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Los materiales viscoelásticos son aquellos materia
les tales que en su ecuación constitutiva, interviene no so-
lo el vector gradiente del desplazamiento en el instante
actual t, sino también la historia de dicho deplazamiento .

La forma que toma el tensor de deformación, a ij ,
en los materiales viscoelásticos, en el caso de viscoelasti-
cidad lineal, tipo Boltzman, y restrigiendonos, a la dimen-
sión de espacio, n=1, es

(1)

	

a= cu
-rt

x g(t-T)llx(T)dT

y su ecuación del movimiento viene dada por la ecuación int_e
gro-diferencial

donde u(x,t) es el vector desplamiento, y p la densidad del
cuerpo . Cumpliendo la función g(0 del integrando, unas cier
tas propiedades de convexidad, y decrecimiento en el infini
to .

C .Dafermos, en sucesivos trabajos que van de 1969
a 1975, ha estudiado la ecuación (2) sometida a condiciones
iniciales y unicidad de soluciones,asi como a la estabilidad
asintótica de las mismas .

41



42

En concreto el problema de la deformación de un

material viscoelástico unidimensional, que ocupa el segmen-

to la,bl, y sujeto en sus extremos, se escribe como sigue :

0
con f(t)=- -mg(t-T) u xx (T)dT

donde :

rt
PU= Cu

-
x I g(t-T)uxx(T)dTx

1_~

(3)

	

u(x,t)= ~(x,t)

	

te(--,01

u(a,t)= u(b,t)= 0

Los sucesivos tratamientos del problema (3) que

el propio Dafermos ha utilizado, y que han llegado a nues-

tro conocimiento, son los siguientes :

1) Reducción a una ecuación integro-diferencial

de tipo Volterra .

2) Aplicación de ]a teoria de semigrupos de con-

tracción .

Hablemos brevemente de cada uno de ellos .

1 . Reducción a una ecuación d e Volterra .

Este tratamiento consiste únicamente en sustituir

en el integrando de la primera ecuación de (3), u xx (T) por

su valor a partir del dato "espeso", ~(T,x), obteniendose

as! la ecuación no homogénea de Volterra (4) .

t
(4)

	

Pu=

	

cuxx- J

	

g(t-T)uxx (T )dT+f(t)
0

y dicha ecuación (4) sometida a las condiciones iniciales

(5)

	

u(0)= ~o(x) , . ul(0)= ~1 (x)

O0 (x)=

	

$(O,x)

	

~1 (x)=

	

$t(O,x)



La ecuación (4) con las condiciones iniciales (5), no es
mas que la versión infinito-dimensional de la ecuación de
Volterra clásica :

(t
pu"= -cu+I g(t-T)u(T)dT

1 0

(7)

	

c-(~g(I)dE>0
~0

teLQ,W)

y que ha sido estudiada sucesivamente por Volterra Friedman
Shinbrot [E] , [7] , Levin y. Nohel, 181 , [91 , y otros . Remiti
mos para una información bibliográfica complementarios al

libro de Hale [11] .

Dichos trabajos, vienen a estudiar las condicio-

nes mínimas que debe cumplir g(C), g : p +-> R para garanti-

zar la estabilidad asintótica de la solución a partir de la
construcción de una oportuna función de Liapunov, bien me-

diante técnicas ligadas a la transformación de Laplace .

Inspirado en estos trabajos, y fundamentalmente

en el de Levin [9], Dafermos deduce desde un punto de vista

matemático, el efecto de amortiguación, en la deformación de

un cuerpo viscoelástico, debido a la inclusión del término

integral en la ecuación de ondas .

As¡ en su trabajo de 1970, Dafermos [ 3 ] obtiene

como aplicación del teorema de las proyecciones de Lions,

existencia, unicidad, así como estabilidad asintótica de

las soluciones mediante la construcción de una conveniente

función de Liapunov .

Dicha construcción que asegura la estabilidad,

viene condicionada a una hipótesis complementaria, que re-

sulta necesario añadir a las de convexidad y decrecimiento
de la función positiva g(E), y que consiste en lo siguien-
te :

Esta condición (7) lleva a una interpretación me-
canicista muy clara . Consideremos las soluciones estaciona-
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rias del problema integro-diferencial no homogéneo

(8)

	

2

	

2

	

t

	

a 2u
p

a

	

= c a

	

g(t-T) 2 dT+f(x)
ax ax j-m ax

y con u(x,T)= u(x)

	

VTe(-,tl .

Esta solución satisface a la ecuación

(

	

2
(9)

	

Ic-f g(j)dj1
a

	

= f(x)
l 0

	

ax

y la ecuación (7) establece simplemente que el "módulo está
tico de elasticidad" es positivo .

2 . Aplicación de la teoria de semigrupos .

Otra aproximación al problema que v estamos tratan-

do, consiste en recurrir a la teória general de semigrupos

de contracción, Dafermos [51 .

La orientación es la siguiente : Es posible obte-

ner una formulación débil del problema (3) en términos de

una ecuación de evolución del tipo

u(O)= u c

en un espacio de Hilbert, H, donde A es un operador maximal
disipativo, y por tanto generador de un semigrupo de con-
tracción {T(t)}t,0, donde T(t)u o es la solución única del
problema (9) ; y por tanto consideramos la estabilidad asin-
tótica de la solución dentro del comportamiento asintótico
de dicho semigrupo .

En efecto : Basta introducir una variable auxiliar
en la ecuacíbn (3), w(x,I,t)= u(x,t-0 ,

	

EeR+ ; es decir,
llamamos w a la historia del desplazamiento, y si denotamos



por v(x,t)= ii(x,t) la velocidad,-la primera ecuación de (3)
puede ser escrita en la forma :

(11)

	

v= cuxx-111 0g(C)wxxd~

W-
9 w
al

y si considereamos al operador integro-diferencial del se-

gundo miembro de (11) en el espacio de Hilbert

(12) H= H1(S2)xL 2 (S2)xL g2 ( + ;H 1 (S2))

donde indicamos por L 2 , al espacio de las funciones de cua-

drado integrable con peso g . Si dotamos al espacio H, de un

producto escalar equivalente, donde va a intervenir la con-
dición (7) ; entonces al cierre de dicho operador en H, nos
lleva a la definición de un operador A : D(A) --~ H, D(A)= H

y .A -1 0= {O}, concretamente

D(A)= {(u,v,w)eH, veHÓ(2), 2i eL2(O,- ;H1(S2)),

Además se verifica, no sin dificultad :

(13)

	

<A(u,v,w), (u,v,w)> ±0

(14) R(I-A)= H

w( " ,0)= u( " )}

Es decir, que A es maximal disipativo y por tanto generador
de un semigrupo de contracción, T(t), cuyo comportamiento
es preciso estudiar .

Una manera de abordar el problema consiste en de-
mostrar, que el conjunto m-limite w(~), para cualquiera de
sus orbitas yW con ~cD(A) esta formado por un solo punto,
y ese punto es el OcH .

4 5



Bajo la condición de que A -1 0= {O}, que verifica

nuestro operador, es decir que el único punto fijo del semi
grupo TM, es el 0, el problema esta resuelto en Brezis
111, para el caso en que -A es la subdifnrencial de una fun

ci6n convexa s .c .i ., propia, con una hipótesis complementa-
ria que omitimos .

Por otra parte Dafermos-Slemrod C4], han tratado

el problema para operadores maximales disipativos, bajo la

hipótesis de que el conjunto w-limite, para las orbitas del

semigrupo, sea no vatio ; condición que se verifica si las

órbitas son precompactas . Este último hecho viene ligado a

su vez al comportamiento del operador resolvente (I-A) -1

La compacidad de dicho operador garant iza la precompacidad

de las órbitas .

As¡, la aplicación de estos resultados a nuestro
i

operador,

	

siempre teniendo en cuenta que A - ' 0=

	

{O},

	

permite

demostrar que en efecto, el conjunto w-límite para cada una

de .. . . .. .,-bita ., y (n,,)= {O}, y por tanto la estabilidad asint6

tica de las soluciones . Unicamente cabe mencionar de manera

especial, que la compacidad de las órbitas para nuestro pro

blema, hay que demostrarla directamente,porque el operador

resolvente, (I_-A) -1 no es compacto en H .

OBSERVACION . En 151 se demuestra que {T(t)} restringido al

conjunto cow(0), coincide con un grupo lineal de isometrias,

por lo cual la relación

nos permite a veces caracterizar los elementos de w(0), , 0eD(A) .

3 . Espectro de A .
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`AX,X- z át I IT(t)X 11 2 = 0

Para finalizar, permitasenos contar una pequeña

aportación al problema de la viscoelasticidad .



Puesto que la resolvente del operador A, y por
tanto del operador máximal acretivo, -A, no es compacta,
como es su espectro .

Es conocido, que la parte puntual de dicho espec-
tro, si existe, esta ligada a las frecuencias propias de vi
bración de un cuerpo, o también, desde otro punto de vista,
a las soluciones de tipo exponencial .

Bien, pues una aproximación a dicho problema es
la siguiente :

a .- Consideremos el problema de perturbaciones singulares
siguiente :

I E , en H

con ~= (u,v,w) .

d~ _
dt AEV~

A
e
IP=

Como problema reducido consideramos

P -1 v

cu xx -EJ _g(1)wxx d1
aw 0
aE

_de _

	

-1
Io ,

	

en

	

H0=

	

Hp(Q)xL 2 (SI)

	

dt

	

A00

	

A

	

e=

	

p

	

v

e(o>= e 0

	

o

	

Icuxx

con e= (u,v) ; es decir el problema mixto de condiciones ¡ni
ciales para la ecuación de ondas .

No es dificil demostrar la convergencias de solu-
ciones del problema I e a 1 0 5 en L-(O,T ;H0) .

b .- Hay razones para pensar,

	

por tanto que el operador -A E

cuyo espectro desconocemos admite espectro puntual, próximo
al espectro, discreto, del operador antiautoadjunto A 0, y
cuyos valores propios están todos en el eje imaginario, de-
notandolos por {±ibk }

	

bk ` m,

	

si k -->
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En efecto, si nosotros queremos calcular los valo

res propios de -A
F-
directamente, nos encontramos con una

ecuación del tipo

tes conclusiones :

48

~2
±bkl1-E(

Og(1)e "del= 0

	

k=1,2, . . . .

donde se ha supuesto c=1,

	

p=1,

	

g(0dI<1 .
J '0

La manipulación de dicha ecuación, nos lleva a las siguien

1) Si g(E) es de tipo exponencial .

g(C) :p e-~~

	

2

el espectro de -A e

	

e>0 suficientemente peque-
ño consta de las siguientes partes .

a) El conjunto {CeC, ReC>. 2 }constituye lo

que se llama el espectro residual de A E

R(A E +J-YOH

b)

	

Existen valores propios complejos

	

~k(e),
próximos a ibk , y a -ibk , y no existen valo

res propios reales .

c) Los puntos JeC, R e C < 2 , salvo el espec-

tro puntual ap , constituyen el conjunto re-

solvente p(A E ) .

d) Estos resultados pueden hacerse extensivos

a ee(0,1] por un argumento del tipo de la

invariancia del grado topológico de Brou-

wer .

Si g(E) no fuese de tipo exponencial todo el con-

junto de los

	

eC, Re >O, pertenecen al conjunto residual,

y sin interés, parece ser, desde el punto de vista físico .



BIBLIOGRAFIA

1 . BREZIS, Operateurs Maximaux Monotones . North Holland
(1973) .

2 . DAFERMOS, Asymptotic Stability in Viscoelasticity . Arch .

Rat . Mech . ANalysis, 37 (1970), 297-308 .

3 . DAFERMOS,_ An Abstract Volterra equation with applications
to linear viscoeslaticity . J . Diff . Eqs . 7

(1970),554-569 .

4 . DAFERMO'-SLEMROD, Asymptotic behavior of nonlinear con~
traction semigroup . J . Functional Ana-

lysis, 13 (1973), 97-106 .

5 . DAFERMOS, Contraction semigroups and trend to equili-

brium in continuum mechanic . Lecture Notes,

503 (1975) .

6 . FRIEDMAN, J . Analyse Math . 11 (1963) . 381-413 .

7 . FRIEDMAN-SHINBROT, Trans . Amer . Math . Soc . 12 6 (1967),

131-179 .

8 . LEVIN, J . Analyse Math . 11 (1963), 381-413 .

9 . LEVIN, J . Differential Equations 4 (1968) 176-186 .

10 . MCCAMY-WONG, Stability theorems for some functional di-

fferential equations . Trans . A .M .S . 16 4

(1972), 1-37 .

11 . HALE, Functional Differential Equations . Springer-Verlag

(1971) .




