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A REMARK ON FIRST INTEGRALS OF VECTOR FIELDS
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Abstract: We provide examples of vector fields on (C3, 0) admitting a formal first integral but
no holomorphic first integral. These examples are related to a question raised by D. Cerveau and

motivated by the celebrated theorems of Malgrange and Mattei–Moussu.
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1. Introduction

A celebrated theorem due to Mattei and Moussu ([10]) states that a holomor-
phic codimension 1 foliation admitting a formal first integral necessarily possesses a
holomorphic first integral as well. The theorem and its proof completely clarify the
relationship between formal and holomorphic first integrals for codimension 1 foli-
ations. The general investigation of the existence of first integrals also includes an
influential work of Malgrange [8]. However, for higher codimension foliations the rela-
tionship between formal and holomorphic first integrals remains quite mysterious. In
this context, D. Cerveau naturally asked whether a holomorphic vector field X defined
on a neighborhood of the origin of C3 and admitting one—or two independent—formal
first integrals must possess holomorphic first integrals as well. The goal of this paper
is to show that the existence of a single formal first integral is not enough to guarantee
the existence of a holomorphic one. This is done by means of the following theorem:

Theorem 1.1. Consider the family Xa,b,c of vector fields on C3 defined by

(1) Xa,b,c = x2 ∂
∂x + (1 + ax)

(
y1

∂
∂y1
− y2 ∂

∂y2

)
+ bx y2

∂
∂y1

+ cx y1
∂
∂y2

,

where a, b, and c are complex parameters. Assume that the parameters are such that

cos(2πa) 6= cos(2π
√
a2 + bc).

Then the vector field Xa,b,c does not possess any (non-constant) holomorphic first
integral, albeit it possesses formal first integrals.

In particular, the vector field X1,1,1 obtained by setting a = b = c = 1 admits
a formal first integral but no holomorphic one. The existence of these examples was
certainly expected, given the transcendental behavior of singular foliations, but we
highlight their simplicity which suggests that this might be a fairly common phenom-
enon in applications. The issue is also related to Malgrange’s theorem in [9] in that
it confirms that some (strong) additional assumptions are in fact needed (see below
for further information). As a side note, the simple nature of the example provided
by Theorem 1.1 also bears some similarities with certain results quoted in the sur-
vey article [12] of Stolovitch: many normalization results for “simple” vector fields
having formulas not too different from Xa,b,c are presented under some additional
geometric conditions (for example “volume-preserving” or “Hamiltonian”). We might
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wonder what influence these conditions have on the problem discussed here. Con-
versely, it is also fair to wonder if the (potential) ability to turn formal first integrals
into holomorphic ones may shed new light on more general normal form problems.

Let us remark that in the real domain there are well-known examples of real ana-
lytic vector fields which are C∞-integrable but not analytically, nor formally. The most
basic situation would be any saddle-node singularity in R2, e.g., x2 ∂

∂x + (1 + ax)y ∂
∂y ,

a ∈ R. In a Hamiltonian setting, a C∞-Liouville integrable but formally non-integrable
vector field in R4 was provided in [5]. Likewise, when a, b, c ∈ R, then the restriction
of Xa,b,c to R3 possesses C∞-first integrals (see Remark 2.5).

Our observation of the vector field (1) is a by-product of our study of the global
dynamics of the Airy and Painlevé I and II equations [3]. Our original motivation was
the local analysis of the saddle-node singularity associated with the vector field

YA = − 1
2x

4 ∂
∂x +

(
z − 1

2x
3y
)
∂
∂y + (y − x3z) ∂

∂x ,

which appears in a convenient birational model for the compactified Airy equa-
tion. The formal normal form of YA as well as the corresponding Stokes phenomenon
can be accurately computed with the same technique as is detailed in Section 2 for
the vector field Xa,b,c. In doing so, it follows that YA admits a first integral in the
field of fractions of formal power series, i.e., there is a formal first integral of the
form F/G with F,G ∈ C[[x, y, z]]. Yet YA has no holomorphic or meromorphic first
integral. Basically, the difference between the example provided by YA and Cerveau’s
general questions lies in the fact that the “formal first integral” of the vector field YA
has a “meromorphic” nature rather than a more standard power series representation
without negative terms. In turn, there are deep differences between first integrals of
“holomorphic” and of “meromorphic” natures as already underlined in the topological
context. In fact, in codimension 1, the Mattei–Moussu theorem ([10]) asserts that first
integrals are topological invariants and the existence of formal first integrals implies
the existence of holomorphic ones. On the other hand, the existence of meromorphic
first integrals is not a topological invariant already in the two-dimensional ambient
case; cf. [4, 7, 11]. Similarly, in codimension 2 complete integrability in the holo-
morphic sense is not a topological invariant either [11]. From this point of view, the
vector field YA falls genuinely short of shedding light on Cerveau’s questions due to
the nature of its formal first integral.

It is now interesting to investigate whether a holomorphic vector field X defined on
a neighborhood of the origin of C3 and admitting two formal first integrals F1, F2 such
that dF1∧dF2 6≡ 0 necessarily admits at least one holomorphic first integral. The best
result in this direction, as far as we are aware of, remains the previously mentioned
theorem of Malgrange [9] concerning Pfaffian systems in arbitrary dimensions. More
precisely, given a codimension r foliation defined in some open set of Cn and generated
by r one-forms Ω = {ω1, . . . , ωr}, denote by S(Ω) the singular locus of Ω, that is, the
set of points where the r-form ω1 ∧ · · · ∧ ωr is identically zero. We say that Ω is
integrable (respectively formally integrable) at x ∈ Cn if there exist r holomorphic

function germs f1, . . . , fr ∈ Ox (respectively r formal power series in Ôx) such that the

module generated by {df1, . . . ,dfr} coincides with Ω · Ox (respectively with Ω · Ôx).
In [9], Malgrange shows that if S(Ω) has codimension 3, or if Ω is formally integrable
and S(Ω) has codimension 2, then Ω is integrable. As mentioned, these hypotheses
are generally quite strong when we consider a Pfaffian system obtained as the dual of
a vector field.
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The proof of Theorem 1.1 relies on the standard theory of linear systems (normal
forms and Stokes phenomena, among others). We refer the reader to [6, §16 and 20]
and references therein (or [1, 13]) for an introduction to the methods used in this
work.

Acknowledgments. H. Reis was partially supported by CMUP, which is financed
by national funds through FCT – Fundação para a Ciência e Tecnologia, I. P., under
the project with reference UIDB/00144/2020. J. Rebelo and H. Reis are also partially
supported by CIMI through the project “Complex dynamics of group actions, Halphen
and Painlevé systems”.

2. Proof of Theorem 1.1

Let us begin our approach to Theorem 1.1 by noticing that the vector field Xa,b,c

is associated with the time-dependent linear differential system

(2) x2
dy

dx
=

[
1 + ax bx
cx −1− ax

]
y, y =

[
y1
y2

]
.

Following classical terminology of linear systems, the system above has a non-resonant
irregular singular point of Poincaré rank 1 at x = 0; see for example [6, §20]. Note
that this differential system is in the so-called Birkhoff normal form: the system is well
defined for all x ∈ CP1 and has only two singular points, namely x = 0 and x =∞; see
e.g. [6, §20B]. In turn, the singularity at x =∞ is a Fuchsian one. In other words, the
system has a simple pole at x =∞; see e.g. [6, Definition 16.9]. In addition, since the
linear system (2) is non-resonant, it can formally be transformed into a diagonal linear
system by means of the standard Poincaré–Dulac method [6, Theorem 20.7]. Whereas
the resulting (formal) power series is divergent, Sibuya’s theorem asserts that it is
Borel 1-summable in all directions x ∈ eiαR>0 with the exception of the singular
directions, namely the directions corresponding to α ∈ πZ. The preceding is made
accurate by the lemma below:

Lemma 2.1. There exists a formal linear change of coordinates having the form y =
T̂ (x)u, with T̂ (0) = I, which conjugates system (2) to the (diagonal) linear system

(3) x2
du

dx
=

[
1 + ax 0

0 −1− ax

]
u, u =

[
u1
u2

]
.

Moreover, for every α ∈ ]0, π[∪ ]π, 2π[, there exists a holomorphic transformation y =
Tα(x)u conjugating systems (2) and (3) and satisfying the following conditions:

(i) Tα(x) is analytic on the open sector of opening angle π bisected by the half-
line eiαR>0.

(ii) Tα(x) and Tβ(x), with α < β, coincide on the intersection of the corresponding
half-planes provided that the interval ]α, β[ does not contains an integral multiple
of π.

(iii) Tα(x) is asymptotic to T̂ (x).

Proof: As previously stated, the existence of a formal change of variables conjugating
systems (2) and (3), as well as its analytic nature on the indicated sectors, goes back
to classical results by Birkhoff and Malmquist (or more general versions by Hukuhara,
Turittin, and Sibuya; see [6, Theorems 20.7 and 20.16]). Therefore it only remains to
check that the diagonal matrix appearing in (3) has the indicated form. To do this,
note that the formal invariants of the initial system (2) can be read off a suitable
finite jet of the eigenvalue functions associated with the matrix[

1 + ax bx
cx −1− ax

]
.
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Clearly these eigenvalue functions are equal to ±
√

(1 + ax)2 + bcx2. Now, since the
Poincaré rank of the singularity is 1, only the 1-jet of the eigenvalue function is a
formal invariant; c.f. [6, Proposition 20.2]. Therefore ±(1 + ax) are the only formal
invariants of the system.

Next, note that system (3) clearly admits

(4) U(x) =

[
xae−1/x 0

0 x−ae1/x

]
as a fundamental matrix solution. Consider one of the two singular directions, namely
β = 0 or β = π. Let Tβ+ and Tβ− denote, respectively, the Borel sums on the “left” and
on the “right” of the fixed singular direction β. Then, there is a constant matrix Sβ
satisfying

Tβ−(x) = Tβ+(x)U(x)SβU(x)−1,

for x ∈ eiβR>0. The matrices S0 and Sπ are called the Stokes matrices and they have
the general forms

S0 =

[
1 s0
0 1

]
and Sπ =

[
1 0
sπ 1

]
,

for suitable constants s0, sπ ∈ C; see e.g. [6, §20G]. In the particular case in question,
explicit formulas for s0 and sπ are known; see [2, pp. 86 and 87]. However, for our
purposes, it suffices to prove that:

Lemma 2.2. s0sπ 6= 0 if and only if cos(2πa) 6= cos(2π
√
a2 + bc).

Proof: The lemma will be proved by explicitly computing the monodromy matrix M
associated with system (2) around x = 0 in two different ways: first we will compute
the matrix directly around x = 0 by using the Stokes matrices and then we will
compute the monodromy (holonomy) around x = ∞ which is a Fuchsian singular
point. The monodromy around x = ∞ is the inverse of the monodromy matrix M
since the system in question has only two singular points (corresponding to x = 0 and
to x = ∞). The result will then easily follow by computing the trace of M in each
situation.

Let us compute the monodromy matrix around the origin with respect to the
fundamental matrix solution T0+(x)U(x). By Lemma 2.1 T0+(x) = Tπ−(x) and
Tπ+(x) = T2π−(x), and when considered on the Riemann surface of the logarithm
then Tα(x) = Tα+2π(e2πix) for any non-singular direction α. Hence

T0+(e2πix)U(e2πix) = Tπ−(e2πix)U(e2πix) = Tπ+(e2πix)U(e2πix)Sπ

= T2π−(e2πix)U(e2πix)Sπ = T0−(x)U(x)NSπ

= T0+(x)U(x)S0NSπ,

where

N =

[
e2πia 0

0 e−2πia

]
is the “formal monodromy” of the fundamental matrix solution U(x) (4). Therefore
M = S0NSπ is the monodromy matrix, and it follows that

trM = 2 cos(2πa) + e−2πias0sπ.

Let us now compute trM by looking at the singular point x =∞. Let v = 1/x so
that system (2) becomes

(5) v
dy

dv
=

[
−a− v −b
−c a+ v

]
y = A(v)y,
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and note that v = 0 corresponds to x = ∞. Denote by λ1 and λ2 the eigenvalues
of the matrix A(0). Naturally the matrix A(0) is the so-called residue matrix of
system (5). Clearly these two eigenvalues are symmetric and, up to relabeling, we set

λ1 = λ and λ2 = −λ, where λ =
√
a2 + bc. In this case, the system is non-resonant

if 2λ /∈ Z; see e.g. [6, Definition 16.12]. In turn, provided that there is no resonance,
the system is locally holomorphically equivalent to the Euler system tv′ = A(0)v; see
e.g. [6, Theorem 16.16]. In turn, the monodromy matrix around v = 0 is conjugate
to the exponential of 2πiA(0) and the latter matrix is conjugate to the inverse of
the initial monodromy matrix M . Since traces of matrices remain invariant under
conjugations, the preceding finally yields

trM = 2 cos(2πλ).

In fact, this last formula holds whether or not system (5) is resonant, as it immediately
follows from the continuity of trM with respect to the parameters a, b, and c (the
set of non-resonant systems is open and dense). Lemma 2.2 promptly follows.

Next, note that the diagonal differential system (3) is naturally equivalent to the
following family of vector fields on C3:

Xa = x2 ∂
∂x + (1 + ax)

(
u1

∂
∂u1
− u2 ∂

∂u2

)
,

where a ∈ C. Clearly vector fields in the family Xa admit the function h(u) = u1u2
as a holomorphic first integral. Furthermore, we have:

Lemma 2.3. The function h(u) = u1u2 is a primitive first integral of Xa in the

following sense: if F̂ = F̂ (x, u) ∈ C[[x, u]] is a formal first integral of Xa, then there

exists a formal power series Ĝ ∈ C[[z]] such that F̂ = Ĝ ◦ h.

Proof: Assume that F̂ (x, u) is a formal first integral of Xa and consider a Taylor
expansion of the form:

(6) F̂ (x, u) =

∞∑
j=0

xj f̂j(u) =

∞∑
j=0

xj
∑
k∈Z

uk1 f̂j,k(u1u2).

Let us show that in fact F̂ (x, u) = f̂0,0(u1u2), which proves the lemma.

We argue by induction. Assume F̂ (x, u) = f̂0,0(u1u2) + O(xn) for some n ≥ 0.

Since F̂ is a formal first integral of Xa, a direct computation yields

0 = Xa.F̂ = xn
(∑
k∈Z

kuk1 f̂n,k(u1u2)

)
+O(xn+1).

By comparing monomial degrees, it follows that all the functions f̂n,k(·) must vanish

identically provided that k 6= 0. Thus the power series expansion (6) of F̂ takes on
the form

F̂ = f̂0,0(u1u2) + xnf̂n,0(u1u2) + xn+1
∑
k∈Z

uk1 f̂n+1,k(u1u2) +O(xn+2).

In turn, this refined formula for F̂ yields

0 = Xa.F̂ = xn+1

(
nf̂n,0(u1u2) +

∑
k∈Z

kuk1 f̂n+1,k(u1u2)

)
+O(xn+2).

Therefore also f̂n,0(·) must vanish identically unless n=0. Hence F̂ (x, u)= f̂0,0(u1u2)+
O(xn+1), which establishes the induction step.
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Remark 2.4. The computation carried out in the proof of Lemma 2.3 is related to
a qualitative issue that is worth pointing out. For this, note first that the general
solution of the diagonal system (3) has the form{

u1(x) = c1e−1/xxa,

u2(x) = c2e1/xx−a

for suitable constants c1, c2 ∈ C. It follows that for any formal first integral F̂ =
F̂ (x, u1, u2) of Xa, the composition F̂ (x, c1e−

1
xxa, c2e

1
xx−a) must be a constant, and

hence must factor through h due to the presence of the essential singularity arising
from e

1
x .

We are now able to provide the proof of Theorem 1.1.

Proof of Theorem 1.1: Owing to Lemma 2.1, the vector field Xa,b,c has a formal first

integral f̂ = f̂(x, y) which is obtained out of the first integral h(u) = u1u2 of Xa by
means of the equation

(7) f̂(x, T̂ (x)u) = h(u).

Furthermore, according to Lemma 2.3, every other formal first integral of Xa,b,c must

formally factor through f̂ . The proof of Theorem 1.1 is then reduced to showing that
if a (non-constant) first integral of Xa,b,c is holomorphic, then we necessarily have

cos(2πa) = cos(2π
√
a2 + bc).

Let us then assume there is a (non-constant) holomorphic first integral f for the
vector field Xa,b,c defined as in (1). It follows from Lemmas 2.1 and 2.3 that there

exists a formal series Ĝ ∈ C[[z]] such that f(x, T̂ (x)u) = Ĝ ◦ h(u). The formal series
on the right-hand side is independent of x; therefore, specializing the left-hand side
to x = 0 (where T̂ (0) = I) implies that f(0, u) = Ĝ ◦ h(u) is an analytic function

of u, hence Ĝ = G is analytic. Since the Borel summation preserves analytic relations,
it follows that Tα(x) also satisfies f(x, Tα(x)u) = G ◦ h(u). For each of the singular
directions β = 0 and β = π we have

G ◦ h(u) = f(x, Tβ−(x)u) = f(x, Tβ+(x)U(x)SβU(x)−1u)

= G ◦ h(U(x)SβU(x)−1u).

In other words, the function h(u) = u1u2 must be invariant by both Stokes operators

u 7→ US0U
−1u =

[
1 s0x

2ae−
2
x

0 1

]
u, u 7→ USπU

−1u =

[
1 0

sπx
−2ae

2
x 1

]
u,

which means that both s0 = sπ = 0. In particular, s0sπ = 0, which is by Lemma 2.2
equivalent to cos(2πa) = cos(2π

√
a2 + bc). This ends the proof of Theorem 1.1.

Remark 2.5. In the case when a, b, c ∈ R, the sectorial normalizing transformations
of Lemma 2.1 satisfy Tα(x) = T−α(x), which means that

y = TR(x)u, TR(x) = 1
2 (Tα(x) + T−α(x)), x ∈ R,

is a C∞-normalizing transformation between the restrictions of system (2) and its
formal normal form (3) to x ∈ R. Consequently, each of the following three func-
tions f(x, y) defined by

f(x, TR(x)u) =


(i) u1u2,

(ii) 1R<0(x) · x−ae1/xu1,

(iii) 1R>0(x) · xae−1/xu2,
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where 1R≶0
(x) is the characteristic function, are C∞-first integrals for the restriction

of Xa,b,c to R3. In the case (i) this C∞-first integral is asymptotic to the formal one
defined by (7).
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letages à feuilles fermées du plan complexe, Topology 31(2) (1992), 255–269. DOI: 10.1016/

0040-9383(92)90019-E.

[8] B. Malgrange, Frobenius avec singularités. I. Codimension un, Inst. Hautes Études Sci. Publ.
Math. 46 (1976), 163–173.

[9] B. Malgrange, Frobenius avec singularités. II. Le cas général, Invent. Math. 39(1) (1977),
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