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Realizability of localized groups and spaces

J. Agquadé

The theory of localization of nilpotent groups and spaces {see [4]
for a reference) associates to each nilpotent aroup {space} G, & family
{Gp1 of niipotent groubs {spaces}, Gp p-local. In this paper we study the
problem of deciding if given a family {G{p)} of groups {spaces} there is a
group (space) G such that {G{p}} coincides with the family of Jocalizations
of G. We obtain necessary and sufficient conditions for an affirmative ans-
wer (see 5 3 for a precise definition).

In the {ast section of this paper we apply the preceding results to
the problem of fibering a space by a subspace. We show that under certain
conditions it is a "loca™ problem in the sense that a space E can be fibered

by a subspace F if and only if the localizations E_ can be fibered by F

P o

for all p.

A1l spacesare assumed to be of the homotopy type of CW complexes.

1. Realizability of localized groups

In this éection we consider the following problem: Let {G(p)} be a
_family of nilpotent groups of class =¢, G{p) p-Tocal, and let G{p} — G(o)
be o-localization {i.e. all groups G{p} have isomorphic rationalizations}.
He want to obtain necessary and sufficient conditions in order to insure the
existence of a group G with p-Tocalizations isomorphic to G(p).-More preci-

sely, we say that a niipotent group G of class =c¢ so]ves the problem if:

2} There are isomorphisms Gp = G{p) and G, =, Glo);
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b) the following diagram is commutative:

Gp ——— G{p}

L

5, = 6{o)

#otice that the homomorphisms G{p) — G{o) are data of the problem.
This is important because it is known that there are non-isomorphic groups
with isemorphic localizations (see [4], p.33), whereas, at least if the
greup & is finitely generated, G is completely determined by the homomor-
phism Gp — Go' Note also that the problem does not always have a solu-
" tien. A counterexample can be constfucted by taking G(p) = K(D)’ 6{o) = @
and G{p} —— G{o) multiplication by p. We will see later that there is no

group G solving the problem in this case. Clearly, if we omit the condi-

tion b}, we can take G=Z.

Theorem 1.1 With the above notations let us consider the follewing condi-

tions:

i} the problem has a solution;

ii}there exists p: Glo) —— | I[G(p)}0 sﬁch that if hp is the rationaliza-
tion of the canonical projection RG{p) — G(p), then the following

diagram is commutative:

G{o) » G(p)

hp"\, /
Glpl,

iii)let us denote Hp = Im{G{p) > G{o}), H =lep. Given x € G{o) there

exists nesuych that e H.
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Then we have: 1 ¢ ii = iii and if the groups G(D)} are torsion free abelian
groups then all three conditions are equivalent.

Proof: i = ii. Let G be & group solving the problem . We can define p as
the composition G{o) — Go — {1 G(p)}0 where the second map is the ra-

tionalization of the composition G —s NG —— 76{p).

i = iii. It suffices to prove iii for Gp and G instead of G{p} and Glo)}.
Given x € Go’ there exist n such that x" =ry, ¥€6, r:6— G0 the ratio-
nalization. Let us consider the p-]oca]izations_of ¥, xp €© Gp' Then xp ra-
tionalizes to x and x" € H.

ii = i. 1f there exists p, we define G as the pullback

G — uG{p}

ool

G{o)}—E—(n6(p}),

G is a nilpotent group of class < c. Composing the top hemomorphism with

the canonical projections nG{p) —— G(p) we obtain homomorphisms

gp'
p-isomorphism. From the hypothesis on g we obtain the commutativity of the '

: 6 —— G(p). We will show that gp is a p-localization i.e. gp is a

diagram:

G S, 6{p)
{1}
Gi{o}

We have

G={{(xq).y)l quG(q},yEG(o} and r((xq)}=py}.
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tet us assume gp((xq),y)= 1, i.e. X = 1. Then the abeve diagram
yields y=1 and so r((xq)) = py=1. Since r is a C-isomorphism, there

exists n such that (xg) =1. But x_. belongs te the g-Jocal aroup G(q), hen-

q
ce we can assume (n,p) =1 and so we have proved that gp is & p-wmohomor-
phism.

Let xp € 6{p). ¥We have to see that there exists m such that {m,p)=1
and xg =gpa for some a € G. Let y= rxp € G{o}, z=p y € (nG(p}}o. Then, |
hpz =y. Since r: uG{p} — (nG(p))0 is a2 0-isomorphism, there exists n
such that 2" = r({iq)). Since iq € G(q) and this group is g-local, if q#p
we can take iq =xapk with h =pkm and {p,m) =1. On the other hand ip goes to

: -t k+t
yn= rxg. Since G{p} —~ 6&{o) is a g-isomorphism, we have xE =P M and
we take xé-=x$. Let us consider {Xé) € n6{p}. We have:
k+t _ot k+t kit
2P (G = e )P ) =l INT € (6(p)),

Since (HG(p)}O is 0-local, we obtain r((xa)) =" and gp{(xé),ym)=

xp= xg with {(m,p} =1. This proves that gp t & p-epimorphism.

Let us see now that the group G soives the problem. Since we have
proven that gp: G — 6{p) is a p-localization, we have an isomorphism
Gp —v%;-G(p). Moreover, since the diagram (1) is commutative, the homomor-
phism G —— G{b) is a O-isomorphism and we have an isomorphism -

Go =, G(o). We only have to see that the diagram

Gy —— G{p)

L

GO = G{o)

is commutative, but this follows from the fact that it is obtained from
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by localization. This ends the proof of i = i. Let us assume now that the
groups G{p) are torsicn free abelian groups and let us show that iii = i1,
Given x € Glo), let n be such that nx € H. Then for each p there is a uni-
quely determined xp € G{p) such that nx =rxp.
ve define opx=2z' € (ﬁG(p))O where z' is such that nz' =rz. It is then

We take z =(xp) € nG{p) and

clear that z' does not depend on the n we have chosen. In this way we cb-
tain an homomorphism p: Gle} — (nG(p))o.

This ends the proof of the theorem. o

Now we can see that if we take G(p}-= E(D}’ G{o) =0 and G{p} — G{o)
multipiication by p, then there is no group G solving the probiem because
condition iii in the above theorem is not satisfied.

Theorem 3.1 in [3] proves that for & given o the solution is uni-
quely determined.

We will study now under what conditions a family {6 — Hp}p of
homomorphisms, where G and H are nilpetent groups, comes from a homomorphism
G — H. A necessary condition is that the family {G — Hp}should be ra-
tionaly coherent i.e. for all primes p,q the diazgram

PP
H ——H

g ¢

—

should be commutative. If H is finitely generated this condition is also

sufficient {[4], p.26). In general we have!
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Propesition 1.2 A rationaly coherent family of homomorphism {G — Hp}p

comes from & homemorphim G — H if and only if the induced diagram

HO-"—»{m{)

p'C

I

o
G, — (nGp)0

is commutative.

Proof: The "only if" part is trivial. If The above diagram commutes we have:

Hy ———— (MK _}-

pe

and we get ¥ because the square is a puliback ([3)} o

2. Realizability of localized spaces

Let {B{p}} be a family of nilpotent connected spaces, B{p} p-local,
and let B{p}] —— B(o) be rationalizations (i.e. all spaces B{p) have ho-
motopy equivalent rationa]izafﬁons). We ask for the existence of a nilpo-
tent space B and homotopy equivalences Bp AN B{p), Bo — B{o} such

that the following diagram is homotopy commutative:

8, —=— B{p)
[
B, + Blo)
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If such a space B exists we say that B solves the problem. First of 211,
a necessary condition for the existence of a solution is that nB(p) must
be a nilpotent space. It is not difficult te see that this is eguivalent
tg say that there exist integers Cpr nz1l such that nIB(p) is 2 nilpotent
group of class =€c1 and niB(p) is a nilpotent nIB{p)-modu1e of class L
for all p.lFrom now on we assume AB{p)} nilpotent.

We have seen in the last section that the realizability problem for
groups does not always-have a solution, The same holds for spaces because

if 6{p) — G{o0) is a counterexample for groups, we can consider

K{6(p),1) — X(G(0),1).

Theorem 2.1 There exists a nilpotent ‘space B solving the problem if and
only if there is a map p: B{o) — {nB(p))0 such that if hp is the ratie-
nalization of the map nB{p}) — B{p), then the following diagram commutes

up to homoiopy:

B{o} — B(p)

o N/

B(p),

Proof: If B is given we take p to be the rationmalization of the composition
B —> nsp-—:L+ m8{p}. Conversely, let us assume that there exists a map p
satisfiying the hypothesis of the theorem. For each 121, we define the group
¢’ as the pullback .
6" ———— 1 ;8(p)
p
1 |~

Py
B0 — (1 x(8)),
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Then G' ds a nilpotent group {abelian if i >1) whose localized groups
coincide with the niB(p}. By [3]), the diagram is bicartesian and we have
exact sequences:

i Pur~Ty”
6" >— n:B{o) ® Nn.B(p) ———— (Wn.8(p)),

(2)

.Gl D nlB{O) X HHIB(p) _ (HﬂIB(p}}o

We define the space B as the (weak) pullback

B ———— nB{p)

l | |r (éa

8{o) —— (mB{p)),

If we apply {{3], 3.4) to the diagram (1) we see that every
ZE (ﬂﬁls(p))o can be expressed as 2z =r,x.p.¥ and this implies, by {41, II.
7.11, that B is connected. Since NB(p) is nilpotent, [4], II.7.6 implies
that B is also nilpotent.
The homotopy Mayer-Vietoris exact sequence of the (weak) pullback

{3) yields {[2]):

PrrTe?
— 1.8 — “1‘3{0} ® nniB(p)  — ("“iB(p)}o — ... {8)
Since {1} is a pullback we have a canonical homomorphism “iB —_ Gi
and it follows from {2} and (4} that it is an isomorphism. Then B — B{p)
is a p-localization because “18 "“-4-n13(p) is also a p-localiza-

-tion. The rest of the proof is formally analogous to that of 1.1. o

Theorem 3.3 in [3] proves that for a given map p the solution is uni-

quely determined up to homotopy.
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There is aiso an analogous of proposition 1.2.:

Proposition 2.2 A raticnaly coherent family of maps {X —— Yp}p

comes from a map X —— Y if and only if the induced diagram

Y, —B (nvp)o

| T
—-—-—-?—-—r(]l)(}

% p'o

commutes up to homotopy. o

3. The problem of fibering a space by a subspace

Let {E,F) be a couple of nilpotent spaces, i.e. F is a subspace of
E. We say that (E,F} is a fiber cougfe if there exists a2 nilpotent space
B and 2 map E —— B such that F — E —— B is homotopically equivalent

te a fibration. In other words, there isatomotopy commutative diagram

F—f—>8

Lo
— L

P

where F —— E —— B is a fibratim and the veriical arrows are homotopy
equivalences. By [1] p.60, the fibration F— E-—B turns out to be
nflpotent.

To characterize fiber coupiesis one of the problems listed in [5].

It is not difficult to prove the following result:

Lemma 3.1 {E,F) is a fiber couple if and only if there exists a nilpotent

" space B and a map p: E—= B such that i) P . ~*; i1} pyr n (E,F) — 5B

| F
is an isomorphism for all §. @
Our goal is to relate the fact that {E,F) is a fiber couple to the

fact that {Ep,Fp) are fiber couples for aii primes p. The equivalence of
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bouth asserticns will be obtained only under certain hypothesis.

We say that {E,F} is & nice couple if F0= * or F —— E is a ratio-
nal homotopy equivalence. Recall that a space X is called quasifinite if
the homotopy groups nnx are finitely generated for all n=1 and an =0

for n sufficiently large.

Theorem 3.2 let F be a quasifinite space and let {E,F) be a nice couple,
(E,F) is a fiber couple if and only if (Ep,Fp} is a fiber couple for all
primes p. ‘

Proof: Since localization preserves fibrations, only the part "if*
of the theorem needs a proof. Let us assume we have nilpotent fibrations
Fp —-—+'Ep — B{p} for a1l p. The exact homotopy sequence of these fibra-
tions yfe?ds_that B{p) 1s a p-local space. Since (E,F} is a nice couple we
have homotopy equivalences B(p)0 “'B{q}o. In order to construct a space B
whose Jocalizations coincide with the B{p), we have to see that n8{p) is
nilpotent byt since we have fibrations Fp —-—»—Ep — B{p), the nilpotency
clas; cf the hemetopy groups of B{p} is bounded because the same holds for

Ep and Fp. Let us consider the diagram:

F0—+EG—-——+B0

o L5 o
(nF ) (e} —(n8(p)),

and the.existence of the dotted map o follows from the fact that the couple
{E,F) is a nice one. Moreover the hypothesis of theorem 2.1 are fullfilled
and we obtain a space B such that Bp ~ B{p}.

We have to construct a map E —— B, Since we have compatible maps

Ep —— Bp we can apply proposition 2.2 and we get g map £ -—— B. It re-

mainsionly to show that ' E B is homotopy equivalent to a fibration.
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Since F is quasifinite, the composition F — L —--B is homotopically trivial
p)'ﬁﬁ*“i{an) is an’ isomorphism for allp,all i,

{ ¢1,p.89) and since "i{Ep’F
then ﬁi{EsF}*+uiB is also an isomorphism. Hence {E,F} is a fiber couple. o
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