∈L
k 6=l

r2 + (k − 1/2)2

(k − l)(k + l − 1)
.

2.4. Holomorphic cusp forms, Maass forms, and Eisenstein se-
ries. Let χ be a primitive character modulo qχ, where qχ|N . We de-
note by Sk(N,χ) the space of holomorphic cusp forms of weight k > 0,
level N , and nebentypus χ. The space Sk(N,χ) is non-empty only if
k ≡ κ (mod 2), where κ is the sign of χ so that χ(−1) = (−1)κ.

Let Hk(N,χ) be an orthonormal basis of holomorphic cusp forms of
weight k > 0, level N , and nebentypus χ. Let H∗k(N,χ) be an orthonor-
mal basis of Hecke newforms of weight k > 0, level N , and nebentypus χ.
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Any f ∈ H∗k(N,χ) is an eigenfunction of every Hecke operator Tn, with
an eigenvalue λf (n). One has

(2.30) λf (m)λf (n) =
∑

d|(m,n)

χ(d)λ

(
mn

d2

)
.

According to Atkin–Lehner theory

Sk(N,χ) =
⊕

yLM=N
M≡0 (mod qχ)

⊕
f∈H∗

k
(M,χ)

Sold
k (L, χ),

where

Sold
k (L, χ) = span{lk/2f(lz) : l|L}.

For the space Sold
k (L, χ) we choose an orthonormal basis constructed

in [46, Theorem 9], which provides us with the following decomposition:

(2.31) Hk(N,χ)=
∐

LM=N
M≡0 (mod qχ)

∐
f∈H∗

k
(M,χ)

∐
g|L

{
f (g)(z)=

∑
d|g

ξg(d)dk/2f(dz)

}
,

where the coefficients ξg(d) are defined explicitly on p. 2490 of [44] and
f ∈ H∗k(M,χ) is L2(Γ0(N)\H) normalized.

Consider a singular cusp a and let σa denote a scaling matrix for a.
Then the form f ∈ Hk(N,χ) admits the following Fourier expansion:

f(σaz)i(σa, z)
−k =

∑
m≥1

ρfa(m)√
m

(4πm)k/2e(mz),

where i(σa, z) := cz+d for σa = ( ∗ ∗c d ). If f is a newform, then ρf∞(n) =

ρf∞(1)λf (n). Using the definition of f (g) in (2.31) one has

(2.32) ρ
f

(g)
∞

(n) =
∑
d|(g,n)

ξg(d)
√
dλf (n/d)ρf∞(1).

We denote by Aκ(N,χ) the space of Maass cusp forms of level N ,
nebentypus χ, and weight κ ∈ {0, 1} such that χ(−1) = (−1)κ and by
Bκ(N,χ) an orthonormal basis of this space. Let B∗κ(N,χ) be an or-
thonormal basis of Hecke newforms of weight κ ∈ {0, 1}, level N , and
nebentypus χ. Any f ∈ B∗κ(N,χ) is an eigenfunction of every Hecke op-
erator Tn, with an eigenvalue λf (n). According to Atkin–Lehner theory

Aκ(N,χ) =
⊕

LM=N
M≡0 (mod qχ)

⊕
f∈B∗κ(M,χ)

Aold
κ (L, χ),

where

Aold
κ (L, χ) = span{f(dz) : d|L}.
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For the space Aold
κ (L, χ) we choose the basis constructed in [20,

Lemma 3.15], which provides us with the following decomposition:

(2.33) Bκ(N,χ) =
∐

LM=N
M≡0 (mod qχ)

∐
f∈B∗κ(M,χ)

∐
d|L

{f (d) =
∑
l|d

ξf (l, d)f(lz)},

where the coefficients ξf (l, d) are defined explicitly in [20, Lemma 3.15]
and f∈B∗κ(M,χ) is L2(Γ0(N)\H) normalized. Note that coefficients ξf (l,d)
in (2.33) coincide with ξg(d) in (2.31), that is, ξf (l, d) = ξd(l).

Let 1/4 + t2f be a Laplace eigenvalue for the function f ∈ Bκ(N,χ).

Any f ∈ Bκ(N,χ) has a Fourier–Whittaker expansion of the form

f(σaz)e
−iκ arg i(σa,z) =

∑
m 6=0

ρfa(m)√
m

W |m|
m

κ
2
,itf

(4π|m|y)e(mx).

Here z = x + iy and Wλ,µ(z) is a Whittaker function (see [19, Sec-
tion 9.22]). If f is a newform, then ρf∞(n) = ρf∞(1)λf (n). Using the

definition of f (d) in (2.33) one has

(2.34) ρ
f

(d)
∞

(n) =
∑
l|(d,n)

ξf (l, d)
√
lλf (n/l)ρf∞(1).

For f ∈ H∗k(N,χ) or f ∈ B∗κ(N,χ), a real character χ (mod N),
and <s > 1, the associated symmetric square L-functions can be de-
fined ([47]) by the series

(2.35) L(sym2 f, s)=ζ(N)(2s)

∞∑
l=1

λf (l2)

ls
, L(sym2 f, s)=ζ(N)(2s)

∞∑
l=1

λf (l2)

ls
,

where

ζ(N)(z) =
∏
p-N

(1− p−z)−1.

For the Hecke congruence subgroup Γ = Γ0(N) and nebentypus χ
with κ = 1, we define the Eisenstein series associated to a singular
cusp c as follows:

Ec(z, s) :=
∑

γ∈Γc\Γ

χ(γ)j
σ−1
c γ

(z)−1(=(σ−1
c γz))s,

where σc is a scaling matrix for c and

jγ(z) :=
cz + d

|cz + d| = ei arg(cz+d), γ =

(
a b
c d

)
.

The Fourier–Whittaker expansion for the given Eisenstein series is ob-
tained in [2, Theorem 2.3]. Here we just state the final result.
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Theorem 2.7. Assume that c is a singular cusp with respect to χ and a
is an Atkin–Lehner cusp. Then the following Fourier–Whittaker expan-
sion holds:

Ec(σaz, s)jσa(z)−1 = δacy
s + ρa,c(0, s)y

1−s

+
∑
m 6=0

ρa,c(m, s)e(mx)W |m|
2m

,s−1/2
(4π|m|y),

where

ρa,c(0, s) = −
√
πiΓ(s)

Γ(s+ 1/2)
φa,c(0, s, χ),

ρa,c(m, s) = − πsi|m|s−1

Γ(s+ 1/2)
φa,c(m, s, χ),

φa,c(m, s, χ) =
∑

c∈Cc,a(N)

Sca(0,m; c;χ)

c2s
.

2.5. Kuznetsov trace formula for generalized Kloosterman
sums. The Kuznetsov trace formula for generalized Kloosterman sums
(defined in Subsection 2.2) can be found, for example, in [27, Section 3.3],
[16, Section 4.1.3], and [2, Section 2.5]. Here we state only the case of
odd characters (i.e. κ = 1) required for our computations.

Assume that the function ψ ∈ C∞ satisfies the following conditions:

(2.36) ψ(0) = ψ′(0) = 0, ψ(j)(x)� (1 + x)−2−η, j = 0, 1, 2, 3,

for some η > 0.
Let us define the integral transforms appearing in the Kuznetsov trace

formula:

ψH(k) := 4ik
∫ ∞

0

Jk−1(x)ψ(x)
dx

x
,(2.37)

ψD(t) :=
2πit

sinh (πt)

∫ ∞
0

(J2it(x) + J−2it(x))ψ(x)
dx

x
,(2.38)

where Jν(x) denotes the J-Bessel function of order ν. For m,n > 0 let

(2.39) Ka,b(m,n,N ;ψ) :=
∑

c∈Ca,b(N)

Sab(m,n; c;χ)

c
ψ

(
4π
√
mn

c

)
.
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Then the Kuznetsov trace formula for generalized Kloosterman sums
takes the following form:

(2.40) Ka,b(m,n,N ;ψ)=Ha,b(m,n,N ;ψ)+Da,b(m,n,N ;ψ)+Ca,b(m,n,N ;ψ),

where

Ha,b(m,n,N ;ψ) :=
∑
k>1

k≡1 (mod 2)

∑
f∈Hk(N,χ)

ψH(k)Γ(k)ρfa(m)ρfb(n),(2.41)

Da,b(m,n,N ;ψ) :=
∑

f∈Bκ(N,χ)

ψD(tf )

cosh (πtf )
ρfa(m)ρfb(n),(2.42)

Ca,b(m,n,N ;ψ) :=
∑

c sing.

1

4π

∫ ∞
−∞

ψD(t) sinh(πt)

t cosh (πt)
m−itnit(2.43)

×φa,c(m, 1/2 + it, χ)φb,c(n, 1/2 + it, χ) dt.

The summation in (2.43) is taken over all cusps c of Γ = Γ0(N) that are
singular with respect to χ.

Later we will apply (2.40) only for a = ∞ and b = ∞ or 0. In these
cases using the special choice of bases (2.31) and (2.33) one can rewrite
(2.41) and (2.42) in terms of Hecke eigenvalues λf (n). Applying (2.32),
(2.34), and the relation [45, (6.9)] (see also [22, (13.43)])

(2.44) ρf0(n) = ε0ρf∞(n), with |ε0| = 1

we obtain

H∞,∞(m,n,N ;ψ) =
∑
k>1

k≡1 (mod 2)

∑
LM=N

M≡0 (mod qχ)

∑
f∈H∗

k
(M,χ)

∑
g|L

ψH(k)(2.45)

×Γ(k)ρ
f

(g)
∞

(m)ρ
f

(g)
∞

(n),

H∞,0(m,n,N ;ψ) =
∑
k>1

k≡1 (mod 2)

∑
LM=N

M≡0 (mod qχ)

∑
f∈H∗

k
(M,χ)

∑
g|L

ψH(k)(2.46)

×Γ(k)ε0ρf(g)
∞

(m) ρ
f

(g)
∞

(n),

where ρ
f

(g)
∞

(n) are given by (2.32), and

D∞,∞(m,n,N ;ψ) =
∑

LM=N
M≡0 (mod qχ)

∑
f∈B∗κ(M,χ)

∑
d|L

ψD(tf )

cosh (πtf )
ρ
f

(d)
∞

(m)ρ
f

(d)
∞

(n),

(2.47)

D∞,0(m,n,N ;ψ) =
∑

LM=N
M≡0 (mod qχ)

∑
f∈B∗κ(M,χ)

∑
d|L

ψD(tf )

cosh (πtf )
ε0ρf(d)

∞
(m)ρ

f
(d)
∞

(n),

(2.48)
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where ρ
f

(d)
∞

(n) are given by (2.34). Note that (2.46) and (2.48) match

exactly with [45, (6.27), (6.25)].
If d is an even power of 2, then we define δf (d, s) := 1. If d is an odd

power of 2, we let

(2.49) δf (d, s) :=
λf (2)

2s/2
, δf (d, s) :=

λf (2)

2s/2
.

Finally, let

(2.50)

P∞,∞ = P∞,∞(s−, s+, L; f)

:=
∑
g|L

∑
d1|g

∑
d2|g

ξg(d1)ξg(d2)d
1−s−

2
1 d

1−s+
2

2 δf (d1, s−)δf (d2, s+),

and

P∞,0 = P∞,0(s−, s+, L; f)

:=
∑
g|L

∑
d1|g

∑
d2|g

ξg(d1) ξg(d2)d
1−s−

2
1 d

1−s+
2

2 δf (d1, s−)δf (d2, s+).

Lemma 2.8. For N = ML = 2a, g|L, and f ∈ H∗k(M,χ−4) with 4|M
one has

ζN (2s−)ζN (2s+)

∞∑
m,n=1

ρ
f

(g)
∞

(m2)ρ
f

(g)
∞

(n2)

ms−ns+
(2.51)

= |ρf∞(1)|2P∞,∞L(sym2 f, s−)L(sym2 f, s+),

ζN (2s−)ζN (2s+)
∞∑

m,n=1

ρ
f

(g)
∞

(m2)ρ
f

(g)
∞

(n2)

ms−ns+

= ρf∞(1)
2
P∞,0L(sym2 f, s−)L(sym2 f, s+).

Proof: Substituting (2.32) instead of ρ
f

(g)
∞

(n2) and ρ
f

(g)
∞

(m2) we reduce

the problem of evaluating (2.51) to

(2.52) ζN (2s−)ζN (2s+)|ρf (1)|2
∑
d1|g

∑
d2|g

ξg(d1)ξg(d2)
√
d1d2

×
∞∑
m=1

m2≡0 (mod d1)

∞∑
n=1

n2≡0 (mod d2)

λf (m2/d1)λf (n2/d2)

ms−ns+
.
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Since g|L|N and N is a power of 2, d1 and d2 are either 22j+1 or 22j .
Suppose that d1 = 22j . In this case the condition m2 ≡ 0 (mod d1)
means that m ≡ 0 (mod

√
d1). Therefore,

(2.53)

ζN (2s−)

∞∑
m=1

m2≡0 (mod d1)

λf (m2/d1)

ms−
=
ζN (2s−)√

d
s−
1

∞∑
m=1

λf (m2/d1)

ms−

=
L(sym2f, s−)

d
s−/2
1

.

If d1 = 22j+1, then m ≡ 0 (mod
√

2d1) and since it follows from (2.30)
that λf (2m) = λf (2)λf (m) we obtain

(2.54)

ζN (2s−)

∞∑
m=1

m2≡0 (mod d1)

λf (m2/d1)

ms−
=
ζN (2s−)√

2d
s−/2
1

∞∑
m=1

λf (2m2)

ms−

=
L(sym2 f, s−)λf (2)√

2d
s−/2
1

.

Combining (2.53) and (2.54) one has

(2.55) ζN (2s−)

∞∑
m=1

m2≡0 (mod d1)

λf (m2/d1)

ms−
= L(sym2 f, s−)δf (d1, s−),

where δf (d1, s1) is defined by (2.49). In the same way

(2.56) ζN (2s+)

∞∑
n=1

n2≡0 (mod d2)

λf (n2/d2)

ns+
= L(sym2 f, s−)δf (d2, s+).

Substituting (2.55) and (2.56) to (2.52) we prove (2.51). The second
relation can be proved in the same way.

The same formulas also hold in the case of Maass forms, since the
expressions (2.32) and (2.34) coincide due to ξf (l, d) = ξd(l).

When L is a power of 2 and 4|M we can evaluate P∞,∞ and P∞,0
explicitly in terms of λf (2) since in this case we need only the values
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of ξg(d) for g and d being a power of 2. These values are given on p. 2490
of [44] and for ν ≥ 1 are equal to

ξ1(1) = 1,

ξ2ν (2ν) =

(
1− |λf (2)|2

2

)−1/2

,

ξ2ν (2ν−1) =
−λf (2)√

2

(
1− |λf (2)|2

2

)−1/2

,

and zero in all other cases. Therefore, the summands in (2.50) are non-
zero only for d1 and d2 being equal to either g or g/2. Hence using (2.49)
we obtain for g being an even power of 2

∑
d1|g

ξg(d1)d
1−s−

2
1 δf (d1, s−) = g

1−s−
2

(
1− |λf (2)|2

2

)1/2

,

and for g being an odd power of 2

∑
d1|g

ξg(d1))d
1−s−

2
1 δf (d1, s−) = g

1−s−
2

λf (2)

2
s−/2

− λf (2)

2
−s−/2(

1− |λf (2)|2
2

)1/2 .
Therefore,

(2.57)

P∞,∞ = 1 +

(
1− |λf (2)|2

2

)
σev

1−
s−+s+

2

(L)

+

( λf (2)

2
s−/2 −

λf (2)

2
−s−/2

)( λf (2)

2
s+/2

− λf (2)

2
−s+/2

)
(
1− |λf (2)|2

2

) σod

1−
s−+s+

2

(L),

where

σev
s (L) =

∑
g|L

log2 g is even

gs, σod
s (L) =

∑
g|L

log2 g is odd

gs.

Similarly we find that

(2.58)

P∞,0 = 1 +

(
1− |λf (2)|2

2

)
σev

1−
s−+s+

2

(L)

+

( λf (2)

2
s−/2 −

λf (2)

2
−s−/2

)( λf (2)

2
s+/2 −

λf (2)

2
−s+/2

)
(
1− |λf (2)|2

2

) σod

1−
s−+s+

2

(L).
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2.6. Eisenstein series for Γ0(4), Γ0(16), and Γ0(64). For our pur-
poses, it is required to consider only the case when level is equal to 4, 16,
64, cusps are∞, 0, and nebentypus is χ−4. More precisely, the following
Kloosterman sums arise in our case:

K∞,∞(m2, n2, 4;ψ), K∞,0(m2, n2, 4;ψ),

K∞,0(m2, n2, 16;ψ), K∞,0(m2, n2, 64;ψ).

After the application of the Kuznetsov trace formula, we obtain (2.43).
Consequently, we need to compute Fourier coefficients of Eisenstein series
for all singular cusps. This was done in [2] and here we just state the
final formulas.

Lemma 2.9 ([2, Lemma 5.1]). The following cusps of Γ0(4) are singular
with respect to χ−4:

0, ∞.

The following cusps of Γ0(16) are singular with respect to χ−4:

0, 1/2, 1/4, 1/8, 1/12, ∞.

The following cusps of Γ0(64) are singular with respect to χ−4:

0, 1/2, 1/4, 1/8, 1/12, 1/16, 1/24, 1/32, 1/40, 1/48, 1/56, ∞.

For convenience, we introduce some notation:

δn(m) :=

{
1 if n|m
0 otherwise

,

s(m) :=
σ1−2s(χ−4;m)

L(χ−4, 2s)
,(2.59)

t(m) :=
τ(χ−4)σ2s−1(χ−4;m)m1−2s

L(χ−4, 2s)
,(2.60)

where τ(χ−4) is the Gauss sum which is equal to 2i.
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Lemma 2.10 ([2, Lemma 5.6]). Let N = 64 and a =∞. Then

φ∞,0(m, s, χ−4) =χ−4(−1)
s(m)

82s
,(2.61)

φ∞,1/2(m, s, χ−4) =χ−4(−1)e

(
m

2

)
s(m)

82s
,

φ∞, 1
4Υ

(m, s, χ−4) =χ−4(−Υ)e

(
−mΥ

4

)
s(m)

82s
, Υ = 1, 3,(2.62)

φ∞, 1
8Υ

(m, s, χ−4) =χ−4(−Υ)e

(
−mΥ

8

)
s(m)

82s
, Υ = 1, 3, 5, 7,(2.63)

φ∞, 1
16Υ

(m, s, χ−4) =χ−4(−Υ)4δ4(m)e

(
−mΥ

16

)
s(m)

162s
, Υ = 1, 3,(2.64)

φ∞, 1
32

(m, s, χ−4) =
8

(32)2s
δ8(m)t

(
m

8

)
− 16

(64)2s
δ16(m)t

(
m

16

)
,

φ∞,∞(m, s, χ−4) =
16

(64)2s
δ16(m)t

(
m

16

)
.(2.65)

Lemma 2.11 ([2, Lemma 5.7]). Let N = 64 and a = 0. Then

φ0,0(m, s, χ−4) =
16

(64)2s
δ16(m)t

(
m

16

)
,(2.66)

φ0,1/2(m, s, χ−4) =
8

(32)2s
δ8(m)t

(
m

8

)
− 16

(64)2s
δ16(m)t

(
m

16

)
,

φ0, 1
4Υ

(m, s, χ−4) = 4δ4(m)e

(
mΥ

16

)
s(m)

162s
, Υ = 1, 3,(2.67)

φ0, 1
8Υ

(m, s, χ−4) = e

(
mΥ

8

)
s(m)

82s
, Υ = 1, 3, 5, 7,(2.68)

φ0, 1
16Υ

(m, s, χ−4) = e

(
mΥ

4

)
s(m)

82s
, Υ = 1, 3,(2.69)

φ0, 1
32

(m, s, χ−4) = e

(
m

2

)
s(m)

82s
,

φ0,∞(m, s, χ−4) =
s(m)

82s
.(2.70)
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Lemma 2.12 ([2, Lemma 5.8]). Let N = 16 and a = 0. Then

φ0,0(m, s, χ−4) =
4

(16)2s
δ4(m)t

(
m

4

)
,(2.71)

φ0,1/2(m, s, χ−4) =
2

82s
δ2(m)t

(
m

2

)
− 4

(16)2s
δ4(m)t

(
m

4

)
,

φ0, 1
4Υ

(m, s, χ−4) = e

(
mΥ

4

)
s(m)

42s
, Υ = 1, 3,(2.72)

φ0, 1
8
(m, s, χ−4) = e

(
m

2

)
s(m)

42s
,

φ0,∞(m, s, χ−4) =
s(m)

42s
.(2.73)

Lemma 2.13 ([2, Lemma 5.9]). Let N = 16 and a =∞. Then

φ∞,0(m, s, χ−4) =χ−4(−1)φ0,∞(m, s, χ−4) = χ−4(−1)
s(m)

42s
,(2.74)

φ∞,1/2(m, s, χ−4) =χ4(−1)φ0, 1
8
(m, s, χ−4) = χ−4(−1)e

(
m

2

)
s(m)

42s
,

φ∞, 1
4Υ

(m, s, χ−4) =χ−4(−Υ)φ0, 1
4(−Υ)

(m, s, χ−4)(2.75)

=χ−4(−Υ)e

(
−mΥ

4

)
s(m)

42s
, Υ = 1, 3,

φ∞, 1
8
(m, s, χ−4) =φ0,1/2(m, s, χ−4

=
2

82s
δ2(m)t

(
m

2

)
− 4

(16)2s
δ4(m)t

(
m

4

)
,

φ∞,∞(m, s, χ−4) =φ0,0(m, s, χ−4) =
4

(16)2s
δ4(m)t

(
m

4

)
.(2.76)

Lemma 2.14 ([2, Lemma 5.10]). Let N = 4. Then

φ0,0(m, s, χ−4) =
t(m)

42s
, φ0,∞(m, s, χ−4) =

s(m)

22s
,(2.77)

φ∞,0(m, s, χ−4) =χ−4(−1)φ0,∞(m, s, χ−4),(2.78)

φ∞,∞(m, s, χ−4) =φ0,0(m, s, χ−4).(2.79)



634 O. Balkanova, D. Frolenkov

Corollary 2.15 ([2, Corollary 5.11]). For N = 64 we have

(2.80) φ∞, 1
32

(m2, s, χ−4) = φ0, 1
2
(m2, s, χ−4) = 0.

For N = 16 we have

(2.81) φ∞, 1
8
(m2, s, χ−4) = φ0, 1

2
(m2, s, χ−4) = 0.

3. Explicit formula for large values of u

Consider the second moment of symmetric square L-functions

(3.1) M2(h;u, v) :=
∑
j

h(tj)αjL(sym2 uj , 1/2+u−v)L(sym2 uj , 1/2+u+v).

We introduce the notation

R(u, v) :=
Φ̂N (1/2− u+ v)

(4π)1/2−u+v
ζ(1 + 2u)ζ(1+2v)ζ(1 + 2u+ 2v)(3.2)

×L(χ−4, 1/2 + u− v)

L(χ−4, 3/2 + u+ v)
,

I(x) :=
1

2πi

∫
(α1)

Φ̂N (s)(cos(πv) + sin(π(u+ s)))(3.3)

×Γ(1/2− u+ v − s)Γ(1/2− u− v − s)xs ds,

where max(−1− 2M, 1− 2l1) < α1 < 1/2−<(u). Furthermore, let

(3.4) ψ(x) := x2uI(x).

Theorem 3.1. Assume that 1 < <(u) < 1/2 + min(1 + 2M, 2l1 −
1),<(v) = 0. Then

(3.5)

M2(h;u, v) = −M(c)
4 (h;u, v) +R(u, v) +R(u,−v)

+
ζ(2s+)ζ(2s−)

(2π)1−2uπ2u

∞∑
m,n=1

(m/n)v

(mn)1/2+u

×
(
−4iK∞,∞(m2, n2, 4;ψ) + 21−2uK∞,0(m2, n2, 4;ψ)

+(8−23−s−−23−s+)K∞,0(m2, n2, 16;ψ) + 16K∞,0(m2, n2, 64;ψ)
)
,

where the definitions of s+, s− are given by formulas (1.3),M(c)
4 (h;u, v)

by (1.4), and Ka,b(m,n,N ;ψ) by (2.39).

Proof: In order to evaluate (3.1) we use the series representation (1.1)
for L-functions and apply the regularized Kuznetsov trace formula (2.24)
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with L ⊆ {2, 3, 4, 5, 7} (which corresponds to weights {4, 6, 8, 10, 14}). As
a result,

M2(h;u, v) =−M(c)
4 (h;u, v) + ζ(2s−)ζ(2s+)TS(u, v),(3.6)

TS(u, v) =

∞∑
m,n=1

(m/n)v

(mn)1/2+u

∞∑
q=1

S(m2, n2; q)

q
ΦN

(
4πmn

q

)
.(3.7)

Note that to obtain M(c)
4 (h;u, v) we applied (2.1).

The next step is to show that the assumptions of the theorem guar-
antee absolute convergence of the triple sum in (3.7). Indeed, estimating
the absolute value of (2.19) we show that φ(x)� x−1/2. Moving the con-
tour of integration in (2.19) to the line =(r) = δ = −∆+ε and estimating
the absolute value of the resulting integral, we have φ(x) � x2δ. Com-
bining these two estimates for φ(x) and using the standard bounds for
the Bessel function J2l−1(x)� min(x2l−1, x−1/2), we infer that for c > 1
(see (2.23))

(3.8) ΦN (x)� min(xc, x−1/2).

Applying (2.11) and (3.8), we conclude that the triple sum on the right-
hand side of (3.6) is absolutely convergent for <(u) > 1. Using the inverse
Mellin transform for the function ΦN (x), we conclude that

(3.9) TS(u, v) =
1

2πi

∫
(α)

Φ̂N (s)

∞∑
m,n=1

(m/n)v

(mn)1/2+u+s

∞∑
q=1

S(m2, n2; q)

q1−s
ds

(4π)s
,

where −1/2−<(u) < α < −1/2. These limitations on α are sufficient for
absolute convergence of the sums and the integral in (3.9). Consequently,
we can change the order of summation in (3.9) such that the outer sum
becomes the sum over q. After that we split the sums over m and n into
arithmetic progressions modulo q. This allows us to apply (2.4) in order
to obtain the Lerch zeta functions∑

m≡c (mod q)

∑
n≡d (mod q)

(m/n)v

(mn)1/2+u+s

=
1

q1+2u+2s
ζ

(
c

q
, 0; 1/2 + u− v + s

)
ζ

(
d

q
, 0; 1/2 + u+ v + s

)
.

Therefore, (3.9) can be written as

TS(u, v) =
1

2πi

∫
(α)

Φ̂N (s)

∞∑
q=1

1

q2+2u+s

∑
c,d (mod q)

S(c2, d2; q)

×ζ
(
c

q
, 0; 1/2 + u− v + s

)
ζ

(
d

q
, 0; 1/2 + u+ v + s

)
ds

(4π)s
.
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Moving the contour of integration to the left, specifically to the
line <(s) = α1 with max(−1 − 2M, 1 − 2l1) < α1 < 1/2 − <(u), we
cross the poles of the Lerch zeta function at the points s1 = 1/2− u+ v
and s2 = 1/2 − u − v. Let us denote the contribution of these poles
as R1(u, v) and R1(u,−v), respectively. Then

(3.10) TS(u, v) = R1(u, v) +R1(u,−v)
1

2πi

∫
(α1)

Φ̂N (s)

∞∑
q=1

1

q2+2u+s

×
∑

c,d (mod q)

S(c2, d2; q)ζ

(
c

q
, 0; 1/2+u−v+s

)
ζ

(
d

q
, 0; 1/2+u+v+s

)
ds

(4π)s
.

Computing the residue at s1 = 1/2− u+ v, we find

R1(u, v)=
Φ̂N (1/2− u+ v)

(4π)1/2−u+v

∞∑
q=1

1

q5/2+u+v

∑
c,d (mod q)

S(c2, d2; q)ζ

(
d

q
, 0; 1+2v

)
.

Applying (2.8), we show that

R1(u, v) =
Φ̂N (1/2− u+ v)

(4π)1/2−u+v

ζ(1 + 2u)ζ(1 + 2v)

ζ(1 + 2u− 2v)

L(χ−4, 1/2 + u− v)

L(χ−4, 3/2 + u+ v)
.

Consider the integral in (3.10). For each of the two Lerch zeta functions,
we apply the functional equation (2.5). Consequently, we obtain four
combinations with different signs of the products

ζ(0,±c/q; ·)ζ(0,±d/q; ·).

Changing the variables −c into c and −d into d yields a unified expression
of the form

ζ(0, c/q; ·)ζ(0, d/q; ·).

More precisely, we show that

∑
c,d (mod q)

S(c2, d2; q)ζ

(
c

q
, 0; 1/2 + u− v + s

)
ζ

(
d

q
, 0; 1/2 + u+ v + s

)

= 2(cos(πv) + sin(π(u+ s)))
Γ(1/2− u+ v − s)Γ(1/2− u− v − s)

(2π)1−2u−2s

×
∑

c,d (mod q)

S(c2, d2; q)ζ

(
0,
c

q
; 1/2− u+ v − s

)
ζ

(
0,
d

q
; 1/2− u− v − s

)
.
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Writing the definition (2.4) for the Lerch zeta functions we have

(3.11)

∑
c,d (mod q)

S(c2, d2; q)ζ

(
c

q
, 0; 1/2+u−v+s

)
ζ

(
d

q
, 0; 1/2+u+v+s

)

=2(cos(πv) + sin(π(u+ s)))
Γ(1/2− u+ v − s)Γ(1/2− u− v − s)

(2π)1−2u−2s

×
∞∑

m,n=1

(mn)s(m/n)v

(mn)1/2−u

∑
c,d (mod q)

S(c2, d2; q)e

(
md+ nc

q

)
.

Substituting (3.11) into (3.10) and using (2.17), we prove that

TS(u, v) = R1(u, v) +R1(u,−v)

+2(2π)2u−1
∞∑

m,n=1

(m/n)v

(mn)1/2−u

∞∑
q=1

1

q2+2u
K(n,m; q)I

(
πmn

q

)
,

where I(x) is defined by (3.3). In order to evaluate K(n,m; q) we apply
Lemmas 2.2–2.5, showing that

TS(u, v) =R1(u, v) +R1(u,−v)

+2(2π)2u−1
∑

m,n≡0(2)

(m/n)v

(mn)1/2−u

∑
q≡0(4)

2i

q1+2u
I

(
πmn

q

)

×
∑

a,b (mod q)
ab≡1 (mod q)

χ−4(a)e

(
−a(m/2)2 + b(n/2)2

q

)

+2(2π)2u−1
∞∑

m,n=1

(m/n)v

(mn)1/2−u

∞∑
q=1

χ−4(q)

q1+2u
I

(
πmn

q

) ∑
a,b (mod q)
ab≡1 (mod q)

e

(
−4qbn

2+4qam
2

q

)

+2(2π)2u−1
∑

m,n≡1(2)

(m/n)v

(mn)1/2−u

∑
q=2r

(r,2)=1

2χ−4(r)

q1+2u
I

(
πmn

q

)
S((8)rm

2, (8)rn
2; r).

(3.12)
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Changing the variables a and b into −a and −b and using (2.14) and
(2.15) for the first sum in (3.12), (2.13), and (2.16) for the second sum
in (3.12), we have

TS(u, v) = R1(u, v) +R1(u,−v)

−4i(2π)2u−1

π2u

∑
m,n≡0(2)

(m/n)v

(mn)1/2+u

∑
γ∈C∞,∞(4)

1

γ
ψ

(
πmn

γ

)
S∞,∞(m2/4, n2/4; γ;χ−4)

+
8(2π)2u−1

π2u

∞∑
m,n=1

(m/n)v

(mn)1/2+u

∑
γ∈C∞,0(16)

1

γ
ψ

(
πmn

γ

)
S∞,0(m2, n2; γ;χ−4)

+2(2π)2u−1
∑

m,n≡1(2)

(m/n)v

(mn)1/2−u

∑
q=2r

(r,2)=1

2χ−4(r)

q1+2u
I

(
πmn

q

)
S((8)rm

2, (8)rn
2; r),

(3.13)

where ψ(x) = x2uI(x). In order to write the third sum in (3.13) similarly
to the first and the second sums, we split the summation over m, n into
four different cases using the following relation:∑

m,n≡1(2)

=

∞∑
m=1

∞∑
n=1

+
∑

m,n≡0(2)

−
∑

m≡0(2)

∞∑
n=1

−
∞∑
m=1

∑
n≡0(2)

.

In the sums over even m we change the variable m into 2m (and we do
the same with sums over even n). Then

2(2π)2u−1
∑

m,n≡1(2)

(m/n)v

(mn)1/2−u

∑
q=2r

(r,2)=1

2χ−4(r)

q1+2u
I

(
πmn

q

)
S((8)rn

2, (8)rm
2; r)

=
16(2π)2u−1

π2u

∞∑
m,n=1

(m/n)v

(mn)1/2+u

∑
γ∈C∞,0(64)

1

γ
ψ

(
πmn

γ

)
S∞,0(m2, n2; γ;χ−4)

+
21−2u(2π)2u−1

π2u

∞∑
m,n=1

(m/n)v

(mn)1/2+u

∑
γ∈C∞,0(4)

1

γ
ψ

(
πmn

γ

)
×S∞,0(m2, n2; γ;χ−4)

−25/2−u+v(2π)2u−1

π2u

∞∑
m,n=1

(m/n)v

(mn)1/2+u

∑
γ∈C∞,0(16)

1

γ
ψ

(
πmn

γ

)
×S∞,0(m2, n2; γ;χ−4)

−25/2−u−v(2π)2u−1

π2u

∞∑
m,n=1

(m/n)v

(mn)1/2+u

∑
γ∈C∞,0(16)

1

γ
ψ

(
πmn

γ

)
×S∞,0(m2, n2; γ;χ−4).

(3.14)
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Substituting (3.14) into (3.13), and using (2.39) and (3.6), we finally
prove (3.5).

4. Special functions arising after applying the
Kuznetsov trace formula

The next step in the proof of Theorem 1.1 is the application of the
Kuznetsov trace formula (2.40) to the summands on the right-hand side
of (3.5).

In this section, we show that the function (3.4) satisfies the conditions
of applicability of the Kuznetsov formula. Furthermore, we show that its
integral transforms (2.37) and (2.38) decay fast enough for the right-
hand side of (2.40) to be absolutely convergent. For that exact reason,
we introduced the regularized version of the Kuznetsov trace formula in
Lemma 2.6.

Lemma 4.1. For max(2, 2l1−1−N ) < 2<(u) < min(2l1−3, 2l1−N ) and
<(v) = 0, the function ψ(x) from (3.4) as x → 0 satisfies the following
estimate:

(4.1) ψ(x)� x1/2+<(u)−ε,

and for x→∞ we have

(4.2) ψ(x)� 1

x2l1−1−2<(u)−ε , ψ(j)(x)� 1

xN−ε
,

where j = 1, 2, 3.

Proof: Applying (2.25) and the Stirling formula

(4.3) Γ(σ + it)� |t|σ−1/2 exp(−π|t|/2), |t| → ∞

for estimating the Gamma functions, we prove that the function under
the integral in (3.3) is bounded by (1 + |=s|)−1−2<(u)−<(s)−N . Accord-
ingly, the integral (3.3) is absolutely convergent for <(s) > −2<(u)−N .
Therefore, in (3.3) the contour of integration <s = α can be chosen such
that (we assume that the parameter M appearing in the condition (C4)
is sufficiently large)

max(1− 2l1,−2<(u)−N ) < α < 1/2−<(u).

Note that the conditions of the lemma imply that 1−2l1 > −2<(u)−N .
In order to prove (4.1), it is sufficient to move the contour of integra-

tion in (3.3) to the right on the line <(s) = 1/2−<(u)− ε and estimate
the absolute value of the integral.

In order to prove the first estimate in (4.2), we move the contour of
integration to the left on <(s) = 1− 2l1 + ε and once again estimate the
absolute value of the resulting integral.
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In order to prove the second estimate in (4.2), we first differenti-
ate (3.3) with respect to x. The resulting integral converges absolutely
for <(s) > j − 2<(u)−N . Note that the conditions of the lemma imply
that

1− 2l1 < j − 2<(u)−N < 1/2−<u.
Moving the contour of integration to <(s) = j − 2<(u) − N + ε and
estimating the absolute value of the resulting integral, we prove the
second estimate in (4.2).

Let us choose the parameters N and l1 in Lemma 2.6 in the following
way:

N = 3, l1 = 3.

Then Lemma 4.1 implies that for 1 < <(u) < 3/2− δ and <(v) = 0 the
function ψ(x) from (3.4) satisfies the conditions (2.36) of applicability of
the Kuznetsov trace formula.

Next, we estimate the transforms (2.37) and (2.38) of the function ψ(x)
from (3.4).

Lemma 4.2. For 0 ≤ <(u) < 3/2−δ and <(v) = 0 the following identity
holds:

ψD(t)=
t cosh (πt)

π sinh (πt)

∫
(a)

Φ̂N (s)Γ(1/2− u+ v − s)

×Γ(1/2−u−v−s)Γ
(
s+2u

2
+ it

)
Γ

(
s+2u

2
− it

)
×(cos(πv)+sin(π(u+ s))) sin

(
π(s+2u)

2

)
2s+2u ds,

(4.4)

where −2<(u) < a < 1/2−<(u). Furthermore, for |t| → ∞ we have

(4.5) ψD(t)� 1

(1 + |t|)N .

Proof: Substituting (3.4), (3.3) into (2.38) and using the formula (see
[17, (1), p. 326]) for 0 < <s < 3/2∫ ∞

0

(J2it(x) + J−2it(x))xs−1 dx=
2s

π
Γ(s/2 + it)Γ(s/2− it) cosh (πt) sin

(
πs

2

)
,

we prove (4.4). Estimating the absolute value of the expression under the
integral in (4.4) by using (2.25) and Stirling’s formula (4.3), we conclude
that

ψD(t)� (1 + |t|)
∫ ∞
−∞

exp(−π(|y + t|+ |y − t| − 2|y|)/2)

(1 + |y|)1+2<u+N+a

×(1 + |y + t|)<u+(a−1)/2(1 + |y − t|)<u+(a−1)/2 dy.

Estimating the last integral, we show that (4.5) holds.



Explicit Formula for the Second Moment 641

For the sake of convenience, we introduce the notation

I0(u, v):=
1

π

∫
(0)

Φ̂N (s)Γ(1/2− u+ v − s)

×Γ(1/2−u−v−s)Γ
(
s+u+v+1/2

2

)
Γ

(
s+3u−v−1/2

2

)
×(cos(πv) + sin(π(u+ s))) sin

(
π(s+ 2u)

2

)
2s+2u ds.

(4.6)

Lemma 4.3. For 0 ≤ <(u) < 1/6 and <(v) = 0 we have

ψD(t) sinh(πt)

t cosh (πt)

∣∣∣∣∣
2it=1−s−

= i25/2−u+vΦ̂N (1/2− 3u+ v)Γ(2u)Γ(2u− 2v)

×Γ(1/2−u+v)(cos(πv)+sin(π(1/2−2u+v)))

× sin

(
π(1/2− u+ v)

2

)
+ I0(u, v).

(4.7)

Proof: It follows from (4.4) that

ψD(t) sinh(πt)

t cosh (πt)

∣∣∣∣∣
2it=1−s−

=
1

π

∫
(a)

Φ̂N (s)Γ(1/2− u+ v − s)Γ(1/2− u− v − s)

×Γ

(
s+ u+ v + 1/2

2

)
Γ

(
s+ 3u− v − 1/2

2

)
×(cos(πv)+sin(π(u+s))) sin

(
π(s+ 2u)

2

)
2s+2u ds,

where 1/2 − 3<(u) < a < 1/2 − <(u). Next, we move the contour of
integration to the line <s = 0, crossing a pole at s = 1/2 − 3u + v.
Computing the residue at this point, we prove (4.7).

In a similar way we prove the following statement.

Lemma 4.4. For 0 ≤ <(u) < 1/6 and <(v) = 0 we have

ψD(t) sinh(πt)

t cosh (πt)

∣∣∣∣∣
2it=1−s+

= i25/2−u−vΦ̂N (1/2− 3u− v)Γ(2u)Γ(2u+ 2v)

×Γ(1/2−u−v)(cos(πv)+sin(π(1/2−2u−v)))

× sin

(
π(1/2− u− v)

2

)
+ I0(u,−v).

(4.8)
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Lemma 4.5. For 0 ≤ <(u) < 3/2− δ and <(v) = 0 we have

(4.9) ψH(k) =
22u+1ik

2πi

∫
(a)

Φ̂N (s)Γ(1/2− u+ v − s)Γ(1/2− u− v − s)

×Γ((k − 1 + 2u+ s)/2)

Γ((k + 1− 2u− s)/2)
(cos(πv) + sin(π(u+ s)))2s ds,

where max(1 − 2l1, 1 − k − 2<(u)) < a < 1/2 − <(u). Moreover, for
k →∞ the following estimate holds:

(4.10) ψH(k)� 1

kN+1
+

1

k2l1
.

Proof: Substituting (3.4), (3.3) into (2.37) and using the formula (see
[17, (1), p. 326])∫ ∞

0

Jk−1(x)xs−1 dx =
2s−1Γ((k − 1 + s)/2)

Γ((k + 1− s)/2)
,

we prove (4.9). Estimating the absolute value of the expression under
the integral in (4.9) by applying (2.25) and Stirling’s formula (4.3), we
infer

(4.11) ψH(k)�
∫ ∞
−∞

dy

(1 + |y|)1+a+N+2<u(k + |y|)1−a−2<u .

Since we are interested in the case k → ∞, it is possible to choose
a = 1 − 2l1 + ε. Estimating the integral (4.11) for this a, we complete
the proof of (4.10).

Estimates (4.4) and (4.10) guarantee that the series (1.5), arising after
the application of the Kuznetsov trace formula, are absolutely conver-
gent.

5. Contribution of the continuous spectrum

Recall that (see (1.3))

s+ = 1/2 + u+ v, s− = 1/2 + u− v.

Let us define

(5.1) PL,ζ(u, v, t) =
L(χ−4, s+)L(χ−4, s−)

ζ(2s+)ζ(2s−)

×ζ(s+ + 2it)ζ(s+ − 2it)ζ(s− + 2it)ζ(s− − 2it)

L(χ−4, 1 + 2it)L(χ−4, 1− 2it)
.
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Applying the Kuznetsov trace formula (2.40) to the right-hand side
of (3.5), we obtain the following sum as a part of the continuous spec-
trum:

C(u, v) =
ζ(2s+)ζ(2s−)

(2π)1−2uπ2u

∞∑
m,n=1

1

ms−ns+

×
(
−4iC∞,∞(m2, n2, 4;ψ) + 21−2uC∞,0(m2, n2, 4;ψ)

+(8−23−s−−23−s+)C∞,0(m2, n2, 16;ψ)+16C∞,0(m2, n2, 64;ψ)
)
.

(5.2)

For the sake of convenience, we also define

Da,b(c, N ; t) =

∞∑
m,n=1

φa,c(m2, 1/2 + it, χ−4)φb,c(n
2, 1/2 + it, χ−4)

ms−+2itns+−2it
.

Then it follows from (2.43) that for Ca,b(m2, n2, N ;ψ) we have

(5.3)
∞∑

m,n=1

1

ms−ns+
Ca,b(m2, n2, N ;ψ)

=
1

4π

∫ ∞
−∞

ψD(t) sinh(πt)

t cosh (πt)

∑
c sing.

Da,b(c, N ; t) dt.

Lemma 5.1. For <(u) > 1/2, <(v) = 0, the following identity holds:

(5.4)
∞∑

m,n=1

1

ms−ns+
C∞,∞(m2, n2, 4;ψ)

=
1

4π

∫ ∞
−∞

ψD(t) sinh(πt)

t cosh (πt)

PL,ζ(u, v, t)F1(t)

4(1− 2−2s−)(1− 2−2s+)
dt,

where

(5.5) F1(t) = (1− 2−2it−s−)(1− 22it−s+) + (1− 22it−s−)(1− 2−2it−s+).

Proof: By Lemma 2.9 the following cusps are singular: 0, ∞. Applying
(2.79), (2.77), (2.60), and (2.3), we infer

(5.6) D∞,∞(∞, 4; t) = PL,ζ(u, v, t)
(1− 2−2it−s−)(1− 22it−s+)

4(1− 2−2s−)(1− 2−2s+)
.

Using (2.78), (2.77), (2.59), and (2.3), we show that

(5.7) D∞,∞(0, 4; t) = PL,ζ(u, v, t)
(1− 22it−s−)(1− 2−2it−s+)

4(1− 2−2s−)(1− 2−2s+)
.

Finally, it follows from (5.6), (5.7), and (5.3) that (5.4) holds.
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Lemma 5.2. For <(u) > 1/2, <(v) = 0, we have

(5.8)
∞∑

m,n=1

1

ms−ns+
C∞,0(m2, n2, 4;ψ)

=
1

4π

∫ ∞
−∞

ψD(t) sinh(πt)

t cosh (πt)

−iPL,ζ(u, v, t)F2(t)

4(1− 2−2s−)(1− 2−2s+)
dt,

where

(5.9) F2(t) = (1−2−2it−s−)(1−2−2it−s+)22it+(1−22it−s−)(1−22it−s+)2−2it.

Proof: By Lemma 2.9 the following cusps are singular: 0, ∞. Applying
(2.79), (2.77), (2.60), (2.59), and (2.3), we show that

(5.10) D∞,0(∞, 4; t) = PL,ζ(u, v, t)
−i(1− 2−2it−s−)(1− 2−2it−s+)

22−2it(1− 2−2s−)(1− 2−2s+)
.

As a consequence of (2.78), (2.77), (2.60), (2.59), and (2.3), we infer

(5.11) D∞,0(0, 4; t) = PL,ζ(u, v, t)
−i(1− 22it−s−)(1− 22it−s+)

22+2it(1− 2−2s−)(1− 2−2s+)
.

Finally, substituting (5.10) and (5.11) into (5.3), we prove (5.8).

Lemma 5.3. For <(u) > 1/2, <(v) = 0, the following identity holds:

(5.12)
∞∑

m,n=1

1

ms−ns+
C∞,0(m2, n2, 16;ψ)

=
1

4π

∫ ∞
−∞

ψD(t) sinh(πt)

t cosh (πt)

−iPL,ζ(u, v, t)F3(t) dt

8(1− 2−2s−)(1− 2−2s+)
,

where

F3(t) =
(1− 22it−s−)(1− 22it−s+)

22it+s+
+

(1− 2−2it−s−)(1− 2−2it−s+)

2−2it+s+

+
(1− 2−2it−s−)(1− 2−2it−s+)

2−2it+s−
+

(1− 22it−s−)(1− 22it−s+)

22it+s−

− (1− 2−2it−s−)(1− 2−2it−s+)

2−4it+s++s−
− (1− 22it−s−)(1− 22it−s+)

24it+s++s−
.

(5.13)

Proof: By Lemma 2.9 the following cusps are singular:

0, 1/2, 1/4, 1/8, 1/12, ∞.

As a direct consequence of (2.81) we have

(5.14) D∞,0(1/2, 16; t) = D∞,0(1/8, 16; t) = 0.
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First, consider c = 0. Applying (2.71), (2.74), (2.60), (2.59), and (2.3),
we show that

(5.15) D∞,0(0, 16; t) = PL,ζ(u, v, t)
−i(1− 22it−s−)(1− 22it−s+)

23+s++2it(1− 2−2s−)(1− 2−2s+)
.

Second, consider c =∞. Applying (2.76), (2.73), (2.60), (2.59), and (2.3),
we show that

(5.16) D∞,0(∞, 16; t) = PL,ζ(u, v, t)
−i(1− 2−2it−s−)(1− 2−2it−s+)

23+s−−2it(1− 2−2s−)(1− 2−2s+)
.

Third, consider c = 1/(4Υ) for Υ = 1, 3. It follows from (2.75) and (2.72)
that

∞∑
m,n=1

1

ms−+2itns+−2it
φ∞,1/4Υ(m2, 1/2 + it, χ−4)φ0,1/4Υ(n2, 1/2 + it, χ−4)

=
χ−4(−Υ)

16L(χ−4, 1 + 2it)L(χ−4, 1− 2it)

×
∞∑

m,n=1

σ2it(χ−4;m2)σ−2it(χ−4;n2)

ms−+2itns+−2it
e

(
(m2 + n2)Υ

4

)
.

If m and n have the same parity, then∑
Υ=1,3

χ−4(−Υ)e

(
(m2 + n2)Υ

4

)
= 0.

If the parity of m and n differ, then∑
Υ=1,3

χ−4(−Υ)e

(
(m2 + n2)Υ

4

)
= −2i.

As a result,

D∞,0(1/4, 16; t) +D∞,0(1/12, 16; t) =
−i

8L(χ−4, 1 + 2it)L(χ−4, 1− 2it)

×
( ∑
m≡1(2)

σ2it(χ−4;m2)

ms−+2it

∑
n≡0(2)

σ−2it(χ−4;n2)

ns+−2it

+
∑

m≡0(2)

σ2it(χ−4;m2)

ms−+2it

∑
n≡1(2)

σ−2it(χ−4;n2)

ns+−2it

)
.

Using (2.2), we find that∑
m≡1(2)

σ2it(χ−4;m2)

ms−+2it
=

∞∑
m=1

σ2it(χ−4;m2)

ms−+2it
−

∑
m≡0(2)

σ2it(χ−4;m2)

ms−+2it

= (1− 2−s−−2it)

∞∑
m=1

σ2it(χ−4;m2)

ms−+2it
.

(5.17)
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The sum over odd n can be treated similarly. Applying (2.3) in order to
compute the sums over m and n, we derive the following expression:

(5.18)

D∞,0(1/4, 16; t)+D∞,0(1/12, 16; t)=PL,ζ(u, v, t)
−i(1−22it−s−)(1−2−2it−s+)

23(1− 2−2s−)(1− 2−2s+)

×
(

1− 2−s−−2it

2s+−2it
+

1− 2−s++2it

2s−+2it

)
.

Now the required identity (5.12) follows from (5.14), (5.15), (5.16),
(5.18), and (5.3).

Lemma 5.4. For <(u) > 1/2, <(v) = 0, we have

(5.19)
∞∑

m,n=1

1

ms−ns+
C∞,0(m2, n2, 64;ψ)

=
1

4π

∫ ∞
−∞

ψD(t) sinh(πt)

t cosh (πt)

−iPL,ζ(u, v, t)F4(t) dt

16(1− 2−2s−)(1− 2−2s+)
,

where

F4(t) = (1− 22it−s−)(1− 22it−s+)(1− 2−2it−s−)(1− 2−2it−s+)

+
(1− 2−2it−s−)(1− 22it−s−)(1− 22it−s+)

22it+2s+

+
(1− 2−2it−s−)(1− 22it−s−)(1− 2−2it−s+)

2−2it+2s+

+
(1− 2−2it−s+)(1− 22it−s+)(1− 22it−s−)

22it+2s−

+
(1− 2−2it−s+)(1− 22it−s+)(1− 2−2it−s−)

2−2it+2s−

+
(1− 22it−s−)(1− 22it−s+)

22it+s++s−
+

(1− 2−2it−s−)(1− 2−2it−s+)

2−2it+s++s−
.

(5.20)

Proof: By Lemma 2.9 the following cusps are singular:

0, 1/2, 1/(4Υ4), 1/(8Υ8), 1/(16Υ4), 1/32, ∞,

where Υ4 = 1, 3 and Υ8 = 1, 3, 5, 7. Let us split each of the sums over m
and n into two parts depending on the parity of the summation variable.
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Then

(5.21) D∞,0(c, 64; t) = E11(c; t) + E10(c; t) + E01(c; t) + E00(c; t),

where

Ekj(c; t) =
∑

m≡k(2)

∑
n≡j(2)

φ∞,c(m2, 1/2 + it, χ−4)φ0,c(n
2, 1/2 + it, χ−4)

ms−+2itns+−2it
.

Let us compute E11(c; t). Since the summation is taken over odd n,
Lemma 2.11 implies that

(5.22) E11(0; t) = E11(1/2; t) = E11(1/(4Υ4); t) = 0.

Since the summation is taken over odd m, Lemma 2.10 shows that

(5.23) E11(1/(16Υ4); t) = E11(1/32; t) = E11(∞; t) = 0.

Therefore, we are left to compute∑
Υ8=1,3,5,7

E11(1/(8Υ8); t).

Next, we apply (2.63), (2.68), and (2.59) for evaluation of the Fourier
coefficients. In order to compute the sum over Υ8 we use the equality∑

Υ8=1,3,5,7

χ−4(−Υ8)e

(
Υ8

4

)
= −4i.

The sums over m and n can be treated using (5.17) and (2.3). As a
result,

(5.24)
∑

Υ8=1,3,5,7

E11(1/(8Υ8); t)

= PL,ζ(u, v, t)
−i(1− 2−2it−s−)(1− 2−2it−s+)(1− 22it−s−)(1− 22it−s+)

16(1− 2−2s−)(1− 2−2s+)
.

Combining (5.22), (5.23), and (5.24), we have

(5.25)
∑

c sing.

E11(c; t)

= PL,ζ(u, v, t)
−i(1− 2−2it−s−)(1− 2−2it−s+)(1− 22it−s−)(1− 22it−s+)

16(1− 2−2s−)(1− 2−2s+)
.

Now let us compute E10(c; t). As a direct consequence of (2.80), we know
that

(5.26) E10(1/2; t) = E10(1/32; t) = 0.
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Since in E10(c; t) the summation is taken over odd m, then it follows
from (2.64) and (2.65) that

(5.27) E10(1/(16Υ4); t) = E10(∞; t) = 0.

Applying (2.61), (2.66), (2.59), (2.60), (5.17), and (2.3), we infer

(5.28) E10(0; t) = PL,ζ(u, v, t)
−i(1− 2−2it−s−)(1− 22it−s−)(1− 22it−s+)

16(1− 2−2s−)(1− 2−2s+)22it+2s+
.

Next, we compute ∑
Υ4=1,3

E10(1/(4Υ4); t).

In view of (2.62) and (2.67), it is required to work with the following
sum: ∑

Υ4=1,3

χ−4(−Υ4)e

(
Υ4m

2

4

)
e

(
Υ4n

2

16

)
.

Note that m is odd and n is even. If n ≡ 2 (mod 4), then∑
Υ4=1,3

χ−4(−Υ4)e

(
Υ4m

2

4

)
e

(
Υ4n

2

16

)
=

∑
Υ4=1,3

χ−4(−Υ4)e

(
Υ4

2

)
= 0.

If n ≡ 0 (mod 4), then∑
Υ4=1,3

χ−4(−Υ4)e

(
Υ4m

2

4

)
e

(
Υ4n

2

16

)
=

∑
Υ4=1,3

χ−4(−Υ4)e

(
Υ4

4

)
= −2i.

Using this as well as (2.62), (2.67), (2.59), (5.17), and (2.3), we conclude
that

(5.29)
∑

Υ4=1,3

E10(1/(4Υ4); t)

= PL,ζ(u, v, t)
−i(1− 2−2it−s−)(1− 22it−s−)(1− 2−2it−s+)

16(1− 2−2s−)(1− 2−2s+)2−2it+2s+
.

Consider ∑
Υ8=1,3,5,7

E10(1/(8Υ8); t).

By (2.63) and (2.68) it is required to compute the sum∑
Υ8=1,3,5,7

χ−4(−Υ8)e

(
Υ8(m2 + n2)

8

)
.

We know that m is odd and n is even. Note that for odd m we have
e
(

Υ8m
2

8

)
= e

(
Υ8

8

)
. If n ≡ 0 (mod 4), then∑

Υ8=1,3,5,7

χ−4(−Υ8)e

(
Υ8(m2 + n2)

8

)
=

∑
Υ8=1,3,5,7

χ−4(−Υ8)e

(
Υ8

8

)
= 0.
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If n ≡ 2 (mod 4), then∑
Υ8=1,3,5,7

χ−4(−Υ8)e

(
Υ8(m2 + n2)

8

)
= −

∑
Υ8=1,3,5,7

χ−4(−Υ8)e

(
Υ8

8

)
= 0.

Therefore,

(5.30)
∑

Υ8=1,3,5,7

E10(1/(8Υ8); t) = 0.

Combining (5.26), (5.27), (5.28), (5.29), and (5.30), we have

(5.31)
∑

c sing.

E10(c; t)

=PL,ζ(u, v, t)
−i(1−2−2it−s−)(1−22it−s−)

16(1− 2−2s−)(1− 2−2s+)

(
(1−2−2it−s+)

2−2it+2s+
+

(1−22it−s+)

22it+2s+

)
.

Let us compute E01(c; t). According to (2.80)

(5.32) E01(1/2; t) = E01(1/32; t) = 0.

Since in E01(c; t) the summation is taken over odd n, then by (2.66)
and (2.67)

(5.33) E01(0; t) = E10(1/(4Υ4); t) = 0.

Similarly to (5.30) we show that

(5.34)
∑

Υ8=1,3,5,7

E01(1/(8Υ8); t) = 0.

We now proceed to evaluate∑
Υ4=1,3

E01(1/(16Υ4); t).

According to (2.64) and (2.69), it is required to compute the sum∑
Υ4=1,3

χ−4(−Υ4)e

(
Υ4m

2

16

)
e

(
Υ4n

2

4

)
.

We know that m is even and n odd. If m ≡ 2 (mod 4), then∑
Υ4=1,3

χ−4(−Υ4)e

(
Υ4m

2

16

)
e

(
Υ4n

2

4

)
=

∑
Υ4=1,3

χ−4(−Υ4)e

(
Υ4

2

)
= 0.

If m ≡ 0 (mod 4), then∑
Υ4=1,3

χ−4(−Υ4)e

(
Υ4m

2

16

)
e

(
Υ4n

2

4

)
=

∑
Υ4=1,3

χ−4(−Υ4)e

(
Υ4

4

)
= −2i.
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Using this in combination with (2.64), (2.69), (2.59), (5.17), and (2.3),
we conclude that

(5.35)
∑

Υ4=1,3

E01(1/(4Υ4); t)

= PL,ζ(u, v, t)
−i(1− 22it−s−)(1− 22it−s+)(1− 2−2it−s+)

16(1− 2−2s−)(1− 2−2s+)22it+2s−
.

Applying (2.65), (2.70), (2.59), (2.60), (5.17), and (2.3), we have

(5.36) E01(∞; t) = PL,ζ(u, v, t)
−i(1−2−2it−s−)(1−22it−s+)(1−2−2it−s+)

16(1− 2−2s−)(1− 2−2s+)2−2it+2s−
.

Summation of (5.32), (5.33), (5.34), (5.35), and (5.36) gives

(5.37)
∑

c sing.

E10(c; t)

=PL,ζ(u, v, t)
−i(1−2−2it−s+)(1−22it−s+)

16(1− 2−2s−)(1− 2−2s+)

(
(1−2−2it−s−)

2−2it+2s−
+

(1−22it−s−)

22it+2s−

)
.

Let us compute E00(c; t). According to (2.80)

(5.38) E00(1/2; t) = E00(1/32; t) = 0.

It follows from (2.61), (2.66), (2.59), (2.60), and (2.3) that

(5.39) E00(0; t) = PL,ζ(u, v, t)
−i(1− 22it−s−)(1− 22it−s+)

16(1− 2−2s−)(1− 2−2s+)24it+2s++s−
.

By (2.65), (2.70), (2.59), (2.60), and (2.3) we have

(5.40) E00(∞; t) = PL,ζ(u, v, t)
−i(1− 2−2it−s−)(1− 2−2it−s+)

16(1− 2−2s−)(1− 2−2s+)2−4it+2s−+s+
.

We proceed to evaluate ∑
Υ8=1,3,5,7

E00(1/(8Υ8); t).

By (2.63) and (2.68) we need to consider the sum∑
Υ8=1,3,5,7

χ−4(−Υ8)e

(
Υ8(m2 + n2)

8

)
provided that m and n are both even. In this case∑

Υ8=1,3,5,7

χ−4(−Υ8)e

(
Υ8(m2 + n2)

8

)
= 0,

and therefore,

(5.41)
∑

Υ8=1,3,5,7

E00(1/(8Υ8); t) = 0.
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Let us compute ∑
Υ4=1,3

E00(1/(4Υ4); t).

By (2.62) and (2.67), it is required to study the sum∑
Υ4=1,3

χ−4(−Υ4)e

(
Υ8m

2

4

)
e

(
Υ8n

2

16

)
provided that both m and n are even. If n ≡ 0 (mod 4), then∑

Υ4=1,3

χ−4(−Υ4)e

(
Υ8m

2

4

)
e

(
Υ8n

2

16

)
= 0.

If n ≡ 2 (mod 4), then∑
Υ4=1,3

χ−4(−Υ4)e

(
Υ8m

2

4

)
e

(
Υ8n

2

16

)
= −2i.

Combining this with (2.59) and (2.3), we show that

(5.42)
∑

Υ4=1,3

E00(1/(4Υ4); t)

= PL,ζ(u, v, t)
−i(1− 22it−s−)(1− 22it−s+)(1− 2−2it−s+)

16(1− 2−2s−)(1− 2−2s+)22it+s−+s+
.

Similarly,

(5.43)
∑

Υ4=1,3

E00(1/(16Υ4); t)

= PL,ζ(u, v, t)
−i(1− 2−2it−s+)(1− 22it−s−)(1− 2−2it−s−)

16(1− 2−2s−)(1− 2−2s+)2−2it+s−+s+
.

Summing (5.38), (5.39), (5.40), (5.41), (5.42), and (5.43), we infer

(5.44)
∑

c sing.

E00(c; t) = PL,ζ(u, v, t)
−i

16(1− 2−2s−)(1− 2−2s+)

×
(

(1− 22it−s−)(1− 22it−s+)

22it+s−+s+
+

(1− 2−2it−s−)(1− 2−2it−s+)

2−2it+s−+s+

)
.

Substituting (5.25), (5.31), (5.37), (5.44) into (5.21), we prove (5.19).
This completes the proof.

Substituting (5.4), (5.8), (5.12), and (5.19) into (5.2), and using (5.1),
we prove the next lemma.
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Lemma 5.5. For <(u) > 1/2, <(v) = 0, the following identity holds:

(5.45) C(u, v) =
L(χ−4, s+)L(χ−4, s−)

(2π)1−2uπ2u(1− 2−2s−)(1− 2−2s+)
Mcon(F ;u, v),

where Mcon(F ;u, v) is defined by (1.6), and

(5.46) F (t)=F1(t)+2−1−2uF2(t)+(1−2−1/2−u+v−2−1/2−u−v)F3(t)+F4(t),

where Fj(t) are defined by (5.5), (5.9), (5.13), and (5.20).

Now using (5.45) we can obtain an expression for C(u, v) which is
valid in the region 0 ≤ <(u) < 1/2, <(v) = 0.

Lemma 5.6. For 0 ≤ <(u) < 1/2, <(v) = 0, the following identity
holds:

(5.47) C(u, v) = S−(u, v) + S+(u, v)

+
L(χ−4, s+)L(χ−4, s−)

(2π)1−2uπ2u(1− 2−2s−)(1− 2−2s+)
Mcon(u, v),

where Mcon(F ;u, v) is defined by (1.6), and

S−(u, v) =
−iF ((1− s−)/(2i))

2(2π)1−2uπ2u(1−2−2s−)(1−2−2s+)

ψD(t) sinh(πt)

t cosh (πt)

∣∣∣∣∣
2it=1−s−

(5.48)

× L(χ−4, s+)

L(χ−4, 2− s−)
ζ(1 + s+ − s−)ζ(2s− − 1)ζ(s− + s+ − 1),

S+(u, v) =
−iF ((1− s+)/(2i))

2(2π)1−2uπ2u(1−2−2s−)(1−2−2s+)

ψD(t) sinh(πt)

t cosh (πt)

∣∣∣∣∣
2it=1−s+

(5.49)

× L(χ−4, s−)

L(χ−4, 2− s+)
ζ(1 + s− − s+)ζ(2s+ − 1)ζ(s− + s+ − 1),

F

(
1− s−

2i

)
=−2−4u−2v−2((3 · 22u+1 − 2)24v

+(3 · 22u − 5 · 24u+1 − 1)22v + 22u + 24u+1),

F

(
1− s+

2i

)
=−2−4u−2v−2((22u + 24u+1)24v

+(3 · 22u − 5 · 24u+1 − 1)22v + 3 · 22u+1 − 2).
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Proof: In the integral (1.6) we make the change of variables z = 2it,
getting

C(u, v) =
L(χ−4, s+)L(χ−4, s−)

(2π)1−2uπ2u(1− 2−2s−)(1− 2−2s+)

−1

8π

×
∫ ∞
−∞

ψD(z/(2i)) sinh(πz/(2i))

z/(2i) cosh (πz/(2i))

×ζ(s+ + z)ζ(s+ − z)ζ(s− + z)ζ(s− − z)
L(χ−4, 1 + z)L(χ−4, 1− z)

F (z/(2i)) dt.

(5.50)

Note that the product of the Riemann zeta functions in (5.50) has four
poles (see (1.3)) at the points

(5.51) z = 1/2− u± v, z = 1/2 + u± v.

Changing <(u) from <(u) > 1/2 to <(u) < 1/2, these poles “jump”
through the line of integration, resulting in additional residues (see [2,
Lemma 6.4]). Computing the residues at the points (5.51) and using the
fact that F (t) is an even function, we prove (5.47).

6. Proof of Theorem 1.1 and concluding remarks

Consider

(6.1) FMT (u, v) :=R(u, v)+R(u,−v)+S−(u, v)+S+(u, v)−S(u, v)−S(u,−v),

where R(u, v) is defined by (3.2), S±(u, v) is given by (5.48) and (5.49),
and

(6.2) S(u, v) = 2h

(
1/2− u+ v

2i

)
ζ(1/2 + u+ v)ζ(2u− 2v)ζ(1 + 2v)ζ(2u)

ζ(3/2− u+ v)
.

Theorem 6.1. For 0 ≤ <(u) < 1/2, <(v) = 0, the following formula
holds:

M2(h;u, v) +M(c)
4 (h;u, v) = FMT (u, v)

+
L(χ−4, s+)L(χ−4, s−)

(2π)1−2uπ2u(1− 2−2s−)(1− 2−2s+)
Mcon(F, u, v)

+
(1− 2−2s−)−1(1− 2−2s+)−1

(2π)1−2uπ2u

×
(
−4iM∞,∞(4, u, v) + 21−2uM∞,0(4, u, v)

+(8− 23−s− − 23−s+)M∞,0(16, u, v) + 16M∞,0(64, u, v)
)
,

(6.3)

where Mab(N, u, v), Mcon(F, u, v) are defined by (1.5) and (1.6), respec-
tively.
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Proof: Applying the Kuznetsov trace formula (2.40) to (3.5), using the
expressions (2.45), (2.46), (2.47), (2.48), and finally applying Lemma 2.8
we have that for

1 < <(u) < 3/2, <(v) = 0

the following identity holds:

M2(h;u, v) +M(c)
4 (h;u, v) = R(u, v) +R(u,−v)

+
L(χ−4, s+)L(χ−4, s−)

(2π)1−2uπ2u(1− 2−2s−)(1− 2−2s+)
Mcon(F, u, v)

+
(1− 2−2s−)−1(1− 2−2s+)−1

(2π)1−2uπ2u

×
(
−4iM∞,∞(4, u, v) + 21−2uM∞,0(4, u, v)

+(8− 23−s− − 23−s+)M∞,0(16, u, v) + 16M∞,0(64, u, v)
)
.

(6.4)

From the estimates (4.4) and (4.10) we conclude that the summands
Mab(N, u, v) on the right-hand side of (6.4) are holomorphic functions
of variables u and v. In order to continue analytically the formula (6.4)
to the region 0 ≤ <(u) < 1/2 we can apply (5.47). Similarly, it is pos-

sible to replace M(c)
4 (h;u, v) by M(c)

4 (h;u, v) + S(u, v) + S(u,−v). The
function FMT (u, v) is holomorphic in u and v since the left-hand side
of (6.3), as well as all summands (except FMT (u, v)) on the right-hand
side of (6.3), are holomorphic in both variables u and v.

The most difficult and most important case is u = v = 0, which we
discuss in more detail. It would be natural to expect that FMT (0, 0)
contains the main term for the moment M2(h;u, v). Unfortunately, as
we show below, this is not the case. In this sense, FMT (0, 0) can be
called a “fake main term”.

It is known [5, Theorem 1.3] that if h(r) is a smooth characteristic
function of the interval (T, 2T ), then

(6.5) M2(h; 0, 0) � T 2 log3 T.

Lemma 6.2. The following asymptotic formula holds:

(6.6) FMT (0, 0) =
∑
l∈L

c(l)al +O(T ),

where al are some absolute constants and c(l) are defined by (2.22),
(2.28), (2.29).
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Proof: Using (6.2) and properties of the Riemann zeta function, we have

lim
u,v→(0,0)

(S(u, v) + S(u,−v)) = 2
ζ(1/2)ζ2(0)

ζ(3/2)

×

(
h′(1/(4i))

2i
+

(
2γ +

ζ′(1/2)

ζ(1/2)
− 2

ζ′(0)

ζ(0)
− ζ′(3/2)

ζ(3/2)

)
h

(
1

4i

))
.

Consequently, the summands S(u, v) + S(u,−v) have a negligibly small
contribution to FMT (0, 0). Using (3.2), (5.48), (5.49), (4.8), (4.7), and
some properties of the Riemann zeta function, it can be shown that

lim
u,v→(0,0)

(R(u, v) +R(u,−v) + S−(u, v) + S+(u, v))

=

3∑
j=0

d1(j)Φ̂
(j)
N (1/2) + d2I0(0, 0) + d3

∂

∂v
I0(0, v)

∣∣∣∣∣
v=0

,

where d1(j), d2, d3 are some absolute constants, and I0(u, v) is defined
by (4.6). Therefore,

FMT (0, 0) =

3∑
j=0

d1(j)Φ̂
(j)
N (1/2) + d2I0(0, 0) + d3

∂

∂v
I0(0, v)

∣∣∣∣∣
v=0

+O(T−A).

It follows from (4.6), (2.23), and (2.27) that

I0(0, 0) =
1

π3

∫ ∞
0

r tanh(πr)h(r)

∫
(ε)

Γ(s/2− ir)Γ(s/2 + ir)Γ2(1/2− s)

×Γ

(
s+ 1/2

2

)
Γ

(
s− 1/2

2

)
(1 + sin(πs)) sin(πs)22s ds dr +

∑
l∈L

c(l)b1(l),

where b1(l) are some constants independent of T . Estimating the abso-
lute values of the integral over s by using Stirling’s formula (4.3), we
show that this integral can be bounded by (1 + |r|)−1. As a result,

I0(0, 0) =
∑
l∈L

c(l)b1(l) +O(T ).

Similarly,

∂

∂v
I0(0, v)

∣∣∣∣∣
v=0

=
∑
l∈L

c(l)b2(l) +O(T ).

Therefore,

(6.7) FMT (0, 0) =

3∑
j=0

d1(j)Φ̂
(j)
N (1/2) +

∑
l∈L

c(l)b3(l) +O(T ).
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It follows from (2.26) that

(6.8)
3∑
j=0

d1(j)Φ̂
(j)
N (1/2) =

3∑
j=0

b4(l)c(l) +

3∑
j=0

d1(j)φ̂(j)(1/2).

Applying (2.27), we show that

(6.9)
3∑
j=0

d1(j)φ̂(j)(1/2) = O(T−A).

Substituting (6.8) and (6.9) into (6.7), we complete the proof of (6.6).

From (2.28) and (2.29) we derive that c(l) = Pl,2N−1(T ), where
Pl,2N−1(x) is a polynomial of degree 2N −1. Consequently, (6.6) implies
that

(6.10) FMT (0, 0) = Q2N−1(T ) +O(T ),

where Q2N−1(x) is some polynomial of degree not exceeding 2N − 1.
Comparing (6.10) to (6.5), we see that FMT (0, 0) is not a suitable
candidate (even taking into account the possible vanishing of the leading
coefficients of the polynomial Q2N−1(x)) for the role of the main term
in the asymptotic formula for the second moment M2(h; 0, 0) because
the expression in (6.10) does not contain powers of log T .

We remark that the coefficients c(l) arise in all summands on the
right-hand side of (1.7). Applying (4.5) and (4.10), at the price of a
negligibly small error term we can truncate the summations in (1.5) up
to k, tf � TA and integration in (1.6) up to |t| � TA (here A > 0 is a
sufficiently large number).

In the remaining finite sums and in the integral, we can separate
the parts containing c(l). To this end, we substitute (2.23) into (4.4)
and (4.9), and separate from the functions ψD(t), ψH(k) parts contain-
ing c(l), namely

ψD(t) = φD(t) +
∑
l∈L

c(l)ψD(l; t), ψH(k) = φH(k) +
∑
l∈L

c(l)ψH(l; k).

It can be shown that the functions ψD(l; t), ψH(l; k) are of very rapid
decay in t and k. Accordingly, the moments (1.5) and (1.6) with the func-
tions ψD(l; t), ψH(l; k) are bounded by some absolute constants (without
logarithmic growth in T ). Therefore, these expressions do not qualify to
be a main term in the asymptotic formula for M2(h; 0, 0).

To sum up, the summands from the right-hand side of (1.7), arising
after the application of the regularized Kuznetsov trace formula (2.24),
do not contain a main term for M2(h; 0, 0). Therefore, it is reasonable
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to ask if it is possible to use the standard version of the Kuznetsov trace
formula instead of the regularized one.

For example, in the case of Maass form L-functions, the answer to this
question is yes. However, for the standard version to work it is required
to apply a trick and study, instead of the moments

Mgen(n) =
∑
j

αjL
n(uj , 1/2)h(tj),

the following modification:

Msign(n) =
∑
j

εjαjL
n(uj , 1/2)h(tj),

where εj = ±1 is a sign of Maass form uj . Since L(uj , 1/2) = 0 for εj =
−1, these two moments coincide! It seems that this trick with εj was first
applied by Motohashi [35] to study the second moment of Maass form
L-functions. Later Kuznetsov ([30]) used the same technique to prove an
asymptotic formula for the fourth moment of Maass form L-functions.
However, this approach does not work for∑

j

h(tj)αjL
2(sym2 uj , 1/2).
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