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NORMALIZERS OF SETS OF COMPONENTS

IN FUSION SYSTEMS

Bob Oliver

Abstract: We describe some new ways to construct saturated fusion subsystems, in-
cluding, as a special case, the normalizer of a set of components of the ambient fusion

system. This was motivated in part by Aschbacher’s construction of the normalizer

of one component, and in part by joint work with three other authors where we had
to construct the normalizer of all of the components.
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Introduction

A saturated fusion system over a finite p-group S is a category whose
objects are the subgroups of S, whose morphisms are injective homo-
morphisms between the subgroups, and which satisfies certain conditions
first formulated by Puig (see [10] and Definition 1.1). The motivating
examples are the fusion systems FS(G) when G is a finite group and
S ∈ Sylp(G): the objects of FS(G) are the subgroups of S, and the
morphisms are those homomorphisms between subgroups induced by
conjugation in G.

By analogy with finite groups, Aschbacher, in [1, Chapter 9], defined
a component of a saturated fusion system F over S to be a subnormal
fusion subsystem of F that is quasisimple (see Definition 3.6). He then
showed that the components of F commute and satisfy other properties
satisfied by the components of a finite group. In a later paper [2, Sec-
tion 2.1], he constructed the normalizer of a component; i.e., the unique
largest fusion subsystem that contains the given component as a normal
subsystem.

In a recent paper with Carles Broto, Jesper Møller, and Albert
Ruiz [6], we needed to construct a normalizer for all of the components;
i.e., a largest subsystem of F that contains each of the components of F
as a normal subsystem. This turned out to be somewhat simpler than As-

B. Oliver is partially supported by UMR 7539 of the CNRS.



796 B. Oliver

chbacher’s construction of the normalizer of one component, but it also
led this author to try to better understand Aschbacher’s construction,
and to look for ways in which it could be generalized. This has resulted in
a slightly more explicit construction of these normalizers, and led to our
two main Theorems 2.5 and 3.11. In particular, Theorem 2.5 provides a
very general method for constructing saturated fusion subsystems (nor-
mal or not) of a given fusion system: one which we hope will have other
applications in the future.

As one special case of Theorem 3.11, we get the following theorem
about normalizers of components:

Theorem A. Let F be a saturated fusion system over a finite p-group S,
and let C1, . . . , Ck ≤ F be the components of F over T1, . . . , Tk ≤ S. Let
J ⊆ {1, . . . , k} be a nonempty subset such that the subgroup TJ = 〈Tj |
j ∈ J〉 is fully normalized in F (Definition 1.1(iii)), and let CJ ≤ F be
the central product of the components Cj for j ∈ J . Set NJ = NS(TJ) and
WJ =

⋂
j∈J NS(Tj). Then there are saturated fusion subsystems WJ E

NJ ≤ F over WJ E NJ ≤ S such that NJ is the largest saturated fusion
subsystem of F containing CJ as a normal subsystem, and WJ is the
largest saturated subsystem containing each Cj (for j ∈ J) as a normal
subsystem.

In other words, CJ E NJ , and for each saturated fusion subsys-
tem D ≤ F such that CJ E D we have D ≤ NJ . Similarly, Cj E WJ

for each j ∈ J , and for each D ≤ F such that Cj E D for all j ∈ J , we
have D ≤ WJ . More generally, Theorem 3.11 says that a similar conclu-
sion holds if the components are replaced by an arbitrary set of fusion
subsystems satisfying certain conditions listed in Hypothesis 3.3.

We mostly regard Theorems 2.5 and 3.11 as new tools for constructing
saturated fusion subsystems of a given fusion system, with Theorem A as
one special case of particular interest. But they also have consequences
for fundamental groups of linking systems associated to the fusion sys-
tems, and the subsystems constructed here can be associated to cov-
ering spaces of the geometric realizations of those linking systems. See
Remark 2.6 at the end of Section 2 for a more detailed discussion.

In Section 1, we recall some basic definitions and properties of satu-
rated fusion systems, all well known except (perhaps) for the technical
Lemma 1.10. In Section 2, we describe a very general way to construct
saturated subsystems of a given saturated fusion system F (see Hypoth-
esis 2.1 and Theorem 2.5). Then, in Section 3, we consider sets of com-
muting subsystems of a saturated fusion system F , under assumptions
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(Hypothesis 3.3) that include the case where the subsystems are the com-
ponents of F (Example 3.7). This leads to Theorem 3.11, a special case
of Theorem 2.5, where we construct normalizers of these subsystems.
Theorem A then follows as a special case of Theorem 3.11.

Acknowledgements. We would like to thank both referees of this pa-
per for their many suggestions, leading to a number of improvements in
the presentation.

Notation. We write cx for a homomorphism defined via conjugation
by x (cx(g) = xgx−1), and cPx ∈ Aut(P ) for its restriction to a sub-
group P when x normalizes P . As usual, when H ≤ G is a pair of groups
and x ∈ G, we write xH = cx(H) = xHx−1 and Hx = c−1

x (H) = x−1Hx.
When G is a group and P,Q ≤ G, we let HomG(P,Q) ⊆ Hom(P,Q) be
the set of all homomorphisms of the form cx for x ∈ G such that xP ≤ Q.

Functions and morphisms are always composed from right to left.
Also,

• S (G) is the set of subgroups of a group G;
• k = {1, . . . , k} for k ≥ 1; and
• H≤T = H ∩S (T ) when H is a set of subgroups of a group S and
T ≤ S.

When F is a fusion system over S and H ⊆ S (S), we let FH ⊆ F
denote the full subcategory whose set of objects is H.

1. Background on fusion and linking systems

We summarize here our basic terminology when working with fusion
systems. For a prime p, a fusion system over a finite p-group S is a
category whose objects are the subgroups of S, and whose morphisms are
injective homomorphisms between subgroups such that for each P,Q ≤
S:

• HomF (P,Q) ⊇ HomS(P,Q); and
• for each ϕ ∈ HomF (P,Q), ϕ−1 ∈ HomF (ϕ(P ), P ).

Here, HomF (P,Q) denotes the set of morphisms in F from P to Q. We
also write IsoF (P,Q) for the set of isomorphisms, AutF (P ) = IsoF (P, P ),
and OutF (P ) = AutF (P )/ Inn(P ). For P ≤ S and g ∈ S, we set

PF={ϕ(P ) | ϕ ∈ HomF (P, S)} and gF={ϕ(g) | ϕ ∈ HomF (〈g〉, S)}
(the sets of subgroups and elements F-conjugate to P and to g).

Definition 1.1. Let F be a fusion system over a finite p-group S.

(i) A subgroup P ≤ S is fully automized in F if AutS(P ) ∈
Sylp(AutF (P )).
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(ii) A subgroup P ≤ S is receptive in F if each isomorphism ϕ ∈
IsoF (Q,P ) in F extends to a morphism ϕ̄ ∈ HomF (NFϕ , S), where

NFϕ = {x ∈ NS(Q) | ϕcQx ϕ−1 ∈ AutS(P )}.
(iii) A subgroup P ≤ S is fully normalized (fully centralized) in F if

|NS(P )| ≥ |NS(Q)| (|CS(P )| ≥ |CS(Q)|) for each Q ∈ PF .
(iv) The fusion system F is saturated if each F-conjugacy class of sub-

groups of S contains a member that is fully automized and recep-
tive.

We will sometimes need to refer to the following criteria for a fusion
system to be saturated.

Proposition 1.2 ([11, Theorem 5.2] or [3, Proposition I.2.5]). A fusion
system is saturated if and only if it satisfies the following two conditions:

(i) (Sylow axiom) each subgroup P ≤ S that is fully normalized in F
is also fully automized and fully centralized; and

(ii) (Extension axiom) each P ≤ S that is fully centralized in F is also
receptive.

We often need to refer to the following types or classes of subgroups
in a fusion system.

Definition 1.3. Let F be a fusion system over a finite p-group S. For
a subgroup P ≤ S,

(i) P is F-centric if CS(Q) ≤ Q for each Q ∈ PF ;
(ii) P is F-radical if Op(OutF (P )) = 1;
(iii) P is strongly closed in F if for each x ∈ P , xF ⊆ P ; and
(iv) P is central in F if each morphism ϕ ∈ HomF (Q,R) in F extends

to some ϕ̄ ∈ HomF (PQ,PR) such that ϕ̄|P = IdP .

Let Fcr ⊆ Fc denote the sets of F-centric F-radical subgroups, and
F-centric subgroups, respectively. Let

(v) Z(F) (the center of F) be the (unique) largest subgroup central
in F ; and set

(vi) foc(F) = 〈x−1y | x, y ∈ S, y ∈ xF 〉 (the focal subgroup of F).

In many cases, to prove saturation, it is not necessary to prove the
axioms for all conjugacy classes of subgroups. If F is a fusion system
over a finite p-group S and H is a set of subgroups of S closed under
F-conjugacy, then

• F isH-saturated if each member ofH is F-conjugate to a subgroup
that is fully automized and receptive; and
• F is H-generated if each morphism in F is a composite of restric-

tions of morphisms between members of H.
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Under certain conditions on H, these two conditions suffice to show that
F is saturated.

Proposition 1.4. Let F be a fusion system over a finite p-group S, and
let H ⊆ S (S) be a nonempty set of subgroups closed under F-conjugacy.

(i) Assume that F is H-generated and H-saturated, and that for each
P ∈ FcrH there is Q ∈ PF such that OutS(P )∩Op(OutF (P )) 6=
1. Then F is saturated.

(ii) (Stancu’s criterion) Assume H is closed under overgroups in S (S).
Assume also that S is fully automized in F , and that each P ∈ H
that is fully normalized in F is also receptive in F . Then F is
H-saturated.

Proof: Point (i) is shown in [4, Theorem 2.2] (see also the discussion in
[3, Theorem I.3.10]).

By [3, Proposition I.9.3(c⇒a)], Stancu’s criterion for saturation ([12])
implies that in Definition 1.1(iv). Point (ii), the corresponding implica-
tion for H-saturation, holds by the same argument whenever H is closed
under overgroups.

We will need the following version of Alperin’s fusion theorem for
fusion systems.

Theorem 1.5 ([5, Theorem A.10]). If F is a saturated fusion system
over a finite p-group S, then each morphism in F is a composite of re-
strictions of automorphisms of subgroups that are F-centric and F-rad-
ical.

If F is a fusion system over a finite p-group S, and β : S −→ T is
an isomorphism of groups, then βF denotes the fusion system over T
defined by setting

HomβF (P,Q) = {βϕβ−1 | ϕ ∈ HomF (β−1(P ), β−1(Q))}

for all P,Q ≤ T . (Recall that we compose from right to left.) In terms of
this notation, two fusion systems F over S and E over T are isomorphic

if there is an isomorphism of groups β : S
∼=−→ T such that E = βF .

Definition 1.6 ([3, Definition I.6.1]). Fix a saturated fusion system F
over a finite p-group S, and let E ≤ F be a saturated fusion subsystem
over T ≤ S. Then E is normal in F (denoted E E F) if the following
four conditions are satisfied:

(i) T is strongly closed in F ;
(ii) (Invariance condition) αE = E for each α ∈ AutF (T );
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(iii) (Frattini condition) for each P ≤ T and each ϕ ∈ HomF (P, T ),
there are α ∈ AutF (T ) and ϕ0 ∈ HomE(P, T ) such that ϕ = α◦ϕ0;
and

(iv) (Extension condition) each α ∈ AutE(T ) extends to an automor-

phism ᾱ ∈ AutF (TCS(T )) such that [ᾱ, CS(T )]
def
= 〈x−1ᾱ(x) |x ∈

CS(T )〉 ≤ Z(T ).

The following elementary property of normal subsystems will be
needed.

Lemma 1.7. Let E E F be saturated fusion systems over T E S. Let
F0 ≤ F be a saturated fusion subsystem over S0 ≤ S such that F0 ≥ E,
and assume the extension condition holds for E ≤ F0. Then E E F0.

Proof: Since E E F , the subgroup T is strongly closed in F , and hence
is also strongly closed in F0. By [3, Proposition I.6.4] and since E E F ,
the strong invariance condition holds: for each pair of subgroups P ≤
Q ≤ T , each ϕ ∈ HomE(P,Q), and each ψ ∈ HomF (Q,T ), we have
ψϕ(ψ|P )−1 ∈ HomE(ψ(P ), ψ(Q)).

The strong invariance condition for E ≤ F0 follows immediately from
that for E ≤ F . Hence by [3, Proposition I.6.4] again, E ≤ F0 also
satisfies the invariance and Frattini conditions. So if it also satisfies the
extension condition, then E E F0.

We will need to work with quotient fusion systems, but only in the
special (and very simple) case where we divide by a central subgroup.

Definition 1.8. Let F be a saturated fusion system over a finite p-
group S, and assume Z ≤ Z(F) is a central subgroup.

(i) Let F/Z be the fusion system over S/Z where for all P,Q ≤ S
containing Z,

HomF/Z(P/Z,Q/Z) = {ϕ/Z | ϕ ∈ HomF (P,Q), (ϕ/Z)(gZ) = ϕ(g)Z}.
(ii) If E ≤ F is a fusion subsystem over T ≤ S, then ZE ≤ F is the

fusion subsystem over ZT where for P,Q ≤ ZT ,

HomZE(P,Q) = {ϕ ∈ HomF (P,Q) | ϕ|P∩T ∈ HomE(P ∩ T,Q ∩ T )}.

If E E F , then ZE ≤ F is a special (and much more elementary) case
of a construction of Aschbacher [1, Theorem 8.20].

Lemma 1.9. Let F be a saturated fusion system over a finite p-group S,
let Z ≤ Z(F) be a central subgroup, and let E ≤ F be a saturated fusion
subsystem over T ≤ S. Then

(i) F/Z and ZE are both saturated; and
(ii) if Z(E) ≤ Z, then ZE/Z ∼= E/Z(E).
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Proof: The statement that F/Z is saturated is a special case of [7,
Proposition 5.11].

For each P ≤ZT , AutZE(P )∼=AutE(P∩T ) and AutZT (P )∼=AutT (P∩
T ). So P is fully automized in ZE if and only if P ∩T is fully automized
in E . A similar argument shows that P is receptive in ZE if and only if
P ∩ T is receptive in E , and thus ZE is saturated since E is saturated.

Assume that Z(E)≤Z, and hence that Z(E)=Z∩T . Let ψ :T/Z(E)
∼=−→

ZT/Z be the natural isomorphism. By the definitions, a morphism ϕ/Z ∈
Hom(P/Z,Q/Z) (for ϕ ∈ Hom(P,Q) such that ϕ(Z) = Z) lies in ZE/Z
if and only if ψ−1(ϕ/Z)ψ = (ϕ|P∩T )/Z(E) lies in E/Z(E). So ZE/Z =
ψ(E/Z(E)), and hence E/Z(E) ∼= ZE/Z.

Note that Lemma 1.9(ii) is a very elementary case of the second iso-
morphism theorem for fusion systems (see [7, Proposition 5.16]).

The following technical lemma will be useful later when proving that
certain fusion systems are H-saturated.

Lemma 1.10. Let F be a saturated fusion system over a finite p-
group S, and let E ≤ F be a fusion subsystem (not necessarily saturated)
over T ≤ S. Let H ⊆ S (T ) be a nonempty set of subgroups closed un-
der E-conjugacy and overgroups in T , and assume that the following two
properties hold for all P ∈ H:

(i) for each P̄ ≤ T containing P and each ϕ ∈ HomF (P̄ , T ), if ϕ|P ∈
HomE(P, T ), then ϕ ∈ HomE(P̄ , T ); and

(ii) for each ϕ∈HomF (NT (P ), S), there are R≤S and ψ∈HomF (R, T )
such that R ≥ 〈ϕ(NT (P )), CS(ϕ(P ))〉 and ψϕ ∈ HomE(NT (P ), T ).

Then every subgroup P ∈ H that is fully normalized or fully centralized
in E is also receptive (hence fully centralized) in E and in F . If in addition

(iii) Inn(T ) ∈ Sylp(AutE(T )),

then E is H-saturated.

Proof: Fix P ∈ H that is fully normalized or fully centralized in E , and
choose P2 ∈ PF that is fully normalized in F . By [3, Lemma I.2.6(c)],
there is ϕ ∈ HomF (NT (P ), S) such that ϕ(P ) = P2. By (ii), there is
ψ ∈ HomF (R, T ) such that 〈ϕ(NT (P )), CS(P2)〉 ≤ R ≤ S and ψϕ ∈
HomE(NT (P ), T ).

Set P3 = ψ(P2) ∈ P E ; thus ϕ(NT (P )) ≤ NR(P2) and ψ(NR(P2)) ≤
NT (P3). Likewise, ϕ(CT (P )) ≤ CR(P2) and ψ(CR(P2)) ≤ CT (P3), where
CR(P2)=CS(P2) by assumption in (ii). Then ψϕ(CT (P ))=ψ(CS(P2)) =
CT (P3) since P is fully centralized or fully normalized in E , and P and
P3 are both fully centralized in F and in E since P2 is.
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We claim that CS(P ) ≤ T . By (ii), applied with the inclusion ofNT (P )
into S in the role of ϕ, there areR≥〈NT (P ), CS(P )〉 and ω∈HomF (R, T )
such that ω|NT (P ) ∈ HomE(NT (P ), T ). Then ω(CS(P )) = CS(ω(P )) ≤
T since P is fully centralized in F , and ω(CT (P )) = CT (ω(P )) since P is
fully centralized in E and ω|CT (P ) ∈ Mor(E). So CS(P ) = CT (P ).

We have now shown that P is fully centralized and hence receptive
in F . It remains to show that it is receptive in E . Let Q ∈ P E ⊆ H and
ρ ∈ IsoE(Q,P ) be arbitrary, and consider the subgroups

NFρ = {x ∈ NS(Q) | ρcQx ρ−1 ∈ AutS(P )},
NEρ = {x ∈ NT (Q) | ρcQx ρ−1 ∈ AutT (P )} ≤ NFρ .

Since P is receptive in F , ρ extends to some ρ̄ ∈ HomF (NFρ , S). For each

x ∈ NEρ , cPρ̄(x) = ρcQx ρ
−1 ∈ AutT (P ), and hence there is y ∈ T such that

ρ̄(x) ∈ yCS(P ). We have just shown that CS(P ) ≤ T , and so ρ̄(x) ∈ T .
Thus ρ̄ restricts to ρ̂ ∈ HomF (NEρ , T ). By (i) and since ρ̂|Q = ρ ∈

Mor(E), ρ̂ ∈ HomE(N
E
ρ , T ), extending ρ. Since ρ was arbitrary, this

shows that P is receptive in E .
If in addition (iii) holds, and T is fully automized in E , then E is

H-saturated by Proposition 1.4(ii).

We end the section with two group-theoretic lemmas which are in-
cluded for convenient reference. The first is very elementary.

Lemma 1.11. Let χ : G −→ K be a homomorphism of finite groups,
and let P ≤ G be a p-subgroup. Then P ∈ Sylp(G) if and only if χ(P ) ∈
Sylp(χ(G)) and Ker(χ|P ) ∈ Sylp(Ker(χ)).

Proof: Just note that |G : P | = |χ(G) : χ(P )| · |Ker(χ) : Ker(χ|P )|.

The following well-known result about automorphisms of p-groups is
useful when identifying elements of Op(AutF (P )) in a fusion system F
over S ≥ P .

Lemma 1.12. Let P be a finite p-group, and let 1 = P0 ≤ P1 ≤ · · · ≤
Pk = P be a sequence of subgroups, all normal in P . Let Γ ≤ Aut(P )
be a group of automorphisms that normalizes each of the Pi. Then for
each α ∈ Γ such that x−1α(x) ∈ Pi−1 for each 1 ≤ i ≤ k and each x ∈ Pi,
we have α ∈ Op(Γ ).

Proof: Let Γ0 ≤ Γ be the subgroup of all α ∈ Γ that induce the identity
on each Pi/Pi−1. Then Γ0 E Γ since Γ normalizes each of the Pi. It
remains only to prove that each element of Γ0 has p-power order, and
this is shown, for example, in [8, Lemma 5.3.3].
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2. Maps from fusion systems to groups

In this section we give a very general setup for constructing saturated
fusion subsystems: one that includes Theorem A as a special case. Re-
call that when F is a fusion system over S and H ⊆ S (S) is a set of
subgroups of S, we let FH denote the full subcategory of F whose set of
objects is H. Thus Mor(FH) is the set of all morphisms in F between
subgroups in H.

Hypothesis 2.1. Let F be a saturated fusion system over a finite p-
group S. Fix a subgroup T E S, a set of subgroups H ⊆ S (S) such that
T ∈ H, and a map χ : Mor(FH) −→ G for some finite group G. Assume
the following hold:

(i) H is closed under F-conjugacy and overgroups;
(ii) χ(ϕψ) = χ(ϕ)χ(ψ) whenever ϕ,ψ ∈ Mor(FH) are composable, and

χ(inclQP ) = 1 for each P ≤ Q in H;
(iii) χ(Inn(T )) = 1 and χ(AutF (T )) = G; and
(iv) for each P ≤ T not in H, there is x ∈ NT (P ) r P such that

cPx ∈ Op(AutF (P )).

We could instead define χ as a functor from FH to B(G), where B(G)
is a category with one object and endomorphism group G, and then
remove the first part of condition (ii). We could also have defined χ to
be a homomorphism from π1(|FH|) to G, where |FH| is the geometric
realization of the category FH, and then removed (ii) completely. (See,
e.g., Section III.2.2 and Proposition III.2.8 in [3] for more detail.) But
it seems simplest to work with a map χ as above.

Notation 2.2. Assume Hypothesis 2.1. Set U = χ(AutS(T )) ≤ G, and
let χ̂ : S −→ U be the homomorphism that sends x ∈ S to χ(cTx ) ∈
χ(AutS(T )) = U . For each V ≤ U , define

SV = χ̂−1(V ) = {x ∈ S | χ̂(x) ∈ V } and

H≤SV = H ∩S (SV ) = {P ∈ H | P ≤ SV }.
For each H ≤ G, define the fusion subsystem FH ≤ F over SU∩H by
setting

FH = 〈ϕ ∈ HomF (P,Q) | P,Q ∈ H≤SU∩H , χ(ϕ) ∈ H〉.
In particular, we set SId = Ker(χ̂), and let FId be the fusion system
over SId generated by morphisms in χ−1(1).

Note that SU = S in the situation of Hypothesis 2.1 and Notation 2.2.
We will see later that H = H≤SU ⊇ Fcr, and hence that FG = F by
Theorem 1.5 (Alperin’s fusion theorem).
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First we list some of the basic properties that always hold in the
situation of Hypothesis 2.1.

Lemma 2.3. Assume Hypothesis 2.1 and Notation 2.2. Then the fol-
lowing hold:

(i) For all P ∈ H and x ∈ NS(P ), we have χ̂(x) = χ(cPx ). For P,Q ∈
H and ϕ ∈ HomF (P,Q), we have χ(ϕ)χ̂(x) = χ̂(ϕ(x)) for all x ∈ P .

(ii) For each Q,R ≤ U , we have χ(HomF (SQ, SR)) = {g ∈ G | gQ ≤
R}. Also, U ∈ Sylp(G).

(iii) If P ∈ H, then CS(P ) ≤ SId.
(iv) If D ≤ F is a fusion subsystem over D ≤ S with D ≥ T , then

Dcr ⊆ H. More precisely, for each subgroup P ∈ Dc rH,

OutD(P ) ∩Op(OutD(P )) 6= 1.

(v) If V ≤ U is strongly closed in U with respect to G, then SV is
strongly closed in F .

Proof: (i) For P ∈ H and x ∈ NS(P ), we have χ̂(x) = χ(cTx ) =

χ(cPTx ) = χ(cPx ), where the last two equalities hold since χ(inclPTT ) =

1 = χ(inclPTP ).

For P,Q ∈ H, x ∈ P , and ϕ ∈ HomF (P,Q), we have ϕcPx = cQϕ(x)ϕ ∈
HomF (P,Q), so χ(ϕ)χ̂(x) = χ̂(ϕ(x)).

(ii) Fix Q,R ≤ U . Then χ(HomF (SQ, SR)) ⊆ {g ∈ G | gQ ≤ R} by (i),
and it remains to show the opposite inclusion. Fix g ∈ G such that
gQ ≤ R ≤ U : we must find ϕ ∈ HomF (SQ, SR) such that χ(ϕ) = g.
Choose β ∈ AutF (T ) such that χ(β) = g.

Since χ(AutSQ(T )) = Q,

χ(βAutSQ(T )) = χ(β)Q = gQ ≤ R = χ(AutSR(T )),

and hence βAutSQ(T )≤AutSR(T )AutFId
(T ). Since AutSId

(T )=AutS(T )∩
AutFId

(T )∈Sylp(AutFId
(T )) (recall AutFId

(T )EAutF (T )), and AutSR(T )
normalizes AutFId

(T ) and contains AutSId
(T ), there is γ ∈ AutFId

(T )
such that γβAutSQ(T ) ≤ AutSR(T ). Also, T is receptive in F since it
is normal in S, so γβ extends to ϕ ∈ HomF (SQ, SR), and χ(ϕ) =
χ(γ)χ(β) = 1 · g = g.

Since F is saturated and T is fully normalized (normal in S), we
have AutS(T ) ∈ Sylp(AutF (T )). Hence U = χ(AutS(T )) ∈ Sylp(G)
(Lemma 1.11).

(iii) If P ∈ H and x ∈ CS(P ), then χ̂(x) = χ(cPx ) = χ(IdP ) = 1 by (i),
so x ∈ SId. Thus CS(P ) ≤ SId.
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(iv) Let D ≤ F be a fusion subsystem over D ≤ S with D ≥ T , and
assume P ∈ Dc rH. Set P0 = P ∩ T , and let Q = {t ∈ NT (P0) | ct ∈
Op(AutF (P0))}. Then P ≤ NS(Q), and Q � P by Hypothesis 2.1(iv)
and since P0 /∈ H. So NPQ(P ) > P , and we can choose x ∈ NQ(P )rP .
Then cPx |P0

∈ Op(AutF (P0)) and cPx induces the identity on P/P0, so
cPx ∈ Op(AutF (P )) by Lemma 1.12.

Thus cPx ∈ Op(AutF (P )) ∩ AutD(P ) ≤ Op(AutD(P )). Also, P ≥
CD(P ) since P is D-centric, and [cPx ] 6= 1 in Out(P ) since x ∈ T ≤ D.
So cPx /∈ Inn(P ), and [cPx ] 6= 1 in OutD(P )∩Op(OutD(P )). In particular,
P is not D-radical, and since this holds for all P ∈ DcrH, we conclude
that Dcr ⊆ H.

(v) Assume V ≤ U is strongly closed in U with respect to G. If SV is not
strongly closed in F , then by Theorem 1.5 (Alperin’s fusion theorem)
there are P ∈ Fcr, α ∈ AutF (P ), and x ∈ P ∩ SV such that α(x) /∈ SV .
Also, P ∈ H by (iv), applied with F in the role of D. Then χ̂(x) ∈ V
and χ̂(α(x)) /∈ V are conjugate in G by (i), contradicting the assumption
that V is strongly closed.

Next we look at some of the properties of the fusion subsystems FH .

Lemma 2.4. Assume Hypothesis 2.1 and Notation 2.2, fix a sub-
group H ≤ G, and set V = H ∩ U .

(i) If P ∈ H≤SV is fully normalized or fully centralized in FH , then
P is receptive and fully centralized in FH and in F .

(ii) We have FcrH ⊆ FcH ∩H ⊆ Fc.

Proof: (i) By Lemma 1.10, this implication is true if the following two
conditions hold.

(a) For each P ≤ P̄ in H and ϕ ∈ HomF (P̄ , T ), if ϕ|P ∈ HomFH (P, T ),
then ϕ ∈ HomFH (P̄ , T ).

This holds since for each such ϕ, χ(ϕ)=χ(ϕ)χ(inclP̄P )=χ(ϕ|P )∈
H.

(b) For each P ∈ H and ϕ ∈ HomF (NSV (P ), S), there are R ≤ S
and ψ ∈ HomF (R,SV ), where R ≥ 〈ϕ(NSH (P )), CS(ϕ(P ))〉 and
ψϕ ∈ HomFH (NSV (P ), SV ).

To see this, set g = χ(ϕ): then χ(ϕ(NSV (P ))) ≤ gV ∩ U by
Lemma 2.3(i). Set R = SgV ∩U : by Lemma 2.3(ii), there is ψ ∈
HomF (R,SV) such that χ(ψ)=g−1. Thus ψϕ∈HomFH(NSV(P ),SV).
Also, ϕ(NSV (P )) ≤ R by construction, and CS(ϕ(P )) ≤ SId ≤ R
by Lemma 2.3(iii).
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(ii) If P ∈ FcrH , then P ∈ H by Lemma 2.3(iv), while P ∈ FcH by
definition. So FcrH ⊆ FcH ∩H. If P ∈ FcH ∩H, then P is fully centralized
in FH since it is FH -centric, and is fully centralized in F by (i). Also,
CS(P ) = CSV (P ) ≤ P by Lemma 2.3(iii), and hence P ∈ Fc.

We are now ready to determine under what conditions the fusion
subsystems FH are saturated.

Theorem 2.5. Assume Hypothesis 2.1 and Notation 2.2. For each sub-
group H ≤ G,

(i) the fusion subsystem FH is saturated if and only if H ∩ U ∈
Sylp(H); and

(ii) FH is saturated and normal in F if and only if H E G.

Proof: Set V = H ∩ U for short. If FH is saturated, then AutSV (T ) ∈
Sylp(AutFH (T )), and hence V =χ(AutSV (T )) ∈ Sylp(H) by Lemma 1.11.

Conversely, assume now that V ∈ Sylp(H); we must show that FH is
saturated. In Step 1, we reduce to the case where SV is fully normalized
in F . In Step 2, we prove that FH is H≤SV -saturated, and in Step 3,
finish the proof that it is saturated. Point (ii) is shown in Step 4.

Step 1: First we show that it suffices to prove saturation of FH when
SV is fully normalized in F . Let H ≤ G be arbitrary, assuming only
that V ∈ Sylp(H). Choose Q ∈ (SV )F that is fully normalized in F
and ϕ ∈ IsoF (SV , Q), and set g = χ(ϕ). Then Q ≥ SId since SId is
strongly closed (Lemma 2.3(v)), so Q = SW , where W = χ̂(Q) = gV
(Lemma 2.3(i)). Then ϕFH = FgH : by inspection, cϕ sends the defining
generators of FH (see Notation 2.2) to those of FgH . In particular, FH is
saturated if FgH is saturated, and so it suffices to prove the latter. Note
that W = gV ≤ gH ∩ U , with equality since gV ∈ Sylp(

gH).
We assume from now on that SV = SW is fully normalized in F .

Step 2: We now show that FH is H≤SV -saturated. By Lemma 2.4(i), if
P ∈ H≤SV is fully normalized in FH , then it is also receptive in FH . So
by Proposition 1.4(ii), it remains only to prove that SV is fully automized
in FH ; i.e., that Inn(SV ) ∈ Sylp(AutFH (SV )).

By Lemma 2.3(ii), the homomorphism

χV : AutF (SV ) −→ NG(V )/V defined by χV (α) = χ(α)V

is well defined and surjective. Also, AutFH (SV ) = χ−1
V (NH(V )/V ) by

definition, and NH(V )/V has order prime to p since V ∈ Sylp(H). Thus
Ker(χV ) has index prime to p in AutFH (SV ). Furthermore, AutS(SV ) ∈
Sylp(AutF (SV )) since SV is fully normalized in F , so by Lemma 1.11,
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Ker(χV |AutS(SV )) is a Sylow p-subgroup of Ker(χV ) and hence of
AutFH (SV ). For x ∈ NS(SV ),

cSVx ∈ Ker(χV ) ⇐⇒ χ(cSVx ) ∈ V ⇐⇒ χ̂(x) ∈ V ⇐⇒ x ∈ SV ,
so that Ker(χV |AutS(SV )) = Inn(SV ), finishing the proof that Inn(SV ) ∈
Sylp(AutFH (SV )).

Step 3: By Lemma 2.3(iv), we have OutSV (P ) ∩ Op(OutFH (P )) 6= 1
for each P ∈ FcH r H. Also, FH is H≤SV -saturated by Step 2, and
is H≤SV -generated by definition of FH (see Notation 2.2). So FH is
saturated by Proposition 1.4.

Step 4: If H is normal in G, then V = H ∩ U ∈ Sylp(H) since U ∈
Sylp(G), so FH is saturated by Step 3.

By Lemma 2.3(v), SV is strongly closed in F . Each α ∈ AutF (SV )
permutes the generating set used to define FH , and hence induces an
automorphism of FH . So the invariance condition for FH ≤ F holds.
The extension condition also holds since CS(SV ) ≤ SId ≤ SV by Lem-
ma 2.3(iii).

Now, G = NG(V )H by the Frattini argument. Fix P ∈ H≤SV and
ϕ ∈ HomF (P, SV ), and let h ∈ H and g ∈ NG(V ) be such that χ(ϕ) =
gh. By Lemma 2.3(ii), there is β ∈ AutF (SV ) such that χ(β) = g. Set
ϕ0 = ϕβ−1; then χ(ϕ0) = h ∈ H and hence ϕ0 ∈ HomFH (P, SV ).
This proves the Frattini condition for FH ≤ F for morphisms between
members of H, and the general case follows by Theorem 1.5 and since
(FH)cr ⊆ H (Lemma 2.3(iv)). Thus FH E F .

Conversely, assume FH is saturated and normal in F . Then T ≤ SV
for each V ≤ U since χ̂(T ) = 1 by Hypothesis 2.1(iii), and hence T is
an object in FH . (This holds for all H ≤ G.) Since FH E F , we have
AutFH (T ) E AutF (T ) (see, e.g., [3, Proposition I.6.4(c)]), and hence
H = χ(AutFH (T )) E χ(AutF (T )) = G.

Remark 2.6. For readers familiar with linking systems associated to fu-
sion systems and their geometric realizations (see Sections III.2 and III.4
in [3]), we note here that in the situation of Hypothesis 2.1 and Nota-
tion 2.2, if L is a centric linking system associated to F , then it is
straightforward to define a linking subsystem LH ≤ L associated to FH
for each H ≤ G such that H∩U ∈ Sylp(H). More precisely, if π : L −→ F
is the structure functor for L, then we set χ̃ = χ ◦ π : Mor(LH) −→ G,
where LH is the full subcategory of L with objects in H ∩ Fc, and
let LH ≤ L be the subcategory with objects Fc ∩ H≤SV (V = H ∩
U) and morphisms in χ̃−1(H). Using the fact that (FH)cr ⊆ Fc (see
Lemma 2.4(ii)), one easily checks that this is a linking system.
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This setup also gives information about the fundamental groups
of the geometric realizations |FH| and |L|. As noted earlier, the map
χ : Mor(FH) −→ G can be regarded as a surjective homomorphism
from π1(|FH|) onto G. Since |L| and |LH| are homotopy equivalent,
where LH ⊆ L is the full subcategory with object set H (see [4, Theo-
rem 3.5]), χ̃ induces a surjection from π1(|L|) ∼= π1(|LH|) onto G, and
the spaces |LH | (for H ≤ G as above) are equivalent to covering spaces
of |L| (see [3, Proposition III.2.9]).

3. The normalizer of a set of components

Here we adopt the notation and terminology used in [9] for morphisms
of fusion systems and sets of commuting subsystems. Recall that we set
k = {1, . . . , k} for k ≥ 1.

A sequence E1, . . . , Ek ≤ F of fusion subsystems over finite p-groups
T1, . . . , Tk ≤ S commutes in F if there is a morphism of fusion systems
from E1 × · · · × Ek to F that extends the inclusions of the Ei into F . In
other words, there is a homomorphism of groups I : T1 × · · · × Tk −→ S

that sends (t1, . . . , tk) to t1 · · · tk, and which induces a functor Î from
the category E1 × · · · × Ek to F . Equivalently:

Lemma 3.1 ([9, Lemma 2.8]). Let F be a saturated fusion system over
afinite p-group S, and let E1, . . . , Ek ≤ F be fusion subsystems over
subgroups T1, . . . , Tk ≤ S. Then E1, . . . , Ek commute in F if and
only if [Ti, Tj ] = 1 for each i 6= j in k, and for each k-tuple
of morphisms ϕi ∈ HomEi(Pi, Qi) (for i ∈ k) there is a morphism
ϕ ∈ HomF (P1 · · ·Pk, Q1 · · ·Qk) such that ϕ|Pi = ϕi for each i.

When E1, . . . , Ek ≤ F commute in F , and Î : E1 × · · · × Ek −→ F is
as above, we define the central product of the Ei in F to be the fusion
subsystem

E1 · · · Ek = Î(E1 × · · · × Ek)

= 〈ϕ ∈ HomF (P,Q) | P = P1 · · ·Pk, Q = Q1 · · ·Qk,
ϕ|Pi ∈ HomEi(Pi, Qi)∀i ∈ k〉.

(3.1)

The central product of commuting saturated fusion subsystems is al-
ways saturated: we leave it as an exercise to show that E1 · · · Ek ∼=
(E1 × · · · × Ek)/Z for some central subgroup Z ≤ Z(E1 × · · · × Ek). (The
image of an arbitrary morphism between saturated fusion systems is also
saturated, but this is a much deeper theorem first shown by Puig: see,
e.g., Proposition 5.11 and Corollary 5.15 in [7].)

Recall the fusion subsystems ZE ≤ F , for E ≤ F and Z ≤ Z(F), of
Definition 1.8(ii).
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Lemma 3.2. Let F be a saturated fusion system over a finite p-group S,
and let E1, . . . , Ek ≤ F be commuting saturated fusion subsystems over
T1, . . . , Tk ≤ S. Set T = T1 · · ·Tk and E = E1 · · · Ek, and set Z = Z(E).
Then

(i) for each i ∈ k, Ei is the full subcategory of E with objects the
subgroups of Ti;

(ii) if ti ∈ Ti for all i ∈ k and t = t1 · · · tk, then tE = {ui · · ·uk | ui ∈
tEii };

(iii) T/Z = (T1Z/Z)× · · · × (TkZ/Z); and
(iv) E/Z = (ZE1/Z) × · · · × (ZEk/Z), where ZEi/Z ∼= Ei/Z(Ei) for

each i.

Proof: By assumption, there is a functor Î from E1×· · ·×Ek into F that
restricts to the inclusion on each factor. Since each Ei is a full subcategory

of the direct product
∏k
i=1 Ei, its image under Î is a full subcategory of

Î(E1 × · · · × Ek) = E . This proves (i).
Point (ii) follows immediately from (3.1). Since the center of a sat-

urated fusion system is the set of elements whose conjugacy class has
order 1 (see [3, Lemma I.4.2]), (ii) implies that

(3.2) for ti∈Ti (all i ∈ k), t1 · · · tk∈Z if and only if ti∈Z(Ei) for all i.

Let I : T1 × · · · × Tk −→ T be the homomorphism I(t1, . . . , tk) =
t1 · · · tk. Thus I is surjective, and I−1(Z) = Z(E1)×· · ·×Z(Ek) by (3.2).
This proves (iii), and also shows that I induces an isomorphism from∏k
i=1(Ti/Z(Ei)) to T/Z. It also proves that Z ∩ Ti = Z(Ei) for each i,

and hence that the inclusion of Ti into ZTi induces an isomorphism
Ti/Z(Ei) ∼= ZTi/Z ≤ T/Z. Thus T/Z is the direct product of its sub-
groups ZTi/Z, and the independence of the factors (TiZ/Z) implies that
TiZ ∩ TjZ = Z for any pair i 6= j of distinct indices in k.

The equality E/Z =
∏k
i=1(ZEi/Z) now follows immediately from the

description of E = E1 · · · Ek in (3.1).

We now describe the setup needed to state our main theorem on
normalizers.

Hypothesis 3.3. Let F be a saturated fusion system over a finite p-
group S, and let E1, . . . , Ek ≤ F (for some k ≥ 1) be saturated fusion
subsystems over T1, . . . , Tk ≤ S that commute in F . Set T = T1 · · ·Tk
and E = E1 · · · Ek, and assume

(i) E E F ;
(ii) Ti � Z(E) for each i ∈ k; and
(iii) each element of AutF (T ) permutes the subgroups Ti for i ∈ k.
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By Lemma 3.2(i), each Ei is the full subcategory of E with objects the
subgroups of Ti. Since each α ∈ AutF (T ) permutes the subgroups Ti
by (iii), this means that α also permutes the fusion subsystems Ei.

We also need some more notation.

Notation 3.4. Let E1, . . . , Ek ≤ F be as in Hypothesis 3.3. Let χ0 :
AutF (T ) −→ Σk be the homomorphism defined by (iii): χ0(α) = σ (for
α ∈ AutF (T ) and σ ∈ Σk) if α(TiZ(E)) = Tσ(i)Z(E) for each i ∈ k.
Define also

Z = Z(E), G = χ0(AutF (T )) ≤ Σk,

H = {P ≤ S | P ∩ Ti � Z for each i ∈ k}, U = χ0(AutS(T )) ≤ G.
In the next proposition, we give some other criteria that imply con-

dition (iii) in Hypothesis 3.3. A fusion system is indecomposable if it is
not the direct product of two or more proper fusion subsystems. Recall
also the focal subgroup foc(−) from Definition 1.3(vi).

Proposition 3.5. Assume E1, . . . , Ek ≤ F are saturated fusion systems
over finite p-groups T1, . . . , Tk ≤ S that commute in F and satisfy con-
ditions (i) and (ii) in Hypothesis 3.3. Then either of the conditions

(iii′) for each i ∈ k, Ei/Z(Ei) is indecomposable and foc(Ei) = Ti, or
(iii′′) for each i ∈ k, Ei/Z(Ei) is indecomposable, Ti ≥ Z(E1 · · · Ek), and

Z(Ei/Z(Ei)) = 1

implies condition (iii).

Proof: Set E = E1 · · · Ek, T = T1 · · ·Tk, and Z =Z(E) ≤ Z(T ). By Lem-

ma 3.2(iii)(iv), we have E/Z =
∏k
i=1(ZEi/Z) and T/Z =

∏k
i=1(ZTi/Z),

where for each i, ZEi/Z ∼= Ei/Z(Ei) and hence is indecomposable under
either condition (iii′) or (iii′′). Also, foc(E/Z) = T/Z (if (iii′) holds) or
Z(E/Z) = 1 (if (iii′′) holds), and in either case, the factorization of E/Z
as a product of the indecomposable fusion subsystems ZEi/Z is unique
by [9, Corollary 5.3].

Now assume α ∈ AutF (T ) ≤ Aut(E). Then α induces an automor-
phism ᾱ ∈ Aut(E/Z), and by the uniqueness of the factorization, there
is σ ∈ Σk such that ᾱ(TiZ/Z) = Tσ(i)Z/Z and hence α(TiZ) = Tσ(i)Z
for each i. If (iii′′) holds, then TiZ = Ti for each i, so α permutes the Ti.
If (iii′) holds, then α permutes the fusion subsystems ZEi (since they
are full subcategories of E by Lemma 3.2(i)), and hence permutes the
focal subgroups foc(ZEi) = foc(Ei) = Ti. In either case, α(Ti) = Tσ(i),
finishing the proof of (iii).

The following definition of a component of a fusion system is taken
from [1].



Normalizers of Sets of Components in Fusion Systems 811

Definition 3.6. Let E ≤ F be saturated fusion systems over finite p-
groups T ≤ S. The subsystem E is subnormal in F (denoted E EE F)
if there is a sequence of subsystems E = E0 E E1 E · · · E Em = F each
normal in the following one. The subsystem E is quasisimple if E/Z(E)
is simple and foc(E) = T . The components of F are the subnormal
saturated fusion subsystems of F that are quasisimple.

A saturated fusion system F is constrained if it has a normal sub-
group Q E F that is F-centric. By (9.9.1) and (9.12.3) in [1], F is
constrained if and only if it has no components. The assumption in the
following example that F not be constrained is made to ensure that it
has at least one component.

Example 3.7. Let F be a saturated fusion system over a finite p-group S,
and assume F is not constrained. Then F satisfies Hypothesis 3.3, with
the set Comp(F) of components of F in the role of {E1, . . . , Ek} and with
their central product in the role of E .

Proof: All of these statements are shown in [1, Chapter 9]. Since F is
not constrained, CS(Op(F)) � Op(F), so Op(F) is strictly contained
in the generalized Fitting subsystem F ∗(F) by [1, 9.11], and hence
Comp(F) 6= ∅ by [1, 9.9]. Also, E(F) (defined in [1] to be the smallest
normal subsystem containing all components) is the central product of
the components by [1, 9.9.1], and is normal in F by [1, 9.8.1]. Thus the
components of F commute and satisfy condition (i), and satisfy (ii) and
(iii′) since they are quasisimple.

We now start to look at some of the consequences of these hypotheses.
Condition (i) in the next lemma is stated in two forms: a simpler form
which suffices here in most cases, and a longer, more technical form
needed in one of the proofs below.

Lemma 3.8. Assume Hypothesis 3.3 and Notation 3.4. For I ⊆ k, set
TI = 〈Ti | i ∈ I〉.

(i) For each P,Q ≤ S and ϕ ∈ HomF (P,Q), there is an element
σ ∈ G ≤ Σk such that ϕ(P ∩ Ti) ≤ Tσ(i) for each i ∈ k. If P ∈ H,
then Q ∈ H, and this element σ is unique.

(i′) Fix P,Q ≤ S and ϕ∈HomF (P,Q). Then there are σ ∈ G ≤ Σk and
α ∈ AutF (T ) such that ϕ(P ∩TI) ≤ Tσ(I) = α(TI) for each I ⊆ k.

In particular, ϕ(P ∩ Ti) ≤ Tσ(i) ∈ (Ti)
F for each i ∈ k. If j ∈ k is

such that P ∩ Tj � Z, then ϕ(P ∩ Tj) � T` for ` 6= σ(j).

Define χ : Mor(FH) −→ G by setting χ(ϕ) = σ whenever P,Q ∈ H and
ϕ and σ are as in (i). Then

(ii) F , T , H, χ, G, and U together satisfy Hypothesis 2.1.
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Proof: Recall that Z = Z(E) and E E F , and H = {P ≤ S | |P ∩ Ti �
Z(E)∀ i ∈ k}.

(i), (i′) Fix P,Q ≤ S and ϕ ∈ HomF (P,Q). Then ϕ(P ∩ T ) ≤ T since
T is strongly closed in F (recall E E F). By the Frattini condition
for E E F , there are α ∈ AutF (T ) and ϕ0 ∈ HomE(P ∩ T, T ) such that
ϕ|P∩T = αϕ0. By Hypothesis 3.3(iii), there is σ = χ0(α) ∈ G ≤ Σk such
that α(Ti) = Tσ(i) for each i. Hence for each I ⊆ k,

ϕ(P ∩ TI) = α(ϕ0(P ∩ TI)) ≤ α(TI) = Tσ(I).

Now let j, ` ∈ k be such that P ∩Tj � Z and ϕ(P ∩Tj) ≤ T`. Choose
x ∈ (P ∩ Tj) r Z. Then ϕ(x)Z ∈ (Tσ(j)Z/Z) ∩ (T`Z/Z), and ϕ(x) /∈ Z
since Z = Z(E) is strongly closed in F . So ` = σ(j) by Lemma 3.2(iii).

In particular, if P ∈ H, then P ∩ Ti � Z for each i ∈ k, so σ is
the unique permutation satisfying ϕ(P ∩ Ti) ≤ Tσ(i) for each i. Also,
ϕ(P ) ∩ Tσ(i) ≥ ϕ(P ∩ Ti) � Z for each i since Z is strongly closed, so
Q ≥ ϕ(P ) ∈ H.

(ii) We must prove the following four properties:

(a) H is closed under F-conjugacy and overgroups;
(b) χ(ϕψ) = χ(ϕ)χ(ψ) whenever ϕ,ψ ∈ Mor(FH) are composable,

and χ(inclQP ) = 1 for each P ≤ Q in H;
(c) χ(Inn(T )) = 1 and χ(AutF (T )) = G; and
(d) for each P ≤ T not in H, there is x ∈ NT (P ) r P such that

cPx ∈ Op(AutF (P )).

Point (a) holds since H is closed under F-conjugacy by (i), and is closed
under overgroups by definition. Point (b) and the first statement in (c)
hold by definition of χ, and χ(AutF (T )) = G by definition of G (Nota-
tion 3.4) and since χ|AutF (T ) = χ0.

It remains to show (d). Let Y ≤ T be such that Y ≥ Z and Y/Z =
Z(T/Z). Thus Y E T . For each i ∈ k, (Y ∩ TiZ)/Z = Z(TiZ/Z) 6= 1

(recall that T/Z =
∏k
i=1(TiZ/Z) by Lemma 3.2(iii)), so Y ∩ TiZ � Z,

and Y ∩ Ti � Z since Y ≥ Z. Hence Y ∈ H.
If P ≤ T and P /∈ H, then P � Y since H is closed under over-

groups. Hence Y P > P and NY P (P ) > P . Choose x ∈ NY (P ) r P ;
then [x, Z ∩ P ] = 1 and [x, P ] ≤ Z ∩ P . So cPx induces the identity
on P ∩Z and on P/(P ∩Z), and since Z is strongly closed in F , we have
cPx ∈ Op(AutF (P )) by Lemma 1.12.

We need some more notation. Note that as a special case of Hy-
pothesis 3.3(iii), the conjugation action of each x ∈ S permutes the
subgroups Ti ≤ T for i ∈ k, thus inducing an action of S on k.
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Notation 3.9. Assume Hypothesis 3.3 and Notation 3.4. For each
nonempty subset J = {j1, . . . , j`} ⊆ k, define

TJ = Tj1 · · ·Tj` = 〈Tj | j ∈ J〉, NJ = NS(J) = NS(TJ),

EJ = Ej1 · · · Ej` , WJ = CS(J) =
⋂

j∈J
NS(Tj).

Also, define

H(J) ={P ≤ S | P ∩ Tj � Z for each j ∈ J} ⊇ H,

NJ =〈ϕ ∈ HomF (P,Q) | P,Q∈H(J)
≤NJ , ϕ(P ∩ TJ) ≤ TJ〉, and

WJ =〈ϕ ∈ HomF (P,Q) | P,Q∈H(J)
≤WJ

, ϕ(P ∩ Tj) ≤ Tj for each j∈J〉.
These fusion subsystems WJ ≤ NJ over WJ ≤ NJ are the main focus

of our attention in the rest of the section. We will show in Theorem 3.11
that they are saturated, and are unchanged if we replace H(J) by H in
their definitions.

Lemma 3.10. Assume Hypothesis 3.3 and Notations 3.4 and 3.9. Then
for each ∅ 6= J ⊆ k,

(i) if χ0(α)(J) = J for each α ∈ AutF (T ), then EJ E F ; and
(ii) if D ≤ F is a fusion subsystem over D ≤ S such that EJ E D, then
Dcr ⊆ H(J).

Proof: (i) First we show that EJ E E (for all ∅ 6= J ⊆ k). Lemma 3.2(ii)
implies that TJ is strongly closed in E . The invariance and Frattini
conditions for EJ ≤ E hold since EJ is the full subcategory of E with
objects the subgroups of TJ (Lemma 3.2(i)). By Lemma 3.1, for each
α ∈ AutEJ (TJ), there is ᾱ ∈ AutE(T ) such that ᾱ|TJ = α and ᾱ|Ti = IdTi
for each i ∈ k r J , and hence [ᾱ, CT (TJ)] = [α,Z(TJ)] ≤ Z(TJ). The
extension condition thus holds, and so EJ E E .

Thus EJ E E E F (recall E E F by Hypothesis 3.3(i)). If AutF (T ) ≤
Σk sends J to itself, then each α ∈ AutF (T ) permutes the Tj for j ∈ J
by Hypothesis 3.3(iii), hence normalizes TJ , and normalizes EJ since it is
the full subcategory of E with objects the subgroups of TJ (Lemma 3.2(i)
again). So EJ E F by [1, 7.4].

(ii) Let J ⊆ k be arbitrary. Set ZJ = Z(EJ), and let YJ ≤ TJ be such
that YJ ≥ ZJ and YJ/ZJ = Z(TJ/ZJ). For each j ∈ J , (YJ∩TjZJ)/ZJ =
Z(TjZJ/ZJ) 6= 1 since TjZJ/ZJ ∼= TjZ/Z 6= 1 by Hypothesis 3.3(ii)
(and since the Tj commute pairwise). Let tj ∈ Tj and zj ∈ ZJ be such
that tjzj ∈ YJ r ZJ . Then tj ∈ YJ r ZJ since zj ∈ ZJ ≤ YJ , and
tj ∈ (YJ ∩ Tj)rZ since Tj ∩Z ≤ ZJ . Thus YJ ∩ Tj � Z for each j ∈ J ,

and so YJ ∈ H(J).
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Let D ≤ F be a fusion subsystem over D ≤ S such that EJ E D,
and in particular, TJ E D. Let P ≤ D be such that P /∈ H(J). Then
P � YJ since H(J) is closed under overgroups. Also, P normalizes YJ
since it normalizes TJ and ZJ , so PYJ > P and NPYJ (P ) > P .

Choose x ∈ NYJ (P )r P . Then [x, TJ ] ≤ [YJ , TJ ] ≤ ZJ and [x, ZJ ] ≤
[YJ , ZJ ] = 1 (recall ZJ = Z(EJ) ≤ Z(TJ)), so cPx acts trivially on P ∩ZJ
and on (P ∩ TJ)/(P ∩ ZJ). Also, [x, P ] ≤ [NYJ (P ), P ] ≤ P ∩ TJ since
YJ ≤ TJ E D and P ≤ D, so cPx also acts trivially on P/(P ∩ TJ). Since
EJ E D, the subgroups TJ and ZJ are both strongly closed in D, and
hence cPx ∈ Op(AutD(P )) by Lemma 1.12.

Recall that x ∈ YJ ≤ TJ ≤ D. If cPx /∈ Inn(P ), then Op(OutD(P )) 6= 1
and P is not D-radical. If cPx ∈ Inn(P ), then x ∈ PCD(P ) r P , so
CD(P ) � P , and P is not D-centric. In either case, P /∈ Dcr, and hence

Dcr ⊆ H(J).

We are now ready to prove the “normalizing” properties of the fusion
subsystems WJ ≤ NJ ≤ F defined in Notation 3.9.

Theorem 3.11. Assume Hypothesis 3.3 and Notations 3.4 and 3.9, and
let J ⊆ k be a nonempty subset such that TJ is fully normalized in F .
Then WJ and NJ are saturated fusion subsystems of F , WJ is normal
in NJ , and the following hold.

(i) For all P,Q ∈ H(J) contained in NJ ,

(3.3) HomNJ (P,Q) = {ϕ ∈ HomF (P,Q) | ϕ(P ∩ TJ) ≤ TJ}.
Also, EJ E NJ . If D ≤ F is a saturated fusion subsystem such that
EJ E D, then D ≤ NJ .

(ii) For all P,Q ∈ H(J) contained in WJ ,

(3.4) HomWJ
(P,Q)={ϕ∈HomF (P,Q) | ϕ(P∩Tj) ≤ Tj for each j∈J}.

Also, Ej E WJ for each j ∈ J . If D ≤ F is a saturated fusion
subsystem such that Ej E D for each j ∈ J , then D ≤ WJ .

Proof: First we check (3.3) and (3.4). Each of the morphisms appearing
in the definition of NJ (see Notation 3.9) sends elements of TJ to ele-

ments of TJ . So TJ is strongly closed in NJ . Hence for all P,Q ∈ H(J)
≤NJ ,

the set HomNJ (P,Q) is contained in the right-hand side of (3.3), while
the opposite inclusion holds by definition of NJ . This proves (3.3), and
(3.4) follows by a similar argument.

Define

NJ =〈ϕ∈HomF (P,Q) |P,Q∈H≤NJ , ϕ(P∩TJ)≤TJ〉 ≤ NJ ,
W0
J =〈ϕ∈HomF (P,Q) |P,Q∈H≤WJ

, ϕ(P∩Tj)≤Tj for each j∈J〉≤WJ .



Normalizers of Sets of Components in Fusion Systems 815

Thus the only difference between N 0
J and NJ or between W0

J and WJ

lies in the set of objects used in the definition.
We prove in Step 1 that W0

J and N 0
J are saturated and W0

J E N 0
J . In

Step 2, we prove (i) and (ii) when J = k (in which case H = H(J) and
hence N 0

J = NJ and W0
J = WJ). We then prove N 0

J = NJ and (i) for
arbitrary J ⊆ k in Steps 3 and 4, respectively, and prove W0

J =WJ and
(ii) in the general case in Step 5. Throughout the proof, we assume that
TJ is fully normalized in F .

Step 1: Let χ0 : AutF (T ) −→ G and U = χ0(AutS(T )) ≤ G be as in
Notation 3.4, and let χ̂ : S −→ U be the surjective homomorphism that
sends x ∈ S to χ0(cTx ) ∈ χ0(AutS(T )) = U . By Lemma 3.8(ii), we are in
the situation of Hypothesis 2.1.

Consider the action of G ≤ Σk on k, and set

H=NG(J), H0 =CG(J), V =H∩U=NU (J), V0 =H0∩U=CU (J).

Note that N 0
J = FH and W0

J = FH0
under Notation 2.2.

Recall that NJ = NS(TJ) = NS(J) under the action of S on k induced
by its conjugation action on T . For each σ ∈ G, there is α ∈ AutF (T )
such that χ0(α) = σ, and Tσ(J) = α(TJ) ∈ (TJ)F . Since TJ is fully nor-
malized in F , we have |NS(Tσ(J))| ≤ |NS(TJ)| and hence |NS(σ(J))| ≤
|NS(J)| for each σ ∈ G. The map NS(σ(J)) −→ NU (σ(J)) induced
by χ̂ is surjective and its kernel Ker(χ̂) = CS(k) is independent of σ, so
|NU (σ(J))| ≤ |NU (J)| for all σ ∈ G. Since NU (σ(J)) = U ∩NG(σ(J)),
where NG(σ(J)) = σNG(J) = σH for each σ, this shows that |U ∩H| ≥
|U∩σH| = |Uσ∩H| for each σ ∈ G, and hence that V = U∩H ∈ Sylp(H).
Since H0 E H, we also have V0 = V ∩H0 ∈ Sylp(H0).

The hypotheses of Theorem 2.5 thus hold, and so N 0
J = FH and

W0
J = FH0

are both saturated. By the same theorem applied with N 0
J

in the role of F (and since H0 E H), we have W0
J E N 0

J .

Step 2: Assume J = k. In particular, H(J) = H, N 0
J = NJ , and W0

J =
WJ . Point (i) holds since Ek = E E F = Nk by Hypothesis 3.3(i).

It remains to prove (ii). We have already checked (3.4), and Ei EWk

for each i ∈ k by Lemma 3.10(i), applied withWk in the role of F (hence
with G = 1) and {i} in the role of J .

Let D ≤ F be a saturated fusion subsystem over D ≤ S such that
Ei E D for each i ∈ k. Then Ti E D for each i ∈ k, so D ≤ Wk and
D ≥ T1 · · ·Tk = T . Also, for each P,Q ∈ H≤D,

HomD(P,Q)≤{ϕ∈HomF (P,Q) | ϕ(P ∩Ti) ≤ Ti ∀ i∈k}=HomWk
(P,Q)

(recall that Ti is strongly closed in D). Since Dcr ⊆ H by Lemma 3.10(ii),
we now have D ≤ Wk by Theorem 1.5 (Alperin’s fusion theorem).
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Step 3: Throughout the rest of the proof, we let ∅ 6= J ⊆ k be arbitrary,
subject to the condition that TJ be fully normalized in F . In this step
we prove that N 0

J = NJ .

First we check that NJ is H(J)
≤NJ -saturated. By Lemma 1.10, it suffices

to show, for all P ∈ H(J)
≤NJ , that the following three points hold.

(a) If P ≤ P̄ ≤ NJ , and ϕ ∈ HomF (P̄ , NJ) is such that ϕ|P ∈
HomNJ (P,NJ), then ϕ ∈ Mor(NJ).

By Lemma 3.8(i′), there is σ ∈ Σk such that ϕ(P̄ ∩ Ti) ≤ Tσ(i)

for each i ∈ k and ϕ(P̄ ∩ TJ) ≤ Tσ(J). Since P ∈ H(J), there is
xj ∈ (P ∩ Tj) r Z for each j ∈ J , and since ϕ|P ∈ Mor(NJ), we
have ϕ(xj) ∈ (Tσ(j) ∩TJ)rZ. So σ(j) ∈ J by Lemma 3.2(iii), and

σ(J) = J . Hence ϕ(P̄ ∩ TJ) ≤ TJ , and so ϕ ∈ Mor(NJ).
(b) For each ϕ ∈ HomF (NNJ (P ), S), there are R ≤ S and ψ ∈

HomF (R,NJ) such that R ≥ 〈ϕ(NNJ (P )), CS(ϕ(P ))〉 and ψϕ ∈
HomNJ (NNJ (P ), NJ).

For such ϕ, by Lemma 3.8(i′), there is σ ∈ G ≤ Σk such that
ϕ(NNJ (P ) ∩ Ti) ≤ Tσ(i) for each i ∈ k and ϕ(NNJ (P ) ∩ TJ) ≤
Tσ(J) ∈ (TJ)F . Set J ′ = σ(J). Since TJ is fully normalized in F ,
there is ψ ∈ HomF (NS(TJ′), S) such that ψ(TJ′) = TJ (see [3,
Lemma I.2.6(c)]) and hence ψ(NS(TJ′)) ≤ NS(TJ) = NJ . Then
ψϕ(NNJ (P )∩TJ) ≤ TJ , and so ψϕ ∈ HomNJ (NNJ (P ), NJ). Also,

CS(ϕ(P )) ≤ CS(J ′) ≤ NS(J ′) = NS(TJ′) since ϕ(P ) ∈ H(J′).
It remains to show that ϕ(NNJ (P ))≤NS(TJ′). Fix x ∈ NNJ (P ).

Then cTx permutes the subgroups P ∩Tj for j ∈ J , and P ∩Tj � Z

since P ∈ H(J). So cTϕ(x) permutes the subgroups ϕ(P∩Tj) ≤ Tσ(j).

Hence χ̂(ϕ(x)) ∈ NU (J ′), and ϕ(x) ∈ NS(J ′) = NS(TJ′). Thus
ϕ(NNJ (P )) ≤ NS(TJ′).

(c) The Sylow group NJ is fully automized in NJ .
This holds since AutNJ (NJ) = AutN 0

J
(NJ) by definition, and

N 0
J (also over NJ) has already been shown to be saturated.

Thus NJ is H(J)
≤NJ -saturated. Since (NJ)cr ⊆ H by Lemma 2.3(iv),

andNJ is defined so as to beH(J)
≤NJ -generated, NJ is saturated by Propo-

sition 1.4(i). Also, NJ and N 0
J are equal after restriction to subgroups

in H≤NJ ⊇ (NJ)cr, so N 0
J = NJ by Theorem 1.5 (Alperin’s fusion theo-

rem).

Step 4: We now prove point (i) in the general case. First we check that
E E NJ . By the extension condition for E E F , each α ∈ AutE(T )
extends to some ᾱ ∈ AutF (TCS(T )) such that [α,CS(T )] ≤ Z(T ). Also,
CS(T ) ≤ CS(k) ≤ NS(J) = NJ , so TCS(T ) = TCNJ (T ). Since E is
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a central product of the Ei, we have α(Ti) = Ti for each i ∈ k, so
in particular, ᾱ(TJ) = α(TJ) = TJ , and ᾱ ∈ AutNJ (TCNJ (T )). The
extension condition thus holds for E ≤ NJ , and so E E NJ by Lemma 1.7.

Thus Hypothesis 3.3 holds with E E NJ in the place of E E F . So
EJ E NJ by Lemma 3.10(i).

Now assume D ≤ F is a saturated fusion subsystem over D ≤ S such
that EJ E D. In particular, TJ ≤ D and is strongly closed in D, and
hence D ≤ NS(TJ) = NJ . By (3.3) and since TJ is strongly closed in D,

for each P ∈ H(J)
≤D we have

AutD(P ) ≤ {α ∈ AutF (P ) | α(P ∩ TJ) ≤ TJ} = AutNJ (P ).

Also, D is H(J)
≤D-generated by Theorem 1.5 and since Dcr ⊆ H(J) (Lem-

ma 3.10(ii)), and hence D ≤ NJ .

Step 5: By construction, W0
J ≤ WJ ≤ NJ = N 0

J , where N 0
J and W0

J

are saturated by Step 1 and the equality holds by Step 3. By Step 2,

applied with EJ E NJ in the role of E E F and H(J)
≤WJ

in the role of H,
the subsystem WJ is saturated, Ej E WJ for each j ∈ J , and D ≤ WJ

for each D ≤ F such that Ej E D for all j ∈ J .
To prove (ii), it remains only to show that WJ = W0

J . Both are
saturated, and they are equal after restriction to subgroups in H≤WJ

.
Since (WJ)cr ⊆ H by Lemma 2.3(iv), we haveWJ =W0

J by Theorem 1.5
(Alperin’s fusion theorem).

More generally, for each set J of pairwise disjoint subsets of k with

union Ĵ ⊆ k, if TĴ is fully normalized in F and certain “Sylow condi-
tions” hold (those needed to apply Theorem 2.5), then one can construct
a largest saturated fusion subsystem that normalizes EJ for each J ∈J .
However, the precise statement of such a result seems much more compli-
cated than in the special cases considered in Theorem 3.11, so we won’t
show that here.
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