Realizability of localized groups and spaces

J. Aguadé

The theory of localization of nilpotent groups and spaces (see [4] for a reference) associates to each nilpotent group (space) G , ^a family ${G_0}$ of nilpotent groups (spaces), G_p p-local. In this paper we study the problem of deciding if given a family {G(p)} of groups (spaces) there is a group (space) G such that ${G(p)}$ coincides with the family of localizations of G . We obtain necessary and sufficient conditions for an affirmative answer (see § ³ for a precise definition) .

In the last section of this paper we apply the preceding results to the problem of fibering a space by a subspace . We show that under certain conditions it is a "local" problem in the sense that a space ^E can be fibered by a subspace F if and only if the localizations E_p can be fibered by F_p for all p.

All spacesare assumed to be of the homotopy type of CW complexes .

¹ . Realizability of localized groups

In this section we consider the following problem: Let $(G(p))$ be a family of nilpotent groups of class $\ll c$, G(p) p-local, and let G(p) \longrightarrow G(o) be o-localization (i.e. all groups G(p) have isomorphic rationalizations). He want to obtain necessary and sufficient conditions in order to insure the existence of a group G with p-localizations isomorphic to G(p) . More precisely, we say that a nilpotent group G of class \leq c solves the problem if:

a) There are isomorphisms $G_p \xrightarrow{=} G(p)$ and $G_q \xrightarrow{=} G(o)$;

b) the following diagram is commutative:

$$
G_p \xrightarrow{\cong} G(p)
$$

$$
G_p \xrightarrow{\cong} G(p)
$$

$$
G_p \xrightarrow{\cong} G(p)
$$

Notice that the homomorphisms $G(p) \longrightarrow G(o)$ are data of the problem. This is important because it is known that there are non-isomorphic groups with isomorphic localizations (see [4], ^p .33), whereas, at least if the groúp ^G is finitely generated, ^G is completely determined by the homomorphism $G_p \longrightarrow G_q$. Note also that the problem does not always have a solution. A counterexample can be constructed by taking G(p) = $\mathcal{I}_{(p)}$, G(o) = and $G(p) \longrightarrow G(o)$ multiplication by p. We will see later that there is no group G solving the problem in this case. Clearly, if we omit the condition b), we can take $G = Z$.

Theorem 1.1 With the above notations let us consider the following conditions :

i) the problem has a solution;

diagram is commútative : ii)there exists $\rho: G(o) \longrightarrow (I\!\times G(p))_0$ such that if h_p is the rationaliza-
tion of the canonical projection $I\!\times G(p) \longrightarrow G(p)$, then the following
diagram is commutative:

iii)let us denote $H_p = Im(G(p) \longrightarrow G(o))$, $H = \cap H_p$. Given $x \in G(o)$ there exists n such that $x^n \in H$.

Then we have: i \Leftrightarrow ii \Rightarrow iii and if the groups G(p) are torsion free abelian groups then all three conditions are equivalent.

Proof: $i \Rightarrow ii$. Let G be a group solving the problem. We can define p as the composition G(o) $\stackrel{\cong}{\longleftrightarrow}$ G₀ \longrightarrow (π G(p))_o where the second map is the rationalization of the composition $G \longrightarrow \Pi G$ $\xrightarrow{\cong} \Pi G(p)$.

 $i \Rightarrow$ iii. It suffices to prove iii for G_p and G_o instead of $G(p)$ and $G(o)$. Given $x \in G_{\alpha}$, there exist n such that $x^{n} = ry$, $y \in G$, $r : G \longrightarrow G_{\alpha}$ the rationalization. Let us consider the p-localizations of y, $x_p \in G_p$. Then x_p rationalizes to x and $x^n \in H$.

 $i \rightarrow i$. If there exists p, we define G as the pullback

$$
G \longrightarrow \pi G(p)
$$

\n
$$
\downarrow \qquad r
$$

\n
$$
G(o) \xrightarrow{\rho} (\pi G(p))_0
$$

G is a nilpotent group of class \leq c. Composing the top homomorphism with the canonical projections $\text{IG}(p) \longrightarrow \text{G}(p)$ we obtain homomorphisms $g_p: 6 \longrightarrow G(p)$. We will show that g_p is a p-localization i.e. g_p is a p-isomorphism . From the hypothesis on ^p we obtain the commutativity of the diagrám :

$$
G \xrightarrow{g_p} G(p) \tag{1}
$$

IWe have

$$
G = \{ ((x_q), y) \mid x_q \in G(q), y \in G(o) \text{ and } r((x_q)) = \rho y \}.
$$

Let us assume $g_{p}((x_{q}), y) = 1$, i.e. $x_{p} = 1$. Then the above diagram yields $y = 1$ and so $r((x_0)) = py = 1$. Since r is a 0-isomorphism, there exists n such that $(x_q^n) = 1$. But x_q belongs to the q-local group $G(q)$, hence we can assume (n,p) = 1 and so we have proved $\,$ that $\,g_{\rm p}\,$ is a p-monomorphism.

Let $x_p \in G(p)$. We have to see that there exists m such that $(m,p)=1$ and $x_p^m = g_p a$ for some $a \in G$. Let $y = rx_p \in G(o)$, $z = \rho$ $y \in (nG(p))_0$. Then, $h_{\text{D}}z = y$. Since r: $\text{IG}(p) \longrightarrow (\text{IG}(p))_{\text{O}}$ is a 0-isomorphism, there exists n such that $z^n = r((\bar{x}_q))$. Since $\bar{x}_q \in G(q)$ and this group is q-local, if $q \neq p$ we can take $\bar{x}_{q} = x_{q}^{\epsilon p^{K}}$ with h = p^km and (p,m) = 1. On the other hand \bar{x}_{p} goes to y^n =rx $\frac{n}{p}$. Since G(p) —— \rightarrow G(o) is a q-isomorphism, we have $\bar{x}_{n}^{p^{\mathbf{C}}}$ =x $\frac{p^{k+\mathbf{t}_{\mathbf{m}}}}{p}$ and we take $x_p^* = x_p^{\infty}$. Let us consider $\{x_q^*\} \in \text{IG}(p)$. We have: k+t $1.1 +$ pk+t

$$
z^{p^{n-1}m} = r((\bar{x}_q)^{p^k}) = r((x_q^i)^{p^{k+1}}) = (r((x_q^i)))^{p^{k+1}} \in (\pi G(p))_0
$$

Since $(\text{IG}(p))_0$ is o-local, we obtain $r((x_q^*)) = z^m$ and $g_p((x_q^+), y^m) =$ $x_{p}^{i} = x_{p}^{m}$ with $(m,p) = 1$. This proves that g_{p} is a p-epimorphism.

Let us see now that the group G solves the problem. Since we have proven that $g_p: G \longrightarrow G(p)$ is a p-localization, we have an isomorphism $G_p \xrightarrow{\cong} G(p)$. Moreover, since the diagram (1) is commutative, the homomorphism $G \longrightarrow G(o)$ is a 0-isomorphism and we have an isomorphism $G_0 \longrightarrow G(o)$. We only have to see that the diagram

$$
G_p \xrightarrow{\cong} G(p)
$$

$$
\downarrow \qquad \qquad G(p)
$$

$$
\downarrow \qquad \qquad G(p)
$$

$$
\downarrow \qquad \qquad G(p)
$$

is commutative, but this follows from the fact that it is obtained from

by localization. This ends the proof of ii \Rightarrow i. Let us assume now that the groups $G(p)$ are torsion free abelian groups and let us show that iii \Rightarrow ii. Given $x \in G(o)$, let n be such that nx \in H. Then for each p there is a uniquely determined $x_p \in G(p)$ such that $nx = rx_p$. We take $z = (x_p) \in BG(p)$ and we define $px = z' \in (RG(p))_0$ where z' is such that $nz' = rz$. It is then clear that z' does not depend on the n we have chosen. In this way we obtain an homomorphism $p : G(o) \longrightarrow (nG(p))_{o}$.

This ends the proof of the theorem. o

Now we can see that if we take $G(p)$ = $\mathbf{Z}_{(p)}$, $G(o)$ = \mathbf{Q} and $G(p) \longrightarrow G(o)$ multiplication by p, then there is no group G solving the problem because condition iii in the above theorem is not satisfied .

Theorem 3.1 in [3] proves that for a given ρ the solution is uniquely determined .

We will study now under what conditions a family $(G \longrightarrow H_{D}^{+})_{D}^{-}$ of homomorphisms, where G and H are nilpotent groups, comes from a homomorphism G \longrightarrow H. A necessary condition is that the family $\{G \longrightarrow H_{D}\}$ should be rationaly coherent ⁱ .e . for all primes p,q the diagram

should be commutative . If H is finitely generated this condition is also sufficient $([4], p.26)$. In general we have:

Proposition 1.2 A rationaly coherent family of homomorphism $(G \longrightarrow H_p)$ comes from a homomorphim $G \longrightarrow H$ if and only if the induced diagram

is commutative .

Proof: The "only if" part is trivial. If The above diagram commutes we have:

and we get φ because the square is a pullback ([3]) φ

2. Realizability of localized spaces

Let $(B(p))$ be a family of nilpotent connected spaces, $B(p)$ p-local, and let $B(p) \longrightarrow B(o)$ be rationalizations (i.e. all spaces $B(p)$ have homotopy equivalent rationalizations) . We ask for the existence of ^a nilpo tent space B and homotopy equivalences B_p $\xrightarrow{\sim}$ B(p), B_o $\xrightarrow{\sim}$ B(o) such
that the following diagram is homotopy commutative:
 $B_p \xrightarrow{\sim} B(p)$
 \downarrow that the following diagram is homotopy commutative :

If such a space B exists we say that B solves the problem. First of all, a necessary condition for the existence of a solution is, that $\pi B(p)$ must be ^a nilpotent space. It is not difficult to see that this is equivalent to say that there exist integers c_n , $n \ge 1$ such that $\pi_1B(p)$ is a nilpotent group of class $\leq c_1$ and $\pi_f B(p)$ is a nilpotent $\pi_1 B(p)$ -module of class $\leq c_n$, for all p . From now on we assume $R(B(p))$ nilpotent.

We have seen in the last section that the realizability problem for groups does not always have a solution. The same holds for spaces because if $G(p) \longrightarrow G(o)$ is a counterexample for groups, we can consider $K(G(p),1) \longrightarrow K(G(o),1)$.

Theorem 2.1 There exists a nilpotent space B solving the problem if and only if there is a map $p : B(o) \longrightarrow (nB(p))_0$ such that if h_0 is the rationalization of the map $\pi B(p) \longrightarrow B(p)$, then the following diagram commutes up to homotopy:

 G^{\dagger} as the pullback. Proof: If B is given we take ρ to be the rationalization of the composition $B \longrightarrow AB_{p} \xrightarrow{\sim} AB(p)$. Conversely, let us assume that there exists a map p satisfiying the hypothesis of the theorem. For each $i \geqslant 1$, we define the group

Then $G^{\hat{1}}$ is a nilpotent group (abelian if $i > 1$) whose localized groups exact sequences :

coincide with the
$$
\pi_{i}B(p)
$$
. By [3], the diagram is bicartesian and we have
exact sequences:
 $G^{\hat{i}} \longrightarrow \pi_{i}B(o) \oplus \pi_{\pi_{i}}B(p) \xrightarrow{<\rho_{*}, -\Gamma_{*}>}$ $(\pi_{\pi_{i}}B(p))_{0}$
 $G^{\hat{1}} \longrightarrow \pi_{\hat{1}}B(o) \times \pi_{\pi_{\hat{1}}}B(p) \longrightarrow (\pi_{\pi_{\hat{1}}B(p))_{0}$ (2)

We define the space B as the (weak) pullback

$$
B \longrightarrow R(B(p)
$$

\n
$$
\downarrow \qquad \qquad | r
$$

\n
$$
B(o) \xrightarrow{\rho} (B(p))_0
$$

\n(3)

If we apply $(13]$, 3.4) to the diagram (1) we see that every $z \in (\pi_{1}B(p))_{\overline{0}}$ can be expressed as $z = r_{\star}x . \rho_{\star}y$ and this implies, by [4], II. 7 .11, that ^B is connected . Since HB(p) is nilpotent, [4], ¹¹ .7 .6 implies that B is also nilpotent.

The homotopy Mayer-Vietoris exact sequence of the (weak) pullback (3) yields ([21) :

$$
\cdots \longrightarrow \pi_{\dot{1}}B \longrightarrow \pi_{\dot{1}}B(o) \oplus \pi_{\dot{1}}B(p) \xrightarrow{\langle \rho_{\dot{\pi}}, -\dot{\Gamma}_{\dot{\pi}} \rangle} (\pi_{\dot{1}}B(p))_0 \longrightarrow \cdots \quad (4)
$$

Since (1) is a pullback we have a canonical homomorphism $\pi_{\tilde{i}}B \longrightarrow G^{\tilde{j}}$ and it follows from (2) and (4) that it is an isomorphism. Then $B \longrightarrow B(p)$ is a p-localization because $\pi_{i}B \longrightarrow \pi_{i}B(p)$ is also a p-localization. The rest of the proof is formally analogous to that of 1.1. o

Theorem 3.3 in [3] proves that for a given map ρ the solution is uniquely determined up to homotopy.

There is also an analogous of proposition $1.2.:$

Proposition 2.2 A rationaly coherent family of maps $\{X \longrightarrow Y_p\}_p$ Proposition 2.2 A rationaly coherent family of maps $\{X \longrightarrow \emptyset\}$ comes from a map $X \longrightarrow Y$ if and only if the induced diagram

commutes up to homotopy. o

3. The problem of fibering a space by a subspace

Let (E,F) be a couple of nilpotent spaces, i.e. F is a subspace of E. We say that (E,F) is a fiber couple if there exists a nilpotent space B and a map $E \longrightarrow B$ such that $F \longrightarrow E \longrightarrow B$ is homotopically equivalent to a fibration. In other words, there is ahomotopy commutative diagram

 $\vec{F} \longrightarrow \vec{E} \longrightarrow \vec{E}$
where $\vec{F} \longrightarrow \vec{E} \longrightarrow B$ is a fibration and the vertical arrows are homotopy
equivalences. By [1] p.60, the fibration $\vec{F} \longrightarrow \vec{E} \longrightarrow B$ turns out to be
nilpotent. where $\bar{F} \longrightarrow \bar{E} \longrightarrow B$ is a fibration and the vertical arrows are homotopy
equivalences. By [1] p.60, the fibration $\bar{F} \longrightarrow \bar{E} \longrightarrow B$ turns out to be nilpotent .

To characterize fiber couplesis one of the problems listed in [51 .

It is not difficult to prove the following result:

Lemma 3.1 (E,F) is a fiber couple if and only if there exists a nilpotent space B and a map p: E \longrightarrow B such that i) $P_{|F} \sim *$; ii) $p_*: \pi_i(E,F) \longrightarrow \pi_iB$ is an isomorphism for al] ⁱ . o

Our goal is to relate the fact that (E,F) is ^a fiber couple to the fact that (E_p, F_p) are fiber couples for all primes p. The equivalence of

bouth assertions will be obtained only under certain hypothesis .

We say that (E,F) is a <u>nice couple</u> if $F_0 = *$ or $F \longrightarrow E$ is a rational homotopy equivalence. Recall that a space X is called quasifinite if the homotopy groups $\pi_n X$ are finitely generated for all $n \ge 1$ and $H_n X = 0$ for n sufficiently large .

Theorem 3.2 Let F be a quasifinite space and let (E, F) be a nice couple. (E,F) is a fiber couple if and only if (E_p, F_p) is a fiber couple for all pirimes p .

Proof: Since localization preserves fibrations, only the part "if" of the theorem needs a proof. Let us assume we have nilpotent fibrations $F_p \longrightarrow E_p \longrightarrow B(p)$ for all p. The exact homotopy sequence of these fibrations yields that $B(p)$ is a p-local space. Since (E, F) is a nice couple we have homotopy equivalences B(p) $_{\mathrm{O}} \simeq$ B(q) $_{\mathrm{O}}$. In order to construct a space B whose localizations coincide with the $B(p)$, we have to see that $IB(p)$ is .nilpotent but since we have fibrations $F_p \longrightarrow E_p \longrightarrow B(p)$, the nilpotency class of the homotopy groups of B(p) is bounded because the same holds for E_p and F_p . Let us consider the diagram:

$$
F_0 \longrightarrow E_0 \longrightarrow B_0
$$

\n
$$
\bar{p} \downarrow \qquad \bar{p} \downarrow \qquad \rho \downarrow
$$

\n
$$
(\pi F_p)_0 \longrightarrow (\pi E_p)_0 \longrightarrow (\pi B(p))_0
$$

and the existence of the dotted map ρ follows from the fact that the couple (E, F) is a nice one. Moreover the hypothesis of theorem 2.1 are fullfilled and we obtain a space B such that $B_p \sim B(p)$.

 $\mathsf{E}_\mathsf{p} \longrightarrow \mathsf{B}_\mathsf{p}$ we can apply proposition 2.2 and we get a map $\mathsf{E} \longleftrightarrow \mathsf{B}.$ It remainssonly to show that $F-E-B$ is homotopy équivalent to a fibration. $(\pi F_p)_0 \longrightarrow (\pi E_p)_0 \longrightarrow (\pi B(p))_0$
and the existence of the dotted map ρ follows from the fact that the co
(E,F) is a nice one. Moreover the hypothesis of theorem 2.1 are full fi
and we obtain a space B such that $B_p \sim B(p)$.
We

Since F is quasifinite, the composition F \rightarrow E \rightarrow B is homotopically trivial ([4],p.89) and since $\pi_j(E_p, F_p) \longrightarrow \pi_j(B_p)$ is an'isomorphism for all p,all i, then $\pi_{i}(\mathsf{E},\mathsf{F})\rightarrow_{\pi_{i}}\mathsf{B}$ is also an isomorphism. Hence (E,F) is a fiber couple. α

References

- 1. Bousfield, A.K.; Kan, D.M. : "Homotopy limits, completions and localizations" Lecture Notes in Mathematics, 304 ; Springer 1972 .
- 2. Eckmann, B.; Hilton, P. : Unions and intersections in homotopy categories. Comm. Math. Helv. 38 (1964), 293-307.
- 3. Hilton, P.; Mislin, G.: Bicartesian squares of nilpotent groups. Comm. Math. Helv. 50(1975), 477-491.
- 4. Hilton, P.; Mislin, G.; Roitberg, J. : "Localization of nilpotent groups and spaces". Mathematics studies 15. North-Holland 1975.
- ⁵ . Massey, W .S . : Some problems in Algebraic Topology and the theory of fitre bundles. Ann. of Math. 62(1955), 327-359.

Universitat Autanoma de Barcelona

and

Forschungsinstitut für Mathematik,ETH-Zürich .