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Abstract: We describe the real forms of Gizatullin surfaces of the form xy = p(z) and

of Koras–Russell threefolds of the first kind. The former admit zero, two, three, four,

or six isomorphism classes of real forms, depending on the degree and the symmetries
of the polynomial p. The latter, which are threefolds given by an equation of the

form xdy + zk + x + t` = 0, all admit exactly one real form up to isomorphism.
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1. Introduction

Given a complex algebraic variety X, a real form of X is a real al-
gebraic variety Y whose complexification is isomorphic to X. It is then
natural to ask whether X has one, only one, finitely many or infinitely
many isomorphism classes of real forms. Here we study the case where
X is affine. The most natural examples to look at in this context are the
affine spaces. For any n ≥ 1, an obvious real form of AnC is AnR. For n ≤ 2,
it turns out to be the only one up to isomorphism. This is a nice exercise
for n = 1, and for n = 2 it is a result of Kambayashi in [16, Theorem 3]
based on the amalgamated free product structure of Aut(A2

C). For n ≥ 3,
it is still unknown whether AnC admits any nontrivial real form.

In this article, we investigate some affine surfaces and threefolds which
are close to the affine plane and space.

Recall that a Gizatullin surface is a normal complex affine surface
completable by a zigzag, that is, by a simple normal crossing divisor with
rational components and a linear dual graph; for more details see [12].
These surfaces are classical generalisations of the affine plane. For in-
stance, a smooth affine surface is quasihomogeneous (that is, its auto-
morphism group admits an open orbit with finite complement) if and
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only if it is a Gizatullin surface or isomorphic to (A1
C \ {0})2; see [14].

Moreover, by [7, Theorem], a normal complex affine surface admits two
(C,+)-actions with different general fibres if and only if it is a Gizatullin
surface not isomorphic to A1

C×(A1
C\{0}). In the latter case, the zigzag can

be chosen to have a sequence of self-intersections (0,−1,−a1, . . . ,−ar),
with a1, . . . , ar ≥ 2 (see for instance [2]).

The case r = 0 is the affine plane A2
C. The case r = 1 corresponds to

the surfaces Dp = Spec(C[x, y, z]/(xy−p(z))), where p ∈ C[z] is of degree
at least 2, called Danielewski surfaces by some authors. For r = 2, there
are Gizatullin surfaces with uncountably many nonisomorphic real forms,
as the second author recently proved in [4]. In this text, we compute the
number of isomorphism classes of real forms of all surfaces Dp, and show
in particular that this number is finite for all of them.

We first establish in Proposition 3.11 that Dp admits a real form if
and only if there exist a, λ ∈ C∗, b ∈ C, such that λp(az + b) ∈ R[z].
In this case, we can assume that p ∈ R[z], and moreover that p is in
reduced form as defined in Definition 3.3, i.e., that p(z) = zd + s(z) for
some integer d and some polynomial s ∈ R[z] with deg(s) ≤ d − 2. We
then obtain the full list of isomorphism classes of real forms for any such
surface in Propositions 3.19, 3.20, and 3.21, summarised as follows:

Theorem A. Let p ∈ R[z] be a polynomial of degree d ≥ 2 in reduced
form. Write p(z) = zmq(zn), where m ≥ 0, n ≥ 1, q ∈ R[z], q(0) 6=0, and
where q, n are chosen such that n is maximal if q 6= 1. For all a, b, c ∈
{0, 1}, the surface

Sabc = Spec(R[x, y, z]/(x2 + (−1)ay2 + (−1)bzmq((−1)czn)))

is a real form of the Gizatullin surface Dp = Spec(C[x, y, z]/(xy−p(z))).
Moreover, the number i of isomorphism classes of real forms of Dp and
the representatives are related as follows.

i Representatives Conditions on q, n, d

2 S000, S110 q = 1, d = 2 q = 1, d ≥ 3 odd

3 S000, S010, S110 q = 1, d ≥ 4 even q 6= 1, n odd

4 Sabb, a, b ∈ {0, 1} q 6= 1, n even, d odd q 6= 1, (n, d) = (2, 2)

6 S00c, Sa1c, a, c ∈ {0, 1} q 6= 1, n, d both even, (n, d) 6= (2, 2)

Just as for the affine plane, the automorphism group of a surface Dp

has the structure of a free product of two subgroups amalgamated over
their intersection (see Theorem 3.6 below, or [2, Theorem 5.4.5]). The
situation is, however, more complicated than for A2

C, since the cohomol-
ogy pointed sets of the two factors are not trivial.
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In the particular case of the affine quadric Spec(R[x, y, z]/(xy − z2 +
1)), Theorem A provides exactly four isomorphism classes of real forms,
given by Spec(R[x, y, z]/(x2±y2 +z2±1)). This rectifies a similar claim
in the introduction of [9], where only three of the four real forms were
given.

To complete our study of real forms of affine surfaces, we consider in
Section 4 the surfaces (A1

C \{0})2 and A1
C× (A1

C \{0}) mentioned above.
We prove that they admit six and four isomorphism classes of real forms,
respectively.

Following the examination in dimension two, we move to the study
of three-dimensional affine varieties. We investigate the Koras–Russell
threefolds of the first kind in Section 5. We recall that they are defined
as the hypersurfaces

Xd,k,` = {xdy + zk + x+ t` = 0} ⊂ A4
C,

where d ≥ 2 and 2 ≤ k < ` are integers with k and ` relatively prime,
and that they are all smooth affine contractible, and hence diffeomorphic
to R6 when equipped with the Euclidean topology [5]. They are further-
more A1

C-contractible in the A1
C-homotopy sense [8]. Nevertheless, none

of them is isomorphic to A3
C as an algebraic variety [19, 15]. We also

recall that two important questions about them are still wide open for
all d, k, `: it is not known whether Xd,k,` is biholomorphic to A3

C, nor
whether its cylinder Xd,k,` × A1

C is isomorphic to A4
C (algebraically or

analytically).
We prove in Subsection 5.2 that no Koras–Russell threefold of the

first kind admits nontrivial real forms.

Theorem B. For all integers d, k, ` with d ≥ 2 and 2 ≤ k < ` with k
and ` relatively prime, every real form of the Koras–Russell threefold

Xd,k,` = Spec(C[x, y, z, t]/(xdy + zk + x+ t`))

is isomorphic to the real surface Spec(R[x, y, z, t]/(xdy + zk + x+ t`)).

To achieve this result, we use the structure of the automorphism group
of the threefold Xd,k,` as a subnormal series as computed in [10, 20] (see
Proposition 5.8). The factor groups being isomorphic to C∗, (C[x, z],+),
or {f ∈ AutC[x](C[x, z, t]) | f ≡ id mod (xd)}, the key step in the proof
of Theorem B is then to show that the first cohomology pointed set of
this latter group is trivial for any d ≥ 0. Note that the triviality of this
group for d = 0 also implies that every real structure of A3

C compatible
with the projection along one coordinate is equivalent to the standard
real structure of A3

C; see Proposition 5.4.
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2. Notation, definitions, and reminders

2.1. Polynomial maps and variables.

Notation 2.1. Let n ≥ 1 be an integer and R be a commutative alge-
bra over a field k. We denote by End(AnR) = EndR(AnR) the monoid of
algebraic endomorphisms of AnR = Ank ×Spec(k) Spec(R). These are the
morphisms of the form

f : (x1, . . . , xn) 7−→ (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)),

where f1, . . . , fn ∈ R[x1, . . . , xn]. As usual, we shall denote such a mor-
phism simply by f=(f1, . . . , fn) and often replace the variables x1, x2, x3

by x, y, z if n ≤ 3.
Given f=(f1, . . . , fn) ∈ End(AnR), we denote by f∗ the corresponding

R-algebra endomorphism ofR[x1, . . . ,xn] defined by f∗(P )=P (f1, . . . ,fn)
for all P ∈ R[x1, . . . , xn]. In particular, f∗(xi) = fi for i = 1, . . . , n.

Notation 2.2. We denote by Aut(AnR) = AutR(AnR) the group of alge-
braic automorphisms of AnR over Spec(R), by

Affn(R) = {f ∈ Aut(AnR) | deg(f∗(xi)) = 1 for all 1 ≤ i ≤ n}

the subgroup of affine automorphisms, and by

BAn(R) = {f ∈ Aut(AnR) | f∗(xi) ∈ R[x1, . . . , xi] for all 1 ≤ i ≤ n}

the subgroup of triangular automorphisms.
Another common notation is GAn(R) = AutR(AnR).

We recall that, in dimension two, affine and triangular automorphisms
generate all automorphisms of A2

k for any field k. Moreover, Aut(A2
k)

then has the structure of an amalgamated product.

Theorem 2.3 (Jung–van der Kulk theorem [16, Theorem 2]). Let k be
a field. Then, the group Aut(A2

k) is the free product

Aut(A2
k) = Aff2(k)∗∩ BA2(k)

of its affine and triangular subgroups amalgamated over their intersec-
tion.



Gizatullin Surfaces and Koras–Russell Threefolds 855

Notation 2.4. We denote by

Jac(f) =

∣∣∣∣∣∣∣
∂f1
x1

· · · ∂f1
xn

...
. . .

...
∂fn
x1

· · · ∂fn
xn

∣∣∣∣∣∣∣ ∈ R[x1, . . . , xn]

the determinant of the Jacobian matrix of any f=(f1, . . . , fn)∈End(AnR).
We recall that Jac(f) ∈ R× if f ∈ Aut(AnR).

Definition 2.5. A polynomial P ∈ R[x1, . . . , xn] is called a variable if
there exists an automorphism f in Aut(AnR) such that f∗(x1) = P .

The following result is a consequence of [13]. We recall the proof here,
as the statement is not explicitly stated in [13].

Lemma 2.6. Let P ∈ C[x, y, z] be a polynomial. Suppose that P is a
variable, when viewed as an element of C(z)[x, y], i.e., suppose that there
exists an automorphism f ∈ Aut(A2

C(z)) such that f∗(x)=P . Then, there

exists for each q∈A1
C a variable v∈C[x, y] such that P (x, y, q)∈C[v].

Proof: First we recall briefly how the ind-topology of C[x, y] is defined
in [13]. For each integer d ≥ 0, the set C[x, y]≤d = {f ∈ C[x, y] |
deg(f) ≤ d} is a vector subspace of C[x, y] of finite dimension and thus
it can be equipped with a natural Zariski topology, in which we identify
the coefficients of the polynomials with the coordinates of an affine space.
We then have a sequence of closed embeddings

C[x, y]≤0 C[x, y]≤1 · · · C[x, y]≤d C[x, y]≤d+1 · · ·

This allows us to define a natural topology associated to these em-
beddings by saying that a subset F of C[x, y] is closed if and only if
F ∩ C[x, y]≤d is closed for each d ≥ 0.

In [13], the set of variables (see Definition 2.5) of C[x, y] is denoted
by V. Moreover, for each integer k, denote by V≤k ⊆ V the set of variables
that are components of an automorphism of A2

C of length ≤ k, where
the length is here defined using the amalgamated free product structure
given by the Jung–van der Kulk theorem (Theorem 2.3).

Setting W0 = C and Wk =
⋃

v∈V≤k−1

C[v] for each k ≥ 1, we then have

the following result (see [13, Theorem 4]): for each k ≥ 0, the closure
of V≤k in C[x, y] is equal to V≤k ∪Wk.

We now prove the lemma. Let P ∈ C[x, y, z] and f ∈ Aut(A2
C(z)) be

such that f∗(x) = P . Note that the map

ν : A1 −→ C[x, y], q 7−→ P (x, y, q)
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is continuous, since it corresponds to a morphism of algebraic vari-
eties A1

C → C[x, y]≤d for some d. By the Jung–van der Kulk theorem,
we can write f = α1 ◦ · · · ◦ αk for some k ≥ 1 and some α1, . . . , αk ∈
Aff2(C(z)) ∪ BA2(C(z)). Noting that Jac(αi) ∈ C(z) \ {0} for each 1 ≤
i ≤ k, we define

U =

k⋂
i=1

{u ∈ A1
C | Jac(αi)(u) ∈ C∗}.

Then, P (x, y, u) ∈ V≤k for each u ∈ U . Moreover, since U is a dense open
subset of A1

C and since the map ν is continuous, this implies that the
polynomial ν(q) = P (x, y, q) belongs to the closure of V≤k for each q ∈
A1

C, i.e., to V≤k ∪Wk ⊆ Wk+1. This achieves the proof.

We will apply the next result with S = {1} and k = C in Lemma 5.2.

Lemma 2.7. Let k be a field, and let S ⊆ k∗ be a subgroup. Then, the
normal subgroup N = {f ∈ Aut(A2

k) | Jac(f) ∈ S} ⊆ Aut(A2
k) is the

free product

N = (N ∩Aff2(k))∗∩(N ∩ BA2(k))

of its affine and triangular subgroups amalgamated over their intersec-
tion.

Proof: We prove that N is generated by N ∩ Aff2(k) and N ∩ BA2(k).
The structural description then follows from [26, Proposition 2]. We can
write any g ∈ N as g = α1 ◦ · · · ◦ αn for some n ≥ 1 and α1, . . . , αn ∈
Aff2(k)∪BA2(k) by the Jung–van der Kulk theorem (Theorem 2.3). For
all 1 ≤ i ≤ n − 1, we set µi = Jac(αi) ∈ k∗ and hi = (µ1 · · ·µix, y) ∈
Aff2(k) ∩ BA2(k). We may replace α1, . . . , αn with α1 ◦ h−1

1 , h1 ◦ α2 ◦
h−1

2 , . . . , hn−1 ◦ αn−1 ◦ h−1
n , hn ◦ αn, and assume that Jac(αi) = 1 for

1 ≤ i ≤ n − 1 and Jac(αn) = Jac(g) ∈ S. Hence, α1, . . . , αn belong to
N ∩ (Aff2(k) ∪ BA2(k)) as desired.

2.2. Group cohomology, real structures, and real forms.

Definition 2.8. For each group (G, ◦) on which Gal(C/R) acts, we
denote by α 7→ α the action of the nontrivial element of Gal(C/R) and
by Z1(G) := Z1(Gal(C/R), G) = {ν ∈ G | ν◦ν = 1} the set of 1-cocycles.
We say that two 1-cocycles ν, τ are equivalent if there exists α ∈ G such
that τ = α−1 ◦ ν ◦ α. The cohomology set H1(G) := H1(Gal(C/R), G)
is the set of equivalence classes of 1-cocycles. It is a pointed set, with
a distinguished trivial element, denoted by 1, which is the class of the
identity.



Gizatullin Surfaces and Koras–Russell Threefolds 857

Since we will need them later in the text, we collect here the coho-
mology sets of some classical groups.

Lemma 2.9. Let n ≥ 1 be an integer. We consider the standard action
of Gal(C/R) on Cn, on polynomials, and on matrices via the complex
conjugation of their coefficients.

(1) The cohomology pointed sets

H1(Cn), H1(C∗), H1(C[x1, . . . , xn])

of the groups (Cn,+), (C∗, ·), (C[x1, . . . , xn],+) are trivial.
(2) Let µn = {c ∈ C | cn = 1} be the group of n-th roots of unity.

The cohomology set H1(µn) is trivial if n is odd and contains two
elements if n is even. These two elements are the class of squares,
that is, the class of 1, and the class of nonsquare elements, namely,
the class of any generator of µn.

(3) The cohomology set H1(PGL2(C)) contains exactly two elements.
The first one is the set of classes of elements of PGL2(C) given by
matrices A ∈ SL2(C) with A ·A = ( 1 0

0 1 ). The second one is the set

of classes of all A ∈ SL2(C) with A ·A =
(−1 0

0 −1

)
.

Proof: (1) An element of Z1((Cn,+)) is of the form ν ∈ Cn, with ν+ν =
0. Choosing α = ν

2 , we obtain α = −α. Whence, −α+ ν + α = 0. This
shows ν ∼ 0. The same argument applies to (C[x1, . . . , xn],+).

An element of Z1((C∗, ·)) is of the form ν ∈ C∗ with ν · ν = 1. Hence,
|ν| = 1. Choosing α with α2 = ν, we obtain |α| = 1. This implies
α−1 · ν · α = 1 and shows that ν ∼ 1.

(2) As every element ν ∈ µn satisfies |µn| = 1, we have Z1(µn) = µn.
Moreover, two elements ν, τ ∈ µn are equivalent if and only if there
exists α ∈ µn such that τ = α−1να = να−2, i.e., if and only if τν−1 is a
square in µn. This implies that H1(µn) is trivial if n is odd and contains
exactly two classes if n is even: the class containing the squares and the
one consisting of nonsquare elements.

(3) Every element τ ∈ Z1(PGL2(C)) is the class of a matrix A ∈ GL2(C)
with A·A = ( ε 0

0 ε ) for some ε ∈ C. Replacing A with µA for some µ ∈ C∗,
we may assume that A ∈ SL2(C). Moreover, ε = ±1, as ε2 = det(A·A) =
1. First we prove that τ is equivalent to the class of ( 0 ε

1 0 ). For this,
choose a 2 × 1 vector v such that Av, v are linearly independent. To
see that such a vector exists, observe that if A is not diagonal, then we
can choose v = ( 1

0 ) or v = ( 0
1 ). If A is diagonal, then we can choose

v = ( 1
i ) if τ ∈ PGL2(C) is the identity and v = ( 1

1 ) otherwise. Then,
taking the matrix R = ( v Av ) ∈ GL2(C) whose columns are v and Av
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respectively, one checks that τ is equivalent to the class of R−1 ·A ·R =
R−1 · (Av A·Av ) = ( 0 ε

1 0 ) ∈ GL2(C).

Now, consider two matrices A1, A2 ∈ SL2(C) with Ai · Ai =
(
εi 0
0 εi

)
,

εi ∈ {±1}, and suppose that their classes are equivalent 1-cocycles
τ1, τ2 ∈ Z1(PGL2(C)). To conclude the proof, it remains to show that
ε1 = ε2. Since τ1, τ2 are equivalent, there exist B ∈ GL2(C) and
µ ∈ C∗ such that A2 = µB−1 · A1 · B. This gives

(
ε2 0
0 ε2

)
= A2 · A2 =

|µ|2B−1 ·A1 ·A1 ·B = |µ|2
(
ε1 0
0 ε1

)
, which implies ε1 = ε2.

Definition 2.10. If R is a C-algebra, a real structure on R is an action of
Gal(C/R) on R such that the nontrivial element acts by ρ : C 7→ C, α 7→
α on C. This corresponds to giving a ring homomorphism ρ : R → R
such that ρ ◦ ρ = idR and ρ(α · f) = α · ρ(f) for each α ∈ C and
each f ∈ R. For each such structure, we obtain an action of Gal(C/R)
on the group AutC(R) of C-automorphisms by defining f = ρ ◦ f ◦ ρ, for
each f ∈ AutC(R).

Definition 2.11. If X is a complex algebraic variety, a real structure
is an action of Gal(C/R) on X such that the action of the nontrivial
element is an anti-regular morphism ρ : X → X, that is, a morphism of
schemes such that the following diagram commutes:

X X

Spec(C) Spec(C)

ρ

z 7→z

For each such real structure, the group 〈ρ〉'Gal(C/R) acts on AutC(X)
by defining f = ρ ◦ f ◦ ρ, for each f ∈ AutC(X).

Fixing a real structure ρ – if at least one exists – we have a bi-
jection between the set of equivalence classes of real structures on X
and H1(AutC(X)): each real structure is of the form ν◦ρ with ν ∈
Z1(AutC(X)) and two real structures ν◦ρ, τ◦ρ are equivalent if and only
if the classes of ν and τ inH1(AutC(X)) are equal, which means that ν◦ρ,
τ◦ρ are conjugate with respect to some automorphism α ∈ AutC(X), i.e.,
τ ◦ ρ = α−1 ◦ (ν ◦ ρ) ◦ α.

Remark 2.12. Giving a real structure on an affine complex variety X
is the same as giving a real structure on the C-algebra C[X] of reg-
ular functions. Fixing such a real structure, the group Gal(C/R) acts
on C[X] via ring-automorphisms, and the natural C-anti-isomorphism
between AutC(X) and AutC(C[X]) induces an isomorphism of pointed
sets

H1(AutC(X)) H1(AutC(C[X])),'

i.e., a bijection sending the identity to the identity.
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Definition 2.13. A real form of a complex algebraic variety X is a real
algebraic variety X0 together with a C-isomorphism

ϕ : X0 ×Spec(R) Spec(C) X.∼

Real forms and real structures of a quasiprojective complex algebraic
variety X correspond to one another: for any real structure ρ on X, the
variety X/〈ρ〉 is a real form of X, and, given a real form (X0, ϕ) of X, the
map ϕ ◦ (id×Spec(z 7→ z)) ◦ϕ−1 defines a real structure on X. We refer
to [1] for a description of the equivalence of categories between quasipro-
jective complex varieties with a real structure and quasiprojective real
varieties.

Example 2.14. It is an easy exercise to check that H1(Aut(A1
C)) is

trivial, and hence that A1
R is the only real form of A1

C up to isomorphism.
However, the affine curve A1

C\{0} has three different isomorphism classes
of real forms; see Proposition 4.2.

Notation 2.15 (Usual complex conjugation). For the rest of the text,
we shall always denote the standard action of Gal(C/R) on the affine
space AnC ' Cn by ρ : z = (z1, . . . , zn) 7→ z = (z1, . . . , zn), where, in a
slight abuse of notation, we write ρ for any n ≥ 1. This provides the
standard real structures on AnC and C[AnC] = C[x1, . . . , xn].

Accordingly, we denote by p = ρ◦p◦ρ and f = ρ◦f ◦ρ = (f1, . . . , fn)
the conjugate of a polynomial p ∈ C[AnC] and of an endomorphism f =

(f1, . . . , fn) ∈ End(AnC). If p =
∑
i1,...,in≥0 ai1,...,inx

i1
1 · · ·xinn , then we

simply have p =
∑
i1,...,in≥0 ai1,...,inx

i1
1 · · ·xinn .

Notation 2.16. If X is a quasiprojective real variety, its real locus is
the set X(R), which is a topological space for the Euclidean topology. If
X is smooth, then X(R) is a manifold.

3. The surfaces Dp

3.1. Reduced form.

Notation 3.1. Given a nonconstant polynomial p ∈ k[z], we denote
by Dp the hypersurface in A3

k = Spec(k[x, y, z]) defined by the equa-
tion xy = p(z).

Theorem 3.2 ([6, Lemma 2.10] and [2, Theorem 5.4.5(1)]). Let k be a
field and let p, q ∈ k[z]. The surfaces Dp and Dq are isomorphic over k
if and only if there exist a, λ ∈ k∗ and b ∈ k such that p(az+ b) = λq(z).
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Definition 3.3. A nonconstant polynomial p ∈ k[z] is called in reduced
form if p(z) = zd+ s(z) for some integer d ≥ 1 and some polynomial s ∈
k[z] with deg(s) ≤ d− 2.

Lemma 3.4. If k is a field of characteristic zero, then every surface Dp

defined over k is isomorphic to a surface Dq with q in reduced form.

Proof: For every p ∈ k[z], there exist λ ∈ k∗ and µ ∈ k such that
the polynomial q(z) = λp(z + µ) is in reduced form. Then, the affine
map ϕ =

(
x, 1

λy, z + µ
)
∈ Aff3(k) induces an isomorphism between the

hypersurfaces Dq and Dp, as ϕ∗(xy − p(z)) = 1
λ (xy − q(z)).

3.2. Automorphisms. A list of generators for the automorphism
groups of the surfaces Dp was first given in [18]. Note that in his
article Makar-Limanov assumes that the ground field is algebraically
closed (of any characteristic). At the end of the paper he gives: “Re-
mark. (1) Though we assumed that [the ground field] is algebraically
closed it is not really essential. It is not difficult to show that all roots
necessary in Lemma 9 belong to the field itself.”

Theorem 3.5 ([18]). Let k be a field and let p ∈ k[z] be a polynomial
of degree at least 2. Then, every automorphism of the surface Dp ⊂ A3

k

extends to an automorphism of A3
k. Moreover, the group Autk(Dp) is

generated by the following subgroups:

•
{(
x, y + p(z+xr(x))−p(z)

x , z + xr(x)
)
| r(x) ∈ k[x]

}
' (k[x],+);

• {(x, y, z), (y, x, z)} ' Z/2Z;

• {(ax, by, cz + d) | a, b, c ∈ k∗, d ∈ k, p(cz + d) = abp(z)}.

Furthermore, it is a folklore result that Autk(Dp) is equal to the free
product of two subgroups, amalgamated over their intersection; see for
instance [12]. As we did not find the precise statement we need in the
literature, we re-prove it here. Theorem 3.6 below essentially follows
from [2, Theorem 5.4.5] (see also [17], for a slightly weaker statement).

Theorem 3.6. Let k be a field and p ∈ k[z] be a polynomial of degree at
least 2. Let Dp = Spec(k[x, y, z]/(xy − p(z))) and define the subgroups

Ak(p) = {f ∈ Autk(Dp) | ∃g ∈ Aff3(k) : f = g|Dp
}

and

Bk(p) = {ψa,b,c,d,r | a, b, c ∈ k∗, d ∈ k, r ∈ k[x], abp(z) = p(cz + d)},
where

ψa,b,c,d,r =

(
ax, by +

p(cz + d+ xr(x))− abp(z)
ax

, cz + d+ xr(x)

)
.
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Then, the automorphism group of Dp is the free product

Autk(Dp) = Ak(p)∗∩Bk(p)

of Ak(p) and Bk(p) amalgamated over their intersection Ak(p)∩Bk(p),
which is the set of all elements ψa,b,c,d,r, with a, b, c ∈ k∗, d ∈ k, such
that abp(z) = p(cz + d), and r ∈ k such that r = 0 if deg(p) ≥ 3.

Remark 3.7. One can check, using the birational morphism Dp → A2
k,

(x, y, z) 7→ (x, z), that Bk(p) consists of all automorphisms of Dp that
preserve the fibration (x, y, z) 7→ x.

Proof: First, we check that the set Bk(p) is indeed a subgroup of
Autk(Dp). For this, it suffices to remark that ψa,b,c,d,r defines an en-
domorphism of A3

k satisfying ψ∗a,b,c,d,r(xy − p(z)) = ab(xy − p(z)), and
to compute ψ1,1,1,0,0 = idA3

k
and

ψa,b,c,d,r ◦ ψa′,b′,c′,d′,r′ = ψaa′,bb′,cc′,cd′+d,cr′(x)+a′r(a′x)

for all ψa,b,c,d,r, ψa′,b′,c′,d′,r′ ∈ Bk(p).
Let us consider the open embedding A3

k ↪→ P3
k, (x, y, z) 7→ [1 : x : y : z]

and denote by Xp the closure of Dp in P3
k. Writing s = deg(p) and

p(z) =
∑s
i=0 piz

i with p0, . . . , ps ∈ k and ps 6= 0, we obtain that Xp is
the hypersurface in P3

k given by the equation ws−2xy =
∑s
i=0 piw

s−izi.
So, Cp = Xp \ Dp is either the conic defined by {w = 0, xy = p2z

2}
in the case where s = 2, or the line given by {w = z = 0} in the case
where s ≥ 3. In both cases, Cp is a curve isomorphic to P1

k that contains
the point q = [0 : 0 : 1 : 0].

We will prove the two following statements.

(1) The birational map β̂ of Xp induced by any β ∈ Bk(p) \ Ak(p)
contracts Cp \ {q} onto q.

(2) The birational map α̂ of Xp induced by any α ∈ Ak(p) preserves
the curve Cp, and if it fixes the point q, then α ∈ Ak(p) ∩Bk(p).

Before proving them, let us show that Autk(Dp) = Ak(p)∗∩Bk(p)
follows from these two claims. Recall that, by Theorem 3.5, Autk(Dp) is
generated by Ak(p) and Bk(p). Letting m ≥ 1, α1, . . . , αm−1 ∈ Ak(p) \
Bk(p) and β1, . . . , βm ∈ Bk(p) \Ak(p), it then suffices to prove that

ϕ = βm ◦ αm−1 ◦ · · · ◦ α1 ◦ β1 6∈ Ak(p).

For this, we prove by induction on m that the extension of ϕ ∈ Autk(Dp)
to a birational map ϕ̂ ∈ Birk(Xp) contracts Cp \ {q} onto q. For m = 1,
this is given by (1). For m ≥ 2, write ϕ = βm ◦ αm−1 ◦ ϕ′. The result

follows, since the extensions β̂m, α̂m−1, ϕ̂′ are elements of Birk(Xp) such
that ϕ̂′(Cp\{q}) = {q} (by the induction hypothesis), α̂m−1(q) ∈ Cp\{q}
(by (2)), and β̂m(Cp \ {q}) = {q} (by (1)).
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We now prove (1). First, note that an automorphism ψa,b,c,d,r is
in Ak(p) if r = 0, or if deg(r) = 0 and deg(p) = 2. Therefore, we con-
sider an automorphism ψ = ψa,b,c,d,r with either deg(r) ≥ 1, or with
deg(r) = 0 and deg(p) ≥ 3.

In both cases, the second component of the birational map ψ̂ ∈
Birk(Xp) induced by ψ is of degree D := deg(p) · (deg(r) + 1) − 1 >
deg(r) + 1, strictly greater than the degree of any other component of
the map, and its leading term is ξxD for some ξ ∈ k∗.

Extending ψ to a rational map ψ̃ : P3
k 99K P3

k by homogenising its

components, we obtain ψ̃([0 : x : y : z])= [0 : 0 : ξxD : 0] for any [0 : x :

y : z]∈Cp. As every point of Cp \ {q} satisfies x 6= 0, the equality ψ̂(Cp \
{q}) = {q} follows. This proves (1).

We remark that we have proved above that no map ψ̂a,b,c,d,r∈Birk(Xp)
is an automorphism if deg(r) ≥ 1 or if deg(r) = 0 and deg(p) ≥ 3. In
particular, it is not an element of Ak(p) in these cases. Hence, we get
the desired description of Ak(p) ∩Bk(p).

Finally, it remains to prove (2). Let α ∈ Ak(p). As it is the restriction
of an element of Aff3(k), which itself is the restriction of an element α̃ ∈
Aut(P3

k) that preserves the curve Cp, the automorphism α induces a
map α̂ ∈ Birk(Xp) that preserves Cp. Suppose that α̂(q) = q. Then,
the birational morphism κ : Dp → A2

k, (x, y, z) 7→ (x, z) conjugates α
to an affine automorphism α′ ∈ Aut(A2

k), because this morphism is the
restriction of the projection P3

k 99K P2
k, [w : x : y : z] 7→ [w : x : z]

from the point q. For each (x, z) ∈ A2
k, the fibre κ−1(x, z) consists of

one single point if and only if x 6= 0. Hence, α′ is of the form (x, z) 7→
(ax, cz + d + r0x) for some a, c ∈ k∗ and some d, r0 ∈ k. This gives
α = (ax, by+ h(x, z), cz + d+ r0x) for some b ∈ k∗ and some h ∈ k[x, z]
of degree 1. As α∗(xy − p(z)) = abxy + axh(x, z)− p(cz + d+ r0x) lies
in the ideal generated by xy − p(z), it must be equal to ab(xy − p(z)).
This implies, by setting x = 0, that abp(z) = p(cz + d), and then that

h(x, z) = p(cz+d+r0x)−abp(z)
ax ; hence α ∈ Bk(p).

The aim of the next three results is to give a precise description of
the subgroup Ak(p) of “affine” automorphisms of a surface Dp. We start
with the case where deg(p) ≥ 3.

Lemma 3.8. Let k be a field and p ∈ k[z] with deg(p) ≥ 3. Then,

Ak(p) = (Ak(p) ∩Bk(p)) o 〈(y, x, z)〉,

where

Ak(p)∩Bk(p) = {(ax, by, cz+d) | a, b, c ∈ k∗, d ∈ k, abp(z) = p(cz+d)}.
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Proof: Theorem 3.6 gives the explicit description of the intersection
of Ak(p) and Bk(p).

As the involution (y, x, z) is an element of Ak(p) \ Bk(p) that nor-
malises Ak(p)∩Bk(p), the subgroup of Ak(p) generated by Ak(p)∩Bk(p)
and (y, x, z) is isomorphic to (Ak(p) ∩Bk(p)) o 〈(y, x, z)〉. It remains to
see that every element α ∈ Ak(p) is in that subgroup, i.e., is of the
form α = (ax, by, cz + d) or α = (ay, bx, cz + d) for some a, b, c ∈ k∗

and d ∈ k.
Write α = (`1, `2, `3), where `1, `2, `3 ∈ k[x, y, z] are of degree 1.

Then,

`1`2 − p(`3) = α∗(xy − p(z)) = µ(xy − p(z))
for some µ ∈ k∗. Since deg(p) ≥ 3 and deg(`1`2) = 2, we obtain that
`3 = cz + d for some c ∈ k∗, d ∈ k, and we have that

`1`2 = µxy + p(cz + d)− µp(z).

Observe that the right-hand side of the above equality is an irreducible
polynomial, unless p(cz + d) − µp(z) = 0. Thus, p(cz + d) = µp(z) and
`1`2 = µxy. In turn, the latter equality implies that either `1 = ax and
`2 = by or `1 = ay and `2 = bx for some a, b ∈ k∗ with ab = µ.

We now investigate the case where deg(p) = 2.

Lemma 3.9. Let k be a field of characteristic not equal to 2, and let
p = z2−1 = (z−1)(z+1) ∈ k[z]. The surface Dp = Spec(k[x, y, z]/(xy−
p(z))) is isomorphic to (P1

k×P1
k) \∆, where ∆ denotes the diagonal, via

(P1
k × P1

k) \∆
'−−→ Dp

([a : b], [c : d]) 7−→
(

2ac
ad−bc ,

2bd
ad−bc ,

ad+bc
ad−bc

)
.

Moreover, Ak(p) is isomorphic to PGL2(k)×〈σ〉, where σ=(−x,−y,−z)∈
Autk(Dp) acts on P1

k×P1
k via the exchange of the two factors and where

PGL2(k) acts diagonally on (P1
k × P1

k) \∆ and via

PGL2(k)×Dp −→ Dp(
α β
γ δ

)
,
(
x
y
z

)
7−→ 1

αδ−βγ

(
α2 β2 2αβ

γ2 δ2 2γδ
αγ βδ αδ+βγ

)
·
(
x
y
z

)
on Dp.

Proof: As char(k) 6= 2, we may consider A3
k embedded into P3

k, via the
open embedding (x, y, z) 7→ [x : y : z + 1 : z − 1], and obtain that
Dp = Q \ H, where Q,H ⊆ P3

k are given respectively by x0x1 = x2x3

and x2 = x3.
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We then use the classical isomorphism P1
k × P1

k
'−→ Q, ([a : b], [c :

d]) 7→ [ac : bd : ad : bc], which restricts to the isomorphism (P1
k × P1

k) \
∆

'−→ Q \H = Dp described in the statement.
By definition, Ak(p) = {f ∈ Autk(Dp) | ∃g ∈ Aff3(k) : f = g|Dp

}
corresponds to the group of automorphisms of P3 which preserve H
and Q, and thus to the group of automorphisms of Q that preserve Q∩H;
it is conjugate via the above isomorphism to the group of automorphisms
of P1

k × P1
k that preserve the diagonal.

As Aut(P1
k×P1

k)=(PGL2(k)×PGL2(k))o〈σ〉, where σ is the exchange of
the two factors, which corresponds to (−x,−y,−z)∈Autk(Dp), we obtain
that Ak(p) corresponds, via the isomorphism, to the group PGL2(k) ×
〈σ〉, where PGL2(k) acts diagonally on P1

k×P1
k. Conjugating the action

gives the explicit description of the action of PGL2(k) on Dp.

Lemma 3.10. Let k be a field of characteristic not equal to 2, and let
p = z2 ∈ k[z]. The group Ak(p) is isomorphic to PGL2(k)×k∗, and the
action of this latter group on the surface Dp = Spec(k[x, y, z]/(xy− z2))
is

(PGL2(k)× k∗)×Dp −→ Dp((
α β
γ δ

)
, µ
)
,
(
x
y
z

)
7−→ µ

αδ−βγ

(
α2 β2 2αβ

γ2 δ2 2γδ
αγ βδ αδ+βγ

)
·
(
x
y
z

)
.

Proof: As observed in Lemma 3.9, the above formula gives an embed-
ding PGL2(k) ↪→ GL3(k) whose action on A3

k preserves xy− z2− 1, and
thus also xy − z2. Its image moreover lies in SL3(k). The action of k∗

on A3
k by homotheties gives another embedding k∗ ↪→ GL3(k). Since

both groups commute and have a trivial intersection, we get an embed-
ding ϕ : PGL2(k)× k∗ ↪→ Ak(p).

It remains to see that every element f ∈ Ak(p) lies in the image of ϕ.
As it is the only singular point of Dp, the point (0, 0, 0) ∈ Dp ⊆ A3

k

is fixed by any f ∈ Ak(p). Hence, f = g|Dp
for some g ∈ GL3(k)

whose action on P2
k preserves the conic Γ given by xy = z2, isomorphic

to P1
k via [u : v] 7→ [u2 : v2 : uv]. The induced action of g on P1

k

is of the form [u : v] 7→ [αu + βv : γu + δv] for some R =
(
α β
γ δ

)
in PGL2(k). Hence, the action of g on P1

k coincides with that of the
image of R in PGL2(k) ⊆ SL3(k), i.e., with that of ϕ((R, 1)). Hence,
the map f ◦ ϕ((R, 1))−1 ∈ Ak(p) acts trivially on Γ and thus on P2

k (a
nontrivial automorphism of P2

k only fixes points and lines), and is then
a homothety.
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3.3. Existence of real forms.

Proposition 3.11. Let p ∈ C[z] \ C be a nonconstant polynomial. The
following conditions are equivalent:

(1) The complex affine surface Dp = Spec(C[x, y, z]/(xy − p(z))) ad-
mits a real structure.

(2) There exist a, λ ∈ C∗, b ∈ C, such that λp(az + b) ∈ R[z].
(3) There exists q ∈ R[z] such that the complex affine surfaces Dp =

Spec(C[x, y, z]/(xy − p(z))) and Dq = Spec(C[x, y, z]/(xy − q(z)))
are isomorphic.

Proof: The equivalence between (2) and (3) follows from Theorem 3.2.
The implication (3) ⇒ (1) follows from the fact that (x, y, z) 7→

(x, y, z) is a real structure on Dq = Spec(C[x, y, z]/(xy − q(z))), since
q ∈ R[z].

It remains to prove (1) ⇒ (2). Applying a suitable affine automor-
phism of the form (λx, y, az + b) we can assume that p is in reduced
form. Let d = deg(p) ≥ 1. Since (2) is satisfied when p = zd, we may
further assume that p is not a monomial.

We take a real structure on Dp which is of the form

(x, y, z) 7−→ (f1(x, y, z), f2(x, y, z), f3(x, y, z)),

for some polynomials f1, f2, f3 ∈ C[x, y, z]. This provides an isomorphism
of complex affine surfaces

Dp 7−→ Dp

(x, y, z) 7−→ (f1(x, y, z), f2(x, y, z), f3(x, y, z)).

Hence, by Theorem 3.2, there exist a, λ ∈ C∗ and b ∈ C such that
p(z) = λp(az+ b). Since p is in reduced form and is not a monomial, we
have b = 0, λ = a−d, and |a| = 1. Let α ∈ C∗ be such that α2 = a. We
now conclude the proof by showing that the polynomial q(z) = α−dp(αz)
lies in R[z].

Indeed, since |a|=|α|= 1, we get

q(z) = α−d · p(αz) = αdλp(aαz) = αda−dp(aα−1z) = α−dp(αz) = q(z),

as desired.

By Proposition 3.11, we may assume a surface Dp to have no real
forms or its defining polynomial p to lie in R[z]. We shall classify the
number of real forms for the latter case. First we prove that if p ∈
R[z], then both subgroups AC(p) and BC(p) of AutC(Dp) defined in
Theorem 3.6 are invariant under the action of ρ : (x, y, z) 7→ (x, y, z).
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Lemma 3.12. Assume that p ∈ R[z]. Then, the subgroups AC(p) and
BC(p) of AutC(Dp) given in Theorem 3.6 are invariant under the action
of Gal(C/R).

Proof: Since p is real, we have ρ(Dp) = Dp, and thus f(Dp) = ρ ◦
f ◦ ρ(Dp) = Dp for all f ∈ Aut(A3

C) satisfying f(Dp) = Dp. Since any
element of AC(p) comes from the restriction of an element of Aff3(C), this
implies that AC(p) is invariant under the action of Gal(C/R). Similarly,
as ψa,b,c,d,r = ψā,b̄,c̄,d̄,r̄ for all ψa,b,c,d,r ∈ BC(p), the group BC(p) is also
invariant under the action of Gal(C/R).

The next result shows that it will actually be sufficient to compute
the cohomology set H1(AC(p)) to determine all real forms of Dp.

Lemma 3.13. Let p ∈ C[z] be a polynomial with deg(p) ≥ 2. The
homomorphisms of pointed sets

H1(AC(p) ∩BC(p)) −→ H1(BC(p))

H1(AC(p)) −→ H1(AutC(Dp))

given by the inclusions AC(p)∩BC(p) ↪→ BC(p) and AC(p) ↪→ AutC(Dp)
are isomorphisms of pointed sets.

Proof: Recall that by definition every element ψ of BC(p) is of the
form ψ = ψa,b,c,d,r for some a, b, c ∈ C∗, d ∈ C, and r ∈ C[x] such that
p(cz + d) = abp(z). Moreover, for all ψa,b,c,d,r, ψa′,b′,c′,d′,r′ in BC(p), we
have

ψa,b,c,d,r ◦ ψa′,b′,c′,d′,r′ = ψaa′,bb′,cc′,cd′+d,cr′(x)+a′r(a′x)

and

ψa,b,c,d,r=ψa′,b′,c′,d′,r′ if and only if a=a′, b = b′, c = c′, d = d′, r = r′.

The latter claim can be proved using the birational morphism Dp →
A2

C, (x, y, z) 7→ (x, z), or by saying that if the two maps are equal,
then ψa,b,c,d,r and ψa′,b′,c′,d′,r′ have the same components modulo xy −
p(z). Note also that any element of BC(p) of the form ψa,b,c,d,0 belongs
to AC(p).

By [16, Theorem 1], the fact that AutC(Dp) is the free product
of AC(p) and BC(p) amalgamated over their intersection as in Theo-
rem 3.6 implies that we have the following co-Cartesian diagram of mor-
phisms of pointed sets.

H1(AC(p) ∩BC(p)) H1(AC(p))

H1(BC(p)) H1(AutC(Dp))
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Therefore, it suffices to prove that H1(AC(p) ∩ BC(p)) → H1(BC(p)) is
a bijection to obtain that H1(AC(p))→ H1(AutC(Dp)) is a bijection.

For this, we will show that:

(1) Each element of Z1(BC(p)) is equivalent to an element ψ of the
form ψ = ψ1,b,c,d,0 in Z1(AC(p) ∩BC(p)).

(2) Two such elements ψ1,b,c,d,0, ψ1,b′,c′,d′,0 of Z1(AC(p) ∩ BC(p)) are
equivalent in BC(p) if and only if they are equivalent in AC(p) ∩
BC(p).

Let τ = ψa,b,c,d,r be a 1-cocycle in Z1(BC(p)). This implies aa = 1,
as τ ◦ τ = idDp

. Therefore, we can find ε ∈ C∗ with ε2 = a and define

θ = ψε,ε−1,1,0,0 = (εx, ε−1y, z) ∈ AC(p) ∩BC(p). Then,

τ̃ = θ−1 ◦ τ ◦ θ
= ψε−1,ε,1,0,0 ◦ ψa,b,c,d,r ◦ ψε−1,ε,1,0,0

= ψε−2a,ε2b,c,d,ε−1r(ε−1x)

= ψ1,ab,c,d,ε−1r(ε−1x)

is a 1-cocycle in Z1(BC(p)) equivalent to τ .
Denote s(x) = r(ε−1x) ∈ C[x]. Computing the third component of τ̃ ◦

τ̃ = idDp
, we see that cs(x) + s(x) = 0. Define ψ = ψ1,1,1,0, 12 s

. Then,

τ ′ = ψ−1 ◦ τ̃ ◦ ψ is a 1-cocycle in Z1(BC(p)) equivalent to τ . Moreover,
one checks that

τ ′ = ψ−1 ◦ τ̃ ◦ ψ
= ψ1,1,1,0,− 1

2 s(x) ◦ ψ1,ab,c,d,s(x) ◦ ψ1,1,1,0, 12 s(x)

= ψ1,ab,c,d, 12 s(x) ◦ ψ1,1,1,0, 12 s(x)

= ψ1,ab,c,d,c 1
2 s(x)+ 1

2 s(x)

= ψ1,ab,c,d,0.

This proves (1).
Now, let τ=ψ1,b,c,d,0 and σ = ψ1,b′,c′,d′,0 be two elements in Z1(BC(p))

and suppose that ϕ−1 ◦ τ ◦ ϕ = σ for some ϕ = ψα,β,γ,δ,π in BC(p). It

is then straightforward to check that ψ−1 ◦ τ ◦ ψ = σ, where ψ is the
element of AC(p)∩BC(p) defined by ψ = ψα,β,γ,δ,0. This proves (2).

3.4. Cohomology set of the group AC(p). First we deal with the
case where deg(p) = 2. In view of Lemma 3.9 and Lemma 3.10, we
proceed in two distinct cases.

Lemma 3.14. If p = z2 − 1, then H1(AC(p)) contains exactly four
elements, namely the classes of (x, y, z), (−x,−y,−z), (y, x,−z),
(−y,−x, z).
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Proof: Lemma 3.9 provides an explicit isomorphism PGL2(C)×〈σ〉 '−→
AC(p), where σ is an involution, the action of Gal(C/R) on 〈σ〉 ' Z/2 is
trivial and the one on PGL2(C) is the standard one. As by Lemma 2.9(3),
H1(PGL2(C)) consists of two elements, which are the class of the identity
and that of M =

(
0 −1
1 0

)
, we find that H1(AC(p)) consists of exactly

four elements, which are the classes of the images of (id, id), (id, σ),
(M, id), and (M,σ) under the above isomorphism. It moreover follows
from the explicit action of PGL2(C) × 〈σ〉 on Dp given in Lemma 3.9
that these four images are equal to (x, y, z), (−x,−y,−z), (y, x,−z), and
(−y,−x, z), respectively.

Lemma 3.15. If p = z2, then H1(AC(p)) contains exactly two elements,
which are the classes of (x, y, z) and of (y, x,−z).

Proof: Lemma 3.10 provides an explicit isomorphism PGL2(C)×C∗ '−→
AC(p). As H1(PGL2(C)) consists of two elements, which are the class
of the identity and that of M =

(
0 −1
1 0

)
– see Lemma 2.9(3)) – and as

H1(C∗) = {1}, the pointed set H1(AC(p)) contains exactly two elements,
which are the classes of the identity and that of the image of (M, 1) under
the above isomorphism. This latter is equal to the class of (y, x,−z);
compare with Lemma 3.10.

To describe H1(AC(p)) when deg(p) ≥ 3, we will need the group Hp ⊆
Aut(A1

C) associated to p. It corresponds to the group of symmetries of
the polynomial.

Definition 3.16. Let p ∈ C[z] be a polynomial. We denote by Hp ⊆
Aut(A1

C) = AutC(Spec(C[z])) the subgroup

Hp = {(cz + d) | c ∈ C∗, d ∈ C, ∃λ ∈ C∗ : p(cz + d) = λp(z)}.
As the following lemma shows, the shape of Hp is particularly simple

for polynomials in reduced form. A similar statement can be obtained
for all polynomials of C[z] and even for other Galois field extensions.

Lemma 3.17. Let p ∈ C[z] be in reduced form.

(1) If p has a unique root, then p = zd is a monomial and Hp = {(cz) |
c ∈ C∗}. In particular, Hp is then isomorphic to C∗ and H1(Hp)
contains only one element, namely the class of (z).

(2) If p has at least two roots, then Hp = {(cz) | c ∈ C∗, cn = 1} is
cyclic of finite order n ≥ 1. In particular, H1(Hp) contains either
a single element when n is odd or two elements when n is even,
namely the classes of (z) and (cz) where c denotes any primitive
n-th root of unity. Moreover, p is of the form p(z) = zmq(zn) for
some integer m ≥ 0 and some polynomial q ∈ C[t] with q(0) 6= 0.
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Proof: (1) Recall that H1(C∗) is trivial by Lemma 2.9.

(2) Let p(z) =
∑`
i=0 piz

i ∈ C[z] with p` = 1 and p`−1 = 0 and suppose
that p is not a monomial. Suppose that c, λ ∈ C∗ and d ∈ C are such
that p(cz + d) = λp(z). Then, d = 0 because p`−1 = 0. Moreover, for
any i, j with pi, pj 6= 0, we find ci = λ = cj . This implies that c is
of finite order, say n ≥ 1, and that i ≡ j (mod n). Hence, p is of the
form p(z) = zmq(zn), as claimed in the statement. In turn, Hp = {(cz) |
c ∈ C∗, cn = 1} is cyclic of order n. Finally, the claims about H1(Hp)
follow from Lemma 2.9.

Lemma 3.18. Let p ∈ R[z] be a polynomial of degree at least 3 in reduced
form. Then, the following holds:

(1) If Hp is infinite and deg(p) is odd, then H1(AC(p)) contains exactly
two elements, namely the classes of

(x, y, z), (y, x, z).

(2) If Hp is infinite and deg(p) is even, or Hp is finite of odd order,
then H1(AC(p)) contains exactly three elements, namely the classes
of

(x, y, z), (y, x, z), (−y,−x, z).
(3) If Hp is of even order n ≥ 2 and deg(p) is odd, then H1(AC(p))

contains exactly four elements, namely the classes of

(x, y, z), (ax, ay, cz), (y, x, z), (ay, ax, cz),

for any c ∈ C∗ of order n, and any a ∈ C∗ such that a2 = cdeg(p).
(4) If Hp is of even order n ≥ 2 and deg(p) is even, then H1(AC(p))

contains exactly six elements, namely the classes of

(x, y, z), (ax, ay, cz), (y, x, z), (−y,−x, z), (ay, ax, cz), (−ay,−ax, cz),
for any c ∈ C∗ of order n, and any a ∈ C∗ such that a2 = cdeg(p).

Proof: As p is in reduced form, every element of Hp is of the form (cz)
for some c ∈ C∗ thanks to Lemma 3.17. Since deg(p) ≥ 3, we have by
Lemma 3.8 AC(p) = (AC(p)∩BC(p))o 〈(y, x, z)〉, with AC(p)∩BC(p) =
{(ax, by, cz) | a, b, c ∈ C∗, abp(z) = p(cz)}. Thus, we can define a sur-
jective group homomorphism ϕ : AC(p) � Hp × 〈(y, x, z)〉 by sending
(ax, by, cz) onto (cz, id) and (y, x, z) onto (id, (y, x, z)).

There are two cases to distinguish, both following from Lemma 3.17:

(i) If Hp is infinite or finite of odd order, then H1(Hp) = {1}.
(ii) If Hp is finite of even order n ≥ 2, then H1(Hp) contains exactly

two classes, namely the class of the identity and a second class that
contains (cz) for each c ∈ C∗ of order n.

In case (ii), we fix c ∈ C∗ of order n.
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For each 1-cocycle τ ∈ Z1(AC(p)), we may assume that σ = ϕ(τ)
belongs to {id} × 〈(y, x, z)〉 in case (i) and to {id, (cz)} × 〈(y, x, z)〉 in
case (ii). This gives two or four possibilities for σ, respectively. Moreover,
two 1-cocycles that get mapped to different elements in Hp × 〈(y, x, z)〉
cannot be equivalent. So, we may study the different possibilities for σ
separately.

First we consider the case where τ ∈ Z1(AC(p)) with σ = ϕ(τ) =
(id, id). Then, τ =

(
ax, 1

ay, z
)

for some a ∈ C∗ with aa = 1. Choosing

λ ∈ C with λ2 = a and defining θ =
(
λx, 1

λy, z
)
∈ AC(p), we obtain

θ−1 ◦ τ ◦ θ =
(
a
λ2x,

λ2

a y, z
)

= (x, y, z), since λλ = 1.

Now, consider the case where τ ∈ Z1(AC(p)) with σ = ((cz), id).
Then, τ = (ax, by, cz) for some a, b ∈ C∗ with aa = bb = 1 and abp(z) =
p(cz) = cdeg(p)p(z). Let λ ∈ C with λλ = 1 and define θ =

(
λx, 1

λy, z
)
.

Then, θ−1◦τ ◦θ =
(
a
λ2x, λ

2by, cz
)
. Choosing λ with λ4 = a

b , we may thus

assume that b = a, i.e., that τ = (ax, ay, cz) with a2 = cdeg(p). Repeating
the same argument with λ = i, we see that the two 1-cocycles (ax, ay, cz)
and (−ax,−ay, cz) are equivalent. Hence, there is only one class of 1-
cocycles associated to σ = ((cz), id).

Finally, we consider the case where τ ∈Z1(AC(p)) with σ=(id,(y, x, z))
or σ = ((cz), (y, x, z)). Then, τ =

(
ay, 1

ax, µz
)

for some a ∈ C∗ satisfying

a · 1
a = µdeg(p), where µ = 1 or µ = c. Choosing λ ∈ R>0 with λ2 = |a|

and defining θ =
(
λx, 1

λy, z
)
, we obtain θ−1 ◦ τ ◦ θ =

(
a
λ2 y,

λ2

a x, µz
)
. So,

we may assume that |a| = 1, and hence that τ = (ay, ax, µz).
As p(µz) = a2p(z), we get µdeg(p) = a2. In particular, a = ±1 if

µ = 1. To conclude the proof, it only remains to prove that the 1-co-
cycles (ay, ax, µz) and (−ay,−ax, µz) are equivalent if and only if the
following holds:

(♣) deg(p) is odd and Hp is either infinite or finite of even order.

First suppose that (♣) holds. In this case, (−z) ∈ Hp, and p(−z) =

(−1)deg(p)p(z) = −p(z). Hence, θ = (x,−y,−z) ∈ AC(p) ∩ BC(p), and
θ−1 ◦ (ay, ax, µz) ◦ θ = (−ay,−ax, µz).

Suppose now that (♣) does not hold, and suppose, by contradiction,
that θ−1 ◦ (ay, ax, µz) ◦ θ = (−ay,−ax, µz) for some θ ∈ AC(p).

If θ ∈ AC(p) ∩ BC(p), then θ = (αx, βy, γz) for some α, β, γ ∈ C∗
such that αβp(z) = p(γz). This implies that θ−1 ◦ (ay, ax, µz) ◦ θ =(
β
αay,

α
β ax,

γ
γµz

)
. Hence, β = −α and γ ∈ R. In particular, we have that

αβ = −αα ∈ R<0. Since αβp(z) = p(γz) = γdeg(p)p(z), we also have
αβ = γdeg(p). This implies that deg(p) is odd and γ < 0. As we assumed
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that (♣) does not hold, Hp is finite of odd order. But then, (γz) /∈ Hp,
a contradiction.

If θ ∈ AC(p) \ BC(p), then write θ = (y, x, z) ◦ θ′ with θ′ ∈ AC(p) ∩
BC(p). Since (y, x, z) commutes with τ = (ay, ax, µz), the equality θ−1 ◦
τ ◦ θ = θ′−1 ◦ τ ◦ θ′ holds and we get a contradiction as above.

3.5. Real forms.

Proposition 3.19. Let p = z2 − 1. The complex surface

Dp = Spec(C[x, y, z]/(xy − z2 + 1))

has exactly four nonisomorphic classes of real forms, which are those of
the four real surfaces

S1 = Spec(R[x, y, z]/(x2 + y2 + z2 + 1)),

S2 = Spec(R[x, y, z]/(x2 + y2 + z2 − 1)),

S3 = Spec(R[x, y, z]/(x2 − y2 + z2 − 1)),

S4 = Spec(R[x, y, z]/(x2 − y2 + z2 + 1)).

All four are pairwise nonhomeomorphic: their real loci are diffeomorphic
to

S1(R) = ∅, S2(R) ' S2, S3(R) ' R2 \ {(0, 0)}, S4(R) ' R2 q R2.

Proof: By Lemma 3.13 and Lemma 3.14, H1(AutC(Dp)) contains exactly
four elements, namely the classes of τ3 = (x, y, z), τ4 = (−x,−y,−z),
τ1 = (y, x,−z), τ2 = (−y,−x, z). Therefore, there are exactly four non-
isomorphic real forms of Dp.

To see that they correspond to the real surfaces S1, . . . , S4, we pro-
duce, for every i = 1, 2, 3, 4, an element θi ∈ GL3(C) ⊆ Aut(A3

C)

such that τi ◦ ρ = θi ◦ ρ ◦ θ−1
i , where ρ is the standard real form

(x, y, z) 7→ (x, y, z) on A3
C, and such that θ−1

i (Dp) is the complexification
of Si, i.e., is Si ×Spec(R) Spec(C).

i τi θi with τi ◦ ρ ◦ θi = θi ◦ ρ θ∗i (xy − z2 + 1)

1 (y, x,−z) (x+ iy, x− iy, iz) x2 + y2 + z2 + 1

2 (−y,−x, z) (x+ iy,−x+ iy, z) −(x2 + y2 + z2 − 1)

3 (x, y, z) (x+ y, y − x, z) −(x2 − y2 + z2 − 1)

4 (−x,−y,−z) (i(−x+ y), i(x+ y), iz) x2 − y2 + z2 + 1

From the equations of S1 and S2, we see that S1(R) = ∅ and S2(R) =
S2. The map (x, y, z) 7→

(
y, x√

x2+z2
, z√

x2+z2

)
provides an explicit diffeo-

morphism from S3(R) to the cylinder R× S1, which is diffeomorphic to
the punctured plane R2 \ {(0, 0)}. For S4(R), note that x2 + z2 = y2− 1
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implies that y 6= 0. Then, S4(R) = {(x, y, z) | y > 0}q{(x, y, z) | y < 0}
is diffeomorphic to the disjoint union of two copies of R2.

Proposition 3.20. Let p = z2. The complex surface

Dp = Spec(C[x, y, z]/(xy − z2))

has exactly two nonisomorphic classes of real forms, which are those of
the two real surfaces

T1 = Spec(R[x, y, z]/(x2 + y2 + z2)),

T2 = Spec(R[x, y, z]/(x2 − y2 − z2)).

Both are pairwise nonhomeomorphic: T1(R) consists of only one point,
while T2(R) is infinite; it is a cone over S1.

Proof: By Lemma 3.13 and Lemma 3.15, H1(AutC(Dp)) contains ex-
actly two elements, namely the classes of τ2 = (x, y, z), τ1 = (y, x,−z).
Therefore, there are exactly two nonisomorphic real forms of Dp.

To see that they correspond to the real surfaces T1, T2, we give, for
every i = 1, 2, an element θi ∈ GL3(C) ⊆ Aut(A3

C) such that τi ◦ ρ =

θi ◦ ρ ◦ θ−1
i , where ρ is the standard real form (x, y, z) 7→ (x, y, z) on A3

C,

and such that θ−1
i (Dp) is the complexification of Ti, i.e., is Ti ×Spec(R)

Spec(C).

i τi θi with τi ◦ ρ ◦ θi = θi ◦ ρ θ∗i (xy − z2)

1 (y, x,−z) (x+ iy, x− iy, iz) x2 + y2 + z2

2 (x, y, z) (x− y, x+ y, z) x2 − y2 − z2

The equation of T1 directly gives T1(R) = {(0, 0, 0)}, whereas T2(R) is
a cone over the conic x2 − y2 = z2 in P2

R whose set of real points is
diffeomorphic to S1.

Proposition 3.21. Let p ∈ R[z] be a polynomial of degree d ≥ 3 in
reduced form and define Dp = Spec(C[x, y, z]/(xy − p(z))).

(1) If Hp is infinite, then p = zd and there are two cases:
(i) If d is odd, then Dp has exactly two isomorphism classes of

real forms, namely those of

Spec(R[x, y, z]/(x2 ± y2 − zd)).
(ii) If d is even, then Dp has exactly three isomorphism classes of

real forms, namely those of

Spec(R[x, y, z]/(x2 + y2 + zd)),

and Spec(R[x, y, z]/(x2 ± y2 − zd)).
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(2) If Hp is cyclic of order n, then p = zmq(zn) for some integer m ≥ 0
and some monic polynomial q ∈ R[z] \ R with q(0) 6= 0, and there
are three cases:
(i) If n is odd, then Dp has exactly three isomorphism classes of

real forms, namely those of

Spec(R[x, y, z]/(x2 + y2 + zmq(zn))),

and Spec(R[x, y, z]/(x2 ± y2 − zmq(zn))).

(ii) If n is even and deg(p) – and thus m – is odd, then Dp has
exactly four isomorphism classes of real forms, namely those
of

Spec(R[x, y, z]/(x2 ± y2 − zmq(±zn))).

(iii) If n is even and deg(p) – and thus m – is even, then Dp has
exactly six isomorphism classes of real forms, namely those of

Spec(R[x, y, z]/(x2 + y2 + zmq(±zn))),

and Spec(R[x, y, z]/(x2 ± y2 − zmq(±zn))).

Proof: Define

τ1 = (x, y, z), τ2 = (ax, ay, cz), τ3 = (y, x, z),
τ4 = (−y,−x, z), τ5 = (ay, ax, cz), τ6 = (−ay,−ax, cz),

which are the 1-cocycles appearing in Lemma 3.18.

(1) Suppose that Hp is infinite. Then, Dp is the surface of equation xy =
zd, and by Lemma 3.18(1)-(2) we only need to consider τ1, τ3, and
τ4. In the table below, we produce, for every i ∈ {1, 3, 4}, an element
θi ∈ GL3(C) ⊆ Aut(A3

C) such that τi ◦ ρ = θi ◦ ρ ◦ θ−1
i , where ρ is

the standard real form (x, y, z) 7→ (x, y, z) on A3
C, and compute the

equation of the hypersurface θ−1
i (Dp) ⊂ A3

C. Combining Lemma 3.13
with Lemma 3.18, this proves (1).

i τi θi with τi ◦ ρ ◦ θi = θi ◦ ρ θ∗i (xy − zd)
1 (x, y, z) (x+ y, x− y, z) x2 − y2 − zd

3 (y, x, z) (x+ iy, x− iy, z) x2 + y2 − zd

4 (−y,−x, z) (x+ iy,−x+ iy, z) −(x2 + y2 + zd)

(2) Suppose that Hp is cyclic of finite order n ≥ 1. Then, Dp is given by
an equation of the form xy = zmq(zn) with m ≥ 0 and deg(q) ≥ 1 such
that q(0) 6= 0. Let c = e2πi/n be a primitive n-th root of unity and set
a = e2πim/2n, which satisfies a2 = cm = cdeg(p).
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Fix α = e2πi/2n and β = e2πim/4n, for which α2 = c and αn = −1,
and β2 = a = αm, respectively. In the table below, we produce, for
every i ∈ {1, . . . , 6}, an element θi ∈ GL3(C) ⊆ Aut(A3

C) such that

τi ◦ρ = θi ◦ρ◦ θ−1
i , where ρ is the standard real form (x, y, z) 7→ (x, y, z)

on A3
C and compute the equation of the hypersurface θ−1

i (Dp) ⊂ A3
C.

Combining Lemma 3.13 with Lemma 3.18, this proves (2).

i τi θi with τi ◦ ρ ◦ θi = θi ◦ ρ θ∗i (xy − zmq(zn))

1 (x, y, z) (x+ y, x− y, z) x2 − y2 − zmq(zn)

2 (ax, ay, cz) (β(x+ y), β(x− y), αz) β2(x2 − y2 − zmq(−zn))

3 (y, x, z) (x+ iy, x− iy, z) x2 + y2 − zmq(zn)

4 (−y,−x, z) (x+ iy,−x+ iy, z) −(x2 + y2 + zmq(zn))

5 (ay, ax, cz) (β(x+ iy), β(x− iy), αz) β2(x2 + y2 − zmq(−zn))

6 (−ay,−ax, cz) (β(x+ iy), β(−x+ iy), αz) −β2(x2 + y2 + zmq(−zn))

We finalise this section by proving Theorem A, which summarises
Propositions 3.19, 3.20, and 3.21.

Proof of Theorem A: We recall that p ∈ R[z] is a polynomial in reduced
form of degree d ≥ 2, p(z) = zmq(zn), where m ≥ 0, n ≥ 1, q ∈ R[z],
q(0) 6= 0, and where q and n are chosen such that n is maximal if q 6= 1.
In particular, q, n, and m are uniquely determined by p.

First we remark that Sabc is a real form of Dp for all a, b, c ∈ {0, 1}.
Indeed, the linear map (x + ia−1y, x − ia−1y, z) ∈ Aut(A3

C) sends the
hypersurface x2 + (−1)ay2 + (−1)bzmq((−1)czn) = 0 onto that of equa-
tion xy + (−1)bzmq((−1)czn) = 0, which is isomorphic to Dp by Theo-
rem 3.2. Propositions 3.19, 3.20, and 3.21 then give the number 2 ≤ i ≤ 6
of isomorphism classes together with a list of representatives.

First suppose that q = 1. Then p(z) = zd = zm and Hp is thus
infinite. If d = 2, then Proposition 3.20 gives i = 2 together with the
representatives S000 and S110. If d ≥ 3, Proposition 3.21(1) gives i = 2
when d is odd and i = 3 when d is even. In the case where d is odd,
Proposition 3.21(1)(i) gives the two representatives Spec(R[x, y, z]/(x2 +
y2 − zd)) = S010 and Spec(R[x, y, z]/(x2 − y2 − zd)) = S110. Using the

isomorphism (x, y,−z) : S000
'−→ S010, we obtain the two representatives

given in the statement of Theorem A. In the case where d is even, the
three representatives of Proposition 3.21(1)(ii) are precisely S000, S010,
and S110.

Suppose now that q 6= 1. Hence, deg(q) ≥ 1, and as n was chosen
maximal, the group

Hp = {λ ∈ C∗ | p(λz) = λdp(z)} = {(λz) | λ ∈ C∗, λn = 1}
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is cyclic of order n by Lemma 3.17. If d = 2, then p = z2+µ, for some µ ∈
R∗. So (m,n) = (0, 2) and the surface Dp is isomorphic to Dp′ with p′ =
z2−1 by Theorem 3.2. Hence, Proposition 3.19 gives i = 4 and provides
the four representatives Spec(R[x, y, z]/(x2±y2 +z2±1)). We now need
to check that these surfaces are isomorphic to the four surfaces Sabb,
a, b ∈ {0, 1} that are given in the statement of Theorem A. Since these
latter are defined by Spec(R[x, y, z]/(x2±y2+z2±µ)), it actually suffices
to apply the linear automorphism (ξx, ξy, ξz) ∈ Aut(A3

R), where ξ =√
|µ|.
If d ≥ 3, Proposition 3.21(2) specifies three different cases.
If n is odd, then i = 3 and the representatives in Proposition 3.21(2)(i)

are precisely the surfaces S000, S010, and S110.
If n is even and d is odd, then i = 4 and the representatives given

by Proposition 3.21(2)(ii) are the surfaces Sa1c with a, c ∈ {0, 1}. As the
map (x, y,−z) ∈ Aut(A3

R) sends Sa1c to Sa0c, we obtain Sa1c ' Sa0c,
and in particular Sa1c ' Sacc. This gives the result.

The remaining case is when n and d are both even. Here, i = 6 and
the real forms are S00c, Sa1c, a, c ∈ {0, 1} by Proposition 3.21(2)(iii).

In Proposition 3.19, of the given complex surface, there is only one real
form whose real locus is compact and nondegenerate in the sense that
the dimension of the real locus as a manifold is equal to 2. The following
examples illustrate that we can also construct complex surfaces with
two nonisomorphic real forms having compact and nondegenerate loci.
In the first example, the corresponding manifolds are diffeomorphic. In
the second example, they are not.

Example 3.22. Choose p(z) = (z2−1)(z2 +4) = q(z2) with q(z) = (z−
1)(z + 4). By Theorem A, the surface Dp = Spec(C[x, y, z]/(xy − p(z)))
admits six isomorphism classes of real forms. In particular, the surfaces

S000 = Spec(R[x, y, z]/(x2 + y2 + q(z2)))

= Spec(R[x, y, z]/(x2 + y2 + (z2 − 1)(z2 + 4))),

S001 = Spec(R[x, y, z]/(x2 + y2 + q(−z2)))

= Spec(R[x, y, z]/(x2 + y2 + (z2 + 1)(z2 − 4)))

are two nonisomorphic real forms of Dp. As Dp is smooth, their real loci
are the manifolds S000(R) and S001(R). Both are diffeomorphic to the
sphere S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}, via the diffeomorphisms

S2 '−−→ S000(R), (x, y, z) 7−→ (x
√
z2 + 4, y

√
z2 + 4, z),

S2 '−−→ S001(R), (x, y, z) 7−→ (2x
√

4z2 + 1, 2y
√

4z2 + 1, 2z).
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Example 3.23. Choose p(z) = (z2 − 1)(z2 + 1)(z2 + 4) = q(z2) with
q(z) = (z− 1)(z+ 1)(z+ 2). By Theorem A, Dp = Spec(C[x, y, z]/(xy−
p(z))) admits six isomorphism classes of real forms. In particular, the
surfaces

S000 = Spec(R[x, y, z]/(x2 + y2 + q(z2)))

= Spec(R[x, y, z]/(x2 + y2 + (z2 − 1)(z2 + 1)(z2 + 4))),

S011 = Spec(R[x, y, z]/(x2 + y2 − q(−z2)))

= Spec(R[x, y, z]/(x2 + y2 + (z2 + 1)(z2 − 1)(z2 − 4)))

are two nonisomorphic real forms of Dp. Similarly as in Example 3.22,
S000(R) is diffeomorphic to the sphere S2. However, S011(R) has two
connected components U+ = {(x, y, z) ∈ S011(R) | z > 0} and U− =
{(x, y, z) ∈ S011(R) | z < 0}. Hence, the two compact manifolds S000(R)
and S011(R) are not diffeomorphic. One can check that U+ and U− are
both diffeomorphic to S2, and thus that S011(R) is diffeomorphic to the
union of two spheres.

4. The surfaces (A1
C \ {0})2 and A1

C × (A1
C \ {0})

In this section, we compute the real forms of the two affine sur-
faces (A1

C \ {0})2 and A1
C × (A1

C \ {0}). In Propositions 4.2 and 4.3,
we prove that these surfaces have respectively six and four isomorphism
classes of real forms. In the case of (A1

C \{0})2, a partial result, together
with a sketch of the proof, is given in [21, Lemma 1.5 and Remark 1.6].
Our proof follows essentially the same lines.

The following well-known result is an easy exercise. We give the proof
for the sake of completeness.

Lemma 4.1. There are exactly three conjugacy classes of elements of
order 2 in GL2(Z), namely those of σ1 =

(
1 0
0 −1

)
, σ2 =

(−1 0
0 −1

)
, and

σ3 = ( 0 1
1 0 ).

Proof: First we prove that the involutions σ1, σ2, σ3 are pairwise non-
conjugate. As det(σ2) = 1 and det(σ1) = det(σ3) = −1, we only need
to prove that σ1 and σ3 are not conjugate. If they were, we would have
a matrix M =

(
a b
c d

)
∈ GL2(Z) such that ( ac ) and

(
b
d

)
are eigenvectors

of σ3 of eigenvalue 1 and −1 respectively. This would imply c = a and
d = −b, which is impossible, as det(M) = ad− bc = −2ab /∈ {±1}.

It remains to prove that every element M ∈ GL2(Z) of order 2 is
conjugate to σ1, σ2, or σ3. If M 6= σ2, then the eigenvalues of M are 1
and −1. Consider an eigenvector of M with integer entries prime to
each other and complete it to a matrix of GL2(Z) that conjugates M
to M ′ =

(
1 b
0 d

)
for some b, d ∈ Z. Note that d = −1, since M has
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eigenvalues 1 and −1. Conjugating M ′ by
(

1 µ
0 1

)
with µ ∈ Z, we get the

matrix
(

1 b−2µ
0 −1

)
. If b is even, then M is conjugate to σ1. If b is odd, then

M is conjugate to
(

1 1
0 −1

)
, which is conjugate to σ3 by ( 1 1

1 0 ).

Proposition 4.2.

(1) The affine complex curve A1
C \ {0} has exactly three equivalence

classes of real structures, namely those of

ρ1 : x 7−→ x, ρ2 : x 7−→ x−1, ρ3 : x 7−→ −x−1.

The corresponding real forms of A1
C \ {0} are the three affine con-

ics Γ1,Γ2,Γ3 ⊆ A2
R given by

xy − 1 = 0, x2 + y2 − 1 = 0, and x2 + y2 + 1 = 0,

whose real loci are diffeomorphic to Γ1(R) ' R∗, Γ2(R) ' S1, and
Γ3(R) = ∅, respectively.

(2) The affine complex surface (A1
C \{0})2 has exactly six isomorphism

classes of real forms, namely those of

Γ1 × Γ1, Γ1 × Γ2, Γ1 × Γ3, Γ2 × Γ2, Γ3 × Γ3, and A2
R \ {x2 + y2 = 0}.

Moreover, the real form Γ2 × Γ3 is isomorphic to Γ3 × Γ3.

Proof: We recall that for n ≥ 1, the invertible regular functions on (A1
C \

{0})n are the Laurent monomials µxa11 · · ·xann , with µ ∈ C∗, a1, . . . , an ∈
Z. This implies that Aut((A1

C \ {0})n) ' (C∗)n o GLn(Z), and gives in
particular

Aut(A1
C \ {0}) = {λxa | λ ∈ C∗, a = ±1},

Aut((A1
C \ {0})2) = {(axm11ym12 , bxm21ym22)

| a, b ∈ C∗, (m11 m12
m21 m22

) ∈ GL2(Z)}.
We prove (1). As the complexification of Γi is a smooth affine conic

with two points at infinity, it is isomorphic to A1
C \ {0}, and thus Γi is

a real form of A1
C \ {0}. Since Γ1, Γ2, and Γ3 have nonhomeomorphic

real loci, we get three pairwise nonisomorphic real forms. We now prove
that these are the only ones. We fix the standard real structure ρ1 that
corresponds to the real form A1

R \{0}, isomorphic to Γ1. The description
of Aut(A1

C\{0}) implies that every element of Z1(Aut(A1
C\{0})) is either

of the form ν = (µx) with µ ∈ C∗, µµ = 1, or of the form ν = (µx−1)
with µ ∈ R∗. In the first case, we reduce to µ = 1, as H1(C∗) = {1}
(Lemma 2.9), and obtain the trivial real form Γ1. In the second case, we
choose α = (λx) with λ ∈ R, λ2 = |µ|, and obtain α−1 ◦ ν ◦α = (±x−1).
This gives the two real structures ρ2 and ρ3, which then necessarily
correspond to Γ2 and Γ3. As Γ3(R) = ∅ and as no x ∈ C∗ satisfies
x = ρ3(x) = −x−1, we find that ρi corresponds to Γi for i = 1, 2, 3.
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It remains to prove (2). We fix the standard real form ρ1 × ρ1 and
compute H1(Aut((A1

C \{0})2)). Let ν ∈ Z1(Aut((A1
C \{0})2)) be a 1-co-

cycle. As Aut((A1
C \ {0})2) ' (C∗ ×C∗) o GL2(Z), the 1-cocycle ν gives

rise to an involution σ ∈ GL2(Z). Up to conjugation, σ is equal to pre-
cisely one of σ0 = ( 1 0

0 1 ), σ1 =
(

1 0
0 −1

)
, σ2 =

(−1 0
0 −1

)
, or σ3 = ( 0 1

1 0 );
see Lemma 4.1. These four being pairwise nonconjugate in GL2(Z), two
1-cocycles arising from two different σi, σj are not equivalent, so we can
study each σi separately. For σ0, σ1, and σ2, we can, on each component
of the map ν, apply the same reduction as we did above for Aut(A1

C\{0}).
If σ = σ0, then ν = (λx, µy), where λ, µ ∈ C∗ have modulus 1. As

H1(C∗) = {1}, we can reduce to the case λ = µ = 1, and get the real
structure ρ1 × ρ1, and thus the real form Γ1 × Γ1 ' (A1

R \ {0})2.
If σ = σ1, then ν = (λx, µy−1), where λ ∈ C∗ has modulus 1 and µ ∈

R∗. We reduce to λ = 1 and µ = ±1, get two real structures ρ1 × ρ2

and ρ1 × ρ3, and thus the real forms Γ1 × Γ2 and Γ1 × Γ3. These real
forms are not isomorphic, as the second one has no real points, whereas
the first has.

If σ = σ2, then ν = (λx−1, µy−1), where λ, µ ∈ R∗. We reduce
to λ, µ ∈ {±1}, get the four real structures ρi × ρj , where i, j = 2, 3,
and hence four real forms Γi × Γj . With α = (x, xy), we obtain α−1 ◦
(−x−1, y−1)◦α = (−x−1,−y−1), and hence an isomorphism Γ2×Γ3

'−→
Γ3 × Γ3. Similarly, α = (y, x) provides an isomorphism Γ2 × Γ3

'−→
Γ3 × Γ2. As Γ2 × Γ2 has real points and Γ2 × Γ3 does not, we obtain
exactly two isomorphism classes of real forms in this case.

If σ = σ3, then ν =
(

1
λy, λx

)
, for some λ ∈ C∗. With α =

(
1
λx, y

)
, we

obtain α−1 ◦ ν ◦ α = (y, x), resulting in the real structure ρ′ : (x, y) 7→
(y, x). We use the isomorphism (A1

C \ {0})2 = A2
C \ {xy = 0} '−→ A2

C \
{x2+y2 = 0}, (x, y) 7→ (x+y, i(x−y)). It conjugates the real structure ρ′

to the standard real structure (x, y) 7→ (x, y). The real form induced is
then isomorphic to A2

R \ {x2 + y2 = 0}.

Proposition 4.3. The affine complex surface A1
C×(A1

C\{0}) has exactly
four isomorphism classes of real forms, namely those of

A1
R × Γ1, A1

R × Γ2, A1
R × Γ3, and P2

R \ {x2 + y2 = 0},

where Γ1, Γ2, and Γ3 are the real forms of A1
C \ {0}, given in Proposi-

tion 4.2(1).

Proof: First, recall that Aut(A1
C × (A1

C \ {0})) is equal to

{(λxym + c(y), µy±1) | λ, µ ∈ C∗, m ∈ Z, c ∈ C[y, y−1] ⊆ C(y)}.
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To obtain this, we can use the fact that every morphism A1
C → A1

C \ {0}
is constant, so any automorphism ϕ of A1

C×(A1
C\{0}) sends a fibre of the

first projection to another fibre. Thus, ϕ is of the form (a(x, y), b(y)),
where x 7→ a(x, y) is an automorphism of A1

C for every y, and where
y 7→ b(y) is an automorphism of A1

C \ {0}, since the inverse of ϕ is of the
same form.

We fix the standard real structure (x, y) 7→ (x, y) on A1
C × (A1

C \
{0}), corresponding to the real form A1

R × (A1
R \ {0}) ' A1

R × Γ1, see
Proposition 4.2(1), and compute H1(Aut(A1

C×(A1
C \{0}))). We consider

the group homomorphism θ : Aut(A1
C×(A1

C\{0}))→ GL2(Z) that sends
(λxym + c(y), µy±1) onto

(
1 m
0 ±1

)
.

Let ν ∈ Z1(Aut(A1
C×(A1

C\{0}))) be a 1-cocycle. Then, the matrix θ(ν)
is an involution in the group H =

{(
1 m
0 ±1

)
| m ∈ Z

}
⊆ GL2(Z). This

involution is either σ0 = ( 1 0
0 1 ), σ1 =

(
1 0
0 −1

)
, σ2 =

(
1 −1
0 −1

)
, or more

generally
(

1 m
0 −1

)
for any m ∈ Z. Conjugating the latter by ( 1 a

0 1 ) gives

the matrix
(

1 m−2a
0 −1

)
, so we may reduce to the cases of σ0, σ1, or σ2.

Since ( 0 1
1 0 ) is conjugate to σ2, using

(
0 −1
1 −1

)
, Lemma 4.1 implies that

the involutions σ1, σ2 are not conjugate in GL2(Z), and thus also not
conjugate in H. We then obtain three disjoint families of real forms, up
to isomorphism, and may consider the three cases separately.

First consider the case where θ(ν) = σ0. Thus, ν = (λx + c(y), µy)
for some λ, µ ∈ C∗ of modulus 1 and c ∈ C[y, y−1]. Considering α−1 ◦
ν ◦ α with α = (ξ1x, ξ2y) where ξ2

1 = λ, ξ2
2 = µ, we may reduce to the

case where λ = µ = 1. Then, the 1-cocycle condition ν ◦ ν = 1 gives
c(y) + c(y) = 0. Considering α−1 ◦ ν ◦ α with α = (x + c(y)/2, y), we
further reduce to the trivial real structure, corresponding to the real
form A1

R × (A1
R \ {0}) ' A1

R × Γ1.
We now consider the case where θ(ν) = σ1. Thus, ν = (λx+c(y), µy−1)

for some λ ∈ C∗ with |λ| = 1, µ ∈ R∗, and c ∈ C[y, y−1]. Considering
α−1 ◦ ν ◦ α with α = (ξ1x, ξ2y), ξ1 ∈ C∗, ξ2 ∈ R∗, ξ2

1 = λ, ξ2
2 = |µ|,

we reduce to the case where λ = 1, µ ∈ {±1}. Then, the 1-cocycle
condition ν ◦ ν = 1 gives c(y) + c(µy−1) = 0. Considering α−1 ◦ ν ◦ α
with α = (x−c(y)/2, y), we reduce to c = 0. This gives the two real struc-
tures (x, y) 7→ (x, y−1) and (x, y) 7→ (x,−y−1) and the real forms A1

R×Γ2

and A1
R × Γ3. The first one has real points and the second does not, so

these are not isomorphic.
We now study the case where θ(ν) = σ2. Thus, ν = (λxy−1 +

c(y), µy−1) for some λ, µ ∈ C∗. As ν ◦ ν = 1, we obtain λλ/µ = 1
and µ = µ, whence µ ∈ R>0. Considering α−1 ◦ ν ◦ α with α = (x, ξy),
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where ξ ∈ R∗, ξ2 = µ, we may reduce to the case where µ = 1, and con-
sequently |λ|= 1. Considering α−1 ◦ν ◦α with α = (εx, y), where ε ∈ C∗
and ε2 = λ, we may further assume that λ = 1. Then, the 1-cocycle
condition implies c(y)y + c(y−1) = 0. With α = (x− c(y)y/2, y), we get
α−1 ◦ ν ◦ α = (xy−1, y−1). Taking the morphism A1

C × (A1
C \ {0}) ↪→ P2

C,
(x, y) 7→ [x : y : 1], we obtain the real structure ρ′ : [x : y : z] 7→
[x : z : y] on P2

C \ {yz = 0}. It remains to apply the automorphism
[x : y : z] 7→ [y + z : i(y − z) : x] of P2

C, which gives an isomor-

phism P2
C \ {yz = 0} '−→ P2

C \ {x2 + y2 = 0}, and conjugate the real
structure ρ′ to the standard one. The corresponding real form is then
isomorphic to P2

R \ {x2 + y2 = 0}.

5. Koras–Russell threefolds of the first kind

5.1. Automorphisms of the three-space fixing the last coordi-
nate. Throughout this section, k is a field and we denote by x, y, z the
coordinates of the affine three-space A3

k = Spec(k[x, y, z]).

Notation 5.1. Let π : A3
k → A1

k be the projection (x, y, z) 7→ z. Then,
denote by Gk,z the subgroup

Gk,z = {f ∈ Aut(A3
k) | π ◦ f = π}

= {f ∈ Aut(A3
k) | f∗(z) = z}

= {f ∈ Aut(A3
k) | f = (P1(x, y, z), P2(x, y, z), z)

with P1, P2 ∈ k[x, y, z]}

of all automorphisms of A3
k that fix the last coordinate. Note that we

have a natural isomorphism GA2(k[z]) = Autk[z](A2
k[z]) ' Gk,z.

We recall that the Jung–van der Kulk theorem applies to Autk(z)(A2
k(z))

but not to Autk[z](A2
k[z]), as shown by Nagata [22, Theorem 1.4].

Let k ⊆ K be a field extension and let f ∈ Gk,z. Then, for each q ∈ K,
we can define an automorphism f |q of A2

K = Spec(K[x, y]) by setting

f |q : (x, y) 7−→ (P1(x, y, q), P2(x, y, q)).

We remark that (f |q)−1 = f−1|q and Jac(f |q) = Jac(f) ∈ k∗.

Lemma 5.2. Let q ∈ C \ R. Then, the map

Ψq : GR,z −→ Aut(A2
C)

f 7−→ f |q
is a group homomorphism whose image consists of all elements of
Aut(A2

C) that have a real Jacobian determinant.
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Proof: By construction, Ψq is a group homomorphism and Jac(Ψq(f)) =
Jac(f) ∈ R∗ for all f ∈ GR,z. So, we only need to prove that every
element f in Aut(A2

C) with a real Jacobian determinant is indeed in the
image of Ψq.

(a) We prove that any element f ∈ Aut(A2
C) of Jacobian determinant 1

is in Ψq(GR,q). By Lemma 2.7, it suffices to consider the case where
f ∈ Aff2(C) ∪ BA2(C).

First suppose that f is an elementary triangular map of the form f =
(x, y + ξxn) for some integer n ≥ 0 and some constant ξ ∈ C. Since q
is not real, there exist s, t ∈ R such that sq + t = ξ and we then have
f = Ψq(g) where g ∈ GR,z is defined by g = (x, y + (sz + t)xn, z). Since
Ψq is a group homomorphism, this implies that all triangular maps of
the form (x, y + p(x)) with p ∈ C[x] also belong to Ψq(GR,q).

We now consider affine maps. We have already proved that (x, y +
λx) ∈ Ψq(GR,q) for each λ ∈ C. Let us write σ=(−y, x)=Ψq((−y, x, z)).
As SL2(C) is generated by

(
0 −1
1 0

)
and by {( 1 0

λ 1 ) | λ ∈ C}, we can in-

fer that every element (ax + by, cx + dy) with
(
a b
c d

)
∈ SL2(C) belongs

to Ψq(GR,q). As the translations are generated by σ and by (x, y + ν)
with ν ∈ C, every element of Aff2(C) of Jacobian determinant 1 lies
in Ψq(GR,q). With the above, we can deduce that any element of BA2(C)
of Jacobian determinant 1 is also in Ψq(GR,q), as it is of the form

(
ax+

b, 1
ay + p(x)

)
with a ∈ C∗, b ∈ C, and p ∈ C[x]. This shows the claim.

(b) Let f ∈ Aut(A2
C) be such that Jac(f) ∈ R∗. We consider the map γ =

(νx, y) = Ψq((νx, y, z)), where ν = Jac(f). As γ−1 ◦ f ∈ Aut(A2
C) has

Jacobian 1 and f = γ ◦ (γ−1 ◦ f), we conclude with (a).

Lemma 5.3. The following propositions hold true.

(1) Let v ∈ C[x, y] be a variable and let q ∈ C \ R. Then, there exists
f = (P1(x, y, z), P2(x, y, z), z) ∈ GR,z such that v = P1(x, y, q).

(2) Let v ∈ R[x, y] ⊂ C[x, y] be a variable of C[x, y] and let q ∈ R.
Then, there exists f = (P1(x, y, z), P2(x, y, z), z) ∈ GR,z such that
v = P1(x, y, q).

Proof: (1) Suppose that v ∈ C[x, y] is a variable. Let w ∈ C[x, y] be such
that ϕ = (v, w) is an automorphism of A2

C. Replacing w with ξw for
some ξ ∈ C∗, we may assume that Jac(ϕ) = 1. Then, for any q ∈ C \ R,
there exist by Lemma 5.2 polynomials P1, P2 ∈ R[x, y, z] such that the
automorphism

f = (P1(x, y, z), P2(x, y, z), z) ∈ GR,z

satisfies f |q = ϕ. In particular, v = P1(x, y, q) as desired.
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(2) It is a well-known fact that a polynomial v ∈ R[x, y] is a variable
of R[x, y] if and only if it is a variable of C[x, y]. For instance, this
is an immediate consequence of [25, Theorem 3.2]. Hence, there exists
w ∈ R[x, y] such that (v, w) ∈ Aut(A2

R) and the result follows. Indeed,
the map f = (P1(x, y, z), P2(x, y, z), z) ∈ GR,z with P1(x, y, z) = v(x, y)
and P2(x, y, z) = w(x, y) satisfies v = P1(x, y, q) for any q ∈ R.

Proposition 5.4. Consider the standard real structure ρ : (x, y, z) 7→
(x, y, z) on A3

C. Then, the first Galois cohomology set of GC,z '
AutC[z](A2

C[z]) = GA2(C[z]) is trivial:

H1(AutC[z](A2
C[z])) = {1}.

Consequently, every real structure ρ̂ on A3
C that makes commutative the

diagram

A3
C A3

C

A1
C A1

C

ρ̂

π π

z 7→z

is equivalent to the standard real structure ρ.

Proof: Let ν ∈ Z1(GC,z) be a 1-cocycle, that is, an element ν ∈ GC,z
such that ν ◦ ν = idA3

C
. We need to show that there exists f ∈ GC,z such

that ν = f−1 ◦ f .
Consider GC,z as a subgroup of Aut(A2

K), where K = C(z) and A2
K =

Spec(K[x, y]). Since H1(AutK(K[x, y])) = 1 by [16, Theorem 3], there
is an element f ∈ AutC(z)(A2

C(z)) such that ν = f−1 ◦ f . In other words,

there exist f1, f2, g1, g2 ∈ C(z)[x, y] such that

f : A3
C 99K A3

C
(x, y, z) 7−→ (f1(x, y, z), f2(x, y, z), z)

and
g = f−1 : A3

C 99K A3
C

(x, y, z) 7−→ (g1(x, y, z), g2(x, y, z), z)

are inverse birational maps and ν = f−1 ◦ f .
We may actually assume that f1 and f2 are both elements of

C[x, y, z]. Indeed, there exists c ∈ R[z] \ {0} such that c(z)f1(x, y, z)
and c(z)f2(x, y, z) belong to C[x, y, z], and the equality ν = f−1 ◦ f re-
mains true when we replace f with γ ◦ f , where γ ∈ Bir(A3

C) is defined
by (x, y, z) 7→ (c(z)x, c(z)y, z), because γ = γ.

Let us write gi = hi

ai
for each i = 1, 2, where hi ∈ C[x, y, z] and

ai ∈ C[z] \ {0} are without common factors.
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If deg(a1 · a2) = 0, i.e., if a1 and a2 are nonzero constants, then
g is a morphism too. In this case, f is in GC,z and we are done. If
deg(a1 · a2) ≥ 1, we proceed by decreasing induction on deg(a1 · a2).
To prove the proposition, it suffices to find a suitable birational map
ϕ ∈ Bir(A3

C) with the following four properties:

(1) ϕ∗(z) = z;
(2) all components of ϕ ◦ f are in C[x, y, z];

(3) ϕ = ϕ, which implies ν = (ϕ ◦ f)−1 ◦ (ϕ ◦ f);
(4) the degree of the product of the denominators appearing in the

components of (ϕ ◦ f)−1 is strictly smaller than that of a1 · a2.

So, suppose from now on that deg(a1 · a2) ≥ 1 and let q ∈ C be such
that a1(q)a2(q) = 0. Without loss of generality, we may assume that
a1(q) = 0. Since g ◦ f = idA3

C
, we then obtain that

a1(z)x = h1(f1(x, y, z), f2(x, y, z), z)

and thus that the equality

(♠) h1(f1(x, y, q), f2(x, y, q), q) = 0

holds in C[x, y].
For each p ∈ A1

C, we consider the set ∆f,p ⊆ A3
C defined by

∆f,p = {(f1(x, y, p), f2(x, y, p), p) | (x, y) ∈ A2
C} = f(A2

C × {p}).

We remark that applying the complex conjugation to the set ∆f,p gives

(♥) ∆f,p = ∆f,p

for all p ∈ C. Indeed, as ν = f−1 ◦ f , we have f ◦ ν = f = ρ ◦ f ◦ ρ and
therefore

∆f,p=ρ(∆f,p) = ρ◦f(A2
C×{p}) = f◦ν◦ρ(A2

C×{p}) = f(A2
C×{p})=∆f,p.

We shall prove later that if ∆f,q, with a1(q) = 0 as above, is not a
point, then it is isomorphic to A1

C.

(a) Let us first consider the case where the set ∆f,q is a point. Then,
there exist r1, r2∈C such that ∆f,q = {(r1, r2, q)} and R1, R2 ∈ C[x, y, z]
such that

fi(x, y, z) = ri + (z − q)Ri(x, y, z)

for both i = 1, 2.
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(a1) Suppose now that q ∈ R. By the equality (♥), we then have that
r1, r2 ∈ R. Therefore, the birational map

ϕ =

(
x− r1

z − q
,
y − r2

z − q
, z

)
∈ Bir(A3

C)

satisfies ϕ = ϕ and we compute

ϕ ◦ f = (R1(x, y, z), R2(x, y, z), z).

The inverse map of ϕ ◦ f is given by

(ϕ ◦ f)−1 =

(
h1(x(z − q) + r1, y(z − q) + r2, z)

a1(z)
,

h2(x(z − q) + r1, y(z − q) + r2, z)

a2(z)
, z

)

=

(
h̃1(x, y, z)

a1(z)
,
h̃2(x, y, z)

a2(z)
, z

)
,

where h̃1, h̃2 ∈ C[x, y, z]. We obtain that

h̃1(x, y, q) = h1(r1, r2, q) = h1(f1(x, y, q), f2(x, y, q), q)
(♠)
= 0.

Therefore, h̃1(x, y, z) is divisible by (z−q) and the map ϕ fulfils the four
desired properties (1)–(4).

(a2) We now consider the case where q 6∈ R. For each i = 1, 2, we

define two real numbers si = ri−ri
q−q and ti = qri−qri

q−q . Then, the poly-

nomials pi(z) = siz + ti ∈ R[z] satisfy that pi(q) = ri and pi(q) = ri.
We recall that the equality fi(x, y, q) = ri holds true in C[x, y]. Simi-
larly, it follows from (♥) that fi(x, y, q) = ri. Therefore the polynomi-
als fi(x, y, z)−siz− ti are divisible by (z−q)(z−q) ∈ R[z]. This implies
that the birational map

ϕ =

(
x− s1z − t1

(z − q)(z − q)
,
y − s2z − t2

(z − q)(z − q)
, z

)
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satisfies ϕ = ϕ and that all components of ϕ◦f are elements of C[x, y, z].
Moreover, the inverse map of ϕ ◦ f is then given by

(ϕ ◦ f)−1 =

(
h1(x(z−q)(z−q)+s1z + t1, y(z−q)(z−q) + s2z + t2, z)

a1(z)
,

h2(x(z−q)(z−q)+s1z+t1, y(z−q)(z−q) + s2z + t2, z)

a2(z)
, z

)
=

(
h̃1(x, y, z)

a1(z)
,
h̃2(x, y, z)

a2(z)
, z

)
,

where h̃1, h̃2 ∈ C[x, y, z]. We obtain the two equalities

h̃1(x, y, q) = h1(r1, r2, q) = h1(f1(x, y, q), f2(x, y, q), q)
(♠)
= 0,

h̃1(x, y, q) = h1(r1, r2, q) = h1(f1(x, y, q), f2(x, y, q), q)
(♠)
= 0.

Therefore, h̃1(x, y, z) is divisible by (z−q)(z−q) and the map ϕ fulfils
the four desired properties (1)–(4).

(b) We now proceed with the case where ∆f,q is not a point. For every p ∈
A1

C and every variable u ∈ C[x, y], we define the curve

Γp,u = {(x, y, p) ∈ A3
C | u(x, y) = 0} ' A1

C.

By Lemma 2.6, there exists a variable v∈C[x, y] such that h1(x, y, q) ∈
C[v]. Note that h1(x, y, q) is not the zero-polynomial because h1 and a1

were chosen without common factors. Setting µ ∈ C∗, m ≥ 1, and
ξ1, . . . , ξm ∈ C such that

h1(x, y, q) = µ

m∏
i=1

(v(x, y)− ξi) ∈ C[x, y],

it then follows from (♠) that there exists 1 ≤ i ≤ m such that the
equality

v(f1(x, y, q), f2(x, y, q))− ξi = 0

holds true in C[x, y]. Therefore, the set ∆f,q is contained in the curve Γq,w,
where w = v − ξi. As a nonconstant morphism A2

C → A1
C is surjective,

and since ∆f,q is not a point, this implies that

∆f,q = Γq,w ' A1
C.

We now prove that we can assume that w ∈ R[x, y] if q ∈ R, so that
we may apply Lemma 5.3. Indeed, suppose q ∈ R. In this case, we have

∆f,q
(♥)
= ∆f,q = ∆f,q. Thus, Γq,w = Γq,w. As both polynomials w and w

are variables, they are irreducible. Since their zero-sets are equal, there
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exists a constant µ ∈ C∗ such that w = µw. It then follows that w =
µw = µw = µµw, whence µµ = 1. As H1(C∗) = {1} by Lemma 2.9, we
may choose η ∈ C∗ with η/η = µ. The variable w′ = ηw then satisfies
w′ = η w = ηµw = w′ and ∆f,q = Γq,w′ . Thus, we may replace w
by w′ ∈ R[x, y] if necessary, as desired.

By Lemma 5.3, there exists an element ψ = (P1(x, y, z), P2(x, y, z), z)
in GR,z such that P1(x, y, q) = w. Observe that ψ(Γq,w) ⊆ Γq,x. As these
two curves are isomorphic to A1

C, they are actually equal, i.e., ψ(Γq,w) =
Γq,x. We may thus replace f with ψ ◦ f and suppose that ∆f,q = Γq,x.
Note that, as ψ ∈ GR,z is defined over R and is an automorphism, the

equality ν = f−1 ◦ f is preserved when replacing f with ψ ◦ f , and
we do not change the denominators a1, a2 appearing in the expression
of the inverse of f . Moreover, the fact that ∆f,q = Γq,x implies that
f1(x, y, q) = 0, or, equivalently, that z − q divides f1 in C[x, y, z]. We
note that in the case where q 6∈ R, we also have ∆f,q = ∆f,q = Γq,x,
and so (z − q) also divides f1. Defining u(z) = z − q if q ∈ R and
u(z) = (z − q)(z − q) if q 6∈ R, we thus get a polynomial u ∈ R[z]
with u(q) = 0 that divides f1.

Finally, since the birational map ϕ ∈ Bir(A3
C) defined by ϕ : (x, y, z) 7→(

x
u(z) , y, z

)
satisfies the four properties (1)–(4), we can conclude the

proof.

Corollary 5.5. Taking the standard action of Gal(C/R) on C[x, y, z],
we obtain

H1(AutC[z](C[x, y, z])) = {1}.

Proof: The map f 7→ (f−1)∗ defines an isomorphism between the
groups GC,z and AutC[z](C[x, y, z]). As the action of Gal(C/R) on both

groups is compatible with this isomorphism, H1(AutC[z](C[x, y, z])) =

{1} then follows from H1(GC,z) = {1}.

Question 5.6. Do we have H1(AutC[z,w](C[x, y, z, w])) = {1}?

Lemma 5.7. Let r ≥ 1 and let

Gr = {f ∈ AutC[z](C[x, y, z]) | f ≡ id (mod zr)}.
Taking the standard action of Gal(C/R) on C[x, y, z], we obtain

H1(Gr) = {1}.

Proof: (a) First we prove the result in the case where r = 1. Let ν ∈
Z1(G1). By Corollary 5.5, there exists α ∈ AutC[z](C[x, y, z]) such that

ν = α−1 ◦ α. Since α ◦ ν = α and since ν ≡ id (mod z), we have that
α ≡ α (mod z).
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Denoting α(x) = a(x, y, z) and α(y) = b(x, y, z), we can define an
automorphism ϕ ∈ AutC[z](C[x, y, z]) by letting ϕ(x) = a(x, y, 0) and
ϕ(y) = b(x, y, 0). Note that ϕ ≡ α (mod z) and that ϕ = ϕ.

Thus, β = ϕ−1 ◦ α defines an element in G1 and we check that

β−1 ◦ β = α−1 ◦ ϕ ◦ ϕ−1 ◦ α = α−1 ◦ ϕ ◦ ϕ−1 ◦ α = α−1 ◦ α = ν.

Hence, H1(G1) = {1} is proved.

(b) We prove the lemma for every r ≥ 2 by induction on r. We fix r ≥ 2
and suppose that H1(Gr−1) = {1} holds. Let ν ∈ Z1(Gr). We want
to find an element β ∈ Gr such that ν = β−1 ◦ β. By our induction
hypothesis, there exists α ∈ Gr−1 such that ν = α−1 ◦ α.

Now, it suffices to construct an element ϕ ∈ AutC[z](C[x, y, z]) with
ϕ = ϕ such that ϕ ≡ α (mod zr). The lemma will indeed follow since
the automorphism β = ϕ−1 ◦ α is then in Gr and satisfies

β−1 ◦ β = α−1 ◦ ϕ ◦ ϕ−1 ◦ α = α−1 ◦ ϕ ◦ ϕ−1 ◦ α = α−1 ◦ α = ν,

as desired.
Let a, b ∈ C[x, y] be such that α(x) ≡ x + zr−1a(x, y) and α(y) ≡

y+ zr−1b(x, y) (mod zr). Since α◦ν = α and ν ≡ id (mod zr), we have
that a(x, y) and b(x, y) both belong to R[x, y]. Therefore, α induces
an endomorphism α̃ ∈ EndR[z]/(zr)(R[z]/(zr)[x, y]) defined by α̃(x) =

x+zr−1a(x, y) and α̃(y) = y+zr−1b(x, y). In fact, α̃ is an isomorphism.
Indeed, one can check that its inverse map is simply defined by α̃−1(x) =
x − zr−1a(x, y) and α̃−1(y) = y − zr−1b(x, y). Moreover, the Jacobian
determinant of α̃ is equal to 1 ∈ R[z]/(zr) because α̃ ≡ α (mod zr) and
Jac(α) = 1 ∈ R[z].

By the main result of [24], there thus exists ϕ ∈ AutR[z](R[z][x, y])

with ϕ(x) ≡ x + zr−1a(x, y) ≡ α(x) and ϕ(y) ≡ y + zr−1b(x, y) ≡ α(y)
(mod zr). This concludes the proof.

5.2. Real forms of Koras–Russell threefolds of the first kind.
The Koras–Russell threefolds of the first kind are the hypersurfacesXd,k,`

in A4
C defined by an equation of the form xdy + zk + x + t` = 0, where

d ≥ 2 and 2 ≤ k < ` are integers with k and ` relatively prime. Their
automorphism groups are computed in [10, 20]; see also [11], where the
following notations are introduced. We fix the integers d, k, ` as above,
and denote by A ⊆ AutC(C[x, z, t]) the subgroup of all automorphisms
of C[x, z, t] that preserves the ideals (x) and (xd, zk + x + t`). For ev-
ery 1 ≤ n ≤ d we further denote by An the normal subgroup of A defined
by

An = {f ∈ A | f ≡ id mod (xn)} ⊂ AutC[x](C[x, z, t]).
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Proposition 5.8 ([20]).

(1) AutC(Xd,k,`) ' A.
(2) A ' A1 oC∗, where C∗ acts on C[x, z, t] by

a · P (x, z, t) = P (ak`x, a`z, akt)

for all a ∈ C∗, P ∈ C[x, z, t].
(3) An+1 is a normal subgroup of An and An/An+1 ' (C[z, t],+) for

all 1 ≤ n ≤ d− 1.

Moreover, the above isomorphisms are compatible with the natu-
ral action of Gal(C/R) on C∗ and on the polynomial rings C[z, t] ⊂
C[x, z, t] ⊂ C[x, x−1, y, z, t], where we see the ring C[Xd,k,`] of regular
functions on Xd,k,` as the subalgebra of C[x, x−1, z, t] that is generated
by x, z, t, and y = −(zk + x+ t`)/xd. We may now prove Theorem B.

Proof of Theorem B: By Proposition 5.8(3), we have a subnormal series

{1} /Ad /Ad−1 / · · · /A1 /A,
where An/An+1 ' (C[z, t],+) for each 1 ≤ n ≤ d − 1. We may write
the latter isomorphism in the form of a short exact sequence of group
homomorphisms

{1} −→ An+1 −→ An −→ (C[z, t],+) −→ {1},
that gives rise to a short exact sequence of homomorphisms of pointed sets

{1} −→ H1(An+1) −→ H1(An) −→ H1(C[z, t]) −→ {1}
(see for example [3, Proposition 1.17.]). Observe that

Ad = {f ∈ AutC[x](C[x, z, t]) | f ≡ id mod (xd)},
for which Lemma 5.7 implies that the first cohomology pointed setH1(Ad)
is trivial. Since, by Lemma 2.9, H1(C[z, t]) is trivial, H1(Ad−1) is too.
By repeating the same argument, we see that the triviality of H1(An+1)
implies that of H1(An). Hence, we successively find that all cohomology
pointed sets H1(Ad), . . . ,H1(A1) are trivial.

Now, by Proposition 5.8(2), we again obtain a short exact sequence
of group homomorphisms

{1} −→ A1 −→ A −→ C∗ −→ {1},
and thus a short exact sequence of homomorphisms of pointed sets

{1} −→ H1(A1) −→ H1(A) −→ H1(C∗) −→ {1}.
As H1(A1) = {1} by the preceding argument, and since H1(C∗) is trivial
by Lemma 2.9, we can deduce that H1(A) is trivial.

Therefore, H1(AutC(Xd,k,`)) is also trivial and we obtain that all real
forms of Xd,k,` are isomorphic to the standard one.
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Remark 5.9. The so-called Koras–Russell threefolds of the second kind
are the hypersurfaces in A4

C defined by an equation of the form x+y(xd+
zα2)` + tα3 = 0, where d ≥ 2, ` ≥ 1, and α3 ≥ α2 ≥ 2 are integers with
gcd(α2, d) = gcd(α2, α3) = 1. Their automorphism groups are computed
in the main theorem of [23]. If X is such a threefold, then Aut(X) is iso-
morphic to a semi-direct product of two of its subgroups. One subgroup
is isomorphic to C∗, the other one to (C[x, z],+). Moreover, as in the
case of Koras–Russell threefolds of the first kind, all isomorphisms are
compatible with the natural action of Gal(C/R). Therefore, arguing as
in the proof of Theorem B, it follows that every Koras–Russell threefold
of the second kind admits a unique (up to isomorphism) real form.
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