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INTRODUCCION. -

Los materiales viscceldsticos son aquellos materia
les tales que en su ecvacién constitutiva, interviene no so-
lo el vector gradiente del desplazamiento en el instante
actual t, sino también la historia de dicho deplazamiento.

La forma que toma &l tensor de deformacidn, o,

: ij
en los materiales viscoelfSsticos, en el caso de viscoelasti-

Y

cidad lineal, tipo Boltzman, y restrigiendonos, a la dimen-

sidn de espacio, n=i, es
t
(1) o= cux—f . g(t—r}ux{r)dr

y su ecuacidn del movimiento viene dada por la ecuacidn inte
gro-diferencial ‘

(2) pu= o

donde u(x,t) es el vector desplamiento, y o la densidad del
cuerpo. Cumpliendo la funcidn g(f{) del integrando, unas cier

tas propiedades de convexidad, y decrecimiento en el infini

to.

C.Dafermos, en sucesiveos trabajos gue van de 1989
a 1875, ha estudiado 1la ecuacidn (2} sometida a condiciones
iniciales y unicidad de soluciecnes ,asi como a la estabilidad

asintdtica de las mismas.
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En concreto el preblema de la deformacidn de un
material viscoelistico unidimensional, que ocupa el segmen-
to [a,b], y suietc en sus extremos, se escribe come sigue:

U=z Cu
o ®

t
x—! g(t4r)uxx(1)dr

-

{3} ulx,ty= ¢{x,t? te{—m,O]

ula,t)s uwib,t)= 0

Los sucesivos tratamientos del problema {3) que
el propic Dafermos ha utilizadeo, y que han llegado & nues-

tro conocimiento, son los siguientes:

1} Redueccidn a2 una ecuacidn integro-diferencial

de tipo Veolterra.

2) Aplicacidn de lk teoria de semigrupos de con-

traccidn.

Hablemos brevemente de cada unc de elleos.

1. Reduccidn a una ecuacidn de Volterra.

Este tratamiento consiste finicamente en sustituir
en el integrando de la primera ecuacibn de (3), uxx{r) por
su valor a partir del dato "espeso", ¢{1,x), obteniendose

asi la ecuacidn no homogénea de Volterra (4),

{4) pu= cuxx-l g(t—r}uxx(T)d%+f(t}

0

0
con f(t}=-4 glt-1t) uxx(r)dr

y dicha ecunacidn (%) sometida a las condiciones iniciales
(5} u{o}= ¢O(x} , . out{o}= ¢1(x}

donde:

$ (x)= ¢{o,x} ¢1(x)= $:(0,x)
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iLa ecuacién (4} con las condiciones iniclales {$), no es
mas que la versidén infinito-dimensional de la ecuacidn de

VYolterra clisica:

t
{6) put= —cu+[_g(t—r)u(r)d1 teLO,W)

0 .
y que ha sido estudiada sucesivamente por Volterra Friedman
Shinbrot [€], [71, Levin y Nohel, [8], [9], y otros. Remiti
mes para unpa informacidn bibliogréfica complementarios al

libro de Hale [11].

Dichos trabajos, vienen a estudiar las condicio-
nes minimas que debe cumplir gl£), g: R+—+ R para garanti-
zar la estabilidad asintdtica de la solucidn a partir de 1la
construccidn de una oportuna funcidn de Liapunov, bien me-

diante técnicas ligadas a la transformacidn de Laplace.

Inspirado en estos trabajos, y fundamentalmente
en el de Levin [9], Dafermos deduce desde un punto de vista
matemdtico, 2l efectode amortiguacidn, en la deformacidn de
un cuerpo viscoeldstico, debido a 2 inclusidn del términe

integral en la ecuacién de ondas.

Asi en su trabajo de 1870, Dafermos [31 obtiene
como aplicacidén del teorema de las proyecciones de Lions,
existencia, unicidad, asi como estabilidad asintdtica de
las soluciones mediante la construccidn de una conveniente

funcidn de Liapunov.

Dicha construceidn que asegura la estabilidad,
viene condicionada a una hipdtesis complementaria, que re-
sulta necesario aflladir a las de convexridad y decrecimiento
de la funcidn positiva g{£), y que consiste en lo siguien-

te:
(73 c—J gle)de>o
G

Esta condicidn (7} lleva a una interpretacidn me-

canicista muy clara, Consideremos las soluciones estaciona-
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rias del problema integro-diferencial no homogéneo

82u azu t 32u
{8 p 5 = ¢ > -I glt-) — dr+f{x)
3 X —= X

y con u{x,t}= ulx} vre(-w,t].

Esta solucifn satisface a la ascuacién

- 32
{3s) [c—J g{E)di] ‘; = Ff{x)
0 ax

y la ecuacidn (7) establece simplemente que el "mddulo estd

tice de elasticidad"” es positive.

2. Aplicacién de la teoria de semigrupos.

Otra aproximacidén al prohlema quelestamos tratan-
do, consiste en recuprrir a la teoria general de semigrupos

de contraccidn, Dafermos [5].

La orientacidn es la siguiente; Es posible obte-
ner una formulacidn d&bil del problema (3) en términcs de

una ecuacibdn de evolucidn del tipo

(107} == Au

en un espacio de Hilbert, H, donde A es un operador maximal
disipativo, y por tanto generador de un semigrupo de cons

traccidn {T(t)}tzo’
problema {($); y por tanto consideramos la estabilidad asin-

donde T(t)uo es la solucidn dGnica del

tética de la solucidn dentro del comportamiento asintdtice

de dicho semigrupo.

Ent efecto: Basta intreoducir una variable zuxiliar
en la ecuacidn (3}, wix,E,t)= u(x,t-£3}, EeR+; es decir,

ilamamos w a8 la historia del desplazamiento, ¥y si denotamos
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por vi{x,t)= &{x,t) ta velocidad, la primera ecuacibn de (3}

puede ser escrita en la forma:

Uz p_lv

{11) v = cuxx—Jog{E)&xxdﬁ
- L 8w
" 3E

v si considereamos al operador integro-diferencial del se-

gundo miembro de (11) en el espacioc de Hilbert
(12) H= Hg(ﬁ)xL2(9)xL§(R+;Hé(ﬂ))

donde indicamos por L;, al espacio de las funciones de cua-
drado integrable con peso g. Si dotamos al espacio H, de un
producte escalar equivalente, donde va a intervenir la con-
dicidn (7); entonces al cierre de dicho operador en H, mnos

lleva a la definicidn de un operador A: D{A) — H, D(A)= H

=1
y & “0= {0}, concretamente

D{a)= {(u,v,w)eH, veH%(Q), %% cL;(O,w;H%(Q)), w{+,0)= u{:}}

Ademds se verifica, no sin dificultad:

{i3) <a{u,v,w}, {u,v,wi> 50
{14) R{1-A}= H

Es decir, gue A es maximal disipativo y por tanto generador
de un semigrupo de contraccidn, T(t), cuyo comportamiento

es preciso estudiar.

Una manera de aboprdar el problema consiste en de-
mostrar, que el conjunto w-limite w(¢), para cualquiera de
sus orbitas v(9)} con ¢eD(A} esta formado por un sole punto,

¥ ese punto es el {eH.
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Bajo la condicidn de que a~to= {0}, que verifica
nuestro operador, es decir que el Gnico punto fijo del semi
grupe T{t), es el 0, el problema esta resuelto en Brezis
[1], para el casoc en gue -A es la subdiferencial de una fun
cidn convexa s.c.i., propia, con una hipdtesis complementa-

ria que omitimos.

Por otra parte Dafermos-Slemrod [4}, han tratado
€l problema para operadores maximales disipatives, bajo la
hipdtesis de que el conjunte w-limite, para las orbitas del
semigrupe, sea no vacio; condicidn que se verifica si las
&Grbitas son precompactas. Este {l1timo hecho viene ligado a
su vez 2l comportamiente del coperadeor resolvente (I—A}-l:

La compacidad de dicho operador garantiza la precompacidad

de las Hrbitas.

Asi, la aplicacidén de estos resultadoes a nuestro

|
1o= {0}, permite

operador, siempre teniendo en cuenta que A~
demostrar que en efecto, el conjunto w-limite para cada una
de sus Brbitas y{4)= {0}, vy por tanto 12z estabilidad asintd
tica de las soluciones. Unicamente cabe wencionar de manera
especial, que la compacidad de las drbitas para nuestro pro

blema, hay gue demostrarla directamente,porgue el operador

resolvente, (I-.'l\)_1 no es compacto en H.

OBSERVACION. En |5} se demuestra gque {T{t)} restringido al
conjunte cow(d ), coincide con un grupo lineal de isometrias,
por lo cuval la realacidn

1 d 2
<ax,x>= 5 ogp lttoxli®= o

‘nos permite a veces caracterizar los elememtos de w{¢), ¢eD(A).

3., Espectro de A.

Para fimalizar, permitasenos contar una pequefia

aportacidn al problema de la viscoelasticidad,
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Puesto que la resolvente del operador A, y por
tanto del operador maximal acretivo, -A, no es compacta,

como es Su espectro.

Es c¢conocido, que la parte puntual de dicho espec-
tro, si existe, esta ligada a las frecuencias propias de vi
bracibén de un cuwerpo, © también, desde otro punto de vista,

a las scluciones de tipo exponencial.

Bien, pues una aproximacién a dicho problema es

la siguiente:

a.- Consideremos el problema de perturbaciones singulares

siguiente:

a9 _ -1
ol A£¢ g v -
I, en H A Y= cuxx—EJOg(i}wx df
$(0)= ¢ _ v
3&
con = {(uw,v,w).
Como problema reducido consideramos
a8 -1
. 2 = = A0 pov
Io’ en HO He(ﬂ)x? (Q}]dt | v} Age:
8{0)= 90 Cu

con 8= {u,v); es decir el problema mixte de condiciones ini

ciales para la ecuacidn de ondas.

No es dificil demostrar la convergencias de solu-

ciones del problema IE a I en Lm(O,T;HO).

0’
b.- Hay razones para pensar, por tanto que el operador _AE
cuyo espectro desconocemos admite espsctro puntual, prdxime
2l espectro, discreto, del operador antiautcadjunto Ao

k]

cuyos valores propios estdn todos en el eje imaginario, de-

notandolos por {iibk} bk — >, gik — =,
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En efecto, si nosotros queremes calcular los vale
res propios de -A directamente, nos enconiramos Con uUna
£

ecuacidn del tipo

c2+.bi[1—EJ g(a)ecgda]z o k=1,2,....
0

o

donde se ha supuesto c¢=1, p=1, I g{E)dEe1.
o]

La manipulacidn de dicha ecuacidn, nos lleva a las siguien

tes conclusiones:

1) 8i g(£) es de tipo exponencial.

g{&)sn e M . £

L2
r | >

el espectro de —AE £>0 suficientemente peque-

o consta de las siguientes partes.

a) El conjunto {zeC, Raf2 % } constituye lo

que se llama el espectro residual de hE

R(Ae%ci#H

b) Existen valores propios complejos ck(a),

préximos a ibk, y a -ib y no existen valo

k’
res propios reales.

A
¢} Los puntos <£LeC, Rgf < 3 salvo el espec-
tro puntual cp, congtituyen el conjunto re-

solvente p(AE).

d) Estos resultados pueden hacerse extensivos
a ee{0,1] por un argumento del tipo de la
invariancia del grado topolégice de Brou-

Wwer.

§i g{£) no fuese de tipo exponencial tode el con-
junto de los eC, Ry >0, pertenecen al conjunto residuatl,

y sin interés, parece ser, desde el puntc de vista fisico.
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