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Abstract: This paper contributes to the proof of the conjecture posed in [5], stating

that a Nichols algebra of diagonal type with finite Gelfand–Kirillov dimension has a

finite (generalized) root system. We prove the conjecture assuming that the rank is 3
or that the braiding is of Cartan type.
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1. Introduction

This article picks up the task initiated in [4], that is, to show that the
Gelfand–Kirillov dimension of a Nichols algebra of diagonal type is finite
if and only if its root system is finite. More precisely, as the converse is
always true using the existence of a PBW basis indexed by the roots,
the goal is to establish the validity of the following statement in [5]:

Conjecture 1.1. Let (V, c) be a braided vector space of diagonal type
such that GKdimB(V ) <∞. Then its generalized root system is finite.

This conjecture is true when dimV = 2, by [4, Theorem 1.2]. In this
article we show that it also holds when

• V is of Cartan type, in Theorem 5.1, or
• dimV = 3, in Theorem 6.1.

Nichols algebras B(V ) with finite root systems were classified in [12,
13, 14], in terms of Dynkin diagrams representing the braiding matrix q
of V . This classification is presented in tables, according to the rank, that
is, the dimension of V . Throughout our work, we refer to these tables as
Heckenberger’s list ; or simply the list, for short. By abuse of notation,
we will say that V , or the braiding matrix q, is in the list when the
associated diagram is so. We write, equivalently, Bq to refer to B(V ).
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and the MathAmSud project GR2HOPF.
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The conjecture is thus equivalent to:

if GKdimBq <∞, then q is in the list.

A positive answer to the conjecture has different implications towards
the classification of pointed Hopf algebras with abelian coradical and
finite GKdim. Indeed, the first step of the Andruskiewitsch–Schneider
Lifting Method is to classify Nichols algebras over abelian groups with
finite GKdim, and it gives the whole answer when the braiding is of
diagonal type. Also, it is assumed to be true in [5] to obtain the classi-
fication of Nichols algebras of finite GKdim whose braiding is a sum of
points and blocks (not of diagonal type), and a forthcoming paper on the
general case of Nichols algebras over abelian groups. Finally, in [7, 9]
the authors also assume the validity of the conjecture to classify pre and
post-Nichols algebras of diagonal type with finite GKdim, which is part
of the second step of the Lifting Method.

We remark that in Heckenberger’s approach in [12, 14] to classify
finite root systems, the cases of ranks 3 and 4 are key to attack the
general case later on. We believe that this is also possible in our setting,
and partially why we have chosen to focus on the rank 3 case in this
paper. Nevertheless, we also give a full answer for the braidings of Cartan
type, of any rank. Again, this is also a crucial step in Heckenberger’s
work, and it is also endowed with a chronological importance, as these
are the kind of braidings which have been consider first in many instances
of the literature.

The structure of the paper is the following. In Section 2 we recall some
notions about Nichols algebras and root systems, focusing mainly on the
diagonal type: for the purposes of this article, we include a generalization
of [4, Proposition 3.1 and Lemma 3.7] to standard braidings. Next we
deal with subquotients of Nichols algebras, which are obtained by means
of the Nθ0-graduation of Nichols algebras of diagonal type; see Section 3.
Thanks to Proposition 3.3 therein we will construct, for each ω ∈ Zθ,
a new Nichols algebra generated by roots orthogonal to ω, a key step
towards checking the validity of Conjecture 1.1 recursively on the rank;
indeed we discuss the relationship between the root systems of our initial
algebra and the new one obtained as a subquotient, and apply this re-
cursive machinery to give three criteria in Section 4 to decide that some
Nichols algebras have infinite GKdim in the subsequent sections. Next,
we deal in Section 5 with the case of Nichols algebras of Cartan type,
and prove one of our main results in Theorem 5.1, namely that a Nichols
algebra of Cartan type has finite GKdim if and only if the associated
Cartan matrix is finite. The proof runs as follows: first we discuss how
to reduce the problem to compactly hyperbolic matrices and then apply
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the criteria stated in Section 4 to these matrices. Finally, in Section 6
we prove the validity of the conjecture for rank 3 in Theorem 6.1. Again,
we make use of the criteria developed in Section 4. Given a braiding ma-
trix q such that GKdimBq <∞, one knows that each rank 2 submatrix
has a finite root system by [4]; hence we address all possible ways to glue
the rank 2 diagrams in the list and reduce to check just a finite set in
Subsection 6.1 using these criteria. This finite set of remaining diagrams
is quite large, and we conclude the proof in Subsection 6.2 using the
computer program GAP, where we implement the criteria to show that
it contains matrices already in the list or such that GKdimBq =∞, by
our results on standard braidings from Section 2.

2. Preliminaries

For m ≤ n ∈ N, we denote Im,n = {k ∈ N : m ≤ k ≤ n}, In = I1,n.
We work over an algebraically closed field of characteristic zero k. Let

GN be the group of Nth roots of 1 in k and let G′N ⊂ GN be the subset
of primitive roots; we also set G∞ =

⋃
N≥2 GN .

We recall some notation from quantum calculus. Consider the follow-
ing expressions in the polynomial ring Z[t], for n ≥ k ≥ 0:

(n)t :=

n−1∑
j=0

tj , (n)t! :=

n∏
j=1

(j)t,

(
n

k

)
t

:=
(n)t!

(k)t!(n− k)t!
.

If q ∈ k, we denote by (n)q, (n)q!, and
(
n
k

)
q

the corresponding evalua-

tions.

Let A be a finitely generated k-algebra and choose a finite-dimensional
generating subspace V ⊆ A. Let An =

∑n
j=0 V

j . Then

GKdimA = lim sup
n→∞

logn(dimAn).

As expected, GKdimA does not depend on the choice of V . We refer the
reader to [19] for more information on this topic.

We use Sweedler notation for the coproducts of Hopf algebras, or
Hopf algebras in braided tensor categories. Given a Hopf algebra H, we
denote by P(H) = {x ∈ H : ∆(x) = x⊗1 + 1⊗x} the space of primitive
elements and G(H) = {x ∈ H − 0 : ∆(x) = x⊗ x} the set of group-like
elements.

2.1. Nichols algebras of diagonal type. Recall that a braided vector
space (V, c) is of diagonal type if there is a basis {x1, . . . , xθ} of V for
which the braiding is determined by a scalar matrix q ∈ (k×)θ×θ as

c(xi ⊗ xj) = qijxj ⊗ xi, i, j ∈ Iθ.
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We refer to this q as the braiding matrix of (V, c) and we shall de-
note by Bq the corresponding Nichols algebra, which is an N0-graded
connected Hopf algebra in a suitable category of Yetter–Drinfeld mod-
ules HHYD; namely, for anyH with a principal YD-realization (χi, gi)i∈Iθ∈
Alg(H,k×)×G(H).

We refer to [1, 3] for more details on Nichols algebras and realizations.

Notation. For any x ∈ Bq with deg x = n > 1 we have

∆(x) = x⊗ 1 + 1⊗ x+

M∑
k=1

xk ⊗ xk, xk, x
k ∈ Bq, M ∈ N,

where 0 < deg xk = n− deg xk < n. We will use the notation

∆(x) := ∆(x)− x⊗ 1− 1⊗ x =

M∑
k=1

xk ⊗ xk

for the restricted comultiplication in Bq.

2.2. Root systems. The Nichols algebra Bq also inherits a Zθ-grading,
in such a way that there is a subset L ⊂ Bq of Zθ-homogeneous elements
together with a height function ht : L→ N ∪ {∞} so that

(1) {`m1
1 · · · `mkk : k ∈ N0, `1 > · · · > `k ∈ L, 0 < mi < ht(`i), i ∈ Ik}

is a linear basis of Bq [17]. The set of positive roots of q is

∆q
+ = {deg ` : ` ∈ L}.

By [15, Lemma 4.7], ∆+ := ∆q
+ does not depend on the choice of L.

Moreover, let K ⊆ Bq be a right coideal subalgebra. Then K admits
a PBW basis as in (1) that can be extended to a basis of Bq; see [18].

As well, ∆+ allows us to describe the (multivariate) Hilbert series
associated to this graded algebra. Namely, for each α = n1α1 + · · · +
nθαθ ∈ ∆+ we set tα := tn1

1 · · · t
nθ
θ ∈ Z[[t1, . . . , tθ]]. Then the Hilbert

series of Bq can be factorized as:

Hq(t) =
∏
α∈∆+

(ht(α))tα .

2.3. Weyl groupoid. Next we recall the definition and properties of
the Weyl groupoid of a Nichols algebra of diagonal type following the
notation in [3]. We also compute roots of some examples needed in the
sequel.
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Fix i ∈ I. We say that we can reflect q at i if for all j 6= i there exists
n ∈ N0 such that (n+ 1)qii(1− qniiqijqji) = 0. If so, we set as in [11] the
generalized Cartan matrix Cq = (cqij), where cqii = 2 and

(2) cqij := −min{n ∈ N0 : (n+ 1)qii(1− qniiqijqji) = 0}, j 6= i.

We also set sqi ∈ GL(Zθ) given by

sqi (αj) = αj − cqijαi, j ∈ I.

We use si to define a new matrix ρiq = (tjk)j,k∈I, called the reflection
at the vertex i of q, where

tjk := qsqi (αj),s
q
i (αk) = qjkq

−cqij
ik q

−cqik
ji q

cqijc
q
ik

ii , j, k ∈ I.
Let ρiV be the braided vector space of diagonal type with matrix ρiq.
Notice that cρiqij = cqij for all j ∈ Id, so

sρiqi = sqi , ρi(ρiq) = q.

By [11, 2],

∆ρiq
+ = sqi (∆q

+ − {αi}) ∪ {αi},(3)

GKdimBρiq = GKdimBq.(4)

We say that q′ is Weyl equivalent to q if there exist ij ∈ I such that
q′ = ρik · · · ρi1q.

We say that q admits all reflections if we can reflect q′ at every i ∈ I
for all q′ Weyl equivalent to q.

If q admits all reflections, then we denote by Xq the collection of all
braided vector spaces of diagonal type obtained from q by a finite number
of successive reflections at various vertices (the equivalence class under
the relation above). This happens, for example, when GKdimBq <∞.

The basic datum of q is the pair (X ,R), where R : I → SX , i 7→ ρi.
The graph of the basic datum has X as a set of points, and an arrow
between q′ and ρiq

′ labeled with i for each q′ ∈ X and i ∈ I. The Weyl
groupoid of q is the subgroupoid of X ×GL(Zθ)×X generated by

σq′

i := (q′, sq
′

i , ρiq
′), q′ ∈ X , i ∈ I.

We use the following notation: for ij ∈ I,

σq′

i1
σi2 · · ·σik := σq′

i1
σ
ρi1q

′

i2
· · ·σ

ρik−1
···ρi1q

′

ik
,

that is, the implicit superscripts are the only ones possible allowing com-
positions. Similarly,

sq
′

i1
si2 · · · sik := sq

′

i1
s
ρi1q

′

i2
· · · s

ρik−1
···ρi1q

′

ik
.

The collection (∆q′

+ )q′∈X is the generalized root system of q.
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A root β ∈ ∆q is real if there exist ij , i ∈ I such that

β = sqi1si2 · · · sik(αi).

We denote by ∆q,re the set of all real roots, and ∆q,re
+ = ∆q,re ∩ NI

0.

Remark 2.1. The roots and the reflections really depend on the twist
equivalence class of q, that is, on the Dynkin diagram of q. Hence we
will work with roots and reflections of equivalence classes of matrices
(Dynkin diagrams) more than with matrices themselves.

In particular, we can choose our matrix q so that qij = 1 for every i >
j.

Notation. The vertices of a Dynkin diagram will be numbered from left
to right and from bottom to top. For each τ ∈ SI, τq := (qτ(i)τ(j))i,j∈I.
For i 6= j ∈ I, τij is the transposition interchanging i and j.

Example 2.2. Let ζ ∈ G′3, q(1) =
−1◦

−ζ ζ
◦
−ζ −ζ2

◦ .

The basic datum of q(1) is:

•
q(1)

•
q(2)

•
q(3)

•
τ12(q(4))

•
τ23(q(5))

•
τ23(q(6))

1 2 1

3

2

where

q(2) =
−1◦

−ζ2 ζ2

◦
−ζ −ζ2

◦ , q(3) =

−1◦
ζ −1

−1◦
−ζ2 ζ2

◦

,

q(4) =
ζ
◦
−ζ −1◦

ζ2 ζ
◦ , q(5) =

ζ
◦

ζ2 −1◦ −1 ζ2

◦ ,

q(6) =
ζ
◦

ζ2 −ζ2
◦

−ζ ζ2

◦ .

2.4. Standard and Cartan braidings. Assume that q admits all re-
flections. We say that q is standard if Cq′ = Cq for all q′ Weyl equivalent

to q [2]. Also, q is of Cartan type if q
cqij
ii = q̃ij for all i 6= j ∈ I. One can

check that every braiding of Cartan type is standard; more generally,
every q such that ρiq has the same Dynkin diagram as q for all i ∈ I is
standard.
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Remark 2.3. Let q be a standard braiding with Cartan matrix C = Cq.
Let W be the Weyl group of C. By (3), Wγ ⊆ ∆q for all γ ∈ ∆q.

In particular, if ∆re denotes the set of real roots of C, then

∆re ⊆ ∆q,re ⊆ ∆q.

Next we extend two results from [4] stated there for Cartan type to
standard type: although the proofs are essentially the same, we repeat
them here for completeness.

Proposition 2.4. Let q be a braiding of standard type with affine Cartan
matrix C = Cq. Then GKdimBq =∞.

Proof: As in the proof of [4, Proposition 3.1], let ∆re be the set of real
roots of C: by [16, Proposition 6.3 d)] there exists a positive root δ such
that ∆re + δ = ∆re. Fix a homogeneous restricted PBW basis of Bq.
If m is the height of δ and α is a simple root, Remark 2.3 says that
there exists a PBW generator of degree kδ + α for all k ≥ 0. Hence
GKdimBq =∞ by [5, Lemma 2.3.4].

Lemma 2.5. Let q be a braiding of standard type with C = Cq indefi-
nite. If there exists γ ∈ ∆q

+ such that qγγ = 1, then GKdimBq =∞.

Proof: We follow the same ideas as for [4, Lemma 3.7]. By Remark 2.3,
Wγ ∩NI

0 ⊆ ∆
q
+, and by [4, Lemma 3.6], Wγ ∩NI

0 is infinite. Hence any
homogeneous restricted PBW basis of Bq has infinite PBW generators
of infinite height (one for each element in Wγ∩NI

0). By [4, Lemma 2.3],
GKdimBq =∞.

3. Subquotients and root systems

We fix a braided vector space (V, c) of diagonal type with braiding
matrix q, Bq = B(V ) the corresponding Nichols algebra, and a Hopf
algebra H with bijective antipode such that there is a principal realiza-
tion V ∈ H

HYD.

3.1. Subquotients of Nichols algebras. Let B be a pre-Nichols al-
gebra over V , that is, an intermediate N0-graded quotient T (V ) � B �
Bq in H

HYD. We shall further assume that B is a Zθ-graded Hopf alge-
bra in H

HYD, B =
⊕

α∈Zθ B
α. We denote by πα : B → Bα the linear

projection onto the α-component. Let α1, . . . , αθ be the canonical basis
of Zθ and let (·|·) be the inner product in Rθ defined by (αi|αj) = δi,j .

In this setting, for a fixed ω ∈ Zθ we set

B≥0 :=
⊕

α:(α|ω)≥0

Bα, B>0 :=
⊕

α:(α|ω)>0

Bα, B0 :=
⊕

α:(α|ω)=0

Bα.
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Clearly 1 ∈ B≥0 and B≥0 = B0 ⊕B>0. We also set B<0 as expected.
As well, we define

K≥0 := {x ∈ B : ∆(x) ∈ B≥0 ⊗B}, K>0 := K≥0 ∩B>0,

and K0 := K≥0∩B0, K<0, accordingly. We will make use of the induced
linear decompositions B = B<0⊕B0⊕B>0 and K<0⊕K0⊕K>0 ⊂ B.

Remark 3.1. Proposition 3.3 below extends [4, Proposition 3.9], where
θ = 2 and ω = α1 − r α2, 0 ≤ r ∈ Q. The proof uses the same ideas as
in loc. cit. but nevertheless we choose to include the details, presented
here as Lemma 3.2, for the sake of completeness.

Lemma 3.2. For B and ω ∈ Zθ as above, we have that B≥0 ⊂ B is a
subalgebra in H

HYD. Besides,

(i) K≥0 ⊆ B≥0.
(ii) K≥0 ⊂ B is a subalgebra in H

HYD.
(iii) ∆(K≥0) ⊆ K≥0 ⊗K≥0 +K>0 ⊗B.
(iv) K>0 is an ideal of K≥0 and a coideal of B in H

HYD.

Proof: If x ∈ Bα ∩ B≥0 and y ∈ Bβ ∩ B≥0, then xy ∈ Bα+β and
(α + β|ω) = (α|ω) + (β|ω) ≥ 0. Hence B≥0 is a subalgebra of B. Now,
if x ∈ K≥0, then x = x(1)ε(x(2)) ∈ B≥0 by definition, so (i) follows. If
x, y ∈ K≥0, then xy ∈ K≥0 since the comultiplication is an algebra map.

Now fix x ∈ Bα ∩K≥0 and let us write ∆(x) =
∑
yi⊗ zi ∈ B≥0⊗B,

with yi, resp. zi, homogeneous of degree βi, resp. γi = α − βi. On the
one hand, ∑

∆(yi)⊗ zi =
∑

yi ⊗∆(zi) ∈ B≥0 ⊗B⊗B,

which shows that ∆(K≥0) ⊆ K≥0 ⊗ B, i.e., it is a right coideal. Now,
if (βi|ω) > 0 for some i, then yi ⊗ zi ∈ K>0 ⊗ B. If (βi|ω) = 0, then
(α− βi|ω) ≥ 0 and thus yi ⊗ zi ∈ K≥0 ⊗B≥0. That is,

(5) ∆(K≥0) ⊆ K≥0 ⊗B≥0 +K>0 ⊗B.

We have actually shown that ∆(K≥0) ⊆ K0 ⊗B≥0 +K>0 ⊗B. Observe
that this also yields ∆(K>0) ⊆ K≥0 ⊗ B≥0 + K>0 ⊗ B, which can be
more accurately written as

(6) ∆(K>0) ⊆ K0 ⊗B>0 +K>0 ⊗B,

with the same argument as above.
Now, for x as above, we use (5) to write ∆(x) =

∑
i∈I

ai⊗bi+
∑
j∈J

cj⊗dj ,

where ai ∈ K0, bi ∈ B≥0, and cj ∈ K>0. To prove (iii), we need to show
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that bi ∈ K≥0 ⊂ B≥0. Assume that, for some i ∈ I, bi /∈ K≥0, which is
to say that ∆(bi) ∈ B<0 ⊗B. In other words,

(id⊗∆)∆(x) =
∑
i

ai ⊗∆(bi) +
∑
j

cj ⊗∆(dj)

linearly projects nontrivially onto K0 ⊗B<0 ⊗B. On the other hand,
we can use (5) and (6) to deduce that

(∆⊗id)∆(x)∈(∆⊗id)∆(K≥0) ⊂ ∆(K≥0)⊗B≥0 + ∆(K>0)⊗B

⊂ K≥0 ⊗B≥0 ⊗B≥0 +K>0 ⊗B⊗B≥0

+K0 ⊗B>0 ⊗B +K>0 ⊗B⊗B,

which does not intersect the subspace K0⊗B<0⊗B. Thus bi ∈ K≥0 for
all i ∈ I and (iii) follows.

This also shows that, in particular, ∆(K>0) ⊆ K≥0⊗K≥0 +K>0⊗B.
If (βi|ω) = 0, then necessarily (α − βi|ω) = (α|ω) > 0, so ∆(K>0) ⊆
K≥0 ⊗ K>0 + K>0 ⊗B and thus K>0 is a coideal of B. Finally, K>0 is
an ideal of K≥0 as the multiplication is Zθ-graded, which gives (iv).

Proposition 3.3. Fix ω ∈ Zθ. Then the braided bialgebra structure of B
induces a braided bialgebra structure on

Kω := K≥0/K>0.

Proof: This is [4, Proposition 3.9], using Lemma 3.2.

Notice that Kω ∈ H
HYD and thus Hω = Kω#H is a Hopf algebra. The

grading on Kω is not induced by the coradical filtration on Hω, which
in turn determines a graded Hopf algebra Rω =

⊕
n≥0Rnω ∈ H

HYD so

that grHω = Rω#H. We set V ′ = R1
ω, and denote by q̄ its associated

braiding matrix. In a snapshot, we have the following situation:

K>0 K≥0 Bq ∈ H
HYD

Kω E := k〈xα, xβ〉

R Bq̄ := B(V ′)

gr(−#H)coH

Notice that GKdimBq̄ =∞⇒ GKdimBq =∞. Based on this picture,
in Section 4 we will develop a series of criteria to show that a given
matrix q̄ has GKdimBq = ∞, by picking the suitable ω. We remark
that these ideas apply for braided vector spaces of any rank.
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3.2. An example. We include an example of this strategy, for a dia-
gram (and its reflections) that could not be tackled with the criteria. This
represents the only case that escaped the criteria, and for which we had
to apply an ad-hoc analysis, also based on Proposition 3.3.

Lemma 3.4. Let q be any of the braiding matrices in Example 2.2.
Then GKdimBq =∞.

Proof: By (4) it is enough to prove that GKdimBq =∞ for one of the

matrices in Example 2.2. We choose q = q(3) and fix q =

(
−1 −ζ2 ζ

1 ζ2 −1
1 1 −1

)
,

ζ ∈ G′3. We shall consider ω = 3α1 − α2 − α3, and α = α1 + 2α2 + α3,
β = α1 + α2 + 2α3, so that (α, ω) = (β, ω) = 0.

We let xα = [[x13, x2]c, x2]c and xβ = [x13, x23]c; by direct computa-
tion,

∆(xα) = 3x13 ⊗ x2
2 + (1− ζ)x122 ⊗ x3

+ (ζ − ζ2)([x12, x3]c − x123 − 2ζ2x2x13)⊗ x2

+ (1− ζ)x1 ⊗ x223 + 3ζx1 ⊗ x23x2 + 3(1− ζ)x1 ⊗ x3x
2
2

+ 3ζ2x12 ⊗ x3x2 + (1− ζ2)x12 ⊗ x23,

∆(xβ) = (−2ζx2x13 − 2ζ2x23x1 − 2[x12, x3] + 2ζ2x23x1 − ζ2x123)⊗ x3.

It follows that xα, xβ 6= 0 and xα, xβ ∈ K≥0. Furthermore, (the classes
of) xα and xβ are primitive elements in K≥0/K>0.

Now, the diagram associated to k{xα, xβ} is
ζ
◦

ζ2 1◦ , which is not
of finite type. Hence GKdimBq =∞ and the lemma follows.

3.3. More on Kω. Next we make some remarks on the structure of the
bialgebras Kω. We aim to understand the relation between Kω and Bq̄,
as well as between their root systems. We believe it could be of interest
to determine under which conditions one can assure that Kω is generated
by P(Kω), and similarly, to pin down necessary and sufficient conditions
so that one or both of the inclusions in (7) below hold.

We start with a description of P(Kω).

Remark 3.5. Let x ∈ K≥0 be a homogeneous element, of degree α ∈ ∆,
so that x̄ ∈ Kω is primitive. Clearly, (α|ω) = 0. Now ∆(x) ∈

∑
βB

β
q ⊗

Bα−β
q , with (β|ω) ≥ 0, by definition of K≥0; hence (γ|ω) ≤ 0. Since x̄ is

primitive, we see that we necessarily have (β|ω) > 0. This shows that

P(Kω) = {xα : (α|ω) = 0 and α simple

or (β|ω)(α− β|ω) < 0 for all β : (πβ ⊗ id)∆(xα) 6= 0}.
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For the analysis of the root system, we need some notation.

Notation. We shall write ∆ω for the root system associated to Kω,
while ∆′ will denote the root system corresponding to the Nichols alge-
bra B(V ′).

We will show in the next two lemmas that there is a chain of inclusions

(7) ∆′ ⊆ ∆ω ⊆ ∆ ∩ {ω}⊥.

We begin with the first inclusion in (7).

Lemma 3.6. ∆′ ⊆ ∆ω.

Proof: To start with, we shall assume, without loss of generality, that
q̄ is symmetric, so B∗q̄ ' Btq̄ = Bq̄ and thus the inclusion Bq̄ ↪→ R
produces a projection R∗ � Bq̄. Recall as well that the Hilbert se-
ries HR(t) and HR∗(t) of R and R∗ coincide. Hence we have a factoriza-
tion HR(t) = Hq̄(t)P (t), for some multivariate series P (t). This shows
that ∆′ ⊆ ∆R = ∆ω.

As for the second, we have the following.

Lemma 3.7. ∆ω ⊆ ∆ ∩ {ω}⊥.

Proof: By [18], there is a set L≥0 ⊂ K≥0 of Zθ-homogeneous PBW gen-
erators for K≥0 which can be extended to a set of PBW generators L ⊂
Bq. Thus ∆ω ⊆ ∆. Notice that (deg `|ω) ≥ 0 for any ` ∈ L≥0, since
K≥0 ⊂ B≥0.

Let us write x 7→ x̄ for the projection K≥0 � Kω and set

L0 = {` ∈ L≥0 : (deg `|ω) = 0}, S = {¯̀ : ` ∈ L0}.

Notice that L0 may not be the whole subset of L of ω-orthogonal degrees.
We claim that S is a set of PBW generators for Kω, proving the

lemma.

Let x̄ ∈ Kω be homogeneous of degree α; necessarily (α|ω) = 0. Now
x ∈ K≥0 is a linear combination of products of elements in L′, that
is there (λi1,...,ik) ∈ k so that we can write x =

∑
λi1,...,ik`i1 · · · `ik ,

with
∑
βij = α and (βij |ω) ≥ 0. Now, if any ij , some i, j, is such

that (βij |ω) > 0, then `i1 · · · `ik ∈ K>0 and `i1 · · · `ik = 0; so we can
assume that every ij satisfies (βij |ω) = 0 and hence S spans this quotient
algebra.

On the other hand, a nonzero linear combination
∑
λi1,...,ik`i1 · · · `ik

of products of elements in L0 cannot land on K>0, which shows that the
set S is linearly independent, and thus it is a basis of Kω.
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4. Criteria

Let q be a braiding matrix with diagram d. If GKdimBq <∞, then
each subdiagram of d with two vertices belongs to Heckenberger’s list
by [4]. Moreover, for any ω and any two primitive elements x and y

in Kω, the Dynkin diagram d′ = d(x, y) associated to the braided vector
space {x, y} also belongs to the list.

Let d be any diagram with three vertices obtained by pasting two
(a line) or three (a triangle) diagrams with two vertices. We develop
three criteria, based on three different families of vectors ω. We apply
these criteria to all such diagrams d, and also apply it to some of their
reflections. For each diagram d, if we find a vector ω in one of the fam-
ilies (and, if necessary, a reflection) for which d′ is not in the list, then
automatically this yields GKdimBq =∞ and we can discard d.

4.1. Criterion 1. To consider the rank 2 diagrams associated to the
couples (αi, `αj + αk), 1 ≤ ` ≤ mjk, i, j, k all different, for

ω = αj − ` αk.

Assume j < k, set µt =
∏t−1
s=0(1− qsjj q̃jk), t ≥ 0. Then

∆((adc xj)
`(xk)) =

`−1∑
t=0

(
n

t

)
qjj

µ`
µt
x`−tj ⊗ (adc xj)

t(xk).

Hence x = xi and y = (adc xj)
`(xk) become primitive in the correspond-

ing subquotient Kω, as ((`− t)αj |ω) = `− t ≥ 1, 0 ≤ t ≤ `− 1.
On the other hand, when j > k, we consider

y = ad′
`
c(xj)(xk) := [[[[xkj , xj ], xj ], . . . ], xj ]

and there are (at) ∈ k, t = 0, . . . , k − 1, such that

(8) ∆(ad′
`
c(xj)(xk)) =

`−1∑
s=0

atad′
t
c(xj)(xk)⊗ x`−tj .

Hence x = xi and y = (adc xj)
`(xk) are primitive in Kω.

4.2. Criterion 2. To consider the rank 2 diagrams associated to the
couples (α1 + α2 + α3, `αi + αj), 2 ≤ ` ≤ mij , 1 ≤ i 6= j ≤ 3, so

ω = c1α1 + c2α2 + c3α3, cj = −kci, c3 = −(c1 + c2).
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We analyze all possible (c1, c2, c3), depending on the values of i, j.

• Assume that q̃12, q̃23 6= 1, q̃13 = 1, so

∆(x123) = q12(1− q̃23)(1− q̃13)x2x1 ⊗ x3 + (1− q̃12q̃13)x1 ⊗ x23

+ (1− q̃23)x12 ⊗ x3 + q12(1− q̃23)x2 ⊗ x13

= (1− q̃12)x1 ⊗ x23 + (1− q̃23)x12 ⊗ x3.

Then x123 ∈ K≥0 when c1 ≥ 0 and c2 ≥ −c1, while (the class of)
x = x123 is primitive in Kω when c1 > 0 and c2 > −c1. On the other

hand, y = ad′
`
(x2)(x1) is also primitive when c1 = −` c2, that is,

ω = `α1 − α2 + (`− 1)α3.

To deal with `α1 + α2 we consider x = [x3, [x2, x1]c]c. Similar choices,
mutatis mutandis, are made for `α2 + α3 and `α3 + α2.

• Now, if q̃12, q̃23, q̃13 6= 1, we turn to x = [x13, x2]c. As

∆([x13, x2]c) = q32(1− q̃13)x12 ⊗ x3 + (1− q̃12q̃23)x13 ⊗ x2

− q̃12q32(1−q̃13)x1⊗x23+(1− q̃12q̃23)(1− q̃13)x1⊗x3x2,

x is primitive in Kω when −c1 < c2 < 0, as this gives c1 > 0, c1 + c2 > 0,

and c1 + c3 = −c2 > 0. As well, y = ad′
`
(x2)(x1), ` > 1 is primitive

in Kω for

ω = `α1 − α2 − α3.

Similar choices are made for different pairs i 6= j ∈ I3.

4.3. Criterion 3. To consider the rank 2 diagrams associated to the
couples (αi + αk, αj + αk), i, j, k ∈ {1, 2, 3} all different, so

ω = ciαi + cjαj + ckαk, ck = −ci = −cj .

This is clear. This criterion can be extended further by considering cou-
ples of the form (nαi + αk, αj + αk), with n ≤ mik. In this case,

ω = αi − nαk + nαj .

Notice that for x = ad(xi)
n(xk) the right choice of y = xjk or y = xkj

has to be made (independent of the order of k, j). For instance, one may
choose x = x112 and y = x32, as x23 /∈ K>0, for ω = α1 − 2α2 + 2α3.
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5. Cartan type

Let (V, c) be a braided vector space of Cartan type, see Subsection 2.4,
with matrix q = (qij)i,j∈Iθ . Let c = (cqij)i,j∈Iθ , cf. (2), be the associated

generalized Cartan matrix (GCM for short). Indecomposable GCMs are
of three types: finite, affine, or indefinite; we call the corresponding
connected braided vector spaces of Cartan type and the matrix q finite,
affine, or indefinite, accordingly.

We recall that a braiding matrix q = (qij) is called

• generic when qii /∈ G∞ and either q̃ij = 1 or q̃ij /∈ G∞, for ev-
ery i, j ∈ Iθ;
• of torsion class when qii, q̃ij ∈ G∞, for every i, j ∈ Iθ;
• semigeneric when it is neither generic nor of torsion class.

The next theorem states an equivalence between finite type and finite
GK-dimension for Bq.

Theorem 5.1. Let q be a matrix of Cartan type such that GKdimBq <
∞. Then its root system is finite.

Before the proof, let us recall that an indefinite Cartan matrix is com-
pactly hyperbolic if every proper minor is of finite type. These matrices
have been classified in [10]; we shall use this classification in our proof.

Now, if c ∈ Zθ×θ is compactly hyperbolic, then θ ≤ 5. The list of
indecomposable GCMs which are compactly hyperbolic with rank θ > 2
contains exactly 31 matrices with θ = 3, three with θ = 4, and one
with θ = 5. These are listed in [10] and belong to

• rows 1–31 of Tables 1 to 3 in loc. cit. for θ = 3,
• row 131 in Table 4 and rows 136, 137 in Table 5 for θ = 4,
• row 183 in Table 16 for θ = 5.

Notation. The enumeration of the rows in the tables in [10] is contin-
uous (i.e., Table n+1 starts at row `+1 if Table n ends at row `); hence
we will speak of a GCM c which belongs to the corresponding row.

5.1. Proof of Theorem 5.1. We divide the proof into several steps.

5.1.1. First, we assume that the generalized root system is either fi-
nite or indefinite, as the affine case is discarded by [4, Theorem 1.2].
Moreover, we may assume that θ > 2, ibid.

5.1.2. Also, following [4, Remark 3.2], we can assume that q is of torsion
class. More precisely,

• If q is generic, then c is of finite type by [20, 2].
• If q is semigeneric, then it is not of Cartan type.
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Let us develop the last assertion: if q is semigeneric, then there is i ∈ Iθ
such that qii /∈ G∞ and 1 6= q̃ij ∈ G∞. But then q̃ij 6= qaii, for any a ∈
Z≤0.

5.1.3. Let c be an indecomposable GCM of indefinite type.

Claim. We may assume that c is compactly hyperbolic.

Indeed, if a given minor m is of affine type and q′ is the submatrix of q
with the same entries as m, then q′ is of affine type m, so GKdimBq′ =
∞. As Bq′ is a subalgebra of Bq, we have that GKdimBq = ∞ as
well. The same argument allows us to consider only minimal matrices of
indefinite type, that is, with no minors of indefinite type. In other words,
we can assume that c is compactly hyperbolic.

Claim. If c is compactly hyperbolic, then dimBq =∞.

This claim implies the theorem. We shall prove it in the series of
Lemmas 5.2–5.8 below.

Lemma 5.2. There is no matrix q whose corresponding GCM is a gen-
eralized Cartan matrix c of one of the following compactly hyperbolic
types:

(i) θ = 3, c in rows 1, 2, 8, 9, 14, 16, 17, 19, 20, 23,
(ii) θ = 4 and c in row 131,
(iii) θ = 5.

Proof: In all of these cases, if we assume that there is q = (qij) with
matrix c, we get that qij = qii = 1, i, j ∈ Iθ, a contradiction. We work
out a proof for c in row 1; the rest follows similarly. In this case, the
Dynkin diagram is

1◦ 2◦

◦
3

\d
, hence c =

 2 −1 −2
−1 2 −1
−1 −1 2

 ,

which would give rise to a generalized Dynkin diagram of the following
shape:

q
◦

q−1 q
◦

◦
q2

q−1=q−2q−2

so q = 1, a contradiction.
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Remark 5.3. The same ideas in Lemma 5.2 show that some diagrams
of rank 3 in the list in [10] can only come from a generalized Dynkin
diagram with a root of 1 of a fixed order. The same holds for the rank 4
diagram on row 137, for which ord q = 3.

These rank 3 matrices were spotted independently in [8]. More pre-
cisely, the list, with corresponding order for q, is given in the following
table:

row ord q row ord q row ord q row ord q row ord q

5 3 6 5 7 5 12 8 13 7
15 11 18 4 21 17 22 7 24 26

Table 1. Fixed order of root rows.

The following result will help us to deal with the content of Re-
mark 5.3.

Lemma 5.4. Fix a braiding matrix q = (qij)i,j∈I3 such that

qjj q̃ij = 1, qkk q̃jk = qiiq̃ki = 1,

for some choice of different i, j, k ∈ I3.

(i) If q2
iiq̃ij = 1, then GKdimBq =∞.

(ii) If q3
iiq̃ij = 1 and qjj 6= qkk, then GKdimBq =∞.

Proof: (i) We use Criterion 2 as in Subsection 4.2. Choose α = α1 +α2 +
α3, β = 2αi + αj , ω = 2αj − αi − αk. Hence

qαβ =
∏
k∈I3

q̃2
kiq̃kj = qjj q̃

2
ikq̃jk = qjjq

−2
ii q
−1
kk = q−1

kk

and we get a diagram

1◦
q−1
kk qjj◦ ,

so GKdimBq = ∞. For (ii), if α = α1 + α2 + α3, β = 3αi + αj , so
ω = 3αj − αi − αk, we get

1◦
qjjq

−1
kk qjj◦ ,

hence GKdimBq =∞.

Lemma 5.5. If q is such that either the corresponding GCM c belongs
to Table 1 in Remark 5.3 or to row 137, then GKdimBq =∞.

Proof: If c is not in rows 18, 22, then the result follows from items (i)
and (ii) of Lemma 5.4, with the right choice ijk of indices i, j, k ∈ I3, as
in the following table, which uses item (ii) only for the last row:
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row ijk row ijk row ijk row ijk
5 321 6 321 7 231 12 321
13 123 15 321 21 213 24 123

Now, for rows 18 and 22 we choose α = α1 +α3 and β = α2 +α3 as in
Criterion 3, Subsection 4.3, then we end up with the following diagrams:

q
◦ −1 q3

◦ , ord q = 4,
q3

◦
q3 q
◦ , ord q = 7;

in both cases, GKdimBq =∞.
For row 137, we have q = ζ ∈ G′3. We set α = α1, β = α2, and

γ = α3 + α4 to obtain a triangle

ζ2

◦
ζ ζ2

ζ
◦

ζ2 ζ
◦

For this, Criterion 1 for α = α1 and β = α2 + 2α3 returns the segment

ζ
◦

ζ ζ
◦

which is not in the list, so GKdimBq =∞.

Lemma 5.6. If c belongs to rows 3, 4, 10, 11, then GKdimBq =∞.

Proof: We proceed row by row.

Row 3. We use Criterion 1 as in Subsection 4.1 for β1 = α3, β2 = α1+α2.
We get

q2

◦
q−4 q

◦
which shows, by looking at [12, Table 1], that either ord q = 3 or 4
(disconnected dots). Now, if ord q = 3 and we choose β1 = α1 +α2 +α3,
β2 = 2α2 + α1, as in Criterion 2, we get

q−1

◦
q−4 q2

◦ ≡
q−1

◦
q−1 q−1

◦

which is not of finite type. On the other hand, if ord q = 4 and β1 =
2α2 + α1, β2 = α1 + α3, we get

1◦
−q −q

◦

and hence GKdimBq′ =∞. Here we have used the variant of Criterion 3,
for ω = 2α1−α2−2α3, so x13 and x221 become primitive on Kω; cf. (8).
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Row 4. By setting α = α3, β = α1 + α2 (Criterion 1) we obtain

q
◦

q−3 q
◦

so ord q = 3, 4. We can discard ord q = 4 with α = 2α1 + α2, β =
α1 + α2 + α3, as in Criterion 2, and ord q = 3 with α = α1 + α2,
β = α3 + α2 (Criterion 3) as we obtain, in each case, the diagrams of
affine type:

q2

◦
q−2 q−1

◦ ,
q−1

◦
q−1 q−1

◦ .

Row 10. If α = α1 + α3, β = α2 + α3 (Criterion 3), then we obtain

q
◦

q q
◦ .

As ord q ≥ 4, we have that GKdimBq =∞.

Row 11. Again, ord q > 3 and the choice α = α1 + α3, β = α2 (Cri-
terion 1) gives ord q = 6. But ord q 6= 6 by considering α = α2, β =
2α1 + α3.

Next we turn our attention to the remaining diagrams of rank 3, which
are not triangles.

Lemma 5.7. If c belongs to rows 25, . . . , 31, then GKdimBq =∞.

Proof: Matrices q with c in row 28, respectively 31, are

q2

◦
q−6 q6

◦
q−6 q3

◦ , ord q 6= 2, 3, 4, 6,

q
◦

q−3 q3

◦
q−3 r◦ , ord q, ord r 6= 2, 3, q3 = r3.

For α = 2α1 + α2, β = α2 + α3 we get the diagrams

q2

◦
q−6 q3

◦ ,
q
◦

q−3 r◦ ,

both of indefinite Cartan type, so GKdimBq = ∞. Rows 25, 26, 27,
29, and 30 are discarded by setting α = α1 + α2, β = α2 + α3, using
Criterion 3. Indeed the corresponding diagrams are

q2

◦
q−4 q

◦ ,
q
◦

q−3 q6

◦ ,
q
◦

q−3 q
◦ ,

q3

◦
q−6 q

◦ ,
q
◦

q−4 q
◦ .

Due to the restrictions on ord q for each case, these diagrams are con-
nected, and moreover of indefinite Cartan type.

We end this analysis with the only diagram left, of rank 4.
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Lemma 5.8. If c is the GCM of row 136, then GKdimBq =∞.

Proof: Take β1 = α1, β2 = α2 + α3, and β3 = α4. We obtain the rank 3
diagram associated to row 3, and the statement follows by Lemma 5.6.

This finishes the proof of the claim, and hence of Theorem 5.1.

6. Rank 3 case

In this section, we give a positive answer to Conjecture 1.1 for θ = 3.
To this end, we will collect a series of lemmas, which are stated af-

ter the proof for the sake of readability, that deal with diagrams d con-
structed by the pasting of two (a “line”) or three (a “triangle”) diagrams
of rank 2 with a finite root system.

We say that a diagram d of rank 2 in the list is “finite” if all of
its entries are concrete roots of 1 in G∞ (that is, d belongs to one of
the rows 6–10 or 12–17) and call it “parametric” otherwise. Parametric
diagrams are indeed in the one-parameter families mentioned in [6].

The main result of this section reads as follows.

Theorem 6.1. Let (V, cq) be a braided vector space of diagonal type
with dimV = 3. If GKdimBq <∞, then the root system of q is finite.

Proof: Assume that GKdimBq < ∞. The diagram d associated to q
is either a line or a triangle; in either case, each subdiagram of rank 2
belongs to the list by [4, Theorem 4.1]. In particular, these subdiagrams
can be finite or parametric.

Assume first that d is a line. Then, it is obtained by gluing either two
parametric diagrams of rank 2, a parametric diagram with a finite one,
or two finite ones. By Lemmas 6.3 and 6.4 we have that q is in the list
or the parametric subdiagrams (if any) are evaluated in the finite set Gf

from (9). But in this last case, Lemma 6.8 shows that q is in the list as
well.

When d is a triangle, the situation is analogous. Indeed, first we use
Lemmas 6.5, 6.6, and 6.7 to deduce that q is in the list or the parametric
subdiagrams (if any) are evaluated again in Gf . Then Lemma 6.9 implies
that q is in the list.

6.1. On parametric subdiagrams. Next, we deal with diagrams of
rank 3 with at least one parametric subdiagram. These subdiagrams can
be evaluated at a root of 1 or not. In the first case, we will show that it
is enough to test the results when evaluating in the set

(9) Gf := G14 ∪G18 ∪G20 ∪G24 ∪G30.
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This reduction is done in the following five lemmas, which deal with all
combinations of finite and parametric subdiagrams of rank 2. That is,
we have, respectively, the following cases:

(1) A line with a parametric subdiagram and a finite subdiagram.
(2) A line with two parametric subdiagrams.
(3) A triangle with one parametric subdiagram and two finite ones.
(4) A triangle with two parametric subdiagrams and a finite one.
(5) A triangle with three parametric subdiagrams.

Remark 6.2. The entries of each finite diagram in the list belong to Gf .

After this reduction, we are left with a finite (though large) collection
of diagrams with labels in Gf , which we attack with GAP in Subsec-
tion 6.2.

We set the following notation for a parametric diagram, i.e., a func-
tion G : C× → (C×)3, where G(q) is one of the following functions:

A2(q) =
q
◦

q−1 q
◦ , B2(q) =

q
◦

q−2 q−2

◦ , Bt2(q) =
q2

◦
q−2 q

◦ ,

G2(q) =
q
◦

q−3 q3

◦ , Gt2(q) =
q3

◦
q−3 q

◦ , sA1(q) =
1◦

q −q
◦ ,

sA2(q) =
q
◦

q−1 −1◦ , sAt2(q) =
−1◦

q−1 q
◦ , sB(q) =

q
◦

q−2 −1◦ ,

sBt(q) =
−1◦

q−2 q
◦ , Bst(q) =

q
◦

q−1 ζ
◦ , Bstt(q) =

ζ
◦

q−1 q
◦ .

Lemma 6.3. Let q be a line such that q|I2 is parametric of type G

and q|I2,3 is finite. Then either q|I2 = G(q) for some q ∈ Gf or else
GKdimBq =∞.

Proof: As q is made by gluing G(q) with a finite diagram F =
F1◦ F2 F3◦ ,

the last entry G(q)3 of G(q) is F1, and Fi ∈ Gf for all i ∈ I3.
If G(q)3 = q, then the claim follows. Now we check the remaining

cases:

B2(q): Applying Criterion 1 to α1 + α2, α3 we obtain the diagram d =
q
◦ F2 F3◦ . Suppose that GKdimBq <∞: if d is finite, then q ∈ Gf . If
qF2 = 1 or q = ζ ∈ G′3, then the same holds. Otherwise, either q2F2 = 1
with F3 ∈ {−1, F−1

2 } or q3F2 = 1 = F2F3. By inspection, a finite diagram
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such that F3 ∈ {−1, F−1
2 } satisfies F1 ∈ G6 ∪ G10, in which case q ∈ Gf

since F1 = q2, or F is one of the following diagrams:

ζ5

◦
ζ9 −1◦ , ζ ∈ G′12,

−ζ2
◦

ζ −1◦ , ζ ∈ G′9,
ζ
◦

ζ−5 −1◦ , ζ ∈ G′24,
ζ
◦

ζ−3 −1◦ , ζ ∈ G′20.

Applying Criterion 1 to α1, α2+α3 we obtain the diagram
q
◦

q−2 −F1F2◦ ,
which does not belong to Heckenberger’s list.

G2(q): As before, Criterion 1 for α1 +α2, α3 gives the diagram
q
◦ F2 F3◦

and the proof follows as for B2(q).

sA1(q): Here F1 = −1, so F3 6= −1. Applying Criterion 1 to α1 + α2, α3

we obtain the diagram d =
q
◦ F2 F3◦ . Suppose that GKdimBq <∞: if

d is finite, then q ∈ Gf , as well as if qF2 = 1 or q = ζ ∈ G′3. Otherwise,
1 = F3F2, so F is parametric, a contradiction.

sA2(q): Applying Criterion 1 to α1, α2 + α3 we get the diagram d =

q
◦

q−1 −F2F3◦ . Suppose that GKdimBq < ∞: if d is finite, then q ∈
Gf . As F is not parametric, F2F3 6= 1; the remaining possibilities are
q ∈ {−F2F3, F

2
2F

2
3,−F3

2F
3
3} ⊂ Gf , or −F2F3 ∈ G′3. By inspection, F is one

of the following diagrams:

−1◦
ζ ζ
◦, ζ ∈ G′3,

−1◦
ζ −ζ3

◦ , ζ ∈ G′12,

−1◦
−ζ3 −ζ−1

◦ , ζ ∈ G′12,
−1◦

ζ −ζ2
◦ , ζ ∈ G′9,

−1◦
ζ−5 ζ

◦, ζ ∈ G′24,
−1◦

−ζ2 ζ3

◦ , ζ ∈ G′15.

Applying Criterion 1 to α1, α2 +2α3 in the last five diagrams we get the

diagram D′ =
q
◦

q−1 −F22F
4
3◦ : either D′ is not in the list (so GKdimBq =

∞), D′ is finite (in which case q ∈ Gf), or q ∈ {−F2
2F

4, F4
2F

8,−F6
2F

9} ⊂
Gf . For the first diagram, we reflect at vertex 2 and obtain a triangle

with the subdiagram
−1◦
−ζq−1 ζ2

◦ . By scanning the list, we see that this
is not in the list unless q ∈ G18 ∪G24 ∪G30 ⊂ Gf .

sB(q): Applying Criterion 1 to α1+α2, α3 we have the diagram
−q−1

◦ F2 F3◦
and the proof follows as for B2(q).

Bst(q): In this case, Criterion 1 with α1, α2 +α3 gives d =
q
◦

q−1 ζF2F3◦ .
Now, if d is finite, then q ∈ Gf . If d is parametric, then either q =
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(ζF2F3)m, m ≤ 3, in which case q ∈ Gf , or else ζF2F3 ∈ {−1, ζ2}, that

is, F =
ζ
◦
−ζ −1◦ . We apply Criterion 1 with α1 + 2α2, α3 and obtain

ζq−1

◦
ζ2 −1◦ .

By inspection, this diagram cannot be finite; hence it is parametric,
which forces q∈G6 or it is not in Heckenberger’s list, giving GKdimBq =
∞.

This shows the result.

Lemma 6.4. Let q be a line such that q|I2 and q|I2,3 are parametric of
type G, G′. Then either q belongs to Heckenberger’s list, or q|I2 = G(q),
q|I2,3 = G′(r) for some q, r ∈ Gf , or else GKdimBq =∞.

Proof: If q is of Cartan type, then either q belongs to Heckenberger’s list
or else GKdimBq =∞ by Theorem 5.1. Hence we may assume that q|I2
is not of Cartan type. We prove the statement case by case depending
on the type of q|I2 . At each step we will not consider the possibility
that q|I2,3 has a diagram already analyzed: unless vertices 1 and 3 are
exchanged, q has already been considered.

sA2(q): The possible G′ are

A2(−1), Bt2(ξ), ξ ∈ G′4, Gt2(ξ), ξ ∈ G′6, sA1(r), sAt2(r),

sBt(r), Bst(−1).

For A2(−1) and sAt2(r), q belongs to rows 9, 10, or 11, depending on r.
If G′ is either Bt2(ξ), ξ ∈ G′4, or Gt2(ξ), ξ ∈ G′6, then Criterion 1 for α1,

α2 + α3 gives the diagram
q
◦

q−1 ξ
◦ : either this diagram is not in the

list (so GKdimBq = ∞), or it is finite (which implies q ∈ Gf), or
parametric, in which case q ∈ {ξ, ξ2, ξ3}. Similarly for Bst(−1), since

Criterion 1 for α1, α2 + α3 gives the diagram
q
◦

q−1 −ζ
◦ .

For q|I2,3 = sA1(r), Criterion 1 for α1, α2 + α3 gives the diagram

q
◦

q−1 r◦ . Assume that this diagram is in the list: either q, r ∈ Gf if
the diagram is finite, or q ∈ {r, r2, r3}, or r = ζ. The cases q = r, r2, r3

belong, respectively, to rows 4, 6, and 7. For r = ζ, the diagram of ρ2q is

ζ
◦

ζq−1 ζ2

−1◦
q −1◦
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Looking at the subdiagram of 1 and 3, we have three possibilities: q ∈ Gf

if this diagram is finite, q ∈ G6 if it is parametric, or GKdimBq =∞.

For q|I2,3 = sBt(r), Criterion 1 for α1, α2 + α3 gives
q
◦

q−1 −r−1

◦ .
Assume that this diagram is in the list: either q, r ∈ Gf if the diagram
is finite, or q ∈ {−r−1, r−2,−r−3}, or r = −ζ2. The cases q = r2,−r3

belong, respectively, to rows 5 and 7. For q = −r−1, the subdiagram

of ρ2q with vertices 1, 3 is
−1◦ −r

−1 −r−1

◦ , which either is not in the list,
or r ∈ G12, in which case q ∈ G24. For r = −ζ2, the subdiagram of ρ2q

with vertices 1, 3 is
−1◦

q−1ζ2 ζ
◦ , which either is not in the list or q ∈ G12.

sAt2(q): The possible G′ are

A2(q), B2(q), Bt2(r), q = r2, sB(q), Bstt(r), q = ζ,

sA2(q), G2(q), Gt2(r), q = r3, Bst(q).

The first, the second, the third, the sixth, and the seventh diagrams
appear, respectively, in rows 4, 6, 5, 8, and 7.

For sB(q), Criterion 1 for α1, α2 + α3 gives
−1◦

q−1 −q−1

◦ . If this
diagram is finite, then q ∈ Gf . If it is parametric, then either −q−2 = 1
or q−3 = 1. Similarly, for Bst(q), Criterion 1 for α1, α2 + α3 gives

the diagram
−1◦

q−1 ζ
◦ , and again q ∈ Gf . For Bstt(r), q = ζ, the

subdiagram of ρ2q with vertices 1, 3 is
−1◦ r−1 r−1ζ

◦ : either it is not in
the list or r ∈ Gf . Finally, for Gt2(r), q = r3, Criterion 1 for α1, α2 + α3

gives the diagram
−1◦ r−3 r◦ : this diagram is not parametric, so either

GKdimBq =∞ or r ∈ Gf .

sA1(q): The possible G′ 6= sA2(r), sAt2(r) are

A2(−1), sA1(r), sB(r), Bt2(ξ), ξ ∈ G′4, Gt2(ξ), ξ ∈ G′6, Bstt(−1).

For A2(−1), Criterion 1 for α1 + α2, α3 gives the diagram
q
◦ −1 −1◦ :

either ord q ∈ {3, 4, 6} or this diagram does not belong to the list.
For sA1(r), Criterion 1 for α1 + α2, α3 and for α1, α2 + α3 give,

respectively, the diagrams
q
◦ r −1◦ and

−1◦
q r◦ : either q, r ∈ Gf ,

or qr = 1 (which appears in row 8), or q2r = 1 = qr2 (so q=r ∈ G′3, and
q appears in row 15), or GKdimBq =∞.
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For sB(r), Criterion 1 for α1, α2 + α3 gives the diagram
q
◦ r−2 r◦ :

either q, r ∈ Gf , or q = r2 (which appears in row 5), or GKdimBq =∞.

For Bt2(ξ), ξ ∈ G′4, Criterion 1 for α1 + α2, α3 gives
q
◦ −1 ξ

◦ , which
does not appear in the list. The same happens for Gt2(ξ), ξ ∈ G′6, and
Bstt(−1).

sB(q): There are five possible G′ 6= sA2(r), sAt2(r), sA1(r). One is A2(−1):

Criterion 1 for α1 + α2, α3 gives the diagram
−q−1

◦ −1 −1◦ , so either
ord q ∈ {3, 4, 6} or this diagram does not belong to the list.

For Bt2(ξ), ξ ∈ G′4, Criterion 1 for α1 + α2, α3 gives
−q−1

◦ −1 ξ
◦ ,

which does not appear in the list. The same with Gt2(ξ), ξ ∈ G′6, and
Bstt(−1). Finally, for sBt(r), Criterion 1 for α1 + α2, α3 and for α1,

α2 +α3 give, respectively, the diagrams
−q−1

◦ r−2 r◦ and
q
◦

q−2 −r−1

◦ :
either q, r ∈ Gf , or q2r = qr2 = −1 (so q = r ∈ G′6), or GKdimBq =∞.

sBt(q): The possible G′ 6= sA2(r), sAt2(r) are

A2(q), sB(q), B2(q), Bt2(r), q = r2,

G2(q), Gt2(r), q = r3, Bstt(r), q = ζ, Bst(q).

Criterion 1 for α1 + α2, α3 gives, respectively, the diagrams

−q−1

◦
q−1 q

◦ ,
−q−1

◦
q−2 −1◦ ,

−q−1

◦
q−2 q2

◦ , −r−2

◦ r−2 r◦ ,

−q−1

◦
q−3 q3

◦ , −r−3

◦ r−3 r◦ ,
−ζ2
◦ r−1 r◦ ,

−q−1

◦
q−1 ζ

◦ .

For each one of these diagrams d =
d1◦ d2 d3◦ we perform the following

tripartite analysis:

• If the diagram is finite, then q, r ∈ Gf . Indeed, q ∈ {r, r2, r3}
or q ∈ G′3: in either case r ∈ Gf , thus q ∈ Gf too.
• If it is parametric, then we see that d1 6= −1 and therefore there

is m ∈ I3 such that dm1 d2 = 1. This automatically implies that
q, r ∈ Gf .
• Otherwise, GKdimBq =∞.

Bst(q): The possible G′ 6= sA2(r), sAt2(r), sB(r), sBt(r) are

A2(ζ), B2(ζ), Bt2(±ζ2), Gt2(ξ), ξ3 = ζ, Bstt(r).
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Criterion 1 for α1 + 2α2, α3 gives, respectively:

ζq−1

◦
ζ ζ
◦ ,

ζq−1

◦
ζ2 ζ2

◦ ,
ζq−1

◦
ζ ±ζ

◦ ,

ζq−1

◦
ξ3 ξ
◦ ,

ζq−1

◦ r−2 r◦ .

The first four diagrams are discarded with the same tripartite analysis
as above. For the last, we have that it is in the list if and only if either
ζq−1 = r2, or ζq−1 = −1, or ζq−1 = ξ3, r = −ξ for some ξ ∈ G′9.

Analogously, for α1, 2α2 + α3 gives
q
◦

q−2 ζr−1

◦ , which is in the list if
and only if either ζr−1 = q2, or ζr−1 = −1, or ζr−1 = η3, r = −η for
some η ∈ G′9. The combination of these possibilities gives q, r ∈ Gf .

Bstt(q): The possible G′ 6= sA2(r), sAt2(r), sB(r), sBt(r) are

A2(q), B2(q), Bt2(r), q = r2, G2(q), Gt2(r), q = r3, Bst(q).

On the one hand, for A2(q), B2(q), and G2(q) we apply Criterion 1

for 2α1 + α2, α3 and obtain
ζq−1

◦
q−m qm

◦ for m = 1, 2, 3, respectively.
On the other hand, for Bt2(r) with q = r2, Gt2(r) with q = r3 and Bst(q),
Criterion 1 for α1, α2 + α3 gives, respectively:

ζ
◦ r−2 r◦ ,

ζ
◦ r−3 r◦ ,

ζ
◦

q−1 ζ
◦ .

Again, we apply the tripartite analysis.

This ends the proof.

Lemma 6.5. Let q be a triangle such that q|I2 is finite and both q|I2,3
and q|{1,3} are parametric. Then q|I2 = G(q) and q|{1,3} = G′(r) for
some q, r ∈ Gf or else GKdimBq =∞.

Proof: We fix ζ ∈ G′3. We deal with a triangle of the form

G(q)3=G(r)′1◦
G(r)′2 G(q)2

G(r)′3=F1◦ F2 F3=G(q)1◦

If G(q)1 = q and G(r)′3 = r, then q, r ∈ Gf . If G(q)1 = q and G(r)′1 = r,
then q ∈ Gf and r ∈ {−1, ζ±1, q, q2, q3}, which implies that r ∈ Gf . The
same holds if, conversely, G(q)3 = q and G(r)′3 = r.
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We are left with q=G(q)3 =G(r)′1 =r. Hence F1, F3∈{−1, ζ±1, q, q2, q3}.
We analyze this case by case. For this analysis we shall denote by dx.y

the yth diagram (counting from top to bottom and from left to right) in
the xth row of [14, Table 1].

(1) If either F1 = q or F3 = q, then q ∈ Gf .

(2) If F1 = F3, then by inspection we have that F2 = β ∈ G′12 and
F1 = F3 = β8 ∈ G′3 (diagram d9.1). Hence the triangle is

q
◦

q−1 q−1

β8

◦
β β8

◦
Applying Criterion 1 to α1 + α2 and α3 we obtain the line

β5

◦
q−2 q

◦ .
If this diagram is finite, then q ∈ Gf ; if it is parametric, then it is Bt2(q)
for q2 = β5 ∈ G′12 and thus q ∈ Gf . Otherwise, it is not in the list.

(3) Assume F1 = q2, F3 = q3, equivalently F2
3 = F3

2. By inspection of the
list, we see that q ∈ Gf .

(4) When F1 = q2 and F3 = ζ, we obtain the triangles:

q
◦

q−2
q−1

q2

◦ F2 ζ
◦

We have that either q2 ∈ G12 ∪ G15, so q ∈ Gf , or F =
−β
◦

β−2 β3

◦ ,

β ∈ G′9 (d10.1), or F =
−β
◦
−β−3 β5

◦ , β ∈ G′15 (d16.1). By renaming the
variables (picking the right q), we have two possible triangles, namely,

ξ
◦

ξ−2 ξ−1

ξ2

◦
ξ−4 −ξ6=ζ

◦

, ξ ∈ G′36,

ξ
◦

ξ−2 ξ−1

ξ2

◦
ξ−6 −ξ10=ζ

◦

, ξ ∈ G′60.

Applying Criterion 1 for α1 and α2 + α3 in both cases we obtain the
lines

ξ2

◦
ξ−6 −ξ6

◦ , ξ ∈ G′36,
ξ2

◦
ξ−8 ξ−20

◦ , ξ ∈ G′60,

which are not in the list.
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(5) Now we assume F1 = q2, F3 = −1, that is,

q
◦

q−2
q−m

q2=F1◦ F2 −1◦

, m = 1, 2.

A new inspection gives either q ∈ Gf , F1 = −β2, F2 = β, β ∈ G′9 (d10.3)
or else F1 = β, F2 = β−3, β ∈ G′20 (d15.1). Hence we have the following
possibilities:

ξ
◦

ξ−2 ξ−1

ξ2

◦
ξ−8 −1◦

,

ξ
◦

ξ−2 ξ−2

ξ2

◦
ξ−8 −1◦

, ξ ∈ G′36,

ξ
◦

ξ−2 ξ−1

ξ2

◦
ξ−6 −1◦

,

ξ
◦

ξ−2 ξ−2

ξ2

◦
ξ−6 −1◦

, ξ ∈ G′40.

For these triangles, we apply Criterion 1 for α1, α2 + α3 and obtain the
lines

ξ2

◦
−ξ8 −1◦ ,

ξ2

◦
−ξ8 −ξ−1

◦ , ξ ∈ G′36,

ξ2

◦
−ξ12 −1◦ ,

ξ2

◦
−ξ12 −ξ−1

◦ , ξ ∈ G′40,

which are not in the list.

(6) In this case, F1 = q3, F3 = ζ, so

q
◦

q−3
q−1

q3=F1◦ F2 ζ
◦

Then, by inspection, either q ∈ Gf or F is of types d10.1 or d16.1 as
above and we end up with the following triangles:

ξ
◦

ξ−3 ξ−1

ξ3

◦
ξ−6 −ξ9

◦

, ξ ∈ G′54,

ξ
◦

ξ−3 ξ−1

ξ3

◦
ξ−9 −ξ15

◦

, ξ ∈ G′90.

Again, Criterion 1 for α1, α2 +α3 gives lines which are not in the list,
namely,

ξ3

◦
−ξ8 −ξ9

◦ , ξ ∈ G′54,
ξ3

◦
−ξ33 −ξ15

◦ , ξ ∈ G′90.



784 I. Angiono, A. Garćıa Iglesias

(7) We have F1 = q3, F3 = −1. Then either q ∈ Gf or F is one of d9.3,
d10.3, d15.1, d17.1, or d17.2. This gives the following possibilities:

ξ
◦

ξ−3 ξ−1

ξ3

◦
ξ−9 −1◦

, ξ ∈ G′36,

ξ
◦

ξ−3 ξ−1

ξ3

◦
ξ15 −1◦

, ξ ∈ G′54,

ξ
◦

ξ−3 ξ−1

ξ3

◦
ξ−9 −1◦

, ξ ∈ G′60,

ξ
◦

ξ−3 ξ−1

ξ3

◦
ξ−9 −1◦

, ξ ∈ G′42,

ξ
◦

ξ−3 ξ−1

ξ3

◦
ξ6 −1◦

, ξ ∈ G′42.

Criterion 1 for α1 and α2 + α3 produces the following lines:

ξ3

◦
−ξ6 −1◦ , ξ∈G′36,

ξ3

◦
ξ12 −1◦ , ξ∈G′54,

ξ3

◦
−ξ18 −1◦ , ξ∈G′60,

ξ3

◦
−ξ9 −1◦ , ξ∈G′42,

ξ3

◦
ξ3 −1◦ , ξ∈G′42.

None of these are in the list.

(8) In this final case, F1 = ζ = q3 and F2 = −1, which gives q ∈ G′9 ⊂ Gf .

Hence the lemma follows.

Lemma 6.6. Let q be a triangle such that q|I2 is parametric and both
q|I2,3 , q|{1,3} are finite. Then q|I2 = G(q) for some q ∈ Gf or else
GKdimBq =∞.

Proof: Let F =
F1◦ F2 F3◦ , F′ =

F′1◦
F′2 F′3◦ , be the diagrams associated

to q|I2,3 and q|{1,3}. Then we have a triangle of the form

F3=F′3◦
F′2 F2

F′1=G(q)1◦
G(q)2 G(q)3=F1◦
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We have that either q ∈ {F1, F
′
1}, so q ∈ Gf , or else G(q) is of type sA1(q).

Now, if we apply a reflection at vertex 2, we get a triangle:

−F3F2◦
qF2F

′
2

F−1
2

q
◦

q−1 −1◦

If
q
◦
qF2F

′
2 −F3F2◦ is finite, then q ∈ Gf . If it is parametric, then we are

in the setting of the previous lemma, with two parametric diagrams and
one finite; hence the lemma follows.

Lemma 6.7. Let q be a triangle such that all q|I2 , q|I2,3 , and q|{1,3}
are parametric. Then either q belongs to the list, or q|I2 = G(q), q|I2,3 =
G′(r), and q|{1,3} = G′′(s) for some q, r, s ∈ Gf or else GKdimBq =∞.

Proof: To start with, we can assume that not all vertices are Cartan by
Theorem 5.1. We shall analyze the possible triangles according to the
number of vertices labeled with −1, from 3 to 0.

Three vertices equal to −1. Our first case is a triangle

−1◦
q r

−1◦ s −1◦

Note that q, r, s cannot be all simultaneously −1, as this would be an
example of affine Cartan type. We fix q to be the root of 1 of maximal
order, hence q 6= −1. The matrix ρ1q has diagram

q
◦

q−1
qrs

−1◦ s−1 s◦

We look at the edge
s◦

qrs q
◦ . If this diagram is not connected (that is,

qrs = 1), then it belongs to rows 9–11. If this is finite, then q, r, qrs ∈ Gf ,
so q, r, s ∈ Gf . Hence we can assume that this edge is parametric: we
subdivide into cases, namely when this is of Cartan type, or super type,
or other.
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• Cartan type.
Here qrs = q−` = s−1 for some ` ∈ I3, so s = q`, r = q−2`−1. The

original triangle is thus

−1◦
q q−2`−1

−1◦
q` −1◦

and ρ3q is

−1◦
q−1 q2`+1

q
◦

q−` q−2`−1

◦

We look at the edge
q
◦

q−` q−2`−1

◦ . If it is finite, then q ∈ Gf (hence
the same applies to r and s). If it is parametric, either q ∈ {ζ, ζ2} or
q(2`+1)mq−1 = 1 for some m ∈ I3. In either case, q ∈ Gf .

• Super type.

Assume that
s◦

qrs q
◦ is of super type. Hence s = −1 since ord s ≤

ord q by hypothesis, and q`(−qr) = 1 for some ` ∈ I2, so r = −q−`−1.
Our original triangle becomes

−1◦
q −q−`−1

−1◦ −1 −1◦

and ρ2q is

−q−`−1

◦
q−` −q`+1

−1◦ −1 −1◦

The tripartite analysis on edge
−1◦

q−` −q−`−1

◦ gives that either it is
finite, in which case q−`, q−`−1 ∈ Gf (so q ∈ Gf), or it is parametric,
so there is m ∈ I2 such that (−q`+1)mq` = 1 and again q ∈ Gf , or else
GKdimBq =∞.
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• Other type.

In this last case edge
q
◦

qrs s◦ is one of the following:
ζ
◦ −1 −1◦ or

q
◦

q−1 ζ
◦ . In the first case q = ζ and r = ζ2. As for the second, we have

s = ζ, r = q−2ζ2, so the original triangle and ρ2q are

−1◦
q q−2ζ2

−1◦
ζ −1◦

and

q−2ζ2

◦
q−1 q2ζ

ζ
◦

ζ2 −1◦

We perform a tripartite analysis on the edge
ζ
◦

q−1 q−2ζ2

◦ . If this is
finite, then q ∈ Gf . If it is parametric, then either q−2ζ2 = −1, or
ζq−1 = 1 or else q−2ζ2q−1 = 1, so q ∈ Gf .

Two vertices labeled with −1. Let t := q22 be the vertex such that
t 6= −1. Hence either t = ζ, q̃2i = −1 for some i 6= 2, or 2 is a Cartan
vertex.

For the first case we may assume i = 3. Moreover, s ∈ {−1, ζ, ζ2}
since the subdiagram with vertices 1 and 2 is parametric by hypothesis,
so s ∈ Gf . The diagrams of q and ρ1q are, respectively,

−1◦
q −1

−1◦ s ζ
◦

and

q
◦

q−1 −qs

−1◦ s−1 −sζ
◦

If q = −s−1, then q ∈ Gf . Otherwise −qs 6= 1, and ρ1q is a triangle

containing the subdiagram
−sζ
◦
−qs q
◦ . If this subdiagram does not be-

long to the list, then GKdimBq =∞. Otherwise it is either parametric,
which says that q ∈ {−1, ζ, ζ2} or qc(−qs) = 1 for some c ∈ I3, or else
finite; in either case q ∈ Gf .

Now assume that t is a Cartan vertex: the diagram of q is

−1◦
q t−b

−1◦ t−a t◦

for some a, b ∈ I3. Criterion 1 for α1 + α3, α2 gives the diagram D :=
q
◦ t
−a−b t◦ : if d is not in the list, then GKdimBq = ∞. If it is finite,

then q, t ∈ Gf . If d is not connected, i.e., ta+b = 1, then t ∈ Gf and ρ1q
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contains the diagram
q
◦

q −t1−a◦ : a tripartite analysis ends this case.
Otherwise, d is parametric. We address different choices of a, b:

• a = 3 or b = 3. We may fix a = 3: this forces q|I2 to be of Cartan
type G2 with t ∈ G′6. We get a contradiction since t 6= −1, ζ, ζ and
tm(−t−b) 6= 1 for m = 1, 2, 3.
• a = b = 2. As t 6= ±1, either t3 = 1, qt−4 = 1, or else tm−4 = 1

for some m ∈ I3: clearly m = 2, 3 is not allowed, so t ∈ G′3 and
q ∈ {−1, t±1}.
• {a, b} = {1, 2}. As ord t ≥ 4 (since we assume that both q and
d are connected), vertex 2 of d is of Cartan type: tm−3 = 1 for
some m ∈ I3. This forces m = 3, which implies as well q = t3.
Hence q belongs to row 7 of the list.
• a = b = 1. As t = −1 by hypothesis, either t3 = 1, qt−2 = 1, or

else tm−2 = 1 for some m = 1, 2, 3: only m = 2 is allowed, which
forces q = t2 or q = −1. For q = t2 we have row 6 of the list, while
for t = −1, ρ3q is a triangle with −1 in the three vertices and was
already considered.

One vertex labeled with −1. We fix q11 = −1 and start by distinguishing
three possible cases, namely

(a) qjj = ζ ∈ G′3, q̃1j = −1, j = 2, 3.
(b) qjj = ζ ∈ G′3 for a single j, say j = 2, q̃1j = −1, and q = q33 6=
−1, ζ, so qm33q̃13 = 1, m ≤ 3.

(c) qa22q̃12 = 1 = qb33q̃13, a, b ≤ 3.

We analyze each case. For (a), we get the triangle

ζ
◦

−1 s

−1◦ −1 ζ
◦

for which Criterion 1 for α1 + α2, α3 gives s = ζ2.
As for (b), we have

q
◦

q−m r

−1◦ −1 ζ
◦

and we focus on the line
ζ
◦ r q

◦ . If it is of Cartan type, then it follows
that q, r ∈ Gf . If not, then we necessarily have r = q−1. Returning to

the triangle, we apply Criterion 1 for α1 + α2, α3 and obtain
ζ
◦
q−1−m q

◦ .



Rank 3 and Cartan Type 789

This diagram is in the list if and only if it is disconnected (q1+m = 1),
finite (so q ∈ Gf), or parametric, which gives qdq−1−m = 1, for some
d ≤ 3, so q ∈ Gf .

For case (c), we consider two possibilities, namely

(c1) r = ζ ∈ G′3 and qs = 1 (or, equivalently, q = ζ, rs = 1).

(c2)
r◦ s q

◦ is of Cartan type, so we may assume r = qm, s = q−m,
m ≤ 3.

For case (c1), Criterion 1 with α1+α3, α2 generates the line
−ζx
◦

qy q
◦ ,

x = −1− b, y = −1− a. If this diagram is either disconnected or finite,
then the case follows. If it is parametric, then we look at the possible

values of a. If a = 3, then q ∈ G′6 (
−1◦

q−3 q
◦ , q3 = −1) is of type Gt2(q).

If a = 2, then the line
−ζx
◦

qy q
◦ =

−ζx
◦

q−3 q
◦ is again Gt2(q) and thus

q3 = −ζ−1−b gives ord q ≤ 30. If a = 1, the reflection ρ1 generates a
triangle with at least two vertices with parameter −1 or a line, cases
already analyzed.

In case (c2), we consider the triangle

qm

◦
q−bm q−m

−1◦
q−a q

◦

We analyze the possible values of (a, b). If a = b = 1, then once again ρ1

leads to a triangle with at least two vertices with parameter −1 or to a
line. As above, if a = 3, then ord q = 6 (type Gt2(q)). Similarly, if b = 3,
then ord qm = 6 and then q ∈ Gf . Finally, assume a = b = 2, that is,

qm

◦
q−2m

q−m

−1◦
q−2 q

◦

In this last case, Criterion 1 for α1, α2 + α3 gives
−1◦
q−2m−2q

◦ . If this is
either disconnected or finite, the case follows. If it is parametric, then
either q3 = 1 or there is d ∈ I3 such that qdq−2m−2 = 1. In either case,
q ∈ Gf .
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No vertices with label −1.
We fix, without loss of generality, q11 = ζ, q = q22 /∈ G′3 with q̃12q = 1,

so our triangle is of the form

s◦
t r

ζ
◦

q−1 q
◦

Again, we study some subcases, according to (a) st = 1, (b) s2t = 1, or
(c) s3t = 1.

In cases (b) or (c) we also have tζ = 1, so s ∈ G′6 as above. Hence,
s◦ r q

◦ is of Cartan type with q, r ∈ Gf .

For case (a), we look at edge
s◦ r q

◦ . We have either (a1) s3 = 1
and qr = 1 or (a2) s /∈ G′3 so s = qm = r−1 for some m ∈ I3. In

(a1), Criterion 1 for α1 + α3, α2 gives
ζ
◦

q−2 q
◦ , so ord q ≤ 6. In (a2),

Criterion 1 for α1 + α3, α2 gives
ζ
◦
q−1−m q

◦ and therefore q ∈ Gf .
This ends all possible triangles in the lemma.

6.2. GAP lemmas. In this section we use GAP to work with all possible
lines and triangles made up by gluing together diagrams of rank 2, ei-
ther finite or parametric, these last ones evaluated at roots in Gf . We
consider the criteria developed in Section 4 to rule out each such di-
agram, and we also discard those already belonging to the list. This
process is carried out with the help of the GAP software package, in two
lemmas, one dealing with lines and the other one dealing with trian-
gles. In each proof, we cite the code files used (lines/triangles.g)
and the log files obtained (lines/triangles.log). In turn, these code
files rely on definitions stated in basic.g. All of these files are stored in
https://www.famaf.unc.edu.ar/~aigarcia/logfiles archivos/rank3.zip.

Lemma 6.8. Assume that d is a line obtained by pasting two diagrams,
either finite or parametric, evaluated at a root in Gf . Then GKdimBq =
∞ or d belongs to the list.

Proof: We check with GAP all possible combinations. See lines.(g|log).
After applying all the criteria, we have the following seven diagrams left:

−1◦ −1 −ζ2
◦

−ζ ζ
◦ , −1◦

−ζ ζ
◦
−ζ −ζ2

◦ ,
−1◦

−ζ ζ
◦
−ζ2 −ζ

◦ ,

ζ2

◦
ζ −1◦ −1 ζ

◦ ,
ζ
◦

ζ2 −1◦
−ζ ζ

◦ ,
ζ
◦
−ζ −ζ2

◦
ζ2 ζ
◦ ,

−ξ4
◦

ξ2 −ξ−1

◦
−ξ ξ4

◦ ,

https://www.famaf.unc.edu.ar/~aigarcia/logfiles_archivos/rank3.zip
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for ζ ∈ G′3, ξ ∈ G′12. Now, the last one, involving ξ ∈ G′12, is standard

with affine matrix A
(2)
4 ; the same is true for the sixth diagram. The first

is standard with indefinite Cartan matrix. The second and third are of
affine type D

(2)
3 . We recall the diagrams q(n), n ∈ I5, from Example 2.2:

the fourth diagram above is q(5) up to ζ ↔ ζ2 and the fifth is q(4) up
to permutation; hence Lemma 3.4 applies. Thus the Nichols algebras of
these seven diagrams have infinite GKdim.

Lemma 6.9. Assume that d is a triangle obtained by pasting three di-
agrams, either finite or parametric, evaluated at a root in Gf . Then
GKdimBq =∞ or d belongs to the list.

Proof: Again, we check with GAP all possible combinations of these three
diagrams, either finite or parametric, evaluated at a root in Gf ; we also
discard those triangles than can be reflected to a line, as we have already
dealt with that case in the previous lemma. See triangles.(g|log),
where we leave out the case of three edges of type sA1(q), analyzed
below.

After applying all the criteria, we have the following five diagrams
left:

−1◦
−ζ −ζ

−1◦ −1 −1◦

,

−ζ2
◦

−ζ −ζ

−1◦ −1 −1◦

,

−ζ2
◦

−ζ −ζ

−ζ2
◦

−ζ −1◦

,

−ξ4◦
ξ4 ξ4

−ξ4◦
ξ4 −1◦

,

ξ4◦
−ξ4 −ξ4

ξ4◦
−ξ4 −1◦

.

On the one hand, notice that triangles 4 and 5 are actually equivalent, by
changing the root ξ ↔ −ξ in G′4. Also, τ23ρ2 of triangle 1 gives triangle 3,
with ζ ↔ ζ2. Similarly, ρ1 of the second triangle gives the first triangle,
again with ζ ↔ ζ2. Hence we need to deal with matrices q and q′ with
diagrams 1 and 4, respectively. The corresponding basic data are

•
ρ3(q)

•
q

•
ρ1(q)

•
q′

•
ρ2(q′)

•
τ13(q′)

•
τ23(q′)

3 1,2 2 1

3

Both are standard with Cartan matrix A
(1)
2 , and Proposition 2.4 applies.
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Let us now focus on merging sA1(q), sA1(r), sA1(s). That is,

−1◦
s r

−1◦
q −1◦

, q, r, s ∈ k \ {±1}.

Notice that when qrs = 1, then it is of finite type (and it can be reflected
to a line, which is true also when qr = 1, qs = 1 or rs = 1). In any
case, a reflection at any vertex returns a triangle of a different type or
forces q, r, or s to be −1, a contradiction.
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