LIMITS AND COLIMITS IN THE CATEGORY OF SMALL CATEGORIES*
Marek Golasiński

Abstract. The aim of this note is to show some properties of the homotopy groups of limits and colimits in the category of small categories Cat and to give a version of Milnor's theorem in this category.

Moreover, one proves that the homotopy limit (in the sense of Bousfield and Kan, see [1, ch XI]) of a diagram of nerves of categories is itself the nerve of a category. In fact, if $F : I \to \text{Cat}$ is a functor and \tilde{F} is its Eilenberg-Moore rectification (see [6]) then $\text{holim } NF = N(\text{lim } \tilde{F})$.

For a similar result on the homotopy colimit see [7].

1. Preliminaries. Let C be a category. A cohomotopy system in C is a quadruple $(P; p_0, p_1, s)$, where $P : C \to C$ is a functor, whereas $p_0, p_1 : P \to \text{id}_C$, $s : \text{id}_C \to P$ are such natural transformations that $p_0 s = p_1 s = \text{id}_C$.

Refering to Kamps (see [4]) we can define the Hurewicz fibration and cofibration. Moreover, we also have a homotopy relation in such a category.

*Presented at the Workshop on Algebraic Topology. Barcelona, March 1982. The Editors apologize for not being able to include this paper in the Vol. 26 No 3 of PUBLICACIONES, which contains the proceedings of the Workshop.
This quadruple determines a sequence of functors
\[P^n : \mathcal{C} \to \mathcal{C}, \text{ where } P^0 = \text{id}_\mathcal{C}, \text{ for } n \geq 0 \]
and natural transformations
\[\delta_{i,n}^\delta = p_i^{-1} p_{n-i}^\delta : P^n \to P^{n-1}, \text{ for } n \geq 0, \delta = 0,1 \]
and \[s_{i,n} = p_i^{-1} s p_{n+1-i} : P^n \to P^{n+1}, \text{ for } n \geq 0. \]

Lemma 1.1. (see [4]). A sequence of functors and natural transformations \((P^n, \delta_{i,n}^\delta, s_{i,n}) \) defines a cubical object in the endofunctors category of \(\mathcal{C} \).

Denote by \(\text{Cat}(\text{Cat}^\text{op}) \) the category of (pointed) small categories and by \(\text{Set}^{\text{op}}(\text{Set}^\text{op}) \) the category of (pointed) cubical sets.

The cohomotopy system in \(\text{Cat}(\text{Cat}^\text{op}) \) is defined in the following way. Let \(\mathcal{Z} \) be the category given by:

\[\ldots \to -2 \to -1 \to 0 \to 1 \to 2 \to \ldots \]

For \(C \in \text{obCat} \) a functor \(\sigma : \mathcal{Z} \to \mathcal{C} \) is called finite iff there exist \(m_0, n_0 \in \text{obZ} \) such that \(\sigma(m) = \sigma(m_0), \sigma(n) = \sigma(n_0) \) and \(\sigma(m \to m') = \text{id}_{\sigma(m_0)}, \sigma(n \to n') = \text{id}_{\sigma(n_0)} \) for \(m, m' \leq m_0 \) and \(n, n' \geq n_0 \). The above conditions will be written briefly as \(\sigma(m_0) = \sigma(-\infty) \) and \(\sigma(n_0) = \sigma(+\infty) \). The full subcategory given by finite functors of \(\text{Cat}(\mathcal{Z}, \mathcal{C}) \) is denoted by \(P(C) \).

Then \(P : \text{Cat} \to \text{Cat} \) is the functor and for \(C \in \text{obCat} \) there are functors \(s(C) : \mathcal{C} \to P(C), \) and \(p_0(C), p_1(C) : P(C) \to \mathcal{C} \) defined by \(s(C)(C)(k) = C \) for \(C \in \text{obC} \), \(k \in \text{obZ} \) and \(p_\delta(C)(\sigma) = \sigma((-1)\delta) \) for \(\delta = 0,1 \).

Hence we obtain the cohomotopy system \((P; p_0, p_1, s) \) in \(\text{Cat} \) and the functor \(Q : \text{Cat} \times \text{Cat} \to \text{Set}^{\text{op}}(\text{Set}^\text{op}) \), where \(Q(C, C')_n = \).
\[\text{Cat}(\mathcal{C}, P^n(\mathcal{C})) \text{ for } \mathcal{C}, \mathcal{C}' \in \text{obCat}. \text{ In particular, for } \mathcal{C} = \ast \text{ we have the functor } Q : \text{Cat} \rightarrow \text{Set}^{\text{op}}. \]

In \text{Cat} we can define the Serre fibration (see [2]). Moreover, in \text{Cat} it is easy to define a notion of the loop functor \(\Omega \), the homotopy fibre of a map etc.

For further considerations we shall need the following

Theorem 1.2. (see [2]). For a functor \(p : E \rightarrow B \) the following conditions are equivalent:

i) \(p : E \rightarrow B \) is the Serre fibration,

ii) \(Q(p) : Q(E) \rightarrow Q(B) \) is the Kan fibration.

Corollary 1.3. For any \(\mathcal{C} \in \text{obCat} \) the cubical set \(Q(\mathcal{C}) \) satisfies the Kan extension condition.

One can prove that for any \(\mathcal{C}, \mathcal{C}' \in \text{obCat} \) the cubical set \(Q(\mathcal{C}, \mathcal{C}') \) also satisfies the Kan extension condition.

2. The homotopy groups and Milnor's theorem. Following the paper [2] for \(\mathcal{C} \in \text{obCat}^{\ast} \) we put \(\pi_n(\mathcal{C}, \ast) = \pi_n(Q(\mathcal{C}), \ast) \), where \(\pi_n(Q(\mathcal{C}), \ast) \) is the \(n \)-th homotopy group of the cubical set \(Q(\mathcal{C}) \) (see [3]).

Theorem 2.1. (see [2]) i) A map \(f : \mathcal{C} \rightarrow \mathcal{D} \) induces the long exact sequence

\[\ldots \rightarrow \pi_n(\mathcal{C}, \ast) \rightarrow \pi_n(\mathcal{D}, \ast) \rightarrow \pi_{n-1}(f^{-1}(\ast), \ast) \rightarrow \ldots. \]

ii) If \(f : \mathcal{C} \rightarrow \mathcal{D} \) is the Serre fibration then \(f^{-1}(\ast) \sim w f^{-1}(\ast) \) where \(\sim w \) is the weak homotopy equivalence.

Let \(\mathcal{I} \) be a small category. Thomason (see [7]). proved that for a functor \(F : \mathcal{I} \rightarrow \text{Cat} \), the classifying space of the Grothendieck construction \(B(\mathcal{I} / F) \), is homotopy equivalent to
the realization of the Bousfield-Kan homotopy colimit
\(\text{hocolim} \ NFI \). There also exists a relation between the homotopy groups of \(\text{hocolim} \ F \) and \(\text{colim} \ F \).

Let \(F : \mathcal{I} \to \text{Cat} \) be a functor. The Grothendieck construction on \(F, \mathcal{I}/F, \) is the category with objects: the pairs \((i, X)\) with \(i \) an object of \(\mathcal{I} \) and \(X \) an object of \(F(i) \), and with morphisms \((\alpha, x) : (i_1, X_1) \to (i_0, X_0)\) given by a morphism \(\alpha : i_1 \to i_0 \) in \(\mathcal{I} \) and a \(x : F(\alpha)(X_1) \to X_0 \) in \(F(i_0) \). The composition is defined by \((\alpha, x)(\alpha', x') = (\alpha \alpha', xF(\alpha)(x'))\).

For \(F : \mathcal{I} \to \text{Cat} \) let \(p : \mathcal{I}/F \to \text{colim}^* F \) be the functor given by \(p(i, X) = X \), then \(p^{-1}(*) = \mathcal{I} \). Moreover, for any \(C \in \text{ob} \text{ colim}^* F \) we have the pair of functors \(p^{-1}(C) \to p/C \) and \(p^{-1}(C) \to C/p \) given in the obvious way, where \(p/C \) and \(C/p \) are comma categories. It is not difficult to see that \(p^{-1}(C)p \to p/C \) has a left adjoint and \(p^{-1}(C) \to C/p \) has a right adjoint. Hence \(p \) is the Serre fibration (see [5]).

Therefore, following the Thomason's result we have

Corollary 2.2. For a functor \(F : \mathcal{I} \to \text{Cat} \) there is the long exact sequence

\[
\cdots \to \pi_n(\mathcal{I}, \ast) \to \pi_n(\text{hocolim} F, \ast) \to \pi_n(\text{colim}^* F, \ast) \to \cdots
\]

In particular, if \(\mathcal{I} \) is a contractible category (for instance, a left or right filtering category) then

\[
\pi_n(\text{hocolim} F, \ast) \cong \pi_n(\text{colim}^* F, \ast) \quad \text{for} \ n \geq 0.
\]

On the base of the proof of Theorem 3.1 from [1,ch.XIX] and with references to the fact that the cubical set \(Q(\mathcal{I}, C') \) satisfies the Kan extension condition, we obtain
Theorem 2.3. (Milnor's theorem). Let I be a countable small right filtering category. If $F : I^{op} \to \text{Cat}^*$ and $F' : I \to \text{Cat}^*$ are such functors that for any map $\alpha : i \to i'$ in I $F(\alpha) : F(i') \to F(i)$ is the Hurewicz fibration and $F'(\alpha) : F'(i) \to F'(i')$ is the Hurewicz cofibration then there is the short exact sequence of pointed sets

$$* \to \lim^1 \{F'(i), \Omega F(i)\} \to \lim F'(i), \lim F(i) \to \lim [F'(i), F(i)] \to *$$

where $\{,\}$ denotes the set of homotopy classes of maps and \lim^1 - the 1-th derived functor of \lim.

Corollary 2.4. i) If $F(i) = F$ for any $i \in \text{ob} I$ then

$$* \to \lim^1 \{F'(i), \Omega F\} \to \lim F'(i), F \to \lim [F'(i), F] \to *$$

is the Milnor's sequence.

ii) If $F'(i) = F'$ for any $i \in \text{ob} I$ then

$$* \to \lim^1 \{F', \Omega F(i)\} \to \{F', \lim F(i)\} \to \lim [F', F(i)] \to *$$

is the Vogt-Cohen's sequence.

Remark that the following diagram

$$
\begin{array}{ccc}
* & \to & \lim^1 \{F'(i), \Omega \lim F(i)\} \\
\downarrow \phi & & \downarrow \phi' \\
* & \to & \lim^1 \{F'(i), \Omega F(i)\} \to \lim F'(i), \lim F(i) \to \lim [F'(i), F(i)] \to *
\end{array}
$$

is commutative. From the "Snake Lemma" we have that $\text{coker} \, \phi = \text{ker} \, \psi$ and $\text{coker} \, \phi' = \text{ker} \, \psi'$.

Hence we obtain
Corollary 2.5. There are the following exact sequences:

\[i \circ \lim^1 [F'(i), \Omega \lim F(i)] \rightarrow \lim^1 [F'(i), \Omega F(i)] \rightarrow \lim [F'(i), \lim F(i)] \rightarrow \lim [F'(i), F(i)] \rightarrow 0, \]

\[ii) \circ \lim^1 [\lim F'(i), \Omega F(i)] \rightarrow \lim^1 [F'(i), \Omega F(i)] \rightarrow \lim [\lim F'(i), F(i)] \rightarrow \lim [F'(i), F(i)] \rightarrow 0. \]

3. Homotopy limit in \textit{Cat}. Let \(I \) be a small category and \(\text{Set}^{\text{op}} \) - the category of simplicial sets. A.K. Bousfield and D.M. Kan defined for \(F : I \rightarrow \text{Set}^{\text{op}} \) the homotopy limit - \(\text{holim} \) \(F \). We will prove that the homotopy limit of a diagram of nerves of categories is itself the nerve of a category.

For \(F : I \rightarrow \text{Cat} \) we define the functor \(\tilde{F} : I \rightarrow \text{Cat} \) (the Eilenberg-Moore rectification or Street "second construction", see [6]). For \(i \in \text{ob} I \) \(\tilde{F}(i) \) is the category whose objects are pairs \((\psi, \varphi)\), where \(\psi \) is a function assigning each \(\alpha : i \rightarrow i' \) in \(I \) with source \(i \) an object \(\psi(\alpha) \) of \(F(i') \); and \(\varphi \) assigns each string \(i \xrightarrow{\alpha} i' \xrightarrow{\beta} i'' \) a map \(\varphi_{\beta, \alpha} : \psi(\alpha) \rightarrow F(\beta) \psi(\alpha) \) in \(F(i'') \), subject to

\[
\begin{array}{ccc}
\psi(\gamma \beta \alpha) & \xrightarrow{\psi(\gamma \beta, \alpha)} & F(\gamma \beta) \psi(\alpha) \\
\varphi_{\gamma, \beta \alpha} & & \\
\downarrow \varphi_{\gamma, \beta \alpha} & & \\
F(\gamma) \psi(\beta \alpha) & \xrightarrow{F(\gamma) \varphi_{\beta, \alpha}} & F(\gamma) F(\beta) \psi(\alpha)
\end{array}
\]

commute. A map \(a : (\psi, \varphi) \rightarrow (\psi', \varphi') \) is a function which assigns to each \(\alpha : i \rightarrow i' \) in \(I \) a map of \(F(i') \), \(a(\alpha) : \psi(\alpha) \rightarrow \psi'(\alpha) \); subject to, for \(i \xrightarrow{\alpha} i' \xrightarrow{\beta} i'' \), that

\[
\begin{array}{ccc}
F(\beta) \psi(\alpha) & \xrightarrow{F(\beta) a(\alpha)} & F(\beta) \psi'(\alpha) \\
\varphi_{\beta, \alpha} & & \\
\downarrow \varphi_{\beta, \alpha} & & \\
\psi(\beta \alpha) & \xrightarrow{a(\beta \alpha)} & \psi'(\beta \alpha)
\end{array}
\]

138
commutes. The composition is given by $\tilde{a} \cdot a(\alpha) = \tilde{a}(\alpha)a(\alpha)$. For $\delta : \mathbb{I} \longrightarrow \mathbb{I}$, $\tilde{F}(\delta) : \tilde{F}(\mathbb{I}) \longrightarrow \tilde{F}(\mathbb{I})$ is given on objects by $\tilde{F}(\delta)(\psi, \phi) = (\psi^\delta, \phi^\delta)$, where $\psi^\delta(\alpha) = \psi(\alpha\delta)$, $\phi^\delta_{\beta, \alpha} = \phi_{\beta, \alpha\delta}$; and on morphisms by $\tilde{F}(\delta)(a) = a^\delta$, $a^\delta(\alpha) = a(\alpha\delta)$.

Then we have the following

Theorem 3.1. For a functor $F : \mathbb{I} \longrightarrow \text{Cat}$ there is a natural isomorphism $\text{holim} \, NF \cong N \text{ lim} \, \tilde{F}$, where N is the nerve functor.

The proof is straightforward.
REFERENCES

Rebut el 20 de maig del 1982

Institute of Mathematics
Nicholas Copernicus University
Chopina 12/18, 87-100 Torun,

POLAND.