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Realizability of localized groups and spaces

J . Aguadé

The theory of localization of nilpotent groups and spaces (see [4]

for a reference) associates to each nilpotent group (space) G , a family

{Gp l of nilpotent groups (spaces), Gp p-local . In this paper we study the

problem of deciding if given a family {G(p)} of groups (spaces) there is a

group (space) G such that {G(p)} coincides with the family of localizations

of G . We obtain necessary and sufficient conditions for an affirmative ans-

wer (see § 3 for a precise definition) .

In the last section of this paper we apply the preceding results to

the problem of fibering a space by a subspace . We show that under certain

conditions it is a "local" problem in the sense that a space E can be fibered

by a subspace F if and only if the localizations Ep can be fibered by Fp

for all p .

All spacesare assumed to be of the homotopy type of CW complexes .

1 . Realizability of localized groups

In this section we consider the following problem : Let {G(p)} be a

family of nilpotent groups of class Sc, G(p) p-local, and let G(p) -+ G(o)

be o-localization (i .e . all groups G(p) have isomorphic rationalizations) .

l,le want to obtain necessary and sufficient conditions in order to insure the

existence of a group G with p-localizations isomorphic to G(p) . More preci-

sely, we say that a nilpotent group G of class 5c solves the problem if :

a) There are isomorphisms 5 =+ G(p) and G o -_= G(o) ;



b) the following diagram is commutative :

diagram is commútative :

Notice that the homomorphisms G(p) --" G(o) are data of the problem .

This is important because it is known that there are non-isomorphic groups

with isomorphic localizations (see [4], p .33), whereas, at least if the

groúp G is finitely generated, G is completely determined by the homomor-

phism Gp -= Go .

	

Note also that the problem

	

does not always have a solu-

tion . A counterexample can be constructed by taking G(p) =
Z(P), G(o) _

and G(p) --, G(o) multiplication by p . We will see later that there is no

group G solving the problem in this case . Clearly, if we ~omit

	

the condi-

tion b), we can take G =Z.

Theorem 1 .1 With the above notations let us consider the following condi-

tions :

i) the problem has a solution ;

ii)there exists p : G(o) --" (IIG(p)) o such that if h p is the rationáliza-

tion of the canonical projection IIG(p) -G(p), then the following

G(o) - G(p)

hpp\
G(p) o

)let us denote Hp = Im(G(p) -	G(o)),

	

H = n Hp . Given x E G(o) there

exists n , such that xn .E H .



Then we have : i - ii - iii and if the groups G(P) are torsion free abelian

groups then al] three conditions are equivalent .

Proof : i - ii . Let G be a group solving the problem . We can define p as

the composition G(o) <- Go

	

- (n G(p)) o where the second map is the ra

tionalization of the composition G = nG

	

-	HG(p).

i - iii . It suffices to prove iii for Gp and Go instead of G(p) and G(o) .

Given x E Go , there exist n such that xn = ry, y E G,

	

r : G ---> Go the ratio-

nalization .

	

Let us consider the p-localizations of y,

	

xp E Gp . Then xp ra-

tionalizes to x and xn E H .

ii - i . If there exists p, we define G as the pullback

G - IIG(p)

r'

G(o)-L->(RG(p))o

G is a niipotent group of class 5 c . Composing the top homomorphism with

the canonical projections EG(p) =- G(p) we obtain homomorphisms

gp : G --> G(p) . We will show that gp is a p-localization i .e . gp is a

p-isomorphism . From the hypothesis on p we obtain the commutativity of the

diagrám :

G(o)

IWe have

G = {((x q )Y)1 xq E G(q), Y E G(o)

	

and

	

r((xq)) = p Y} .



Let us assume g((pxq),y)= 1,

	

i .e¡

	

xp = 1 .

	

Then the above di agram

yields y = 1 and so r((xq )) =

	

py =1 . Since r is a O-isomorphism, there

exists n such that (xq) =1 . But xq belongs to the q-local group G(q), hen

ce we can assume (n,p) = 1 and so we have proved

	

that gp
is a p-monomor-

phism.

Let xp E G(p) . We have to see that there exists m such that (m,p)=1

and xp = gpa for

	

some a E G .

	

Let y = rxp E G(o), z = p y E (EG(p)) o . Then,

h pz =y. Since r : riG(p) --> (nG(p))o is a O-isomorphism, there exists n

such that zn = r((xq )) . Since xq E G(q) and this group is q-local, if q ~ p

k
we can take xq = xqp

	

with h = pkm and (p,m) =1 . On the other hand x p goes to

yn = rxn . Since G(p) --> G(o) is a q-isomorphism, we have xpt =
xpk+tm and

we take xp = xp . Let us consider
(xq).

E EG(p) . We have :

k+t
zp

	

m= r((Xq )pt ) - r((xq )
pk+t

) _-(r((xq)))pk+t E (uG(p))o

Since (fiG(p)) o is o-local, we obtain r((xq)) = zm and 9p ((xq),ym) =

xP = xp

	

with (m,p) =1 . This proves that gp is a p-epimorphism .

Let us see now that the group G solees the problem . Since we have

proven that gp : G

	

-> G(p) is a p-localization, we have an isomorphism

G p

	

=. G(p) . Moreover, since the diagram (1) is commutative, the homomor-

phism G -> G(o) is a O-isomorphism and we have an isomorphism

Go =-r G(o) . We only have to see that the diagram

is commutative, but this follows from the fact that it is obtained from



G --S-- G (p)

Go ---- G(o)

by localization . This ends the proof of ii => i . Let us assume now that the

groups G(p) are torsion free abelian groups and let us show that iii - ii .

Given x E G(o), let n be such that nx E H . Then for each p there is a uni-

quely determined xp E G(p) such that nx = rx p . We take z =(xp) E EG(p) and

we define

	

px = z' E (riG(p)) o where z'

	

is such that nz' = rz . It is then

clear that z' does not~depend on the n we have chosen . In this way we ob-

tain an homomorphism p : G(o) --} (fiG(p))o .

This ends the proof of the theorem .o

Now we can see that if we take G(p) =
2r(p),

G(o) = o and G(p) -} G(o)

multiplication by p, then there is no group G solving the problem because

condition iii in the above theorem is not satisfied .

Theorem 3 .1 in [3] proves that for a given p the solution is uni-

quely determined .

We will study now under what conditions a family {G --" H p} p of

homomorphisms, where G and H are nilpotent groups, comes from a homomorphism

G --+ H . A necessary condition is that the family {G --} Hp}should be ra

tionaly coherent i .e . for all primes p,q the diagram

G

H
q

H
1p

Ho

should be commutative . If H is finitely generated this condition is also

sufficient ([4], p .26) . In general we have :



Proposition 1 .2 A rationaly coherent family of homomorphism {G --> Hp}p

comes from a homomorphim

	

G --> H if and only if the induced diagram

Go
	-->(11Gp)o

is commutative .

Proof : The "only if" part is trivial . If The above diagram cómmutes we have :

and we get. sP because the square is a pullback

	

([ 31 )

2 . Realizability of localized spaces

Let {B(p» be a family of nilpotent connected spaces, B(p) p-local,

and let B(p) -> B(o) be rationalizations (i .e . all spaces B(p) have ho-

motopy equivalent rationalizations) . We ask for the existence of a nilpo-

tent space B and homotopy equivalences B p	B(p),Bo	i B(o) such

that the following diagram is homotopy commutative :



If such a space B ex¡ sts we say that B sol ves the problem .

	

Fi rst of al l,

a necessary condition for the existence

	

of a sol ution is, that

	

n B(p) must

be a nilpotent space . It is not difficult to see that this is equivalent

to say that there .exist integers cn , n>-1 such that n1B(p) is a nilpotent

group of class

	

<c1 and

	

,r i B(p) is a nilpotent n1B(p) -module of class <cn ,

for all p . From now on we assume «B(p) nilpotent .

We have seen in the last section that the realizability problem for

groups does not always .have a solution.The same holds for spaces because

if G(p) --} G(o) is a counterexample for groups, we can consider

K(G(p),1) --9 K(G(o),1) .

Theorem 2 .1 There exists a nilpotent space B solving the problem if and

only if there is a map p : B(o) --; (riB(p)) o such that. if hp is the ratio-

nalization of the map nB(p) -" B(p), then the following diagram commutes

up to homotopy :

G i as the pullback .

B(o) B(P)

Proof: If B is given we take p to be the rationalization of the composition

B -} riBp	nB(p). Conversely, let us assume that there exists a map p

satisfiying the hypothesis of the theorem . For each i>1, we define the group

G~

	

n ,r i B(P)
P

P,r i B(o)

	

*.

	

(n ,riB(P)) o
P
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Then G i is a nilpotent group (abelian if i >1) whose localized groups

coincide with the niB(p) . By [3], the diagram is bicartesian and we have

exact sequences :

G
i <p * ,-r*>

TI i B(o) Q) ri,r ¡ B(P)- (nniB(P))0

Gl >- > ,r
1 B(o) x n,r1B(P) (n7r1B(p)) o

We define the space B as the (weak) pullback

B

	

' RB(P)

B(o) p (nB(P))o

If we apply ([3], 3 .4) to the diagram (1) we see that every

z E (R1T1B(P)) o can be expressed as z = r* x .p*y and this implies, by [4], II .

7 .11, that B is connected . Since HB(p) is nilpotent, [4], 11 .7 .6 implies

that B is also nilpotent .

The homotopy Mayer-Vietoris exact sequence of the (weak) pullback

(3) yields ([21) :

<p * ,-r*>
= Tr iB --> n i B(o) 0 nr i B(P)

	

(n~1B(P))o --, . . .

	

(4)

Since (1) is a pullback

	

we have a canonical homomorphism ,r i B

	

T G i

and it follows from (2) and (4) that it is an isomorphism . Then B -> B(p)

is a p-localization because n i B

	

-> v i B(p) is also a p-localiza-

tion . The rest of the proof is formally analogous to that of 1 .1 . o

Theorem 3 .3 in [3] proves that for a given map p the solution is uni-

quely determined up to homotopy .



There is also an analogous of proposition 1 .2 . : ,

Proposition 2 .2

	

A rationaly coherent family of maps {X -= Yp}p

comes from a map X - Y if and only if the induced diagram

Xo

	

p

	

. (rixp)0

commutes up to homotopy . o

3 . The problem of - fi bering a space by a subspace

Let (E,F) be a couple of nilpotent spaces, i .e . F is a subspace of

E . We say that (E,F) is a fiber couple if there exists a nilpotent space

B and a map E --= B such that F

	

> E --} B is homotopically equivalent

to a fibration . In other words, there isahomotopy commutative diagram

F U E

	

- B

F U E

where F

	

- E -	Bis a fibration- and the vertical arrows are homotopy

equivalences . By [11

	

p.60, the fibration F = E ---} B

	

turns

	

out to be

nilpotent .

To characterize fiber couplesis one of the problems listed in [51 .

It is not difficult to prove the following result :

Lemma 3 .1 (E,F) is a fiber couple if and only if there exists a nilpotent

space B and a map p : E -=- B such that i) P IF * ; ii) p* : ,r i (E,F) - ,iB

is an isomorphism for al] i . o

Our goal is to relate the fact that (E,F) is a fiber couple to the

fact that (EP ,Fp ) are fiber couplesfor ai} primes p . The equivalence of



Theorem 3 .2 Let F be a quasifinite space and let (E,F) be a nice couple .

(E,F) is a fiber couple if and only if (E P ,Fp ) is a fiber couple for all

pirimes p .

Proof: Since localization preserves fibrations, only the part "if"

of the theorem needs a proof . Let us assume we have nilpotent fibrations

Fp --> E p
--} B(p) for all p . The exact homotopy sequence of these fibra-

tions yields,that B(p) is a p-local space . Since (E,F) is a nice couple we

have homotopy equivalences B(p)o - B(q)o . In order to construct a space B

whose localizations coincide with the B(p), we have to see that rIB(p) is

.nilpotent but since we have fibrations Fp > Ep -> B(p), the nilpotency

class of the homotopy groups of B(p) is bounded because the same holds for

Ep and Fp .

	

Let us consider the diagram :

' Ep --> B p we can apply proposition 2 .2

	

and we get a map E ---: B .

	

It re-

mains5:only to show that F

	

E

	

B- is homotopy équiv3lent to a fibration .
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bouth assertions will be obtained only under certain hypothesis .

We say that (E,F) is a nice couple

	

if Fo= * or F

	

- E is a ratio-

nal homotopy equivalence . Recall that a space X is called quasifinite if

the homotopy groups

	

u n X

	

are finitely generated for al]

	

n : 1 and HInX =0

for n sufficiently large .

Eo Bo

(nFp ) o-(nEp )o--+(flB(p))o

and the existence of the dotted map p follows from the fact that the couple

(E,F) is a nice one . Moreover the hypothesis of theorem 2 .1 are fullfilled

and we obtain a space B such that Bp - B(p) .

We have to construct a map E -	B . Since we have compatible maps



Since F is quasifinite, the composition F --,- :E - " B is homotopically trivial

(I 41,p .89)

	

and Since

	

f i (E p ,Fp )

	

p )

	

is an' isomorphism for al 1 p,al1 i,

then ,r i (E,F)-+ wi B is also an isomorphism . Hence (E,F) is a fiber couple . o
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