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This paper studies filtrations associated in a normal way to stopping
Tines, and in particular the conditional independence property, usually
known as the F4 property. Stopping lines with respect to some special fil-
trations are studied by means of a characterization of predictable processes.

Preliminaries and notation. In RE vwie consider the partial order

(s,t) < {s',t')®s<s' and t<t',
and a strenathening of it
{s,t) <« (s',t'")Y e s<s' and t<t'.

E, we will denote

Let z=(s,t) be a generic point of R

Rz={z'eR3,z'3z}

U,=1{z'¢ RE, z' >z} =({z,=).

[0,2], Ez= {z'eRf, z'<z} =10,z),

If A is a subset of RE we define the following sets:

e +

H,= UR, H= UR, Hi= UU.
A zeh © A zeh© A zeh ©

DEFINITIONS. (1) A C:RE is a separation line if A is a non empty,
closed set satfsfying the following twc properties:

. + _
(1) Hy 0 Hy = &
(1) Hy UKy UA U {0,=)C =RZ, where 0 denotes the origin of R
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The set of all the separation lines will be denoted by S.
l.et {n,F,P) be a complete probability space and let (F ) s e RZ be a

. . . . 1 .
filtration on it. {F)) 2 has the F4 property if, for each z, FJ= ¥V F
2'ze R+ z y >0
and F2= ¥ g, are conditionally independent given F_. B
Z .50 xt z

Sy

{2y x:qa- Sufwl s a stopping line (s.1.) with respect to

2 \f {1 ( (z), ze Rz} is a measurable and adapted process.
)\ m\
We can define a partial order for subsets of R in the following way:

(7,)

z'ze R

A<B = H, CH

A= "R
Then {1H {z), ze RE} is an adabted process if and only if
Mm)
2
VzeR,, {v]z« AMw)l e F,
1. Let A: @ ~ SU{=} be measurable, that js {1 (z), ze RE} is a

H
Aew)
measurable process. ODur purpose is to study the smallest filtration making

A a s.l. and to verify if this filtration has the F4 property.
It is easy to see that the smallest filtration making A a s.1. is
that qivan by ) - '

VzeRi, Fz=o<{u:, z' < xw)}, Z'E[U,ZJ?-

EXAMPLES. (1) Q=RE, F=B(RE), az)= 3z={(s,8),028<t} V

Uf{e,),0<e<s), then F,= o<[z',=), z' €[0,z]>. A Borel function f: o + R
is Fz-measurab1e if and only if it is constant in (z,=), if only depends on
x in [0,s)x[t,=), and if only depends on y in [5,=)x[0,t)

{Fz)ze R2 is a product filtration, so it satisfies (F4) with respect
to any product probab111ty

(2) Q=Rf_, F=B{R+), A(z) =3z =((s,8), t2Re=} U l{a,t), S<ac<w},
then Fz= a<B[0,z), {O,ZJC > It might be proved that this filtration satis-

fies (F4) i and only if ponly charges increasing curves.

(3) Let G be the group of transfcrmat1on5 of R2 generated by
g+(s t)=(t,s) and 9, {s,t) =(as, —J, a>0. It is known that if {N y ZE R }
is a Wiener process then {H ),ze R0}, VgeG, is another one (see [61).

Let wus consider Q-RE, F-B(R+), x(z)=23glz), then
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(Q) =g<«fz',=), 2' €0, gﬁ {z}1>. In comparing F(Q} with the F, given in

examp1e one, we observe that F 9) . Fg‘l(z)’ Fig)l Fi -1(z) and F{g)z 2 g-Yz)

therefore (Fgg)}ze g2 verifies {F4} with respect to any product probability.
+

Example 3 lead us to consider filtrations related to changing time
for two-parameter Wiener processes.
Dencte by XK the set of centinuous, one to one, Lebesgue-measure

preserving functions f: R2 > RZ such that 2, € f(R } R%’ C f(R Y.
2
it is proved in (6} that if {N , ZE R } is a N1ener process, then

{H(f(RZ)), zZE RE} is another one

THEOREM. Let fe H . The following statements are equivalent:

{i} feG. {ii) the filtration associated to ifw) = aﬁf(Rw) vepifies
(F4} with respect to any product probability.

Proof. Example 3 shows (i} = (ii} it can be proved that
F, =g<[f-1{z7),»), z' € [0,2]>. He also have {ii) = f‘l(R } is a rectangle,
¥ze Rg The result follows from the equivalence fel = - Z(R } is a rectan-
gie for every ze R2

2. In this section we consider the filtration of examples 1 and 2.
They might be transformed into right continuous filtrations by considering

F; =0 F > then we respectively cohtain:

Z'» 2
(2.1} F;=o<(z:m), z'e[0,2)>,
(2.2) P2 =0<8([0,2]), [0,21%5.

Motice that if A is an s.1. the measurable and adapted process

(1, (z}} 2 alse is continuous to the left, so it must be predictable.

Ha ()

For the case {2.1) we have {see [4]}: (XZ}Z eR2 is a predictable
+

' process if and only if there exist measurable functions H and h such that

zZe R

Yz(m)= Hlu,z} 1 + h{z} 1

{wez} {wez 3¢

Then if A is an s.1. with Dw =Hx(w), IDw(z} =H{w,z) }(w) +

where h =1y, H{w,z} = IA(w}{Z}’ and D is s stopping set

1{w<2

+ h(z)%

<z}c
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ds50CTdLed Lo a s5eparalicnh [ine L.,
[t can be proved that:
D =0 if w¢ D, that is aw}=L if L < 3w
= U ; - w}® :
Dm-(D FlQm) v A{w} if weD, {Qm {w,=}"), that is

(L ABw)<a{uw) < (Lv%}w} if Bw<l

In the case (2.2}, (XZ)Ze R

there exist measurable functions H,F,G and h such that

2 is a predictable process if and only if

Xz(m) =H{w5231{w{z}(w) + F(mz’z}}-sé (w) + G(ml’z)lf)g (m)+h(z)1[z’m)(w}a

- . 2
where: w—(wl,wz}, o, —{w|w13_s, 0<w,<t}, D (w|8<x<s, t<y},
Let » be a separation line. By the same arcuments as before we obtain:
there exist a separation line L such that:

Mw)=L if D =HL C [0,0], that is if L{ du.

If L L 3w and L} 3w, a{w) is any separation line (measurable with
respect to w} lying between awal and Suvl; Mw) restricted to [(mI,O),w)
only depends on wl, Mw) restricted to I(O,mz),w) only depends on -

{w =(m1,52) ~ (51,m2), where (ml,az),(al,mz) are points on L)

Tf 3w<b,x{m) is any separation Vine, i{u)y 2w, when restricted

o

Iml,w}xiﬂ,mzl of only depends on @y and restricted to [O,wg x[az,w) it

only depends on Wy
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