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Abstract: The main goal of the paper is to provide new insight into compactness
in Lp-spaces on locally compact groups. The article begins with a brief historical

overview and the current state of literature regarding the topic. Subsequently, we

“take a step back” and investigate the Arzelà–Ascoli theorem on a non-compact do-
main together with one-point compactification. The main idea comes in Section 3,

where we introduce the “Lp-properties” (Lp-boundedness, Lp-equicontinuity, and

Lp-equivanishing) and study their “behaviour under convolution”. The paper pro-
ceeds with an analysis of Young’s convolution inequality, which plays a vital role in

the final section. During the “grand finale”, all the pieces of the puzzle are brought
together as we lay down a new approach to compactness in Lp-spaces on locally

compact groups.
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1. Introduction

Let us begin with a brief historical overview (see [27]): Andrey Kol-
mogorov was arguably the first person who succeeded in characterizing
relatively compact families in Lp(Rn), where 1 < p < ∞ and all func-
tions are supported in a common bounded set (see [34]). A year later
(in 1932) Jacob David Tamarkin got rid of the second restriction and
in 1933 Marcel Riesz, a younger brother of Frigyes Riesz, proved the
general case (see [43, 50]):

Theorem 1.1. Let 1 6 p < ∞. A family F ⊂ Lp(Rn) is relatively
compact if and only if

• F is Lp-bounded, i.e., there exists M > 0 such that

∀f∈F ‖f‖p 6M,

• F is Lp-equicontinuous, i.e., for every ε > 0 there exists δ > 0
such that

∀|y|<δ
f∈F

∫
Rn

|f(x+ y)− f(x)|p dx 6 ε,
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• F is Lp-equivanishing, i.e., for every ε > 0 there exists R > 0 such
that

∀f∈F
∫
|x|>R

|f(x)|p dx 6 ε.

In 1940, André Weil published a book, in which he demonstrated that
Theorem 1.1 holds true even if we replace Rn with a locally compact
Hausdorff group G (see [51, pp. 53–54]):

Theorem 1.2. Let G be a locally compact Hausdorff group. A fam-
ily F ⊂ Lp(G) is relatively compact if and only if

• F is Lp-bounded,
• F is Lp-equicontinuous, i.e., for every ε > 0 there exists an open

neighbourhood Ue of the neutral element e such that

∀y∈Ue
f∈F

∫
G

|f(xy)− f(x)|p dx 6 ε,

• F is Lp-equivanishing, i.e., for every ε > 0 there exists K b G
(which means that K is a compact subset of G) such that

∀f∈F
∫
G\K
|f(x)|p dx 6 ε.

Weil’s book is oftentimes cited as a reference source when it comes to
characterizing relatively compact families in Lp-spaces (see [14, 20, 21,
23, 27]). However, the argument of the French mathematician is (at least
in the author’s opinion) rather difficult to follow − the exposition is very
terse, avoids technical details, and leaves much of the work to the reader.
The fact that the book is written in French does not make matters easier
(at least for the new generation of mathematicians, who treat English
rather than French or German as the lingua franca of modern science).
The need to overcome these inconveniences was the primary motivation
behind this article.

One might get the misleading impression that the topic of compact-
ness in Lp-spaces is outdated. This could not be further from the truth
and we shall invoke a handful of contemporary papers to prove that
the subject is still an active part of mathematical research. A brilliant
place to start is the article published in 2010 by Harald Hanche-Olsen
and Helge Holden (see [27]), which over the years has gained a rep-
utation as a “cult classic” in the field. Eight years after their initial
publication, the authors joined forces with Eugenia Malinnikova and
published a sort of sequel to their previous paper (see [28]). In the mean-
time (in 2014 to be precise), Przemys law Górka and Anna Macios pub-
lished an analysis of the Kolmogorov–Riesz theorem on metric spaces
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(see [21]). Górka continued the research on compactness and around
2016 collaborated with Humberto Rafeiro (see [23]). Three years later,
Przemys law Górka and Pawe l Pośpiech studied compactness in Banach
function spaces (see [22]), which in turn inspired the article by Weichao
Guo and Guoping Zhao (see [24]).

At this point one may still wonder what the “motive” is for study-
ing compactness in Lebesgue spaces defined on locally compact groups.
We can even ask more broadly: why bother with harmonic analysis be-
yond R? Surprisingly, the literature is suspiciously silent on that matter.
Even the big names in the field like Anton Deitmar, Siegfried Echterhoff,
Edwin Hewitt, Eberhard Kaniuth, or Kenneth A. Ross simply assume in
their monographs that generalizing the results from classical harmonic
analysis is interesting and work onwards with that assumption unques-
tioned. This might feel like a “cop-out answer”, so let us quote Gerald
B. Folland’s preface to his monograph [15]: “(...) one may ask what is
the excuse for a new book on the abstract theory at this time. Well, in the
first place, I submit that the material presented here is beautiful. I fell in
love with it as a student, and this book is the fulfillment of a long-held
promise to myself to return to it.” This is exactly how we feel about
studying compactness in Lebesgue spaces on locally compact groups
– it is a beautiful subject that occupied great minds in the past and
the opportunity to add even a small brick to this mathematical theory is
a privilege. Folland goes on to say: “(...) the abstract theory is still an
indispensable foundation for the study of concrete cases; it shows what
the general picture should look like and provides a number of results that
are useful again and again.” We fully concur with this view – studying
Lebesgue space on locally compact groups rather than on special cases
like R or Z enables us to catch a glimpse of the big scheme of things
and unravel the fundamental principles governing Lp-spaces. The spe-
cial cases subsequently follow from these underlying laws of mathematics
(see Corollaries 5.3, 5.4, 5.5, 5.6, and 5.7 at the end of the paper).

After this brief summary of the current state of the literature and the
presentation of a “motive” for addressing the subject, let us outline the
structure of the paper. Section 2 is devoted to the Arzelà–Ascoli theorem
and we painstakingly document that the classical version of this theorem
(for C(X), X being a compact space) is very well established in the
literature. However, the version for C0(X), X being a locally compact
space, is almost non-existent in the literature (though it is considered
well-known “folklore”). The point of the section is to employ the concept
of one-point compactification in order to lay out a detailed proof of the
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Arzelà–Ascoli theorem for C0(X), where X is a locally compact space.
Thus, we close the gap in the literature.

Section 3 commences with a short summary of the Haar measure.
Subsequently, we introduce three Lp-properties: Lp-boundedness, Lp-
equicontinuity, and Lp-equivanishing. Theorems 3.1, 3.2, and 3.4 demon-
strate how these Lp-properties are “passed down” from F ⊂ Lp(G),
G being a locally compact group, to F ? φ ⊂ C0(G), where φ ∈ Cc(G).

Section 4 is divided into two parts: the first one pivots around proving
that F ? φ is “not far away” (for an appropriate choice of φ ∈ Cc(G))
from F (see Theorem 4.2), while the subject of the second part is Young’s
convolution inequality. Our goal is to prove what is currently known
solely in mathematical folklore and does not exist in the literature (as
far as we are aware).

Finally, Section 5 brings together all the “pieces of the puzzle” from
previous sections. In the climax of the paper (see Theorem 5.2) we pro-
vide an elegant and natural proof of the characterization of relatively
compact families in Lp(G). To the best of our knowledge, our approach is
novel and thus sheds new light on the issues of compactness in Lp-spaces
on locally compact groups.

2. Arzelà–Ascoli theorem and one-point
compactification

The current section focuses on proving a version of the Arzelà–Ascoli
theorem for C0(X), where X is a locally compact space. One might argue
that in view of our final destination point a new version of the Arzelà–
Ascoli theorem is redundant. This perspective is partially true and such a
theorem is a case of “overkill” as we could (with a little effort) stick to the
theory of compactness in Cc(X) in the sequel. However, we consciously
take this detour and shall briefly present the motivation for making such
a decision.

To begin with, if F ⊂ Lp(G), then F ? φ ⊂ Cb(G) for every φ ∈
Cc(G) (see the proof of Theorem 3.1 in the next section). This means
that the convolution “embeds” Lp-families into a Banach space Cb(G).
Furthermore, it turns out that if F is Lp-equivanishing, then F?φ (where
φ(e) 6= 0) is a subset of a Banach space C0(G) (see Theorem 3.4). Thus,
it is very natural to ask: what do relatively compact families in C0(G)
look like?

Another (possibly stronger) reason for focusing on the Arzelà–Ascoli
theorem for C0(X), where X is a locally compact space, is that the result
is interesting in itself. As we explain in the course of the current section,
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a C0-version of the Arzelà–Ascoli theorem is known in mathematical folk-
lore but lacks a comprehensive exposition in the literature. Even worse –
at some point we came across a version of the Arzelà–Ascoli theorem that
is palpably wrong! This false claim in Kaniuth’s monograph (see [31,
Theorem A.1.4]) reads as follows:

Claim. Let X be a locally compact space and F ⊂ C0(X). Suppose
that F satisfies the following two conditions:

• F is pointwise bounded,
• F is equicontinuous at every point.

Then F is relatively compact in (C0(X), ‖ · ‖∞).

If this claim were true, then it would work in particular for X = Z.
We observe that for such a choice of X the equicontinuity condition
becomes obsolete – every family F ⊂ C0(Z) is equicontinuous. Thus it
suffices to consider a sequence of characteristic functions F = (1{n})n∈N,
which is obviously pointwise bounded. However, this sequence does not
contain any convergent subsequence, so F cannot be relatively compact
(contrary to what the claim asserts)! This demonstrates that Kaniuth’s
claim cannot be true.

We feel that the above reasoning is a sufficient motivation for pursuing
a C0 version of the Arzelà–Ascoli theorem, even if this is a slight detour
from our final objective.

The classical version of the Arzelà–Ascoli theorem characterizes rel-
atively compact families in C(X), the space of continuous functions on
a compact space X (we assume that every topological space in this pa-
per is Hausdorff). Such a version of the result appears in many sources
throughout the literature (see for instance [16, Theorem 4.43], [33,
Corollary 10.49], or [45, Theorem A5]) although some authors assume
additionally that the space X is metric for “simplicity of the proof” (see
for instance [4, Theorem 4.25], [6, Theorem 23.2], [12, Theo-
rem 6.3.1], or [44, Theorem 11.28]):

Theorem 2.1 (Classical version of the Arzelà–Ascoli theorem). Let X
be a compact space. The family F ⊂ C(X) is relatively compact if and
only if

• F is pointwise bounded, i.e., for every x ∈ X there exists Mx > 0
such that

∀f∈F |f(x)| 6Mx,
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• F is equicontinuous at every point, i.e., for every x ∈ X and ε > 0
there exists an open neighbourhood Ux of x such that

∀y∈Ux
f∈F

|f(y)− f(x)| 6 ε.

Although the importance of this theorem is difficult to overestimate,
it is not general enough for our further purposes. What we require is
a characterization of relatively compact families in C0(X), the space
of continuous functions on a locally compact space X which vanish at
infinity, i.e., for every ε > 0 there exists a compact set K in X (we
denote this situation by K b X) such that

∀x∈X\K |f(x)| 6 ε.

Browsing through the literature, one may stumble upon a theorem, which
at first glance appears to be what we need (see [13, Theorem 3.4.20],
[32, Theorem 17], or [36, Theorem 47.1]):

Theorem 2.2 (Arzelà–Ascoli theorem for C0(X) with the compact-open
topology). Let X be a locally compact space. The family F ⊂ C0(X) is
relatively compact in the compact-open topology if and only if

• F is pointwise bounded,
• F is equicontinuous at every point.

However, a careful reader immediately recognizes that the theorem
changes the “rules of the game” significantly. Instead of the supremum-
norm topology, Theorem 2.2 uses the weaker compact-open topology.
Both topologies coincide in C(X) if X is compact, but they are essen-
tially different in C0(X) if X is only locally compact (in fact, compact-
open topology is not normalizable).

Our question is this: how do we get rid of this “splinter” in the form
of the switch of topologies? Is there a version of the Arzelà–Ascoli the-
orem for C0(X) in which the supremum-norm topology is not replaced
with the compact-open topology (or any other topology for that mat-
ter)? Surprisingly, the literature is rather scarce in this respect. One
possible reference is Exercise 17 on p. 182 in John B. Conway’s mono-
graph (see [7]). However, Conway does not provide a solution to his ex-
ercise, leaving this task to the reader. Another possible reference is the
monograph by Constantin Corduneanu (see [8, p. 62]). Unlike Conway,
Corduneanu does provide a proof, but (in our opinion) he does not pro-
vide an insight into why the theorem is true. The author (Corduneanu)
basically takes a sequence from a family in C0(X) and repeatedly chooses
some subsequences (obviously using the assumptions along the way) un-
til arriving at a convergent subsequence. This demonstrates the relative
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compactness of the family in question but still leaves the reader won-
dering “why is this theorem true?”. Our goal is not only to see that the
theorem is true, but also to understand why it is so.

To begin with, recall that for any locally compact space X (please
bear in mind that we always assume topological spaces to be Hausdorff),
there exists a compact space X∞, called the one-point compactification
of X, such that

• X is a subspace of X∞,
• the closure of X is X∞,
• X∞\X is a singleton or an empty set (see [13, Theorem 3.5.11],

[36, Theorem 29.1], or [39, Proposition 1.7.3]).

The topology of X∞ allows for a simple description − it consists of open
sets in X (the topology of X) plus all sets of the form X∞\K, where
K b X (as we agreed earlier, this means that K is compact in X).

If X happens to be compact itself, then X = X∞. Otherwise, X∞\X
is a singleton, whose element is often denoted by ∞ (hence the no-
tation “X∞”). A common example of the one-point compactification
is C∞, which arises in the field of complex analysis as a natural domain
for Möbius transformations. It turns out that C∞ is homeomorphic to
a sphere S2, called the Riemann sphere, and the element ∞ may be re-
garded as the “north pole” of that sphere (see [18, p. 38], [19, p. 10], or
[48, pp. 88–89]).

At this point we are ready to prove the following result:

Theorem 2.3 (Arzelà–Ascoli theorem for C0(X) with the supremum-
norm topology). Let X be a locally compact space. The family F ⊂
C0(X) is relatively compact in the supremum-norm topology if and only
if

• F is pointwise bounded,
• F is equicontinuous at every point,
• F is equivanishing, i.e., for every ε>0 there exists KbX such that

(2.1) ∀x 6∈K
f∈F
|f(x)| 6 ε.

Proof: For every f ∈ C0(X) we define a function Ψf : X∞ −→ C such
that Ψf |X = f and Ψf (∞) = 0. Obviously, every Ψf is continuous at
each element x ∈ X. Furthermore, functions Ψf are also continuous
at∞: for a fixed ε > 0 we choose K b X such that (2.1) is satisfied and
put U∞ := X∞\K, which is an open neighbourhood of∞. Consequently,
(2.1) corresponds to

∀x∈U∞ |Ψf (x)−Ψf (∞)| 6 ε,

which demonstrates that Ψf ∈ C(X∞) for every f ∈ C0(X).
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The crucial observation is that for every f ∈ C0(X) we have

sup
x∈X
|f(x)| = sup

x∈X∞
|Ψf (x)|,

so the function Ψ: C0(X) −→ C(X∞), given by Ψ(f) := Ψf , is an
isometry. It is thus clear that the following conditions are equivalent:

• F is relatively compact in C0(X),
• Ψ(F) is relatively compact in C(X∞),
• Ψ(F) is pointwise bounded and equicontinuous at every point x ∈
X∞ (by the classical Arzelà–Ascoli theorem).

Pointwise boundedness of Ψ(F) is equivalent to pointwise boundedness
of F (since for every Ψf ∈ Ψ(F) we have Ψf (∞) = 0), while the equicon-
tinuity of Ψ(F) at x ∈ X is equivalent to equicontinuity of F at this el-
ement. Last but not least, the equicontinuity of Ψ(F) at ∞ means that
for every ε > 0 there exists K b X such that

∀x∈X∞\K
F∈Ψ(F)

|F (x)− F (∞)| 6 ε,

which is equivalent to equivanishing of F . This concludes the proof.

3. Lp-properties

As the title of the section suggests, we will currently focus on certain
Lp-properties and the way they behave under convolution. Before we
commence, however, let us state an assumption which we work under
until the end of the paper:

G is a locally compact (Hausdorff) group.

It turns out (see [10, Chapter 1.3], [15, Chapter 2.2], [29, Section 15],
or [51, Chapter 2]) that any such group G admits a Haar measure µ,
i.e., a non-zero, Borel measure which is

• finite on compact sets,
• inner regular, i.e., for every open set U we have

µ(U) = sup{µ(K) : K ⊂ U, K-compact},

• outer regular, i.e., for every Borel set A we have

µ(A) = inf{µ(U) : A ⊂ U, U -open},

• left-invariant, i.e., for every x ∈ G and Borel set A we have
µ(xA) = µ(A).
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Haar measure is not determined uniquely, but is “unique up to a positive
constant”, i.e., if µ1, µ2 are two (left) Haar measures on G, then there
exists a constant c > 0 such that µ1 = c · µ2. Furthermore, similarly to
the left Haar measure, one can also prove the existence (and uniqueness
up to positive constant) of the right Haar measure. In general, these two
objects need not coincide on G – if they do, we say that G is a unimodular
group. The family of unimodular groups is quite vast and contains all
locally compact abelian groups as well as all compact groups.

As far as history is concerned, the construction of the Haar measure
is commonly attributed to Alfréd Haar, although the contributions of
Henri Cartan and André Weil deserve recognition as well (see [5, 25]
or [51, Chapter 2]). For a detailed account of the subject we refer the
reader to Diestel and Spalsbury’s monograph (see [11]).

From this point onwards

we assume that p > 1 and p′ is its Hölder conjugate.

We say that a family F ⊂ Lp(G) is Lp-bounded if there exists M > 0
such that

∀f∈F ‖f‖p 6M.

Secondly, a family F ⊂ Lp(G) is called Lp-equicontinuous if for every ε >
0 there exists an open neighbourhood Ue of the neutral element e ∈ G
such that

∀f∈F sup
x∈Ue

‖Lxf − f‖p 6 ε and sup
x∈Ue

‖Rxf − f‖p 6 ε,

where Lxf(y) := f(xy) and Rxf(y) := f(yx) are the left and right shift
operators, respectively. Thirdly, F ⊂ Lp(G) is said to be Lp-equivanish-
ing if for every ε > 0 there exists K b G such that

∀f∈F
∫
G\K
|f(y)|p dy 6 ε.

Our aim is to demonstrate that all three properties mentioned above
(Lp-boundedness, Lp-equicontinuity, and Lp-equivanishing) are “inher-
ited” when the family F⊂Lp(G) is convolved with a function φ ∈ Cc(G),
i.e., a continuous function with compact support. Apart from Cc(G) we
will use the notation Cb(G), which stands for the Banach space (with
supremum norm) of continuous and bounded functions on G.

Theorem 3.1. Let F ⊂ Lp(G) be Lp-bounded. If φ ∈ Cc(G), then
F ? φ ⊂ Cb(G) is bounded.
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Proof: Let M > 0 be an Lp-bound on the family F . We divide the proof
into two steps.

Step 1. Proving that f ? φ is continuous for every f ∈ F .

Fix ε > 0, x∗ ∈ G, and suppose that p > 1. By Proposition 2.41
in [15], there exists a symmetric open neighbourhood Ue of the neutral
element such that

(3.1) ∀x∈Ue

(∫
G

|φ ◦ ι(xy)− φ ◦ ι(y)|p
′
dy

) 1
p′

6
ε

M
,

where ι : G −→ G stands for the inverse function, i.e., ι(x) := x−1.
For x ∈ x∗Ue and f ∈ F we have

|f ? φ(x)− f ? φ(x∗)| =
∣∣∣∣∫
G

f(y) · φ(y−1x)− f(y) · φ(y−1x∗) dy

∣∣∣∣
Hölder ineq.

6 ‖f‖p ·
(∫

G

|φ(y−1x)− φ(y−1x∗)|p
′
dy

) 1
p′

y 7→x∗y
6 M ·

(∫
G

|φ(y−1x−1
∗ x)− φ(y−1)|p

′
dy

) 1
p′

= M ·
(∫

G

|φ ◦ ι(x−1x∗y)− φ ◦ ι(y)|p
′
dy

) 1
p′

(3.1)

6 ε.

This proves that F ? φ is a family of continuous functions if p > 1.
For p = 1 let us again fix ε > 0 and x∗ ∈ G. By Lemma 1.3.6 in [10],

function φ is uniformly continuous, so there exists a symmetric open
neighbourhood Ve of the neutral element such that

(3.2) ∀x∈x∗Ve
sup
y∈G
|φ(y−1x)− φ(y−1x∗)| 6

ε

M
.

Consequently, for x ∈ x∗Ve and f ∈ F we have

|f ? φ(x)− f ? φ(x∗)| =
∣∣∣∣∫
G

f(y) · φ(y−1x)− f(y) · φ(y−1x∗) dy

∣∣∣∣
6 sup
y∈G
|φ(y−1)− φ(y−1x∗)| ·

∫
G

|f(y)| dy

(3.2)

6
ε

M
· ‖f‖1 6 ε.

This demonstrates that F ?φ is a family of continuous functions if p = 1.
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Step 2. Proving that the family F ?φ is bounded in the supremum norm.

Suppose that p > 1 and put K := ι(supp(φ)). We observe that

∀x∈G
f∈F

∣∣∣∣∫
G

f(y)·φ(y−1x) dy

∣∣∣∣Hölder ineq.

6 ‖f‖p ·
(∫

G

|φ(y−1x)|p
′
dy

) 1
p′

6M ·‖φ‖∞ ·µ(xK)
1
p′ =M ·‖φ‖∞ ·µ(K)

1
p′ ,

where the second inequality stems from the fact that if

y−1x 6∈ supp(φ)⇐⇒ y 6∈ xK,

then φ(y−1x) = 0. We conclude that F ?φ ⊂ Cb(G) is bounded if p > 1.
For p = 1, the reasoning is even simpler:

∀x∈G
f∈F

∣∣∣∣∫
G

f(y) · φ(y−1x) dy

∣∣∣∣ 6 ∫
G

|f(y)| dy · ‖φ‖∞ 6M · ‖φ‖∞.

This concludes the proof.

Going off on a tangent for a brief moment, one may wonder whether
µ(ι(supp(φ))) (which appears in the second step of the proof above) is
equal to µ(supp(φ)). In general, this is not the case! However if (and
only if) the group G is unimodular (left and right Haar measures coin-
cide), then for every measurable set A we have µ(A) = µ(ι(A)) (see [38,
p. 1112]).

Theorem 3.2. Let F ⊂ Lp(G) be Lp-equicontinuous. If φ ∈ Cc(G),
then F ? φ is equicontinuous.

Proof: Firstly, suppose that p > 1, ε > 0, x∗ ∈ G, and K := ι(supp(φ)).
By Lp-equicontinuity of the family F , let Ue be a symmetric open neigh-
bourhood of the neutral element such that

(3.3) ∀f∈F sup
x∈Ue

‖Lxf − f‖p 6
ε

‖φ‖∞ · µ(K)
1
p′
.

Observe that for every x ∈ G and f ∈ F we have

(3.4) f ? φ(x) =

∫
G

f(y) · φ(y−1x) dy
y 7→xy

=

∫
G

f(xy) · φ(y−1) dy.
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Consequently, for every x ∈ x∗Ue and f ∈ F we have

|f ?φ(x)−f ?φ(x∗)|
(3.4)

6
∫
G

|f(xy)− f(x∗y)| · |φ(y−1)| dy

Hölder ineq.

6

(∫
G

|f(xy)−f(x∗y)|p dy
)1

p

·
(∫

G

|φ(y−1)|p
′
dy

)1
p′

6

(∫
G

|f(xy)− f(x∗y)|p dy
) 1

p

· ‖φ‖∞ · µ(K)
1
p′

y 7→x−1
∗ y

=

(∫
G

|f(xx−1
∗ y)− f(y)|p dy

) 1
p

· ‖φ‖∞ · µ(K)
1
p′

(3.3)

6 ε,

which ends the proof if p > 1.
For p = 1 let us again fix ε > 0 and x∗ ∈ G. By L1-equicontinuity of

the family F , let Ue be a symmetric open neighbourhood of the neutral
element such that

(3.5) ∀f∈F sup
x∈Ue

‖Lxf − f‖1 6
ε

‖φ‖∞
.

For every x ∈ x∗Ue and f ∈ F , we obtain

|f ? φ(x)− f ? φ(x∗)|
(3.4)

6
∫
G

|f(xy)− f(x∗y)| · |φ(y−1)| dy

6 ‖φ‖∞ ·
∫
G

|f(xy)− f(x∗y)| dy

y 7→x−1
∗ y

= ‖φ‖∞ ·
∫
G

|f(xx−1
∗ y)− f(y)| dy

(3.5)

6 ε,

which ends the proof.

Before we demonstrate how Lp-equivanishing behaves “under convo-
lution”, we note the following result:

Lemma 3.3. If K1 and K2 are compact subsets of G, then there exists
a compact set D such that

(3.6) ∀x6∈D xK1 ∩K2 = ∅.

Proof: We put D := K2 ·K−1
1 . It is obviously compact by the continuity

of the group operations and the compactness ofK1 andK2. To prove that
(3.6) is true, suppose that z ∈ xK1 ∩K2 for some x 6∈ D. In particular,
z ∈ K2 and z = xy for some y ∈ K1. This means that

x = zy−1 ∈ K2 ·K−1
1 = D,

which is a contradiction. This concludes the proof.
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Theorem 3.4. Let F ⊂ Lp(G) be Lp-equivanishing. If φ ∈ Cc(G) is such
that φ(e) 6= 0 (e is the neutral element of G), then F ?φ is equivanishing.

Proof: Firstly, suppose that p > 1. We fix ε > 0 and choose K b G such
that

(3.7) ∀f∈F

(∫
G\K
|f |p dµ

) 1
p

6
ε

‖φ‖∞ · µ(ι(supp(φ)))
1
p′
.

Let us denote U := ι({φ 6= 0}), which is an open and relatively com-
pact neighbourhood of the neutral element with U = ι(supp(φ)). By
Lemma 3.3, there exists D b G such that

(3.8) ∀x 6∈D xU ∩K = ∅.

For x 6∈ D and f ∈ F we have

|f ? φ(x)| 6
∫
G

|f(y) · φ(y−1x)| dy 6 ‖φ‖∞ ·
∫
xU

|f | dµ

Hölder ineq.

6 ‖φ‖∞ ·
(∫

xU

|f |p dµ
) 1

p

· µ(xU)
1
p′

(3.8)

6 ‖φ‖∞ ·

(∫
G\K
|f |p dµ

) 1
p

· µ(xU)
1
p′

(3.7)

6 ε,

which ends the proof if p > 1.
For p = 1 let us again fix ε > 0 and choose K b G such that

(3.9) ∀f∈F
∫
G\K
|f | dµ 6

ε

‖φ‖∞
.

Furthermore, we choose U and D as previously. For every f ∈ F and
x 6∈ D we have

|f ? φ(x)| 6
∫
G

|f(y) · φ(y−1x)| dy

6 ‖φ‖∞ ·
∫
xU

|f | dµ

(3.8)

6 ‖φ‖∞ ·
∫
G\K
|f | dµ

(3.9)

6 ε.

This concludes the proof.
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4. Approximation theorem and Young’s convolution
inequality

The first part of the current section is devoted to demonstrating that
the family F ? φ (for a suitably chosen φ ∈ Cc(G)) approximates the
family F in the Lp-norm. To this end, let us recall Minkowski’s integral
inequality (see [16, Theorem 6.19]):

Theorem 4.1. Let X, Y be σ-finite measure spaces and let 1 6 p <∞.
If F : X × Y −→ C is a measurable function, then

(4.1)

(∫
X

(∫
Y

|F (x, y)| dy
)p

dx

) 1
p

6
∫
Y

(∫
X

|F (x, y)|p dx
) 1

p

dy.

To a certain degree, the approximation theorem established below
resembles Proposition 2.42 in Folland’s monograph (see [15, p. 53]).
However, Folland’s proposition focuses on a single function f whereas
our result deals with an Lp-equicontinuous family F ⊂ Lp(G):

Theorem 4.2. If F ⊂ Lp(G) is Lp-equicontinuous, then for every ε > 0
there exists a function φ ∈ Cc(G) such that

∀f∈F ‖f ? φ− f‖p 6 ε.

Proof: Fix ε > 0 and let Ue be the open neighbourhood of the neutral
element such that

(4.2) ∀f∈F sup
y∈Ue

‖Ryf − f‖p 6 ε.

We fix f ∈ F and choose fB to be a Borel-measurable function such that
f = fB almost everywhere. Since G is a Tychonoff space, we can pick
φ ∈ Cc(G) such that

• φ(e) 6= 0, φ > 0,
•
∫
G
φ ◦ ι dµ = 1,

• supp(φ ◦ ι) ⊂ Ue.
For every x ∈ G we have

f ? φ(x)− f(x) =

∫
G

f(y) · φ(y−1x) dy − f(x) ·
∫
G

φ(y−1) dy

=

∫
G

(f(xy)− f(x)) · φ(y−1) dy

=

∫
G

(fB(xy)− fB(x)) · φ(y−1) dy.

We put
F (x, y) := (fB(xy)− fB(x)) · φ(y−1),
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which is Borel-measurable as a composition of the following Borel-mea-
surable functions:

F1 : (x, y) 7−→ (x, y, y),

F2 : (x, y, z) 7−→ (x, y, z−1),

F3 : (x, y, z) 7−→ (x, xy, φ(z)),

F4 : (x, y, z) 7−→ (fB(x), fB(y), z),

F5 : (x, y, z) 7−→ (y − x)z.

Observe that if we replace fB with f in F4, then F does not need to be
Borel-measurable (or even measurable), since a composition of a mea-
surable function with a continuous function need not be measurable.

Furthermore, since fB and φ are integrable with p-th power, then
supp(fB) and supp(φ) are σ-compact (see [10, Corollary 1.3.5]). Hence,
also the sets

(supp(fB) · supp(φ))× ι(supp(φ)) and supp(fB)× ι(supp(φ))

are σ-compact. Following a series of logical implications:

(x, y)∈{F 6= 0} =⇒ fB(xy)− fB(x) 6= 0 and φ(y−1) 6= 0

=⇒ (xy∈supp(fB) or x∈supp(fB)) and y−1∈supp(φ)

=⇒ (xy ∈ supp(fB) and y−1 ∈ supp(φ))

or (x ∈ supp(fB) and y−1 ∈ supp(φ))

=⇒ (x, y) ∈ (supp(fB) · supp(φ))× ι(supp(φ))

or (x, y) ∈ supp(fB)× ι(supp(φ))

we conclude that {F 6= 0} is σ-compact.
Finally, we are in a position to apply Minkowski’s integral inequality:

∀f∈F ‖f ? φ− f‖p = ‖fB ? φ− fB‖p

=

(∫
G

∣∣∣∣∫
G

(fB(xy)− fB(x)) · φ(y−1) dy

∣∣∣∣p dx)
1
p

(4.1)

6
∫
G

(∫
G

|fB(xy)− fB(x)|p · |φ(y−1)|p dx
) 1

p

dy

=

∫
G

‖Ryf−f‖p ·|φ(y−1)| dy 6 sup
y∈U
‖Ryf−f‖p

(4.2)

6 ε.

This concludes the proof.
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Young’s convolution inequality, which is the second topic in the cur-
rent section, was first proved for the circle group S1 by William H. Young
(see [52] for the original paper by Young). Young’s observation was later
extended to unimodular groups (see [35, Chapter 5]) and in the 1970s
the theorem had already been referred to as the “classical inequality of
Young”, while T. S. Quek and Leonard Y. H. Yap called it “one of the
most basic results in harmonic analysis” (see [3, Chapter 1] and [41], re-
spectively). The “popularity burst” of the topic carried on well into the
1990s, though even nowadays some researchers publish papers related to
Young’s inequality (see [1, 2, 3, 17, 37, 47] for just a few of examples
from the past as well as [46] for a modern treatment of the subject and
its applications to convex and set-valued analysis).

As we mentioned earlier, our goal is to give a detailed proof of Young’s
convolution inequality on an arbitrary locally compact group. Such a re-
sult is referred to by Ole A. Nielsen [37], but the author does not provide
any proof (or even a reference!) of this assertion. Our objective is to fill
this gap in the literature. In order to formulate (and prove!) the most
general version of the theorem, let us recall (see [10, Chapter 1.4], [15,
Chapter 2.4], [29, Section 15], or [42, Chapter 3.3]) that the modular
function associated with the Haar measure µ is a continuous group ho-
momorphism ∆: G −→ (R+, ·), which satisfies µ(Ax) = ∆(x)µ(A) for
every Borel set A and every element x ∈ G. Amongst numerous proper-
ties of the modular function we will find the following equality (see [10,
Theorem 1.4.1(d)]) particularly useful:

(4.3) ∀f∈L1(G)

∫
G

f(x−1) ·∆(x−1) dx =

∫
G

f(x) dx.

Without further ado we proceed with Young’s convolution inequality
for an arbitrary locally compact group G:

Theorem 4.3. Let p, q, r ∈ [1,∞) be such that

(4.4)
1

r
=

1

p
+

1

q
− 1.

For functions f ∈ Lp(G) and g ∈ Lq(G), the convolution f ? (∆
1
p′ g)

exists almost everywhere. Moreover, f ? (∆
1
p′ g) ∈ Lr(G) and we have

(4.5) ‖f ? (∆
1
p′ g)‖r 6 ‖f‖p · ‖g‖q.

Proof: Observe that it suffices to prove (4.5), which will immediately

establish that f ?(∆
1
p′ g) ∈ Lr(G) and consequently that the convolution

exists almost everywhere.
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Firstly, we note some useful equalities:

1

r
+

1

q′
+

1

p′
=

1

r
+

(
1− 1

q

)
+

(
1− 1

p

)
(4.4)
= 1,

(
1− p

r

)
q′

(4.4)
= p

(
1− 1

q

)
q′ = p,

(
1− q

r

)
p′

(4.4)
= q

(
1− 1

p

)
p′ = q.

(4.6)

Next, we use Hölder’s inequality to obtain

|f ? (∆
1
p′ g)(x)| =

∣∣∣∣∫
G

f(y) ·∆
1
p′ (y−1x) · g(y−1x) dy

∣∣∣∣
6
∫
G

(|f |(y)
p
r · |g|(y−1x)

q
r ) · |f |(y)(1− p

r )

· (|g|(y−1x))(1− q
r ) ·∆

1
p′ (y−1x) dy

6

(∫
G

|f |(y)p · |g|(y−1x)q dy

) 1
r

·
(∫

G

|f |(1−
p
r )q′ dµ

) 1
q′

·
(∫

G

|g|(y−1x)(1− q
r )p′ ·∆(y−1x) dy

) 1
p′

.

With the aid of formulae (4.6), we are able to transform the last expres-
sion as follows:(∫

G

|f |(y)p ·|g|(y−1x)q dy

)1
r

·
(∫

G

|f |p dµ
)1

q′

·
(∫

G

|g|(y−1x)q ·∆(y−1x) dy

)1
p′

y 7→xy
=

(∫
G

|f |(y)p ·|g|(y−1x)q dy

)1
r

·‖f‖
p
q′
p ·
(∫

G

|g|(y−1)q ·∆(y−1) dy

) 1
p′

.

Lastly, employing property (4.3) of the modular function, we can reduce
the expression even further:(∫

G

|f |(y)p · |g|(y−1x)q dy

) 1
r

· ‖f‖
p
q′
p ·

(∫
G

|g|q dµ
) 1

p′

=

(∫
G

|f |(y)p · |g|(y−1x)q dy

) 1
r

· ‖f‖
p
q′
p · ‖g‖

q
p′
q

= (|f |p ? |g|q(x))
1
r · ‖f‖

p
q′
p · ‖g‖

q
p′
q .
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The computation we have just performed leads to∫
G

|f ? (∆
1
p′ g)(x)|r dx 6

(∫
G

|f |p ? |g|q(x) dx

)
· ‖f‖

pr
q′
p · ‖g‖

qr
p′
q

= ‖|f |p ? |g|q‖1 · ‖f‖
pr
q′
p · ‖g‖

qr
p′
q

6 ‖|f |p‖1 · ‖|g|q‖1 · ‖f‖
pr
q′
p · ‖g‖

qr
p′
q

= ‖f‖
p+ pr

q′
p · ‖g‖

q+ qr
p′

q ,

where the second inequality follows from Theorem 1.6.2 in [10]. Taking
the r-th root, we conclude that

‖f ? g‖r 6 ‖f‖
p
r + p

q′
p · ‖g‖

q
r + q

p′
q = ‖f‖p · ‖g‖q,

which ends the proof.

5. Characterization of relatively compact families in
Lp-spaces

Let us begin the final section of the paper with a simple lemma:

Lemma 5.1. Let F ⊂ Lp(G) be Lp-bounded and Lp-equicontinuous. If
φ ∈ Cc(G) and K b G, then F|K ? φ is relatively compact in C0(G) and

∀f∈F supp(f |K ? φ) ⊂ K · supp(φ).

Proof: Obviously, if F is Lp-bounded, then so is F|K . Furthermore, F|K
is trivially Lp-equivanishing, because it is supported in K. Last but not
least, the Lp-equicontinuity of F implies the Lp-equicontinuity of F|K .

By Theorems 3.1, 3.2, and 3.4 we conclude that F|K ? φ is bounded,
equicontinuous, and equivanishing in C0(G). By Theorem 2.3 we estab-
lish that F|K ? φ is relatively compact.

For the last part of the theorem, observe that for every f ∈ F we
have

∀x∈G |f |K ? φ(x)| =
∫
K

|f(y) · φ(y−1x)| dy.

The integral on the right-hand side is 0 for x 6∈ K · supp(φ), so

∀f∈F supp(f |K ? φ) ⊂ K · supp(φ).

This concludes the proof.

Before we proceed to the climax of the paper we explain how our result
relates to other compactness theorems known in the mathematical lit-
erature. To begin with, Theorem 5.2 generalizes the Kolmogorov–Riesz
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theorem, as Rn is a locally compact (Hausdorff) group. The proofs of the
classical Kolmogorov–Riesz theorem can be found in multiple sources,
both articles [27, 34, 43, 50] and monographs [4, Theorem 4.26], or
in [40, Theorem 1.3]. However, none of these proofs carry over to the
general case of a locally compact group G.

Furthermore, we go to great lengths to render our reasoning more
transparent than the terse and very “dry” argument of André Weil (see
[51, pp. 53–54]). It is noteworthy that our proof is definitely not a rewrite
of Weil’s work, as it hinges on an entirely different and innovative idea
of “Lp-property inheritance”.

It is also instructive to juxtapose our results with the modern ap-
proach taken by Górka and Pośpiech in [22]. The authors study com-
pactness in the realm of Banach function spaces, which include classical
Lebesgue spaces, but also variable exponent Lebesgue spaces, Lorentz
spaces, and Orlicz spaces. This setting is admittedly more general than
ours, but the techniques used by Górka and Pośpiech force them to
assume that the Haar measure is σ-finite. As we demonstrate in Theo-
rem 5.2, such an assumption is completely redundant (in our setting).
Furthermore, the paper by Górka and Pośpiech lacks an analysis of
Lp-properties (a topic we discussed at length in Section 3) or a detailed
proof of Young’s convolution inequality (demonstrated in the previous
section) which, as far as we are aware, is a novelty in the field. Last but
not least, a version of the Sudakov theorem (see [28, 49]) presented by
Górka and Pośpiech applies only to locally compact connected groups.
As we explain in Theorem 5.2, there is a more fundamental principle ly-
ing at the heart of the Sudakov theorem, which has not yet been explored
in the literature. All that being said, both Górka and Pośpiech (as well
as other authors before them) deserve high praise and acclamation for
their substantial contribution to the subject of compactness in function
spaces.

Without further ado, we present the main result of the paper:

Theorem 5.2. A family F ⊂ Lp(G) is relatively compact if and only if

• F is Lp-bounded,
• F is Lp-equicontinuous,
• F is Lp-equivanishing.

Furthermore, suppose that the group G is such that for every open
neighbourhood U of the neutral element there exists an element x ∈ U
such that (xk)k∈N is not contained in any compact set. Then the condition
of Lp-boundedness is redundant.
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Proof: For the entire proof, which we divide into five steps, we fix ε > 0.

Step 1. Relative compactness of F implies Lp-boundedness.

This step is immediate, as compact sets are always bounded in a
metric space.

Step 2. Relative compactness of F implies Lp-equicontinuity.

Let (fk)lk=1 be an ε
3 -net for the family F . By Proposition 2.41 in [15],

for every k = 1, . . . , l there exists an open neighbourhood Uk of the
neutral element such that

(5.1) sup
x∈Uk

‖Lxfk − fk‖p 6
ε

3
and sup

x∈Uk

‖Rxfk − fk‖p 6
ε

3
.

Put U :=
⋂l
k=1 Uk, which is obviously an open set. Consequently, for

every f ∈ F there exists k = 1, . . . , l such that

sup
x∈U
‖Lxf − f‖p 6 sup

x∈U
‖Lxf − Lxfk‖p + sup

x∈U
‖Lxfk − fk‖p + ‖fk − f‖p

= 2‖fk − f‖p + sup
x∈U
‖Lxfk − fk‖p

(5.1)

6 ε.

An analogous reasoning works for ‖Rxf − f‖p. We conclude that the
family F is Lp-equicontinuous.

Step 3. Relative compactness of F implies Lp-equivanishing.

Let (fk)lk=1 be an ε
2 -net for the family F . For every k = 1, . . . , l there

exists Kk b G such that

(5.2)

∫
G\Kk

|fk|p dµ 6
ε

2
.

Put K :=
⋃l
k=1Kk, which is obviously a compact set. Consequently, for

every f ∈ F there exists k = 1, . . . , l such that∫
G\K
|f |p dµ 6

∫
G\K
|f − fk|p dµ+

∫
G\K
|fk|p dµ

(5.2)

6
ε

2
+
ε

2
= ε.

This proves that F is Lp-equivanishing.

Step 4. Lp-boundedness, Lp-equicontinuity, and Lp-equivanishing imply
relative compactness of F .

Using Theorem 4.2 we pick φ ∈ Cc(G) such that

(5.3) ∀f∈F ‖f ? φ− f‖p 6
ε

4
.
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By Lp-equivanishing of F , there exists K b G such that

(5.4) ∀f∈F ‖f − f |K‖p 6
ε

4 · ‖∆−
1
p′ φ‖1

.

Due to Lemma 5.1 we know that F|K ? φ is relatively compact in C0(G)
and that

∀f∈F supp(f |K ? φ) ⊂ D,
where D := K · supp(φ). By relative compactness of F|K ?φ there exists
a finite sequence of functions (gk)lk=1 ⊂ Cc(G) such that for every f ∈ F
there exists k = 1, . . . , l such that

(5.5) ‖f |K ? φ− gk‖∞ 6
ε

4 · µ(D)
1
p

.

Due to the inner regularity of µ there exists an open set V ⊃ D such
that

(5.6) µ(V \D) 6

(
ε

4 ·maxk=1,...,l ‖gk‖∞

)p
.

Since every locally compact group is normal (see [29, Theorem 8.13]) by
Urysohn’s lemma (see for instance [13, Theorem 1.5.11], [32, Lemma 4],
[36, Theorem 33.1], or [39, Theorem 1.5.6]) there exists a function u :
G −→ [0, 1] such that

(5.7) u|D = 1 and u|G\V = 0.

Finally, for every f ∈ F there exists k = 1, . . . , l such that

‖f−hk ·u‖p 6 ‖f − f ? φ‖p + ‖f ? φ− f |K ? φ‖p + ‖f |K ? φ− gk · u‖p

(4.5), (5.3)

6
ε

4
+‖f−f |K‖p ·‖∆−

1
p′ φ‖1+

(∫
V

|f |K ? φ−gk · u|p dµ
)1

p

(5.4), (5.7)

6
ε

2
+

(∫
D

|f |K ? φ− gk|p dµ
) 1

p

+

(∫
V \D
|gk|p dµ

) 1
p

6
ε

2
+‖f |K ?φ−gk‖∞ ·µ(D)

1
p +‖gk‖∞ ·µ(V \D)

1
p

(5.5), (5.6)

6 ε.

This demonstrates that (gk ·u)lk=1 is an ε-net for F . Thus F is relatively
compact.

Step 5. Sudakov’s part.

We will now prove that Lp-boundedness follows from Lp-equiconti-
nuity and Lp-equivanishing under the assumption that for every open
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neighbourhood U of the neutral element there exists an element x ∈ U
such that (xk)k∈N is not contained in any compact set. By Lp-equiconti-
nuity of F there exists an open neighbourhood Ue of the neutral element
such that

(5.8) ∀x∈Ue
f∈F

(∫
G

|Lxf − f |p dµ
) 1

p

6 1.

Furthermore, due to Lp-equivanishing there exists K b G such that

(5.9) ∀f∈F

(∫
G\K
|f |p dµ

) 1
p

6 1.

Let x∗ ∈ Ue be an element such that (xk∗)k∈N is not contained in any
compact set. For every f ∈ F we have(∫

K

|f |p dµ
) 1

p

6

(∫
K

|Lx∗f − f |p dµ
) 1

p

+

(∫
K

|Lx∗f |p dµ
) 1

p

(5.8)

6 1+

(∫
G

|f(x∗y)|p ·1K(y) dy

)1
p

=1 +

(∫
x∗K

|f |p dµ
)1

p

.

Using an inductive reasoning we have

∀k∈N
(∫

K

|f |p dµ
) 1

p

6 k +

(∫
xk
∗K

|f |p dµ

) 1
p

.

Observe that there exists l ∈ N such that xl∗K∩K = ∅, since otherwise
we would have (xk)k∈N ⊂ K ·K−1, contrary to our assumption. Finally,
we have

‖f‖p6
(∫

K

|f |p dµ
)1

p

+

(∫
G\K
|f |p dµ

)1
p

6 l+

(∫
xl
∗K

|f |p dµ

)1
p

+1
(5.9)

6 l+2,

which ends the proof.

It is high time we relished the fruits of our labour, i.e., examined vari-
ous locally compact groups in the context of Theorem 5.2. We commence
with the easiest instances of finite groups, like the cyclic groups Zn, per-
mutation groups Sn, alternating groups An, dihedral groups Dihn, the
quaternion group Q8, etc.

Corollary 5.3. Let G be a finite group. A family F ⊂ Lp(G) is relatively
compact if and only if F is Lp-bounded.
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Proof: It suffices to note that on a finite group any family of functions
is Lp-equicontinuous and Lp-equivanishing.

Next, we focus on compact groups such as the circle group S1, the
torus S1×S1, orthogonal groups O(n), special orthogonal groups SO(n),
unitary groups U(n), special unitary groups SU(n) (see [30, Lem-
ma 2.1.4] or [26, Example 1.3.1], for a proof of compactness of these
matrix groups), etc.

Corollary 5.4. Let G be a compact group. A family F⊂Lp(G) is rela-
tively compact if and only if

• F is Lp-bounded,
• F is Lp-equicontinuous.

Proof: Obviously, on a compact group any family of functions is Lp-
equivanishing.

We shift our focus to locally compact connected groups, like the
Euclidean spaces Rn or Cn, general linear groups GL(n,C) (see [26,
Proposition 1.9], for a proof of connectedness of GL(n,C)), special linear
groups SL(n,R) and SL(n,C) (see [26, Proposition 1.10], for a proof of
connectedness of SL(n,C)), the Heisenberg group (see [9, Chapter 12]),
etc.

Corollary 5.5. Let G be a locally compact connected group. A fam-
ily F ⊂ Lp(G) is relatively compact if and only if

• F is Lp-equicontinuous,
• F is Lp-equivanishing.

Proof: It suffices to note that by Theorem 7.4 in [29], the connectedness
of the the group G implies that for every open neighbourhood U of the
neutral element there exists a non-zero element x ∈ U such that (xk)k∈N
is not contained in any compact subset of G.

It turns out that there are non-connected (and non-compact) groups
for which the characterization of relatively compact families looks exactly
like Corollary 5.5. Examples of these groups include the general linear
groups GL(n,R) (see [26, Proposition 1.12], for a study of connected
components of GL(n,R)):

Corollary 5.6. Let G = GL(n,R) for some n ∈ N. A family F ⊂ Lp(G)
is relatively compact if and only if

• F is Lp-equicontinuous,
• F is Lp-equivanishing.
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Proof: It suffices to note that for any open neighbourhood U of the
neutral element of GL(n,R) (i.e., the identity matrix) there exists ε > 0
such that the matrix

A :=



1 + ε 0 . . . . . . 0

0 1
...

...
. . .

...
... 1 0
0 . . . . . . 0 1


belongs to U and since (Ak)1,1 = (1 + ε)k −→ ∞ as k −→ ∞, then
(Ak)k∈N is not contained in any compact set.

As a final example let us consider the group Z, which is neither com-
pact nor connected. However, its behaviour is different from the general
linear groups discussed above:

Corollary 5.7. A family F ⊂ Lp(Z) is relatively compact if and only if

• F is Lp-bounded,
• F is Lp-equivanishing, i.e., for every ε > 0 there exists l ∈ N such

that
∀x∈F

∑
|k|>l

|xk|p 6 ε.

Let us emphasize that Lp-boundedness is not a redundant condition
in characterizing relatively compact families in Lp(Z). This does not
contradict the final part of Theorem 5.2, because the singleton {0} is
an open neighbourhood of the neutral element (namely 0) and the se-
quence (k · 0)k∈N (the only possible sequence we can construct from the
single element of {0}) is contained in the compact set {0}.

Furthermore, it is not difficult to construct an Lp-equivanishing family
in Lp(Z), which is not relatively compact – let x ∈ Lp(Z) be such that
x0 = 1, xk = 0 for k ∈ Z\{0}, and consider the family F = (k · x)k∈N.
Obviously, the family F is Lp-equivanishing, but it is not Lp-bounded
and consequently, not relatively compact. This demonstrates that the
assumption of Lp-boundedness is indispensable for Corollary 5.7.
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