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MARTINGALES A VARIATION INDEPENDANTE DU CHEMIN
DaNS UNE FILTRATION PRODUIT

par

O, Mualart et M, Sanz

Ce travail développe le rapport entre martingales fortes et
martingales 3 variation ind@pendante du chemin {i.d.c.). Le ré&sultat
fondamental &tablit gue dans des filtrations produit les martingales
i.d.c. sont nulles et, &tant donné que les martingales fortes le sont

aussi, il s'én suit que les deux notions sont triviales.

. s . 1
1. Notations et définitions basiques, Soient (01,F1,P1;Fs,sa 0},

2 2 .2 . . . H
(Qz,F P :Ft,ta,O) des filtragiions, c'est 3 dire- (Qi,F ,PI},
2 .2 2 fa e i
(", F7,P") sont des espaces probabilis&s complets et {Fs' sy 0},

2 . . . .
{Ft' t3 0} des familles croissantes, complites et continues 3 droite
1 bl

de sous~tribus de F| et F2 respectivement, telles que V. Fs= F' et
2 .2 sz0
' Fo=Fo.
€30
On notera (Q.F,P;Fst, (s,8)e Ri) la filtration produit de
1 21 -
(e ,F .P‘:F;, $3 0) et (0 .F2,92:Fi, t » 0) d8finie de la fagon suivan-

ta: a=91xnz, F=F16F2, p=91x92, F =F1®F2.
st s &t
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2 1 1,2
Pour tout {s,t}e R nous poserons F__= Y F _=F &F,
+ st st s

2 T2

F
st

~ 1.2
- G\{'o F o =F eF,.

-

1 2 . 1 .
Il faut remarquer que Fstv Fst_F . puisque F_ contient tous
. 2 2
les cylindres mesurables quF, Fef , et Fst contient ceux de la forme

1
sz,GeF.

Notons par M2(1) 1'espace de Hilbert des martingales Miz
1 . . . 1 .
={MS, s2 0} adaptées & la filtration (@ ,Fi,Pi;F;, 53 0), nulles en O,
et telles que sup E{(M;)2}<+ﬂ . On peut définir de fagon semblable
s

2 2
M2y, M§(1) et Mc(2) sont les sous-espaces des martingales continues

2
de Mz(i} et M (2) respectivement,

2 ‘y s
Un processus 2 indice dans R+ défini dans un espace probabili-
sé complet (0,F,PY, M= {Mz, ze Ri} est une martingale, s'il est intégra-
= . . . 2
ble, adaptfe 3 une famille croissante de sous-tribus de F, {FZ, ze_R+},
et pour tous z,¢ 2z, Ona E{Mzz/ Fz1}= Mz1 , ot z,¢ 2z, indique
i'ordre partiel usuel de Rz.
. 2 . . e 2
Soit M° l'espace de Hilbert des martingales & indice dans R+,
nulles sur les axes, telles gue sup E{{Mz)2}<+ w, et so0it Mi le sous-—

z
2 . .
espace de M des martingales continues.

On peut donner des conditions plus fortes de martingales de
telle fagon que les processus & accroissements indépendants,.centrés
at nuls sur les axes les varifient. Ainsi, on dira gque M= {Mz, z'aRi}
est une martingale forte si M est nulle sur les axes et pour tous

2,4 2

1 4,02
¢z, E{M(z_,2.} /F  VF 1 =0, ot M{z_,z} =M =M - +
i 2 1772 e z, 1772 L (51,t2) (52,t1)

+¥ = = .
1z P2, (s},tIJ, Zy (32,t2)
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Une aytre fageon de donner une notion plus forte de martingale

~

consiste 3 imposer que la variation du processus seoit indépendante du

chemin,
Soit T 1'ensemble des courbes v:[0,1] — Ri partant
de (0,2} croissantes et continues. On peut considérer la martingale M
F teio,1} }. soit a
ol vt}

2
de M  restrinte 2 la courbe vy, M M P
< T Ty {v(t) yig)!
le processus croissant associé a M_.
Une martingale M de Mi est & vartation indépendante du chemin

{i,d.c.) si la variable alBatorie A?(!) est indépendante de la courbe

Ye I d'extrémité v{1}.
dguivaut & 1'existence d'un processus

La dé&finition antérieure
aver versions croissantes et conti-

.. 2 "
unique, A={Az, Ze R+}, intégrable,
2 .

gue M -A est une martingale.

nues sur toute gourbe ye T, et tel

Nous avons les r@sultats suivants ({Cairoli-Walsh [1]):

. 2 . )
Toute martingale forte M de Mc est i.d.c. si
{a) la famille {FZ, ZiERi} de sous—tribus est engendrde par
un processus de Wiener & deux paramitres,

ou (b} sup E{(Mz)4}< ®

z
La relation inverse est seulement connue dans certains cas

particuliers. {voir [13, {47, [5]).

=F.

2. Soit (4,F,p;F t.(s,t)e Ri} une filtration produit. On vé-
5
t

- . - -~ - i 1 2
rifie aussitdt gque toute martingale forte est nulle, puisque Fstv Fs

Nous allons montrergu'il en est de méme pour ies martingales i.d.c.
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, 1 2 .
Soient M de M2(1) at M2 de MC(2), et solient A1 et A2 leurs pro-

s . . - 1.2 .
cessus crolissants continms assocles. A A @St uh processus ¢rolssant

i,,2

. . : - 2 12
contina associd 3 la martingale M1M2, dans le sens que (M M ) -A A

est une martingale faible {voir [7]}.

L , sera l'ensemble des processus ¢ intégrables par rapport 2
M

1 . P
M, c'est 2 dire, prévisibles at tels que E {fg ¢(x)2 3\1(dx)}<m pour

2 L
tout 5{£R4. L 2 notera l'ensemble des processus W intégrables par
M

2 . 2 -
rapport & M, Finalement soit L 32 1'ensemble des processus ¢ inté-
MM

grables par rapport & M1M2, c'est 3 dire, pr@visibles et tels que

3
E {IR ${x,¥) A?(dx)hz(dy)}cw pour tous (s,t)e Ri ol Rst est le rec-
st
tangle [0,s} x{o,t],

2 . 2
Si ¢ appartient 2 [ : et ¢ 2 L22. alors ¢-y appartient & L 12

4 M MM

et nous avons:

s 1 £ 2 1 2
(fos oM (@ (oM (ay)) = [o otapiyId ([@x)M (ay).
st
Cn va maintenant £tablir une représentation des martingales de
carré inté@grable,
Rappelons gue deux martingales 3 un paramdtre sont dites forte-

ment orthogonales si leur produit est une martingale.

Proposttion 2.1. Soit M une martingale de Mi . 11 existent deux
. 2 .
suites {Ml,le N}, {Mj,jelﬂ} de martingales deux & deux -fortement ortho-
gonales dans M§(1) et Mi(Z) respectivement et une suite de processus
A 2 2
{9, . ,{i,7)e 8} de L telles que
i3 1.2
M. M
3]
o

2
(s, t) = L [ 8 0x )M (@M, (dy) .
i,9=1 st I
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L . 2
Démonstraiion. Toute martingale M de MC, par l'iso-

.y s 2 2 -
métrie entre M° et L7(%,F.P), s'derit comme

k

M{s t) = lim  f

)
=1
n

1 2

Mg (S48,
1 2 2 2

ob Mine Hc(1), Moe MC(2).

Considérons les espaces fermis Hi’ H, engendrés par les

2
ensembles de martingales {Min' i=1,...,kn;ne:N} c_Mi(1) .

2 . 2 -
M, , i=i,...,k ;ned}C M (2), respectivement.
in n c

. 1 i, 2 2, :
Sgient B ={Bi,1&-N}, B ={Bj,je N} deux bases orthonor-
N . 1.2 T2, 2
males de H1 et Hz, respectilvement, alors B B ={BiBj;(1,])E N~! est une
base orthonormale de H1®H2 {voir {3}), donc

=

1 2
M(s,t) = i,§=1 aijBi(s}Bj(t). {2.1)

s . - 1 .
Wous construisons, & partir de B s une suite fortement

) 2 .
orthogonale de martingales de Mc(1) que nous noterons {Ml,;.e-N}.

Rappelons qu'un sous-espace ferméd H de Mz(i), i=1,2
est stable s'il est stable par arrét et si Me H, ae Fé entralne TAM-EH.
On sait que si M est un sous-espace stable de Hzti),

ou N

o 2, - co
tout 2lément M de M" (i) admet une dédcomposition M=N1+N2, 1

appartient 3 H et W, est fortement orthogonale 3 H. On dira que N

est la projection de M sur H, et on Bcrira N1=pHM.

. 1 1 . i 1] 1 1
= at Ed M, =B, - . B,
Soit M1 B1, pour i1 i B; By, Bl , ol Py i
1-1 i-1
. . 1 2 -
est la projection de Bi sur le sous-espace stable de Mcti) engendré

par les martingales M;, T¢ kg i-1,

Cn peut de méme construire une suite fortement ortho-

2 i 2
gonale de martingales de MC(ZJ que nous notercns par {Mj' i e N},
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- . 1 2
Le résultat s'obtient en remplagant ai(s} et Bj{t} par

ses expressions comme somme &'intégrales stochastigues par rapport aux

. . 2 . .
martingales Mi, k=i,...,1 et Mh' h=1,...,3 , respectivement, dans (2.1}.

Dans le cas particulier des tribus engendrfes par des
processus de Wiener, on obtient des rZsultats beaucoup plus simples,

comme le montre le thfor2me suivant.

v, . 1 1 2 2
Proposztion 2.2. Soient W ={w5, sG:R+}, W ={wt, te.R+}

. soaa . 1 i
deux processus de Wiener indépendants, et solent FS=0 (Wx,_xs_s>,

2 . .
Fi=o (Wi, ye¢t>. S1 M est une martingale de M, alors il existe un
2
processus f &L 12 tel que
W

Mis,v) = |, eix, vy (@0 @y) .
st

Démonstration. On a l'expression sulvante:

k
M= lim 5" 1 M?
i2n Tin in in
n
od Ml e #l(1) er wi_e W2,
in in
: 1 2 2 2
Il existent des processus $. et ¢. de L et L res—
in in W1 . NE

pactivement, tels gue

k
- n .1 L t 2 2 _
Mis,€) = lim L' a ( [oo, GOW (dx)) [obi, (1u° @y =
kn
L 1 2 1 2
= lim £, a, IR bi, ()0 (Y)W (AW (dy)
st
La completitude de LE 5 et la propri&té d'isométrie
WW
des intégrales stochastigues entrainent
k
. . n 2 1 2
M = ¥
(s,t) 'J.R;;Z(lﬁm (5 a6 (OS] (V)W (@0 @y),

et il suffit de prendre

k
e n 1 2
$(s,t) = Lim T a, ¢, (x)o, (y. i
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Avant de donner le résultat qui conclut cette section il nous
faut &tablir un thfor¥me de Fubini pour les intégrales stochastiques

. 1,2
PaY rapport aux martincales M M,

Lemme 2.3. Soit ¢ un processus da LZ] o alors €(.,¥,.,w
MM

PP . . 1 1 1
est prévisible dans la filtration (@ ,f ,P ;F;, s 30} et

5)

5 2 1 2 2
Ew1{fo¢ (x,y.m1.w2)h (dx,w1)}<§ pour tous y<t, mze_nz A (dy,szfp (dw2)—
presque surement.

PR 2
On peut donc définir Az(dy,mzi-P (dwz)—presque surement le

' s 1 ,
Processus Yy(uz) = f0¢(;,y,m1,w2)M (A%}, et 1'on a

(a) Y {w,) appartient a L2
Yy 2 "

Cytors 1 2 1 2
) [olfgr (xrys0p 0 (@n) i’ (ay) = Jo_ ttxnm @an .

g -

Démonstration. Envisageons d'abord le cas gtagé,

Soit ¢(x,y,m1,w2) = i?j aij(m1,w2)1aij(x,y), ol aij={zij’zi+1,j+1]'
z..={s.,t.), et a,_  est une variable alBatoire bornées F -mesurable,
ij i'73 ij zij
Alors
= 1 -
Yy(mz) = i?j aij(w1,m2)M (Ai}1&j(y, , ol ﬂi_(si'si+ﬂ et

aj=(tj,tj+a .
Pour w, Eixé, Yy(mzj est prévisible et, en outre,
Ew IE Yy(wz)zhz(dy)<w ¢ & qui entrafne {a). L'&galité (b) est immédiate,
2
Dans le cas général, il existe une suite de processus ¢n dtagés,
vérifiant:

Efly (@xy)-0_(x,))°a" @) 2% (dy) —=——» 0
st n-+o

Quitte A extraire une sous-suite, on peut toujours supposer
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2 2
que pour tous (y,mz), A (dy,wz)-P (dmz)-p.s. on a

s 2'1 -n
Ew1f0(¢(x.y)-¢n(X.y)) A faxy< 27,

pour n assez grand,

. n =] 1
501t Yytmz) = Iown{x,y,m1,u2)M (dx}, et notons

1]

Y fw,d lim ¥ (w,) si cette limite existe,
y o2 n Yy o2

=0 dans le cas conktraire.

- . PP 1
Il résulte immé&diatement que Yy(m2)=fg¢(x,y,m1,m2)ﬁ {dx),
) 2 - L.
Az(dy,wzj-? (dwz)—p.s.. D'autre part, Yy(mz) &tant la limite de pro-
cessus prévisibles, il est, lui-méme, prévisible, pour w, fixé. Nous

i £ 2_2 1
avons aussi ENZIO Yy(wz) A" {dy)<w , P (dw1}—p.s.

Finalement, on a les &galitds suivantes

t 1 2
IO{IEQ(KrY:W1:m2)M {(dx) 1M {dy)=

.t ¢s I
Lim [otf 0, (v w0, )M (@) (dy)=

]

. : 1 2, ..
lém IRSt én(x,y,w1,w2}m {dxIM (dy)=

I

IR B{x,y,u ,mz)M1(dx)M2(dY). n
st !

. . 2 .
Théordme 2.4. Soit M une martingale de Mc i.d.c., alors M

est nulle.
Démonstration. D'aprés la Propesition 2.1

_ = 1 2
Mis. e =y b fRst¢ij(x,y>mi(d§}mj(ay).
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) i 2
Soit M (s.t) =  E_, fﬂst ¢y G yIM (M (dy)

En utilisant le théor#me de Fubini précédent, on peut écrire

0ot on 2, _ T s n 1
M o(s,t)= j£1ID NS (M ay) = Efg wiom e, ed
n, . s B 1 n, e DO 2
Nj(yJ—IO (Ey 0 nIM @), Ni(x)-fo sZy 0,5 BuYIM(@y).

Fixé se R et m1eaQ1, M(s,t} est une martingale 3 un para-
métre gui a pour processus croissant associé {en ayant compte de l'or-

. L . 2
thogonalité forte des martingales Mj)

1 LSS 2.2
A (sct)= lim LI, fO(Nj(Y)) A, (dy) .

On obtient d'une fagon analeogue

2 oL n s,.n 2.1
AT(s,8)= Lim (B, [om90a) A (ax) .

sl e 1
La proprigté i.d.c. entrafne A (s,t)=A2(s,t). Moyenant la
f L n 2 n 2
formule d'Itd appliqufe aux processus (Nj(y)} et {Ni(x)j , cette

égalité devient
n n 1 2
lim |, 2N, (y) 8, | M =
im 1,§=1 IRst J(y) lj(x,y) i(dx}Aj(dy)

. n n 2 1
= lim . (X, 7IMS : .
im 1'§=1 sztzni(x)¢lj(x y)MJ(dY)Al(dx)‘

Ici on a utilisé encore un th&#or2me de Fubini pour les intd-
grales mixtes. Cette dernidre &gelité est seulement possible si les

deux membres sont nuls.

Alors si dans l'expression

n n
. t 2 s 1 2
1 L ' 1 -
im e IO Aj{dY)(k§1 jO ¢kj(x ,y)Mk(dx 11 =0

on prend 1'espérance, on obtient E{M(s,t)z} =0,
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