THE NORMAL AND MACKEY TOPOLOGIES
ON CO-ECHELON SPACES

by

J. PRADA BLANCO

Abstract. A necessary and sufficient condition for the coincidence of the normal and Mackey topologies on a co-echelon space of order one is studied.

Introduction. Let \(a_n^{(k)} \), \(n=0,1,..., k=1,2,... \) be such that the following conditions are satisfied.

a) \(a_n^{(k)} > 0 \), for each \(k \) and \(n \).

b) \(a_n^{(1)} < a_n^{(2)} < a_n^{(3)} ... n=0,1,... \)

Let \(E \) and \(E^X \) be the echelon and co-echelon spaces respectively, corresponding to the steps \(a_n^{(k)} \) [1, p.419].

In this paper, the following theorem is proved.

Theorem. The normal and Mackey topologies in \(E^X \) coincide if and only if \(E \) with the normal topology is nuclear.

It is known that the normal and Mackey topologies in \(E^X \) coincide if and only if for every sequence \((x_n) \) satisfying \(\lim_{n \to \infty} x_n \), \(a_n^{(k)} = 0 \) for \(k=1,2,..., \) it follows that \(\sum_{n=0}^{\infty} |x_n| a_n^{(k)} \to 0 \), for every \(k=1,2,... \) [3].
On the other hand, the Grothendieck-Pietsch criterium establishes that E with the normal topology is nuclear if and only if for every k, there exists an $N(k)$ such that $\sum_{n=0}^{\infty} \frac{a_n^{(k)}}{a_n^{(N(k))}} < 2$, [2, p.98].

The previous theorem is, then, an immediate consequence of the following proposition.

Proposition. Let k_0 be such that for each $j=1,2,\ldots$, we have $\sum_{n=0}^{\infty} \frac{a_n^{(k_0)}}{a_n^{(j)}} = \infty$. There exists a sequence (a_n^k), $a_n > 0$, $n=1,2,\ldots$, such that $\lim_{n \to \infty} a_n a_n^{(k_0)} = 0$, $k=1,2,\ldots$ while $\sum_{n=0}^{\infty} a_n a_n^{(k_0)} = \infty$.

Proof. $\sum_{n=0}^{\infty} \frac{a_n^{(k_0)}}{a_n^{(j)}} = \infty$, $j=1,2,\ldots$ implies that there exists $0 < n_1 < n_2 < \ldots$ such that

$$\sum_{n=0}^{n_1} \frac{a_n^{(k_0)}}{a_n^{(1)}} \geq 2$$

$$\sum_{n=n_1+1}^{n_1+1} \frac{a_n^{(k_0)}}{a_n^{(i+1)}} \geq 2^{i+1}, \quad i=1,2,\ldots$$

Consider, now, the sequence

$$a_n = \begin{cases} \frac{1}{2} (a_n^{(1)})^{-1}, & 0 \leq n \leq n_1 \\ \frac{1}{2^{i+1}} a_n^{(i+1)}^{-1}, & n_i + 1 \leq n \leq n_{i+1}, \quad i=1,2,\ldots \end{cases}$$
It is obvious that \(\lim_{n \to \infty} a_n a^{(k)}_n = 0, \ k=1,2,\ldots \) because given \(k \), we have

\[
a^{(j)}_n a^{(k)}_n \leq 1, \ j \geq k, \ n=1,2,\ldots
\]

However, \(\sum_{n=0}^{\infty} a_n a^{(k)}_n = \omega \).

REFERENCES

Appendix. The referee has kindly pointed out to us that it is not necessary to take \(a^{(k)}_n > 0 \) for each \(k \) and \(n \). Supposing \(a^{(k)}_n \geq 0 \) for each \(k \) and \(n \), and that for each \(k \in \mathbb{N} \) there exists an \(n \in \mathbb{N} \) such that \(a^{(k)}_n \neq 0 \), then we may proceed in an analogous way finding the same results.