PERIODIC SURFACE DIFFEOMORPHISMS WHICH BOUND, BOUND PERIODICALLY

John Ewing Allan Edmonds

§O. Introduction

The computation of the bordism group of orientation preserving diffeomorphisms on closed surfaces was recently completed - first by Bonahon ([2]),[3] and then by Edmonds and Ewing [6]. In both cases the key proposition turns out to be a remarkably simple looking statement.

Proposition

Let S be a closed, oriented surface and f: $S \rightarrow S$ an orientation preserving diffeomorphism such that $f^{m} = 1$. Suppose there is a 3-manifold W and a diffeomorphism F: W \rightarrow W such that $\partial(W) = S$ and $F | \partial W = f$. Then there is another 3-manifold W' and periodic diffeomorphism F': W' \rightarrow W' with $(F')^{m} = 1$ such that $\partial(W') = S$ and $F' | \partial(W') = f$.

In other words; a periodic surface diffeomorphism which bounds, bounds periodically.

Bonahon's elegant proof of this proposition uses the full force of modern 3-dimensional topology, calling on (among other things) Mostow Rigidity and Thurston's Hyperbolization Theorem. The purpose of this note is to provide a quite different proof which uses an elementary form of the G-signature Theorem known as the Eichler Trace Formula (ca. 1930) and an elementary theorem in number theory due to Carl Ludwig Siegel (ca. 1949).

δ1. <u>The Theorem</u> of Siegel

We first record the theorem in number theory which we require. It is,

37

in fact, a result about Dirichlet series which is closely connected with Dirichlet's famous theorem about the non-vanishing of L-series.

Suppose m is a positive integer and $\psi: \mathbb{Z} \to \mathbb{Z}$ is a function satisfying:

We can consider the Dirichlet series

$$\Psi(\mathbf{s}) = \sum_{\nu=1}^{\infty} \frac{\psi(\nu)}{\nu}$$

which is easily seen to converge for Re(s) > 0.

<u>Theorem</u> [4], If $\Psi(1) = 0$ then $\psi \equiv 0$.

The proof of this is remarkably simple and takes two slim pages. (An alternative proof is provided in [6] and a more general result can be found in [1]).

δ2. The G-signature

We can now begin proving the main proposition. The first question we ought to ask is: How do we use the fact that $(s,f) = \partial(W,F)$? The answer is: to show the G-signature vanishes.

Here's a quick review of the definition. We define a skew-Hermitian form β on $H^1(S; () = H^1(S; Z) \otimes C$ by

$$\beta(x_1 \otimes \alpha_1, x_2 \otimes \alpha_2) = \alpha_1 \overline{\alpha}_2 \langle x_1 \cup x_2, [s] \rangle.$$

Now the signature of this form (the number of eigenvalues in the lower half plane - the number of eigenvalues in the upper half plane) is zero; that's not too interesting. But we also have that automorphism $f^*: H^1(S; \mathbb{C}) \to H^1(S; \mathbb{C})$ and the G-signature measures how β and f^* interact; it <u>is</u> interesting. Specifically, for $k=0,1,\ldots,m-1$ let V_k denote the eigenspace of f^* corresponding to the eigenvalue ζ^k where $\zeta = e^{2\pi i/m}$. then the G-signature is defined by

$$\operatorname{sign}(f,S) = \sum_{k=0}^{m-1} \operatorname{sign}(\beta | V_k) \zeta^k.$$

It is, of course, an algebraic integer.

The important thing about the signature of a manifold is that it vanishes when the manifold bounds. The important thing about the G-signature of a manifold is that it also vanishes when the manifold bounds equivariantly. To see this, for example, when (S,f) is a periodic boundary we simply note that if $(S,f) = \partial(W,F)$ then $im(H^1(W;C) \rightarrow H^1(S;C))$ is an f*-invariant subspace which is its own orthogonal complement (by Poincare duality.)

But now we simply observe that nowhere have we used the fact that F is periodic; exactly the same argument shows that if $(S,f) = \partial(W,F)$ then sign(f,S) = 0, whether or not F is periodic.

83. The Fixed Point Data

Before proceeding further we ought to think about how to conclude our argument. How do we show (S,f) bounds periodically? The answer is easy and classical: we look at the fixed point data.

Suppose f has isolated fixed points P_1, \ldots, P_t . The "type" of each fixed point P is measured by the behaviour of df on the tangent space at P; if df is multiplication by ζ^k where $\zeta = e^{2\pi i/m}$ then we say P has type ζ^k . The collection of fixed points and types is called the fixed point data.

Now let n_k denote the number of fixed points of type ζ^k . (Of course, $n_{j_k} = 0$ if (k,m) > 1.)

Definition

If $n_a = n_{m-a}$ for all a, $1 \le a \le m$, then we say the fixed point data cancels. The following lemma is easy and well-known $\begin{bmatrix} L \\ L \end{bmatrix}$.

Lemma

The pair (S, f) bounds periodically if and only if the fixed point data of f. and all its powers, cancels.

The argument in one direction is elementary. If $(S,f) = \partial(W,F)$, $F^m = 1$, then the fixed point set of F consists of 1-dimensional submanifolds which can intersect $S = \partial(W)$ only in a pair of "canceling" fixed points.

The argument in the other direction is by induction on the number of fixed points. Given a pair of canceling fixed points we can remove a small disc about each and attach a handle equivariantly to obtain a cobordant pair with fewer fixed points. The induction is completed by using the fact that free actions in dimension 2 always bound. A more detailed argument can be found in [6].

39

N4. The Eichler Trace Formula

We now know what we have to prove - that the fixed point data cancels. And we know what we have to work with - that the invariant sign(f,S) vanishes. What is obviously required is a means of connecting the fixed point data and the invariant sign(f,S). That is precisely what the Eichler Trace Formula does.

In this setting it says the following.

Eichler Trace Formula [7]. Suppose S is a closed, oriented surface and f: S-S is a periodic diffeomorphism of period m. Let n be the number of fixed points of type ζ^k where $\zeta = e^{2\pi i/m}$. Then

$$\operatorname{sign}(f,S) = \sum_{k=1}^{m-1} n_k \frac{\frac{j^k+1}{\zeta^k-1}}{\zeta^k-1}.$$

Where does Siegel's Theorem come in? The expression in the Trace Formula above is actually a Dirichlet series in disguise.

To see this, we note that

$$\frac{\zeta^{k}+1}{\zeta^{k}-1} = \frac{1}{i} \operatorname{ctn} \left(\pi \underline{k}\right)$$

Now $\pi \operatorname{ctn}(\pi z)$ has a particularly nice partial fraction decomposition:

$$\pi \operatorname{ctn} (\pi_{\mathbf{Z}}) = \frac{1}{z} + \sum_{\nu=1}^{\infty} \left(\frac{1}{z + \nu} + \frac{1}{z - \nu} \right),$$

Setting $z = \frac{k}{m}$ we see that

$$\frac{\zeta^{k}+1}{\zeta^{k}-1} = \frac{m}{\pi i} \left[\frac{1}{k} + \sum_{\nu=1}^{\infty} \left(\frac{1}{k+m\nu} + \frac{1}{k-m\nu} \right) \right]$$

$$= \frac{m}{\pi i} \sum_{\nu=0}^{\infty} \left(\frac{1}{k + m\nu} + \frac{-1}{m - k + m\nu} \right)$$

(One must be careful about conditional convergence here and below, but the argument to justify rearranging terms is simple and standard.)

If we define ε_{L} : $\mathbb{Z} \to \mathbb{Z}$ by

$$\varepsilon_{k}(a) = \begin{cases} 1 & a \equiv k \mod m \\ -1 & a \equiv -k \mod m \\ 0 & \text{otherwise} \end{cases}$$

then clearly

$$\frac{\frac{k}{\lambda+1}}{\zeta^{k}-1} = \frac{m}{\pi i} \sum_{\nu=0}^{\infty} \frac{r_{k}(\nu)}{\nu},$$

We can now use this in the Trace Formula. We let

$$\psi = \sum_{k=1}^{m-1} n_k \varepsilon_k$$

and can then write

sign(f,S) =
$$\frac{\mathbf{m}}{\pi \mathbf{i}} = \frac{\mathbf{m}}{\nabla} = \frac{\mathbf{m}}{\mathbf{v}} \cdot \mathbf{v}$$
.

Now when k and m are relatively prime the ε_k are functions which satisfy the conditions of Siegel's Theorem mentioned in section 1. Hence, the linear combination $\frac{1}{2}$ satisfies these conditions as well.

If (S,f) bounds then we know that sign(f,S) = 0. Applying Siegel's Theorem, we conclude that ψ is identically zero. But for any a, $1 \le a \le m$, there are at most two ε_k 's which are non-zero on a; we see that

$$0 = \psi(\mathbf{a}) = \mathbf{n} - \mathbf{n},$$

and so the fixed point data cancels. The proof is complete.

References

- A. Baker, B.J. Birch, E.A. Wirsing, On a problem of Chowla, J. of Number Theory, 5(1973), pp.224-236.
- F. Bonahon, Cor bordisme des diffeomorphismes des surfaces, C.R. Acad. Sci. Paris, Ser. A-B, 290 (1980), pp. A765-A767.
- _____, Cobordism of automorphisms of surfaces, Republications, Univ. de Paris-Sud, Bât. 425, Orsay.
- S. Chowla, A special infinite series, Norske Vid. Sel. For., 37(1964), No. 16, pp.85-87.
- 5. P.E. Conner and E.E. Floyd, Differentiable Periodic Maps, Berlin-Heidelberg-New York, Springer, 1964.
- A. Edmonds and J. Ewing, Remarks on the cobordism group of surface diffeomorphisms, to appear in Math. Ann.
- 7. H.M. Farkas and I. Kra, Riemann Surfaces, Berlin-Heidelberg-New York, Springer, 1980.

Indiana University Bloomington, Indiana 47405 USA